[go: up one dir, main page]

CN108355693A - High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst - Google Patents

High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst Download PDF

Info

Publication number
CN108355693A
CN108355693A CN201810104208.6A CN201810104208A CN108355693A CN 108355693 A CN108355693 A CN 108355693A CN 201810104208 A CN201810104208 A CN 201810104208A CN 108355693 A CN108355693 A CN 108355693A
Authority
CN
China
Prior art keywords
carbon nitride
tio
catalyst
graphite phase
phase carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810104208.6A
Other languages
Chinese (zh)
Inventor
孙再成
栾世梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201810104208.6A priority Critical patent/CN108355693A/en
Publication of CN108355693A publication Critical patent/CN108355693A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst, belongs to catalysis material technical field.With TiCl3For titanium source, using graphite phase carbon nitride nanometer sheet as carrier, alcohol is solvent, and hydro-thermal 1 12 hours, the superfine Ti O of acquisition are carried out in 70 180 DEG C of water heating kettle2Nano particle is equably supported on graphite phase carbon nitride nanometer sheet surface, forms composite photo-catalyst.The composite photo-catalyst has higher specific surface area and higher photocatalytic activity.The catalyst is dispersed in sewage, or coated in substrate, the pollutant in water removal and in air is effectively removed under sunlight.Therefore it can be used for building, indoor wall, surface of vehicle, the carrier surfaces such as windowpane are as automatic cleaning coating and pollutant elimination, and indoor air purification, open-air purification all has preferable effect, while also having the function of preferable antibiotic and sterilizing.

Description

高效超细TiO2纳米颗粒/石墨相氮化碳纳米片复合光催化剂的 制备High-efficiency ultrafine TiO2 nanoparticles/graphitic carbon nitride nanosheet composite photocatalyst preparation

技术领域technical field

本发明属于光催化材料技术领域,具体涉及一种超细二氧化钛纳米颗粒/石墨相氮化碳纳米片的复合光催化剂的制备方法。The invention belongs to the technical field of photocatalytic materials, and in particular relates to a method for preparing a composite photocatalyst of ultrafine titanium dioxide nanoparticles/graphite-phase carbon nitride nanosheets.

背景技术Background technique

光催化剂做为一种半导体材料,可以吸收太阳光,产生光生的电子和空穴,光生电子具有还原特性,与氧气分子反应生成超氧自由基,光生空穴与水分子反应可生成羟基自由基,以及光生空穴都具有非常强的氧化能力,统称为活性氧自由基。这些自由基具有非常强的氧化能力,可以氧化空气中的硫氧化物(SOx),氮氧化物(NOx),可挥发性有机化合物(VOC),使这些污染物被进一步氧化达到空气净化的目的。另外,这种光催化剂在水中可以氧化降解除去水中溶解的痕量有机化合物,如苯基化合物,含卤素的化合物,也可以利用光生电子还原水溶液中的重金属,以及所产生的活性自由基,杀死水中的微生物和细菌,从而达到水质净化的目的。当把TiO2光催化剂涂覆在基底上时,在光照射下TiO2表面变为超亲水的表面,因此当液滴在TiO2表面会形成一层水膜,而不是独立的液滴,结合强氧化性能,可以作为自清洁的涂层应用于高层建筑的外表面和玻璃窗的表面起到自清洁的作用。As a semiconductor material, photocatalyst can absorb sunlight and generate photogenerated electrons and holes. Photogenerated electrons have reduction characteristics and react with oxygen molecules to generate superoxide radicals. Photogenerated holes react with water molecules to generate hydroxyl radicals. , and photogenerated holes all have very strong oxidizing ability, collectively referred to as active oxygen radicals. These free radicals have a very strong oxidizing ability, which can oxidize sulfur oxides (SOx), nitrogen oxides (NOx), and volatile organic compounds (VOC) in the air, so that these pollutants can be further oxidized to achieve the purpose of air purification . In addition, this photocatalyst can be oxidized and degraded in water to remove trace organic compounds dissolved in water, such as phenyl compounds and halogen-containing compounds, and can also use photogenerated electrons to reduce heavy metals in aqueous solution and the generated active free radicals to Microbes and bacteria in stagnant water, so as to achieve the purpose of water purification. When the TiO 2 photocatalyst is coated on the substrate, the surface of TiO 2 becomes a super-hydrophilic surface under light irradiation, so when the liquid droplets form a water film on the surface of TiO 2 instead of independent droplets, Combined with strong oxidation properties, it can be used as a self-cleaning coating applied to the outer surface of high-rise buildings and the surface of glass windows to play a self-cleaning role.

然而,当使用TiO2作为光催化剂,由于其仅能吸收紫外光,因此一定是在紫外光下才能发挥其光催化的功能,而太阳光中仅含有5%的紫外光,40%的可见光和55%的红外光。因此TiO2不能充分地利用太阳光。最近王心晨等发现石墨相的氮化碳是一种无金属光催化剂,该催化剂不仅具有高效稳定的光催化性能,而且在可见光区也具有光催化的性能(Nat.Mater.2009,)。当两种半导体复合在一起形成异质结构,由于二者能级的不同,可以促进光生电荷发生转移,从而导致电子和空穴的空间分离,避免电子和空穴的重新复合,达到提高光催化性能的目的However, when using TiO2 as a photocatalyst, since it can only absorb ultraviolet light, it must be under ultraviolet light to exert its photocatalytic function, while sunlight contains only 5% ultraviolet light, 40% visible light and 55% infrared light. So TiO2 can't make full use of sunlight. Recently, Wang Xinchen et al. found that graphite-phase carbon nitride is a metal-free photocatalyst, which not only has efficient and stable photocatalytic performance, but also has photocatalytic performance in the visible light region (Nat.Mater.2009,). When two semiconductors are compounded together to form a heterostructure, due to the difference in energy levels between the two, it can promote the transfer of photogenerated charges, resulting in the spatial separation of electrons and holes, avoiding the recombination of electrons and holes, and improving photocatalysis. purpose of performance

