CN108350599A - The method of electrochemical polish under constant voltage mode - Google Patents
The method of electrochemical polish under constant voltage mode Download PDFInfo
- Publication number
- CN108350599A CN108350599A CN201580083919.4A CN201580083919A CN108350599A CN 108350599 A CN108350599 A CN 108350599A CN 201580083919 A CN201580083919 A CN 201580083919A CN 108350599 A CN108350599 A CN 108350599A
- Authority
- CN
- China
- Prior art keywords
- wafer
- method described
- constant
- layer
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005498 polishing Methods 0.000 claims abstract description 33
- 238000009826 distribution Methods 0.000 claims abstract description 7
- 238000007517 polishing process Methods 0.000 claims abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 24
- 229910052802 copper Inorganic materials 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000003792 electrolyte Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 2
- 229910052710 silicon Inorganic materials 0.000 claims 2
- 239000010703 silicon Substances 0.000 claims 2
- 230000004888 barrier function Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- -1 hydrogen ions Chemical class 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
- C25F3/22—Polishing of heavy metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F7/00—Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Weting (AREA)
Abstract
Description
技术领域technical field
本发明涉及电化学抛光,尤其涉及一种在恒压模式下电化学抛光的方法。The invention relates to electrochemical polishing, in particular to a method for electrochemical polishing under constant voltage mode.
背景技术Background technique
由于电化学抛光速度快,效果好,目前已广泛应用于半导体工业,并在电化学抛光反应中选用恒流模式。在恒流模式下,电流恒定且稳定,这就表明恒定量的氢离子与图案化的晶圆金属层表面反应。当大量的铜层完全覆盖图案化的晶圆表面时,氢离子将会与整个晶圆上的铜层均匀反应直到大量的铜层被去除。由于余留在图案化沟槽内的铜以及阻挡层材料(钽、氮化钽、钛、氮化钛、钴、钌等)不与电解液反应,铜余留区域周围的氢离子浓度大幅增长,导致凹陷以及铜线的表面特征因不同的线密度和分布而不同。Due to the high speed and good effect of electrochemical polishing, it has been widely used in the semiconductor industry, and the constant current mode is selected in the electrochemical polishing reaction. In constant current mode, the current is constant and steady, which indicates that a constant amount of hydrogen ions reacts with the surface of the patterned wafer metal layer. When a large copper layer completely covers the patterned wafer surface, hydrogen ions will react uniformly with the copper layer on the entire wafer until the large copper layer is removed. Since the copper remaining in the patterned trenches and the barrier material (tantalum, tantalum nitride, titanium, titanium nitride, cobalt, ruthenium, etc.) do not react with the electrolyte, the concentration of hydrogen ions around the copper remaining area increases substantially , leading to depressions and the surface characteristics of copper wires are different due to different wire densities and distributions.
在恒流模式下,带电的离子的数量恒定,与图案化的晶圆表面特征和结构无关。在微尺寸下,整个区域的去除率是均匀的,因此,由于铜线的非均匀分布,恒流模式将造成不同特征之间凹陷的差异。In constant current mode, the number of charged ions is constant independent of the patterned wafer surface features and structures. At microscale, the removal rate is uniform across the area, so the constant-current mode will cause differences in recess between features due to the non-uniform distribution of copper lines.
发明内容Contents of the invention
本发明提出一种改善半导体金属层平坦化工艺后的晶圆级全局凹陷和芯片尺度微观凹陷的方法,该方法基于电化学抛光原理。The invention proposes a method for improving wafer-level global depression and chip-scale microscopic depression after a semiconductor metal layer planarization process, and the method is based on the principle of electrochemical polishing.