发明内容Contents of the invention

本发明的目的之一在于提供一种超细TiO2纳米颗粒/石墨相氮化碳复合光催化的合成方法,该制备方法简单实用,其中TiO2颗粒尺寸小于10nm、氮化碳呈现纳米片层结构,比表面积较高、光催化性能优异,可应用于废水和废气的处理,室内空气的净化及抗菌材料。One of the purposes of the present invention is to provide a synthetic method for ultrafine TiO2 nanoparticle/graphitic carbon nitride composite photocatalysis, the preparation method is simple and practical, wherein the TiO2 particle size is less than 10nm, and carbon nitride presents nanosheet Structure, high specific surface area, excellent photocatalytic performance, can be used in wastewater and waste gas treatment, indoor air purification and antibacterial materials.

为达到上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

一种超细TiO2纳米颗粒/石墨相氮化碳的合成方法,将TiCl3溶液加入到乙醇中,然后将一定量的氮化碳加入到上述溶液中,超声分散30分钟,将分散液转移至水热反应釜中,在70-180℃下反应1-12小时,收集反应生成的淡黄色沉淀,然后进行乙醇洗涤,烘干即可得到复合光催化剂,其特征在于所获得的小于10纳米的TiO2纳米颗粒直接负载在氮化碳纳米片上。而且所获得催化剂具有较高的比表面积(~241m2/g)和较高的光催化活性。A method for synthesizing ultrafine TiO2 nanoparticles/graphitic carbon nitride, adding TiCl3 solution to ethanol, then adding a certain amount of carbon nitride to the above solution, ultrasonically dispersing for 30 minutes, and transferring the dispersion Put it in a hydrothermal reaction kettle, react at 70-180°C for 1-12 hours, collect the light yellow precipitate generated by the reaction, then wash with ethanol, and dry to obtain a composite photocatalyst, which is characterized in that the obtained particle size is less than 10 nanometers The TiO 2 nanoparticles were directly supported on the carbon nitride nanosheets. Moreover, the obtained catalyst has a higher specific surface area (~241m 2 /g) and higher photocatalytic activity.

其中TiO2的晶型可以通过反应条件控制为锐钛矿晶相或者金红石晶相,通过在制备时原料加入或不加入SnCl4水溶液的反应条件控制金红石晶相或者锐钛矿晶相。进一步优选为金红石相TiO2纳米棒或者锐钛矿相TiO2球形纳米粒子。The crystal form of TiO2 can be controlled as anatase crystal phase or rutile crystal phase by reaction conditions, and the rutile crystal phase or anatase crystal phase can be controlled by adding or not adding SnCl4 aqueous solution to the reaction conditions during preparation. It is further preferably rutile phase TiO 2 nanorods or anatase phase TiO 2 spherical nanoparticles.

优选地,每1-4毫升15-20wt%TiCl3水溶液对应加入到60毫升乙醇中进行反应,90-150毫克的氮化碳纳米片加入到上述溶液中,超声分散30分钟,然后转移到水热反应釜中反应,在70-180℃保温1-12小时,反应后收集淡黄色固体,离心、洗涤、烘干获得TiO2球形纳米粒子与石墨相氮化碳的复合光催化剂。Preferably, every 1-4 ml of 15-20 wt% TiCl3 aqueous solution is added to 60 ml of ethanol for reaction, 90-150 mg of carbon nitride nanosheets are added to the above solution, ultrasonically dispersed for 30 minutes, and then transferred to water React in a thermal reactor, keep warm at 70-180°C for 1-12 hours, collect the light yellow solid after the reaction, centrifuge, wash, and dry to obtain a composite photocatalyst of TiO 2 spherical nanoparticles and graphite phase carbon nitride.

优选地,每1-4毫升15-20wt%TiCl3水溶液对应1-4毫升0-1M(优选0.5M)的SnCl4水溶液和60毫升乙醇,90-150毫克的氮化碳纳米片加入到上述溶液中,超声分散30分钟,然后转移到水热反应釜中反应,在70-180℃保温1-12小时,反应后收集淡黄色固体,离心、洗涤、烘干获得TiO2纳米棒/氮化碳复合光催化剂。Preferably, every 1-4 ml of 15-20wt% TiCl aqueous solution corresponds to 1-4 ml of 0-1M (preferably 0.5M) SnCl aqueous solution and 60 ml of ethanol, and 90-150 mg of carbon nitride nanosheets are added to the above In the solution, ultrasonically disperse for 30 minutes, then transfer to a hydrothermal reaction kettle for reaction, keep warm at 70-180°C for 1-12 hours, collect a light yellow solid after the reaction, centrifuge, wash and dry to obtain TiO 2 nanorods/nitrided Carbon composite photocatalyst.

该方法克服了钛酸有机酯价格昂贵的缺点,而且不需要繁杂的洗涤步骤即可获得二氧化钛超细纳米颗粒/氮化碳复合催化剂的固体粉末。The method overcomes the disadvantage that the organic titanate is expensive, and can obtain the solid powder of the titanium dioxide ultrafine nanometer particle/carbon nitride composite catalyst without complicated washing steps.

以该TiO2纳米颗粒/石墨相氮化碳纳米片复合光催化剂为主要功能成分可以用来开发了具有光催化活性的纳米涂料。将该催化剂分散在污水中,或涂覆在基底上,在太阳光下有效的去除水中和空气中的污染物。因此可用于建筑物,室内墙体,车辆表面,玻璃窗等载体表面做为自清洁涂层以及污染物消除,室内空气净化,户外空气净化均具有较好的效果,同时还具有较好的抗菌杀菌的作用。The TiO 2 nanoparticle/graphitic carbon nitride nanosheet composite photocatalyst as the main functional component can be used to develop nano-coatings with photocatalytic activity. The catalyst is dispersed in sewage, or coated on the substrate, and effectively removes pollutants in water and air under sunlight. Therefore, it can be used in buildings, indoor walls, vehicle surfaces, glass windows and other carrier surfaces as a self-cleaning coating and pollutant elimination, indoor air purification, outdoor air purification have good effects, and also have good antibacterial properties Bactericidal effect.

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

1、本发明提供了一种简单、廉价的方法来制备锐钛矿的TiO2纳米粒子和金红石晶相的TiO2纳米棒与氮化碳复合光催化剂的合成方法。1. The present invention provides a simple and cheap method to prepare anatase TiO2 nanoparticles and rutile crystal phase TiO2 nanorods and carbon nitride composite photocatalysts.

2、本发明的TiO2纳米颗粒/石墨相氮化碳纳米片可以用来制备高效的具有光催化性能的涂层,在太阳光或紫外光下实现对污染物和空气的净化。2. The TiO 2 nanoparticles/graphitic carbon nitride nanosheets of the present invention can be used to prepare highly efficient coatings with photocatalytic properties to purify pollutants and air under sunlight or ultraviolet light.

附图说明Description of drawings

图1.为实施例1中获得的复合催化剂,纯TiO2纳米棒和纯石墨相氮化碳的XRD图案,其中线1为金红石TiO2纳米棒,线2为实施例1获得的金红石相的TiO2纳米棒/石墨相氮化碳纳米片,线3为纯石墨相氮化碳。Fig. 1. is the composite catalyst obtained in embodiment 1, the XRD pattern of pure TiO nanorod and pure graphite phase carbon nitride, wherein line 1 is rutile TiO nanorod, and line 2 is the rutile phase that embodiment 1 obtains TiO 2 nanorods/graphitic carbon nitride nanosheets, line 3 is pure graphitic carbon nitride.

图2为实施例1获得的TiO2纳米棒/石墨相氮化碳纳米片复合催化剂的透射电镜。Fig. 2 is the transmission electron microscope of the TiO nanorod /graphite phase carbon nitride nanosheet composite catalyst obtained in Example 1.

图3为实施例2中获得的复合催化剂,纯TiO2纳米颗粒和纯石墨相氮化碳的XRD图案,其中线1为锐钛矿TiO2纳米颗粒,线2为实施例2获得的锐钛矿的TiO2纳米颗粒/石墨相氮化碳纳米片,线3为纯石墨相氮化碳。Figure 3 is the composite catalyst obtained in Example 2, the XRD patterns of pure TiO nanoparticles and pure graphite phase carbon nitride, in which line 1 is anatase TiO nanoparticles, and line 2 is the anatase obtained in Example 2 Ore TiO 2 nanoparticles/graphitic carbon nitride nanosheets, line 3 is pure graphitic carbon nitride.

图4为实施例2获得的TiO2纳米粒子的透射电镜及纳米粒子的尺寸分布图。Fig. 4 is the transmission electron microscope of the TiO2nanoparticle obtained in Example 2 and the size distribution diagram of the nanoparticle.

图5为TiO2纳米棒,纯石墨相氮化碳纳米片和实施例3中的氮气吸脱附曲线。Figure 5 is the nitrogen adsorption and desorption curves of TiO2 nanorods, pure graphite phase carbon nitride nanosheets and Example 3.

图6为实施例1获得的TiO2纳米粒子(线2)、实施例3获得的TiO2纳米棒(线3)以及商品化P25TiO2纳米颗粒(线1)的在全光谱的光照下光催化降解罗丹明B曲线。a是罗丹明B降解过程中罗丹明B浓度的变化曲线,b是对应降解反应速率曲线。Fig. 6 is the TiO2nanoparticle (line 2) that embodiment 1 obtains, the TiO2nanorod (line 3) that embodiment 3 obtains and commercialization P25TiO2nanoparticle (line 1) photocatalysis under full-spectrum illumination Degradation Rhodamine B Curve. a is the change curve of rhodamine B concentration during the degradation process of rhodamine B, and b is the corresponding degradation reaction rate curve.

图7对比样品(P25TiO2,TiO2纳米棒,纯氮化碳纳米片和实施例3中复合光催化剂在可见光下降解罗丹明B的效果图(a)和降解动力学速率图(b)。Figure 7 shows the comparison of samples (P25TiO 2 , TiO 2 nanorods, pure carbon nitride nanosheets and the composite photocatalyst in Example 3) for degradation of Rhodamine B under visible light (a) and degradation kinetics (b).

图8是对比催化剂TiO2纳米棒,石墨相氮化碳纳米片和复合催化剂(实施例4)在全光谱(a)和可见光(b)下降解苯酚的效果图。复合催化剂均显示更高的催化活性。(c)对苯酚的矿化结果图,(d)是催化剂的稳定性测试。Fig. 8 is a graph showing the effect of degrading phenol under full spectrum (a) and visible light (b) compared with catalyst TiO 2 nanorods, graphitic carbon nitride nanosheets and composite catalyst (Example 4). The composite catalysts all showed higher catalytic activity. (c) Mineralization result map of phenol, (d) is the stability test of the catalyst.