在一种具体实施方式中,提出在恒压模式下电化学抛光的方法,包括:预设具有电流分布的恒流配方,包括晶圆上具有不同半径的多个位置以及为每个位置预设的电流;使用恒流配方抛光第一晶圆;在抛光过程中检测并记录每个位置的电压;生成具有电压分布的恒压配方,包括多个位置以及对应每个位置记录的电压;使用恒压配方抛光第二晶圆。In a specific embodiment, a method for electrochemical polishing in a constant voltage mode is proposed, including: preset a constant current recipe with a current distribution, including multiple locations with different radii on the wafer and preset for each location Polish the first wafer using a constant current recipe; detect and record the voltage at each location during polishing; generate a constant voltage recipe with a voltage distribution, including multiple locations and the voltage recorded for each location; Press the recipe to polish the second wafer.
在一种具体实施方式中,为位置预设的电流与位置的半径成正比。In one specific embodiment, the current preset for the location is proportional to the radius of the location.
在一种具体实施方式中,第一晶圆包括裸晶圆和位于裸晶圆上的金属层。In a specific implementation manner, the first wafer includes a bare wafer and a metal layer on the bare wafer.
在一种具体实施方式中,第二晶圆包括具有多个图案化沟槽或通孔的晶圆和位于晶圆上的金属层,图案化的沟槽或通孔由金属层填满。In a specific embodiment, the second wafer includes a wafer having a plurality of patterned trenches or vias and a metal layer on the wafer, and the patterned trenches or vias are filled with the metal layer.
本发明提出一种在恒压模式下电化学抛光的方法,通过引入恒压抛光的自动停止效应克服了现有技术的瓶颈。The invention proposes an electrochemical polishing method under constant pressure mode, which overcomes the bottleneck of the prior art by introducing the automatic stop effect of constant pressure polishing.
附图说明Description of drawings
图1是电化学抛光的典型装置图;Fig. 1 is a typical device diagram of electrochemical polishing;
图2是晶圆上的抛光区域和芯片尺度的俯视图;Figure 2 is a top view of the polished area and chip scale on the wafer;
图3是晶圆上的芯片尺度和图形结构区域尺度的俯视图;3 is a top view of the chip scale and the area scale of the pattern structure on the wafer;
图4是界定单元的俯视图;Fig. 4 is the top view of delimiting unit;
图5是图4中的单元沿A-A的横截面图;Fig. 5 is a cross-sectional view of the unit in Fig. 4 along A-A;
图6是图4中的单元沿A-A的另一横截面图;Fig. 6 is another cross-sectional view of the unit in Fig. 4 along A-A;
图7是图4中的单元沿B-B的横截面图;Fig. 7 is a cross-sectional view of the unit in Fig. 4 along B-B;
图8是在恒压模式下的电化学抛光处理后的凹陷;Fig. 8 is the depression after the electrochemical polishing treatment in the constant voltage mode;
图9是本发明的方法的流程图;Fig. 9 is a flowchart of the method of the present invention;
图10是本发明的方法中使用的电流表;Fig. 10 is the ammeter used in the method of the present invention;
图11是本发明的方法中使用的电压表Fig. 11 is the voltmeter used in the method of the present invention
具体实施方式Detailed ways
下面结合附图详细说明本发明。The present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示一种电化学抛光的典型装置,包括卡盘101、喷头103和电源104,卡盘101和喷头103都与电源104电连接。卡盘101在抛光过程中支撑并转动晶圆102且被用作阳极,喷头103向晶圆102表面喷洒带电的电解液105且被用作阴极,以便金属离子与带电的电解液105反应并转移到喷头103。现有技术中,电源104为恒流电源,因此电化学抛光可以在恒流模式下进行。然而在本发明中,恒流电源被恒压电源取代,电化学抛光在恒压模式下进行。As shown in FIG. 1 , a typical device for electrochemical polishing includes a chuck 101 , a shower head 103 and a power source 104 , and both the chuck 101 and the shower head 103 are electrically connected to the power source 104 . The chuck 101 supports and rotates the wafer 102 during the polishing process and is used as an anode, and the shower head 103 sprays a charged electrolyte 105 on the surface of the wafer 102 and is used as a cathode, so that metal ions react with the charged electrolyte 105 and transfer to sprinkler 103. In the prior art, the power supply 104 is a constant current power supply, so the electrochemical polishing can be performed in a constant current mode. However, in the present invention, the constant current power supply is replaced by a constant voltage power supply, and the electrochemical polishing is performed in a constant voltage mode.
在本发明的恒压模式下,带电离子的数量为变量,取决于整个抛光系统的电阻。为了解释恒压模式的功能,首先介绍抛光区域模型。抛光区域位于喷头103的正上方,带电的电解液由喷头103向上喷出。In the constant voltage mode of the present invention, the number of charged ions is variable, depending on the resistance of the overall polishing system. In order to explain the function of the constant pressure mode, the polishing area model is first introduced. The polishing area is located directly above the shower head 103 , and the charged electrolyte is sprayed upward from the shower head 103 .
图2所示为晶圆102上的抛光区域和芯片尺度的俯视图。在这种模型中,抛光区域被分成多个芯片尺度201,每个芯片尺度201包括多个单元202,单元的大小取决于模型定义,可以趋向于纳米级。由于带电粒子被这些单元202共享,带电离子的总量等于每个单元的带电离子量的总和。因此,所有这些单元202可以被看作并联,意味着电流由所有的单元202共享。FIG. 2 shows a top view of the polished area and chip scale on the wafer 102 . In this model, the polishing area is divided into multiple chip scales 201, each chip scale 201 includes multiple cells 202, and the size of the cells depends on the model definition, which may tend to be nanoscale. Since the charged particles are shared by these cells 202, the total amount of charged ions is equal to the sum of the charged ion amounts of each cell. Therefore, all these cells 202 can be considered to be connected in parallel, meaning that the current is shared by all cells 202 .
图3所示为晶圆上的芯片尺度和图形结构区域尺度的俯视图。每个芯片尺度201上有多个图形结构区域尺度203,单元202位于图形结构区域尺度203内,单元202放大如图3所示。进一步地,如图4至图7所示,给出了界定单元202的俯视图和横截面图。FIG. 3 shows a top view of a chip scale and a pattern structure area scale on a wafer. There are multiple graphic structure area scales 203 on each chip scale 201, and the unit 202 is located in the graphic structure area scale 203, and the unit 202 is enlarged as shown in FIG. 3 . Further, as shown in FIG. 4 to FIG. 7 , a top view and a cross-sectional view of the delimiting unit 202 are given.
通常,电化学抛光系统的电阻包括装置的电阻和带电电解液的电阻,装置的电阻可以被看作为定值,带电电解液的电阻与抛光区域的大小有关。Generally, the resistance of the electrochemical polishing system includes the resistance of the device and the resistance of the charged electrolyte. The resistance of the device can be regarded as a constant value, and the resistance of the charged electrolyte is related to the size of the polishing area.
抛光区域由多个单元202组成,所有的单元并联连接。为了简化抛光区域模型,忽略带电电解液105的边界效应,电流(也就是离子浓度)和带电电解液105的液体电阻相同并均匀分布在带电电解液105中。此外,对于特定的单元202,单元202的电阻由单元202自身结构决定。The polishing area consists of a plurality of units 202, all connected in parallel. In order to simplify the polishing area model, the boundary effect of the charged electrolyte 105 is ignored, and the current (ie, ion concentration) is the same as the liquid resistance of the charged electrolyte 105 and uniformly distributed in the charged electrolyte 105 . In addition, for a specific unit 202, the resistance of the unit 202 is determined by the structure of the unit 202 itself.