具体实施方式Detailed ways

为了更好地说明本发明,下面结合实施例和附图对本发明做进一步说明,但本发明并不限于以下实施例。优选15-20wt%TiCl3水溶液为:TiCl3溶于30wt%的盐酸溶液中,TiCl3的浓度为15-20wt%。In order to better illustrate the present invention, the present invention will be further described below in conjunction with the examples and accompanying drawings, but the present invention is not limited to the following examples. The preferred 15-20wt% TiCl 3 aqueous solution is: TiCl 3 is dissolved in 30wt% hydrochloric acid solution, and the concentration of TiCl 3 is 15-20wt%.

将50克的尿素、硫脲、双氰胺或三聚氰胺放置坩埚中,在马弗炉中加热,以0.1-10℃/分钟的加热速率,并在500-600℃保持1-5小时,所获得的固体粉末为石墨相氮化碳。Place 50 grams of urea, thiourea, dicyandiamide or melamine in a crucible, heat in a muffle furnace at a heating rate of 0.1-10°C/min, and keep at 500-600°C for 1-5 hours to obtain The solid powder is graphite phase carbon nitride.

实施例1Example 1

TiO2纳米棒/石墨相氮化碳纳米片复合催化剂的制备方法:Preparation method of TiO nanorod /graphitic carbon nitride nanosheet composite catalyst:

1.将2毫升15-20%的TiCl3水溶液和1毫升0.5M的SnCl4水溶液加入到60毫升的乙醇中,90毫克的氮化碳纳米片加入到上述溶液中,超声分散30分钟,然后将上述溶液转移到100毫升的水热反应釜中,将其置于鼓风烘箱中升温至100℃并保持在100℃下4小时,然后自然冷却。1. Add 2 milliliters of 15-20% TiCl3 aqueous solution and 1 milliliter of 0.5M SnCl4 aqueous solution to 60 milliliters of ethanol, add 90 milligrams of carbon nitride nanosheets to the above solution, ultrasonically disperse for 30 minutes, and then The above solution was transferred to a 100 ml hydrothermal reaction kettle, which was placed in a blast oven to raise the temperature to 100° C. and kept at 100° C. for 4 hours, and then cooled naturally.

2.将步骤1中得到的分散液放于离心管内,通过离心除去上清液,得到固体。2. Put the dispersion obtained in step 1 in a centrifuge tube, and remove the supernatant by centrifugation to obtain a solid.

3.向步骤2中所获得的固体加入10毫升的乙醇溶液,超声至完全分散,将未反应的TiCl3除去,然后离心,获得固体。3. Add 10 ml of ethanol solution to the solid obtained in step 2, sonicate until completely dispersed, remove unreacted TiCl 3 , and then centrifuge to obtain a solid.

4.将步骤3中获得的固体放入70℃烘箱中烘干,箱中烘干获得TiO2纳米棒/石墨相氮化碳纳米片复合催化剂粉末约210mg。4. Put the solid obtained in step 3 into an oven at 70° C. for drying, and dry in the oven to obtain about 210 mg of TiO 2 nanorod/graphite-phase carbon nitride nanosheet composite catalyst powder.

图1中的线1是得到TiO2纳米棒的XRD的图案,线3为纯石墨相氮化碳的XRD图案,线2是TiO2纳米棒/石墨相氮化碳纳米片复合催化剂的XRD图案,可以看出所获得的TiO2纳米棒为金红石晶相。石墨相氮化碳为片层结构,复合催化剂具有氮化碳和金红石相TiO2的典型XRD衍射图案。图2为所获得TiO2纳米棒/石墨相氮化碳纳米片复合催化剂的透射电镜图以及尺寸分布图。从低倍透射电镜图可以看出所获得的TiO2主要呈棒状。直径为1.5纳米,棒长约为8纳米。在高分辨电镜图中可以看到的晶格尺寸为0.324纳米,这是金红石型TiO2(111)晶格尺寸。这也证明了所获的TiO2纳米颗粒为金红石晶相。而氮化碳为纳米片层结构。同时可以看出TiO2纳米片均匀的分散在氮化碳纳米片上,没有明显的聚集。Line 1 in Fig. 1 is to obtain the XRD pattern of TiO2 nanorod, line 3 is the XRD pattern of pure graphite phase carbon nitride, and line 2 is the XRD pattern of TiO2 nanorod/graphite phase carbon nitride nanosheet composite catalyst , it can be seen that the obtained TiO2 nanorods are in the rutile crystal phase. The graphitic phase carbon nitride has a lamellar structure, and the composite catalyst has typical XRD diffraction patterns of carbon nitride and rutile phase TiO2 . Fig. 2 is the transmission electron micrograph and size distribution diagram of the obtained TiO 2 nanorod/graphitic carbon nitride nanosheet composite catalyst. It can be seen from the low-magnification transmission electron microscope that the obtained TiO2 is mainly rod-shaped. The diameter is 1.5 nanometers, and the rod length is about 8 nanometers. The lattice size that can be seen in the high-resolution electron microscope image is 0.324 nanometers, which is the lattice size of rutile TiO 2 (111). This also proves that the obtained TiO2 nanoparticles are in the rutile crystal phase. Carbon nitride has a nanosheet structure. At the same time, it can be seen that the TiO 2 nanosheets are uniformly dispersed on the carbon nitride nanosheets without obvious aggregation.