如图4至图7所示为单元202的典型结构。单元202由抛光工艺前埋在金属下面的线401和空间402组成,线401和空间402彼此间隔分布。在一种具体实施方式中,金属为铜。参考单元202沿A-A的横截面图,可以看到单元202从上到下包括第一铜层403、第二铜层404、阻挡层405和介质层406。第一铜层403在阻挡层405的上方,第二铜层404在线401内。图6所示为单元202沿A-A的另一横截面图,图中第一铜层403已经在抛光工艺中被去除。A typical structure of the unit 202 is shown in FIGS. 4 to 7 . The unit 202 is composed of lines 401 and spaces 402 buried under the metal before the polishing process, and the lines 401 and spaces 402 are spaced apart from each other. In a specific embodiment, the metal is copper. Referring to the cross-sectional view of cell 202 along A-A, it can be seen that cell 202 includes a first copper layer 403 , a second copper layer 404 , a barrier layer 405 and a dielectric layer 406 from top to bottom. The first copper layer 403 is over the barrier layer 405 and the second copper layer 404 is within the line 401 . FIG. 6 shows another cross-sectional view of cell 202 along line A-A, where first copper layer 403 has been removed during the polishing process.
基于先前的估计,单元202的电阻可以根据以下方程式获得:Based on previous estimates, the resistance of cell 202 can be obtained according to the following equation:
R=ρL/A=ρL/(T*W) (1)R=ρL/A=ρL/(T*W) (1)
其中,ρ代表材料的电阻率;L代表长度,尤其是单元的边长;A代表第一铜层403和阻挡层405的横截面面积,等于T乘以W;T代表第一铜层403和阻挡层405的厚度;W代表单元的边宽。Among them, ρ represents the resistivity of the material; L represents the length, especially the side length of the unit; A represents the cross-sectional area of the first copper layer 403 and the barrier layer 405, which is equal to T multiplied by W; T represents the first copper layer 403 and The thickness of the barrier layer 405; W represents the side width of the cell.
在某些情况下,如果单元202被定义为正方形,L等于W,那么方程式(1)可以转化为:In some cases, if cell 202 is defined as a square with L equal to W, then equation (1) can be transformed into:
R=ρ/T (2)R=ρ/T (2)
铜的电阻率远小于阻挡层的电阻率,因此铜层的电阻要远小于阻挡层405的电阻。此外,根据方程式(1),第一铜层403和阻挡层405的电阻与横截面积A成反比,也与方程式(2)所述的厚度T成反比。因此,随着第一铜层403在抛光工艺中被逐渐去除,抛光区域的电阻将会越来越高。这样,如果恒压模式被应用到电化学抛光中,电流将自动减小,通过这种方式,去除率将被很好的控制以达到一个良好的抛光效果。这种现象可以被定义为恒压模式的自动停止效应。The resistivity of copper is much smaller than that of the barrier layer, so the resistance of the copper layer is much smaller than that of the barrier layer 405 . In addition, according to equation (1), the resistance of the first copper layer 403 and the barrier layer 405 is inversely proportional to the cross-sectional area A, and also inversely proportional to the thickness T described in equation (2). Therefore, as the first copper layer 403 is gradually removed during the polishing process, the resistance of the polished region will become higher and higher. In this way, if the constant voltage mode is applied to the electrochemical polishing, the current will be automatically reduced, and in this way, the removal rate will be well controlled to achieve a good polishing effect. This phenomenon can be defined as the autostop effect of constant voltage mode.
图8至图11所示为本发明的一种具体实施方式,提出一种在恒压模式下电化学抛光的方法,该方法包括:Figures 8 to 11 show a specific embodiment of the present invention, which proposes a method for electrochemical polishing in constant voltage mode, the method comprising:
步骤901:预设一个具有电流分布的恒流配方,包括晶圆上具有不同半径的多个位置以及为每个位置预设的电流;Step 901: preset a constant current recipe with current distribution, including multiple locations on the wafer with different radii and a preset current for each location;
步骤902:使用恒流配方抛光第一晶圆;Step 902: Polishing the first wafer using a constant current recipe;
步骤903:在抛光过程中检测和记录每个位置的电压;Step 903: Detect and record the voltage at each position during the polishing process;
步骤904:生成具有电压分布的恒压配方,包括多个位置以及对应每个位置记录的电压;Step 904: Generate a constant voltage recipe with voltage distribution, including multiple locations and the voltage recorded corresponding to each location;
步骤905:使用恒压配方抛光第二晶圆。Step 905: Polish the second wafer using a constant pressure recipe.
由于该方法采用了恒压模式,因此获得了好的抛光结果。如图8所示为在恒压模式下的电化学抛光处理后的凹陷,其中35μm和5μm代表了抛光区域内的不同线宽,C(中心)、M(中部)和E(边缘)代表了被处理后的晶圆的不同位置。由于恒压模式的自动停止效应,可以看出,在相同的位置,不同线宽之间的凹陷非常接近;在相同的线宽,不同位置之间的凹陷也非常接近。相反,如果在此方法中采用恒流模式,即使在相同的位置,不同线宽之间的凹陷差异很大;在相同的线宽,不同位置之间的凹陷差异也很大。Since the method uses a constant pressure mode, good polishing results are obtained. Figure 8 shows the depression after electrochemical polishing in constant voltage mode, where 35 μm and 5 μm represent different line widths in the polished area, and C (center), M (middle) and E (edge) represent Different positions of the processed wafer. Due to the automatic stop effect of the constant voltage mode, it can be seen that at the same position, the sags between different line widths are very close; at the same line width, the sags between different positions are also very close. On the contrary, if the constant current mode is adopted in this method, even at the same position, the sag varies greatly between different line widths; at the same line width, the sag varies greatly between different positions.
如图10所示,表1为应用在本发明所述方法中的恒流配方。可以看出,在该恒流配方中,每个位置都有相对应的电流值。进一步,图11所示为生成的恒压配方。根据表1,表2给出了每个位置相对应的电压值。As shown in Fig. 10, Table 1 is the constant flow formula applied in the method of the present invention. It can be seen that in this constant current formula, each position has a corresponding current value. Further, Figure 11 shows the resulting constant pressure recipe. According to Table 1, Table 2 gives the voltage value corresponding to each position.
表2仅适用于固定的工艺条件,这意味着工艺条件必须稳定,恒压配方中的工艺条件与恒流配方中的工艺条件相同,所述工艺条件包括但不限于电解液流速、电解液温度和晶圆的转速。如果工艺条件的变化超过了指定范围,应该根据步骤901至步骤903重新生成表2。Table 2 is only applicable to fixed process conditions, which means that the process conditions must be stable. The process conditions in the constant pressure formulation are the same as those in the constant current formulation. The process conditions include but are not limited to electrolyte flow rate, electrolyte temperature and wafer speed. If the variation of the process condition exceeds the specified range, table 2 should be regenerated according to steps 901 to 903.
为了在本发明的电化学抛光完成后获得均匀的去除形貌,为位置预设的电流与位置的半径成正比。可选择地,恒流配方在脉冲模式下操作,恒压配方在脉冲模式下操作。结合脉冲模式,去除率可以被降低并且对晶圆的金属表面粗糙度没有任何不良影响。由于脉冲模式可以缩短抛光时间,而金属表面粗糙度与抛光时间成反比,所以脉冲模式有助于改善晶圆的金属表面粗糙度。In order to obtain a uniform removal profile after the electrochemical polishing of the present invention is completed, the current preset for the position is proportional to the radius of the position. Alternatively, constant current recipes operate in pulsed mode and constant voltage recipes operate in pulsed mode. Combined with the pulsed mode, the removal rate can be reduced without any adverse effect on the metal surface roughness of the wafer. Since the pulse mode can shorten the polishing time, and the metal surface roughness is inversely proportional to the polishing time, the pulse mode helps to improve the metal surface roughness of the wafer.
在一种具体实施方式中,第一晶圆包括裸晶圆和位于裸晶圆上的金属层。金属层可以是铜层、锡层、镍层、银层或金层。In a specific implementation manner, the first wafer includes a bare wafer and a metal layer on the bare wafer. The metal layer can be a layer of copper, tin, nickel, silver or gold.