实施例2TiO2纳米颗粒/石墨相氮化碳纳米片复合催化剂的制备方法:Embodiment 2TiO The preparation method of nanoparticle/graphite phase carbon nitride nanosheet composite catalyst:

1.将2毫升15-20wt%的TiCl3水溶液加入到60毫升的乙醇中,并在室温下搅拌30分钟。然后将上述溶液转移到100毫升的水热反应釜中,将其置于鼓风烘箱中升温至100℃并保持在100℃下6小时,自然冷却。1. Add 2 ml of 15-20 wt% TiCl3 aqueous solution into 60 ml of ethanol and stir at room temperature for 30 minutes. Then the above solution was transferred to a 100 ml hydrothermal reaction kettle, which was placed in a blast oven and heated to 100° C. and kept at 100° C. for 6 hours, and cooled naturally.

2.将步骤1中得到的分散液放于离心管内,通过离心除去上清液,得到固体。2. Put the dispersion obtained in step 1 in a centrifuge tube, and remove the supernatant by centrifugation to obtain a solid.

3.向步骤2中所获得的固体加入10毫升的乙醇溶液,超声至完全分散,将未反应的TiCl3除去,然后离心,获得固体。3. Add 10 ml of ethanol solution to the solid obtained in step 2, sonicate until completely dispersed, remove unreacted TiCl 3 , and then centrifuge to obtain a solid.

4.将步骤3中获得的固体放入70℃烘箱中烘干获得TiO2纳米颗粒/石墨相氮化碳纳米片复合催化剂粉末约200mg。4. Put the solid obtained in step 3 into an oven at 70° C. and dry to obtain about 200 mg of TiO 2 nanoparticle/graphite-phase carbon nitride nanosheet composite catalyst powder.

图3中的线1是得到TiO2纳米颗粒的XRD的图案,线3为纯石墨相氮化碳的XRD图案,线2是TiO2纳米颗粒/石墨相氮化碳纳米片复合催化剂的XRD图案,可以看出所获得的TiO2纳米颗粒为锐钛矿晶相。石墨相氮化碳为片层结构,复合催化剂具有氮化碳和锐钛矿相TiO2的典型XRD衍射图案。图4为所获得TiO2纳米颗粒的透射电镜图以及尺寸分布图。可以看出所获得的TiO2纳米颗粒的尺寸约为2-10纳米,在高分辨电镜图中可以看到的晶格尺寸为0.346纳米,这是锐钛矿型TiO2(101)晶格尺寸。这也证明了所获的TiO2纳米颗粒为锐钛矿。Line 1 in Fig. 3 is to obtain the XRD pattern of TiO2 nanoparticle, line 3 is the XRD pattern of pure graphite phase carbon nitride, and line 2 is the XRD pattern of TiO2 nanoparticle/graphite phase carbon nitride nanosheet composite catalyst , it can be seen that the obtained TiO2 nanoparticles are in the anatase crystal phase. The graphitic phase carbon nitride has a lamellar structure, and the composite catalyst has typical XRD diffraction patterns of carbon nitride and anatase phase TiO2 . Fig. 4 is a transmission electron microscope image and a size distribution image of the obtained TiO 2 nanoparticles. It can be seen that the size of the obtained TiO 2 nanoparticles is about 2-10 nanometers, and the lattice size seen in the high-resolution electron microscope image is 0.346 nanometers, which is the lattice size of anatase TiO 2 (101). This also proves that the obtained TiO2 nanoparticles are anatase.

实施例3Example 3

TiO2纳米棒/石墨相氮化碳纳米片复合催化剂的制备方法Preparation method of TiO2 nanorod/graphitic carbon nitride nanosheet composite catalyst

1.将4毫升15-20%的TiCl3水溶液和2毫升0.5M的SnCl4水溶液加入到60毫升的乙醇中,120毫克的氮化碳纳米片加入到上述溶液中,超声分散30分钟,然后将上述溶液转移到100毫升的水热反应釜中,将其置于鼓风烘箱中升温至100℃并保持在100℃下4小时,然后自然冷却。。1. Add 4 milliliters of 15-20% TiCl3 aqueous solution and 2 milliliters of 0.5M SnCl4 aqueous solution to 60 milliliters of ethanol, add 120 milligrams of carbon nitride nanosheets to the above solution, ultrasonically disperse for 30 minutes, and then The above solution was transferred to a 100 ml hydrothermal reaction kettle, which was placed in a blast oven to raise the temperature to 100° C. and kept at 100° C. for 4 hours, and then cooled naturally. .

2.将步骤1中得到的分散液放于离心管内,通过离心除去上清液,得到固体。2. Put the dispersion obtained in step 1 in a centrifuge tube, and remove the supernatant by centrifugation to obtain a solid.

3.向步骤2中所获得的固体加入10毫升的乙醇溶液,超声至完全分散,将未反应的TiCl3除去,然后离心,获得固体。3. Add 10 ml of ethanol solution to the solid obtained in step 2, sonicate until completely dispersed, remove unreacted TiCl 3 , and then centrifuge to obtain a solid.

4.将步骤3中获得的固体放入70℃烘箱中烘干,箱中烘干获得TiO2纳米棒/石墨相氮化碳纳米片复合催化剂粉末约300mg。4. Put the solid obtained in step 3 into an oven at 70° C. for drying, and dry in the oven to obtain about 300 mg of TiO 2 nanorod/graphite-phase carbon nitride nanosheet composite catalyst powder.

图5是所获得TiO2纳米棒,石墨相氮化碳纳米片和二者复合催化剂的N2吸脱附曲线,可以看出所有的吸脱附曲线为典型的typeIV曲线,也就是说存在介孔。其孔径在3-5纳米范围。其BET比表面积分别为312m2/g,110m2/g,和241m2/g可以看出所获得的TiO2纳米棒/石墨相氮化碳具有较高的比表面积。Figure 5 is the obtained TiO2 nanorods, graphitic carbon nitride nanosheets and the N2 adsorption-desorption curves of the two composite catalysts, it can be seen that all the adsorption-desorption curves are typical typeIV curves, that is to say, there is an intermediate hole. Its pore size is in the range of 3-5 nanometers. The BET specific surface areas are 312m 2 /g, 110m 2 /g, and 241m 2 /g respectively. It can be seen that the obtained TiO2 nanorod/graphitic carbon nitride has a relatively high specific surface area.

实施例4Example 4

TiO2纳米棒/石墨相氮化碳纳米片复合催化剂的制备方法Preparation method of TiO2 nanorod/graphitic carbon nitride nanosheet composite catalyst

1.将4毫升15-20%的TiCl3水溶液和2毫升0.5M的SnCl4水溶液加入到60毫升的乙醇中,150毫克的氮化碳纳米片加入到上述溶液中,超声分散30分钟,然后将上述溶液转移到100毫升的水热反应釜中,将其置于鼓风烘箱中升温至120℃并保持在120℃下4小时,然后自然冷却。1. Add 4 milliliters of 15-20% TiCl3 aqueous solution and 2 milliliters of 0.5M SnCl4 aqueous solution to 60 milliliters of ethanol, add 150 milligrams of carbon nitride nanosheets to the above solution, ultrasonically disperse for 30 minutes, and then The above solution was transferred to a 100 ml hydrothermal reaction kettle, which was placed in a blast oven to raise the temperature to 120° C. and kept at 120° C. for 4 hours, and then cooled naturally.

2.将步骤1中得到的分散液放于离心管内,通过离心除去上清液,得到固体。2. Put the dispersion obtained in step 1 in a centrifuge tube, and remove the supernatant by centrifugation to obtain a solid.

3.向步骤2中所获得的固体加入10毫升的乙醇溶液,超声至完全分散,将未反应的TiCl3除去,然后离心,获得固体。3. Add 10 ml of ethanol solution to the solid obtained in step 2, sonicate until completely dispersed, remove unreacted TiCl 3 , and then centrifuge to obtain a solid.

4.将步骤3中获得的固体放入70℃烘箱中烘干,箱中烘干获得TiO2纳米棒/石墨相氮化碳纳米片复合催化剂粉末约280mg。4. Put the solid obtained in step 3 into an oven at 70° C. for drying, and dry in the oven to obtain about 280 mg of TiO 2 nanorod/graphite-phase carbon nitride nanosheet composite catalyst powder.

图6是所获得TiO2纳米棒/石墨相氮化碳的光催化降解罗丹明B的效果图(a)及降解动力学速率(b)。复合光催化剂的降解速率均高于单纯的TiO2和氮化碳的降解速率,这说明图中可以看出,复合光催化剂拥有更好的光催化活性。在不同比例的TiO2和氮化碳复合催化剂中,实施例3的样品显示了最优的催化性能。Fig. 6 is the effect diagram (a) and the degradation kinetic rate (b) of the photocatalytic degradation of rhodamine B obtained by TiO 2 nanorods/graphitic carbon nitride. The degradation rate of the composite photocatalyst is higher than that of pure TiO 2 and carbon nitride, which shows that the composite photocatalyst has better photocatalytic activity. Among the different ratios of TiO2 and carbon nitride composite catalysts, the sample of Example 3 showed the best catalytic performance.

图7对比样品(P25TiO2,TiO2纳米棒,纯氮化碳纳米片和实施例3中复合光催化剂在可见光下降解罗丹明B的效果图(a)和降解动力学速率图(b)。可以看出在可见光下复合催化剂仍然显示了较高的催化活性。Figure 7 shows the comparison of samples (P25TiO 2 , TiO 2 nanorods, pure carbon nitride nanosheets and the composite photocatalyst in Example 3) for degradation of Rhodamine B under visible light (a) and degradation kinetics (b). It can be seen that the composite catalyst still shows high catalytic activity under visible light.

图8是对比催化剂TiO2纳米棒,石墨相氮化碳纳米片和复合催化剂在全光谱(a)和可见光(b)下降解苯酚的效果图。复合催化剂均显示更高的催化活性。(c)对苯酚的矿化结果图,可以看到复合催化剂可以有效的除去水中的有机物。(d)是催化剂的稳定性测试,可以看出催化剂净化3次循环后,依然保持较高的催化活性。Fig. 8 is a graph showing the effect of degrading phenol under the full spectrum (a) and visible light (b) of the comparison catalyst TiO 2 nanorods, graphitic carbon nitride nanosheets and composite catalysts. The composite catalysts all showed higher catalytic activity. (c) The results of mineralization of phenol, it can be seen that the composite catalyst can effectively remove organic matter in water. (d) is the stability test of the catalyst. It can be seen that the catalyst still maintains a high catalytic activity after 3 cycles of purification.

本发明的上述实施例仅为清楚说明本发明所作的举例,并非是对本发明实施方式的限定。在上述说明的基础上引申出的显而易见的变化仍处于本发明的保护范围。The above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the implementation of the present invention. Obvious changes derived on the basis of the above descriptions still fall within the protection scope of the present invention.

Claims (5)

1.一种超细TiO2纳米颗粒/石墨相氮化碳纳米片的合成方法,其特征在于,将TiCl3溶液盐酸溶液加入到乙醇中,然后加入石墨相氮化碳纳米片,超声分散30分钟,然后通过水热反应获得淡黄色沉淀,然后进行乙醇洗涤,烘干即可得到超细的纳米颗粒,所获得的TiO2纳米颗粒的尺寸小于10纳米直接负载杂石墨相氮化碳纳米片上,获得复合催化剂。1. a kind of superfine TiO The synthetic method of nanoparticle/graphite phase carbon nitride nanosheet is characterized in that, TiCl solution hydrochloric acid solution is joined in the ethanol, then adds graphite phase carbon nitride nanosheet, ultrasonic dispersion 30 Minutes, then obtain a light yellow precipitate by hydrothermal reaction, then wash with ethanol, and dry to obtain ultrafine nanoparticles. The obtained TiO2 nanoparticles have a size less than 10 nanometers and are directly loaded on the heterographite phase carbon nitride nanosheets , to obtain a composite catalyst. 2.按照权利要求1所述的一种超细TiO2纳米颗粒/石墨相氮化碳纳米片的合成方法,其特征在于,石墨相氮化碳纳米片的合成:将50克的尿素,硫脲,双氰胺或三聚氰胺放置坩埚中,在马弗炉中加热,以0.1-10℃/分钟的加热速率,并在500-600℃保持1-5小时,所获得的固体粉末为石墨相氮化碳。2. according to a kind of ultra - fine TiO as claimed in claim 1 The synthetic method of nanoparticle/graphite phase carbon nitride nanosheet is characterized in that, the synthesis of graphite phase carbon nitride nanosheet: the urea of 50 grams, sulfur Urea, dicyandiamide or melamine are placed in a crucible, heated in a muffle furnace at a heating rate of 0.1-10°C/min, and kept at 500-600°C for 1-5 hours, the obtained solid powder is graphite phase nitrogen carbonized. 3.按照权利要求1所述的一种超细TiO2纳米颗粒/石墨相氮化碳纳米片的合成方法,其特征在于,其晶型通过反应条件控制为锐钛矿晶相或者金红石晶相,通过在制备时原料加入或不加入SnCl4水溶液的反应条件控制锐钛矿晶相或者金红石晶相。3. according to a kind of ultra - fine TiO as claimed in claim 1 The synthetic method of nanoparticle/graphitic phase carbon nitride nanosheet is characterized in that, its crystal form is controlled as anatase crystal phase or rutile crystal phase by reaction condition , the anatase crystal phase or rutile crystal phase is controlled by adding or not adding SnCl 4 aqueous solution to the reaction conditions during the preparation. 4.按照权利要求3所述的一种超细TiO2纳米颗粒/石墨相氮化碳纳米片的合成方法,其特征在于,每1-4毫升15-20wt%TiCl3水溶液对应加入到60毫升乙醇中进行反应,90-150毫克的石墨相氮化碳加入到上述溶液中,超声分散30分钟,然后醇热反应在70-180℃保温1-12小时,离心、洗涤、烘干获得TiO2球形纳米粒子与氮化碳的复合催化剂;4. according to a kind of ultra - fine TiO as claimed in claim 3 The synthetic method of nanoparticle/graphitic carbon nitride nanoplate, it is characterized in that, every 1-4 milliliter 15-20wt% TiCl Aqueous solution is correspondingly added to 60 milliliters React in ethanol, add 90-150 mg of graphitic carbon nitride into the above solution, disperse by ultrasonic for 30 minutes, then heat the alcohol reaction at 70-180°C for 1-12 hours, centrifuge, wash and dry to obtain TiO 2 Composite catalyst of spherical nanoparticles and carbon nitride; 或每1-4毫升15-20wt%TiCl3水溶液对应1-4毫升0-1M(不为0)的SnCl4水溶液和60毫升乙醇,加入90-150毫克的氮化碳,超声分散30分钟,然后醇热反应在70-180℃保温1-12小时,离心、洗涤、烘干获得TiO2纳米棒,所得TiO2纳米棒与氮化碳复合催化剂。Or every 1-4 ml of 15-20wt% TiCl3 aqueous solution corresponds to 1-4 ml of 0-1M (not 0) SnCl4 aqueous solution and 60 ml of ethanol, add 90-150 mg of carbon nitride, and ultrasonically disperse for 30 minutes, Then the alcohol thermal reaction is kept at 70-180 DEG C for 1-12 hours, centrifuged, washed and dried to obtain TiO 2 nanorods, and the obtained TiO 2 nanorods and carbon nitride composite catalyst. 5.按照权利要求1-4任一项所述的方法制备得到的超细TiO2纳米颗粒与氮化碳复合催化剂。5. according to the superfine TiO that the method described in any one of claim 1-4 prepares Nano particle and carbon nitride composite catalyst.
CN201810104208.6A 2018-02-02 2018-02-02 High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst Pending CN108355693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810104208.6A CN108355693A (en) 2018-02-02 2018-02-02 High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810104208.6A CN108355693A (en) 2018-02-02 2018-02-02 High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst

Publications (1)

Publication Number Publication Date
CN108355693A true CN108355693A (en) 2018-08-03

Family

ID=63004170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810104208.6A Pending CN108355693A (en) 2018-02-02 2018-02-02 High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst

Country Status (1)

Country Link
CN (1) CN108355693A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112044288A (en) * 2020-08-31 2020-12-08 济南大学 Based on F-TiO2/Fe-g-C3N4Self-cleaning PVDF hollow fiber ultrafiltration membrane and preparation method thereof
CN112387270A (en) * 2020-12-07 2021-02-23 清华大学 Photocatalytic material for eliminating VOCs and ozone and multilayer-hole-plate type photocatalytic reactor
CN113244960A (en) * 2021-05-24 2021-08-13 南京工业大学 High-hydrophobicity TiO suitable for low-temperature plasma2@ ZIF-8 catalyst and preparation method and application thereof
CN113856757A (en) * 2021-11-04 2021-12-31 广东工业大学 A kind of polydopamine modified carbon nitride/titania supported foam nickel composite photocatalyst and its preparation method and application
CN114433048A (en) * 2022-01-20 2022-05-06 内蒙古农业大学 A method and application of in-situ exfoliation to prepare C3N4/TiO2(B) microflora composite catalyst
CN115069283A (en) * 2022-05-20 2022-09-20 青岛科技大学 Multi-element doped porous carbon nanosheet composite two-phase TiO 2 Method for preparing hemisphere

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209136A (en) * 2014-09-15 2014-12-17 浙江大学 Preparation method of TiO2/porous g-C3N4 composite
CN104311864A (en) * 2014-10-16 2015-01-28 扬州喜达屋环保科技有限公司 High-efficiency visible light antibacterial fresh-keeping plastic packaging material and preparation method thereof
CN106674568A (en) * 2016-12-06 2017-05-17 上海锦湖日丽塑料有限公司 Self-cleaning acrylonitrile butadiene styrene (ABS) sheet with visible-light response and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209136A (en) * 2014-09-15 2014-12-17 浙江大学 Preparation method of TiO2/porous g-C3N4 composite
CN104311864A (en) * 2014-10-16 2015-01-28 扬州喜达屋环保科技有限公司 High-efficiency visible light antibacterial fresh-keeping plastic packaging material and preparation method thereof
CN106674568A (en) * 2016-12-06 2017-05-17 上海锦湖日丽塑料有限公司 Self-cleaning acrylonitrile butadiene styrene (ABS) sheet with visible-light response and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
相国磊: "超小二氧化钛纳米晶表面结构与反应活性研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112044288A (en) * 2020-08-31 2020-12-08 济南大学 Based on F-TiO2/Fe-g-C3N4Self-cleaning PVDF hollow fiber ultrafiltration membrane and preparation method thereof
CN112387270A (en) * 2020-12-07 2021-02-23 清华大学 Photocatalytic material for eliminating VOCs and ozone and multilayer-hole-plate type photocatalytic reactor
CN112387270B (en) * 2020-12-07 2021-11-30 清华大学 Photocatalytic material for eliminating VOCs and ozone and multilayer-hole-plate type photocatalytic reactor
CN113244960A (en) * 2021-05-24 2021-08-13 南京工业大学 High-hydrophobicity TiO suitable for low-temperature plasma2@ ZIF-8 catalyst and preparation method and application thereof
CN113856757A (en) * 2021-11-04 2021-12-31 广东工业大学 A kind of polydopamine modified carbon nitride/titania supported foam nickel composite photocatalyst and its preparation method and application
CN113856757B (en) * 2021-11-04 2023-08-22 广东工业大学 Polydopamine modified carbon nitride/titanium dioxide supported foam nickel composite photocatalyst and preparation method and application thereof
CN114433048A (en) * 2022-01-20 2022-05-06 内蒙古农业大学 A method and application of in-situ exfoliation to prepare C3N4/TiO2(B) microflora composite catalyst
CN115069283A (en) * 2022-05-20 2022-09-20 青岛科技大学 Multi-element doped porous carbon nanosheet composite two-phase TiO 2 Method for preparing hemisphere
CN115069283B (en) * 2022-05-20 2023-07-21 青岛科技大学 Multi-element doped porous carbon nano-sheet composite two-phase TiO 2 Method for preparing hemisphere

Similar Documents

Publication Publication Date Title
CN108355693A (en) High Efficiency Superfine TiO2The preparation of nano particle/graphite phase carbon nitride nanometer sheet composite photo-catalyst
Huang et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x
Lv et al. Synthesis and photo-degradation application of WO3/TiO2 hollow spheres
Zhu et al. Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol–gel reaction of TiCl4 and benzyl alcohol
Shen et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination
Behpour et al. Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation
Huang et al. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light
US20120165184A1 (en) Doped catalytic carbonaceous composite materials and uses thereof
CN108557876A (en) High Efficiency Superfine TiO2Nano particle and photocatalytic nanometer coating
Haider et al. Synthesis and photocatalytic activity for TiO2 nanoparticles as air purification
Coromelci-Pastravanu et al. TiO2-coated mesoporous carbon: Conventional vs. microwave-annealing process
CN102489285A (en) Preparation method of graphene-titanium dioxide composite photocatalyst
CN101015792A (en) Titanium dioxide perforated micro-pipe photocatalyst modified by silver and its prodn. method
Oshani et al. Photocatalytic investigations of TiO2–P25 nanocomposite thin films prepared by peroxotitanic acid modified sol–gel method
CN104759280A (en) Method for preparing nano silver composite titanium dioxide sol photocatalyst, coating liquid, member and use method
CN104338522A (en) Preparation method of titanium dioxide sol photocatalyst and its application as decontamination and self-cleaning
CN101632921B (en) Preparation method of zinc oxide/zinc titanite nucleocapsid nanowire composite photocatalyst and application thereof
CN111715188A (en) A kind of titanium dioxide-based nanocomposite material and its preparation method and use
Hamadanian et al. Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure
CN1634653A (en) Preparation method of supported nano titanium dioxide photocatalytic film
CN103212409B (en) A porous carbon material loaded mesoporous TiO2-Ag composite and its preparation process
WO2010030098A2 (en) Method for the manufacture of uniform anatase titanium dioxide nanoparticles
CN100384534C (en) Titanium dioxide photocatalytic material and preparation method thereof
Su et al. Preparation and characterization of high-surface-area titanium dioxide by sol-gel process
CN101524642A (en) Hydrothermal surface fluorination method for preparing high photocatalytic activity mesoporous titanium dioxide powder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180803