在一种具体实施方式中,第二晶圆包括具有多个图案化沟槽或通孔的晶圆和位于晶圆上的金属层。图案化的沟槽或通孔由金属层填满。金属层为铜层、锡层、镍层、银层或金层。In a specific embodiment, the second wafer includes a wafer having a plurality of patterned trenches or vias and a metal layer on the wafer. The patterned trenches or vias are filled with metal layers. The metal layer is a copper layer, tin layer, nickel layer, silver layer or gold layer.
根据本发明可以制得相对均匀的铜线,因此可以优化凹陷差异。Relatively uniform copper wires can be produced according to the present invention, so dishing variance can be optimized.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Any person familiar with the art, without departing from the scope of the technical solution of the present invention, can use the technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention, or modify it into an equivalent embodiment with equivalent changes. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/093343 WO2017070924A1 (en) | 2015-10-30 | 2015-10-30 | Method for electrochemical polish in constant voltage mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108350599A true CN108350599A (en) | 2018-07-31 |
CN108350599B CN108350599B (en) | 2020-03-20 |
Family
ID=58629608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580083919.4A Active CN108350599B (en) | 2015-10-30 | 2015-10-30 | Method for electrochemical polishing in constant pressure mode |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN108350599B (en) |
SG (1) | SG11201803236VA (en) |
TW (1) | TWI695092B (en) |
WO (1) | WO2017070924A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115319564A (en) * | 2022-10-12 | 2022-11-11 | 深圳迈菲精密有限公司 | Device and method for thinning hard and brittle wafer material based on constant-pressure composite consolidated abrasive particles |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5637031A (en) * | 1996-06-07 | 1997-06-10 | Industrial Technology Research Institute | Electrochemical simulator for chemical-mechanical polishing (CMP) |
US5981301A (en) * | 1996-02-28 | 1999-11-09 | Kabushiki Kaisha Kobe Seiko Sho | Regeneration method and apparatus of wafer and substrate |
CN1318207A (en) * | 1998-07-09 | 2001-10-17 | Acm研究公司 | Methods and appts. for electropolishing metal intennections on semiconductor devices |
CN103590092A (en) * | 2012-08-16 | 2014-02-19 | 盛美半导体设备(上海)有限公司 | Device and method used for electrochemical polishing/electroplating |
CN103692293A (en) * | 2012-09-27 | 2014-04-02 | 盛美半导体设备(上海)有限公司 | Stress-free polishing device and polishing method |
CN104838480A (en) * | 2012-12-10 | 2015-08-12 | 盛美半导体设备(上海)有限公司 | Semiconductor wafer polishing method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139624A (en) * | 1990-12-06 | 1992-08-18 | Sri International | Method for making porous semiconductor membranes |
US6837983B2 (en) * | 2002-01-22 | 2005-01-04 | Applied Materials, Inc. | Endpoint detection for electro chemical mechanical polishing and electropolishing processes |
US7442282B2 (en) * | 2002-12-02 | 2008-10-28 | Ebara Corporation | Electrolytic processing apparatus and method |
US20070243709A1 (en) * | 2006-04-14 | 2007-10-18 | Applied Materials, Inc. | Planarization of substrates at a high polishing rate using electrochemical mechanical polishing |
TW200936309A (en) * | 2007-10-10 | 2009-09-01 | Ebara Corp | Electrolitic composite abrasion method and abrasion method |
-
2015
- 2015-10-30 WO PCT/CN2015/093343 patent/WO2017070924A1/en active Application Filing
- 2015-10-30 CN CN201580083919.4A patent/CN108350599B/en active Active
- 2015-10-30 SG SG11201803236VA patent/SG11201803236VA/en unknown
-
2016
- 2016-10-27 TW TW105134797A patent/TWI695092B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981301A (en) * | 1996-02-28 | 1999-11-09 | Kabushiki Kaisha Kobe Seiko Sho | Regeneration method and apparatus of wafer and substrate |
US5637031A (en) * | 1996-06-07 | 1997-06-10 | Industrial Technology Research Institute | Electrochemical simulator for chemical-mechanical polishing (CMP) |
CN1318207A (en) * | 1998-07-09 | 2001-10-17 | Acm研究公司 | Methods and appts. for electropolishing metal intennections on semiconductor devices |
CN103590092A (en) * | 2012-08-16 | 2014-02-19 | 盛美半导体设备(上海)有限公司 | Device and method used for electrochemical polishing/electroplating |
CN103692293A (en) * | 2012-09-27 | 2014-04-02 | 盛美半导体设备(上海)有限公司 | Stress-free polishing device and polishing method |
CN104838480A (en) * | 2012-12-10 | 2015-08-12 | 盛美半导体设备(上海)有限公司 | Semiconductor wafer polishing method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115319564A (en) * | 2022-10-12 | 2022-11-11 | 深圳迈菲精密有限公司 | Device and method for thinning hard and brittle wafer material based on constant-pressure composite consolidated abrasive particles |
CN115319564B (en) * | 2022-10-12 | 2023-01-17 | 深圳迈菲精密有限公司 | Device and method for thinning hard and brittle wafer material based on constant-pressure composite consolidated abrasive particles |
Also Published As
Publication number | Publication date |
---|---|
SG11201803236VA (en) | 2018-05-30 |
TWI695092B (en) | 2020-06-01 |
WO2017070924A1 (en) | 2017-05-04 |
CN108350599B (en) | 2020-03-20 |
TW201726984A (en) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102733599B1 (en) | Low temperature copper-copper direct bonding | |
US6848977B1 (en) | Polishing pad for electrochemical mechanical polishing | |
US6395152B1 (en) | Methods and apparatus for electropolishing metal interconnections on semiconductor devices | |
TW536450B (en) | Conductive polishing article for electrochemical mechanical polishing | |
US10714436B2 (en) | Systems and methods for achieving uniformity across a redistribution layer | |
US9375821B2 (en) | Electrically assisted chemical-mechanical planarization (EACMP) system and method thereof | |
Suni et al. | Cu planarization for ULSI processing by electrochemical methods: a review | |
US12134831B2 (en) | Apparatus for an inert anode plating cell | |
US9633986B2 (en) | Technique for fabrication of microelectronic capacitors and resistors | |
TW200949918A (en) | Adaptive electropolishing using thickness measurements and removal of barrier and sacrificial layers | |
CN108350599A (en) | The method of electrochemical polish under constant voltage mode | |
CN104934367A (en) | Preparation method of interconnect copper | |
CN107452632B (en) | System and method for achieving uniformity across redistribution layers | |
TW200405455A (en) | Polishing method and polishing device, and manufacturing method for semiconductor device | |
US9496172B2 (en) | Method for forming interconnection structures | |
CN104838480A (en) | Semiconductor wafer polishing method | |
TW201441428A (en) | Current ramping and current pulsing entry of substrates for electroplating | |
CN104143525B (en) | Through-silicon-via back metal flattening method | |
JP2004149926A (en) | Method of forming embedded wiring | |
CN100477120C (en) | Control method of polishing process | |
US7205236B2 (en) | Semiconductor substrate polishing methods and equipment | |
CN102915962A (en) | Method for preparing copper metal coating layer | |
Truque et al. | Wafer Level Modeling of Electrochemical-Mechanical Polishing (ECMP) | |
JP6372329B2 (en) | Manufacturing method of semiconductor device | |
CN103659574A (en) | Method of observing corrosion conditions of metals in chemical mechanical polishing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 201203 building 4, No. 1690, Cailun Road, free trade zone, Pudong New Area, Shanghai Applicant after: Shengmei semiconductor equipment (Shanghai) Co., Ltd Address before: 201203 Shanghai Zhangjiang High Tech Park of Pudong New Area Cailun Road No. fourth 1690 Applicant before: ACM (SHANGHAI) Inc. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |