CN108349214A - 渗透的分离的铁类材料 - Google Patents
渗透的分离的铁类材料 Download PDFInfo
- Publication number
- CN108349214A CN108349214A CN201680065337.8A CN201680065337A CN108349214A CN 108349214 A CN108349214 A CN 108349214A CN 201680065337 A CN201680065337 A CN 201680065337A CN 108349214 A CN108349214 A CN 108349214A
- Authority
- CN
- China
- Prior art keywords
- weight
- alloy
- adhesive
- particle
- measure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001764 infiltration Methods 0.000 title claims description 39
- 230000008595 infiltration Effects 0.000 title claims description 39
- 229910052742 iron Inorganic materials 0.000 title claims description 15
- 239000000463 material Substances 0.000 title description 49
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title description 36
- 238000000926 separation method Methods 0.000 title description 2
- 239000000853 adhesive Substances 0.000 claims abstract description 57
- 230000001070 adhesive effect Effects 0.000 claims abstract description 57
- 230000000740 bleeding effect Effects 0.000 claims abstract description 26
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 78
- 229910045601 alloy Inorganic materials 0.000 claims description 60
- 239000000956 alloy Substances 0.000 claims description 60
- 238000005245 sintering Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 33
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000005275 alloying Methods 0.000 claims description 5
- 239000008188 pellet Substances 0.000 claims description 4
- 238000009825 accumulation Methods 0.000 claims description 3
- 238000005470 impregnation Methods 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 2
- 210000000988 bone and bone Anatomy 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 239000013528 metallic particle Substances 0.000 claims 1
- 239000007921 spray Substances 0.000 abstract description 3
- 150000002739 metals Chemical group 0.000 abstract description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 85
- 229910000831 Steel Inorganic materials 0.000 description 30
- 239000010959 steel Substances 0.000 description 30
- 239000000843 powder Substances 0.000 description 27
- 229910000906 Bronze Inorganic materials 0.000 description 25
- 239000010974 bronze Substances 0.000 description 25
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 25
- 150000002505 iron Chemical class 0.000 description 22
- 239000012071 phase Substances 0.000 description 21
- 238000010791 quenching Methods 0.000 description 20
- 239000011651 chromium Substances 0.000 description 19
- 230000000171 quenching effect Effects 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 10
- 229910000734 martensite Inorganic materials 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000012466 permeate Substances 0.000 description 8
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 229910001240 Maraging steel Inorganic materials 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000007542 hardness measurement Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 241000976924 Inca Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1121—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
- B22F3/1021—Removal of binder or filler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/008—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
优选通过如下方式逐层构造金属性合金:粘合剂喷射,然后烧结和除去粘合剂以形成多孔金属骨架,然后可以用渗透剂对其渗透以提供独立金属性部件。该部件显示通过ASTM G65‑10程序A(2010)测量的小于或等于200mm3的体积损失和根据ASTM E21‑12(2012)大于或等于55J的无切口冲击韧性。
Description
相关申请的交叉引用
本申请要求2015年9月21日提交的美国临时申请序列号62/221,445和2015年11月9日提交的美国临时申请序列号62/252,867的权益。
技术领域
本发明涉及用于以分层方式制备独立(free-standing)金属性材料的合金和方法。
背景技术
许多应用,例如在工具、模具、模子、钻井、泵送、农业和采矿中发现的应用,需要具有高耐磨性的部件,以便在必须将其更换或翻新之前提高部件的耐久性和预期寿命。对材料进行设计,从而通过提供具有高耐磨性的整体(bulk)材料或提供由在整个基体中含有高耐磨性颗粒的低耐磨性基体组成的复合材料,对部件提供高耐磨性。许多这些材料需要淬硬热处理,例如淬火和回火处理,以获得提供耐磨性的结构。虽然淬硬处理在提高材料的耐磨性方面是有效的,但是由于部件变形和热诱导应力的破裂,它们可对经受淬硬处理的部件的尺寸控制和完整性产生有害影响。
在本文中可以将分层构造理解为其中将材料层逐层地堆积(built up)或铺设以制造零件的工艺。分层构造的实例包括采用激光器或电子束能量源的粉末床熔融、定向能量沉积、粘合剂喷射、片材层压、材料挤出、材料喷射和容器光聚合(vatphotopolymerization)。与金属一起使用的主要分层构造工艺包括粉末床熔融、定向能量沉积和粘合剂喷射。
粘合剂喷射方法是通过将粘合剂喷射(或印刷)到粉末床上,固化该粘合剂,沉积新的粉末层并进行重复的分层构造方法,其具有构造终形(net shape)部件的优异能力。这种方法已经商业用于从沙子、陶瓷和各种金属包括316型不锈钢和420型不锈钢(以下分别称呼它们的UNS名称S31600和S42000)制造部件。
由于在固态粘合剂喷射方法中的粉末床的性质,在该方法中生产的部件固有地具有显著的孔隙率。在固化所印刷的粘合剂之后,“生结合的(green bonded)”金属部件通常具有大于或等于40%的孔隙率。生结合部件的烧结通过在颗粒之间产生冶金结合并且还减小孔隙率来增加部件的坚固性。可以使用长烧结时间以降低孔隙率大于5%,但这也会导致部件的部分收缩和变形,并可不利地影响材料结构。因此,生结合的粘合剂喷射部件的烧结的目的是通过产生颗粒间的冶金结合来提高部件强度,而且通过使孔隙率的降低最小化来使变形和收缩率最小化。对于粘合剂喷射部件,烧结收缩率通常在1-5%范围内,孔隙率降低是类似的,这导致烧结部件具有大于35%的孔隙率。
烧结部件中的孔隙率不利地影响部件的机械性能,因此期望降低烧结部件的孔隙率。例如,通过毛细管作用的渗透是用于通过用处于液相的另一材料填充烧结部件中的空隙来降低孔隙率的方法。与烧结的粘合剂喷射部件以及许多粉末冶金工艺一起使用部件渗透,并且因此部件渗透是众所周知的。渗透可能遇到的主要问题包括导致不完全渗透的烧结骨架与渗透剂之间的不良润湿性,烧结骨架与渗透剂之间的材料相互作用例如烧结骨架的溶解侵蚀和新相形成,以及由于不匹配的材料性质可发展的内应力。
对于粘合剂喷射和渗透方法,已经尝试开发新的材料体系,但是由于上述问题,极少能够商业化。存在的用于工业产品的粘合剂喷射的两种金属材料体系是:(1)用90-10青铜渗透的S31600,和(2)用90-10青铜渗透的S42000。S31600合金按重量百分比计具有以下组成:16<Cr<18;10<Ni<14;2.0<Mo<3.0;Mn<2.0;Si<1.0;C<0.08,余量为Fe。S31600不能通过热处理淬硬,并且在渗透态下相对柔软且认为具有低耐磨性,因为通过激光粉末床熔融增材制造工艺生产且通过ASTMG65-04(2010)工序A测量的该合金的耐磨性为342mm3。因此,青铜渗透的S31600不是用于高耐磨部件的合适材料。S42000合金按重量百分比计具有以下组成:12<Cr<14;Mn<1.0;Si<1.0;C≥0.15,余量为Fe。S42000可以通过淬火和回火工艺淬硬,并且因此用作需要耐磨性的粘合剂喷射部件的耐磨材料。
用于渗透粘合剂喷射S42000部件的方法包括将部件埋入颗粒状陶瓷材料中,该颗粒状陶瓷材料作为支撑结构以支撑部件并抵抗在烧结和渗透工艺中的部件变形。将粘合剂喷射部件包裹在陶瓷中也有助于热量在部件内的均匀化,这降低了热梯度和部件变形以及因梯度而破裂的可能性。S42000依赖于从渗透温度开始相对高的淬火速率,以将奥氏体组织转化为提供高硬度和耐磨性的马氏体组织。S42000被认为是一种可空气淬硬的合金,但强烈建议在油中淬火该部件,以确保整个部件厚度中的冷却速率足以将所有的奥氏体转化为马氏体。在从90-10青铜(下文称作Cu10Sn)的常用渗透温度1120℃淬火时,油淬具有大于20℃/秒的典型淬火速率,而空气淬火速率约为5℃/秒。作为淬火中的热障的、粘合剂喷射部件周围的陶瓷层和渗透炉的淬火能力的组合限制了部件可实现的淬火速率,从而限制了部件的硬度。典型的渗透炉中的淬火速率大约为0.01℃/秒,这将是在这种炉中渗透的部件将要暴露的最高淬火速率,并且它们可能会经历较低的淬火速率,因为这些部件被包埋在绝缘陶瓷层。此外,S42000的奥氏体化温度为1038℃,远高于Cu10Sn的固相线温度(859℃),也高于液相线温度(1010℃)。因此,不能在不熔化青铜渗透剂的情况下在渗透后在单独的步骤中将S42000奥氏体化和淬火。
可淬硬钢诸如析出淬硬(PH)和马氏体类型的钢遭受与S42000类似的热极限性限制的缺点,该S42000是马氏体钢种。PH钢种诸如17-4PH和15-5PH取决于从奥氏体化温度开始的高淬火速率以使元素过饱和进入固溶体。PH钢的不足淬火速率导致冷却过程中第二相的偏析,以及时效过程中低至无的过饱和与析出驱动力。马氏体钢种诸如420、410、440C型不锈钢和H13、4340和P20工具钢取决于从奥氏体化温度开始的高淬火速率以驱动无扩散奥氏体向马氏体转化。马氏体钢的不足淬火速率导致高度的残余奥氏体或到铁素体的转化,这两者都对材料的耐磨性能是不利的。
马氏体时效钢是另一种可淬硬钢,与PH和马氏体钢种不同,它能够在渗透过程中以固有的低冷却速率有效淬硬。马氏体时效钢中奥氏体向马氏体的转化与冷却速率和在时效过程中金属间相的析出无关,能够在足够低的温度(480-510℃)下发生高硬度从而在很大程度上避免与渗透剂的反应。因此,马氏体时效钢可用于粘合剂喷射和渗透,以开发渗有第二材料如青铜的高硬度钢骨架。尽管马氏体时效钢在时效中发展高达约55HRC的高硬度,但耐磨性相对差。当在ASTM G65-10工序A磨损测试中进行测试时,淬硬至55HRC的18Ni(300)马氏体时效钢种的激光粉末床熔融增材制造和热处理的样品具有2.9g的质量损失和360mm3的体积损失。该耐磨性类似于具有95HRB的硬度、2.87g的质量损失和363mm3的体积损失的退火型316L不锈钢。
因此,本文期望通过两种方法生产终形部件:(1)粘合剂喷射,烧结以提供至多5%的收缩率,然后进行渗透工序并形成独立部件;或(2)粘合剂喷射和烧结以降低大于5%水平的孔隙率并在烧结后形成独立金属性部件。认为每种方法都提供相对高的耐磨性,并且这些部件可用于需要这种特性的应用中。
将逐层构造应用于合金以产生高耐磨的独立材料。使用本发明的逐层构造方法生产的材料的耐磨性和冲击韧性值大于市售青铜渗透的S42000材料的耐磨性和冲击韧性值的两倍。例如,如通过ASTM G65-10工序A(2010)测量,所述材料的耐磨性导致小于或等于183mm3的体积损失,并且材料(未切口样品)的抗冲击性导致根据ASTM E23(2012)测量的大于58J的韧性。优选以烧结和/或渗透过程原位实现使高耐磨性成为可能的结构,而不需要采用热淬硬过程例如通过淬火和回火或固溶和时效逐层堆积的额外后处理。逐层构造允许形成金属性部件,该金属性部件可用于诸如射压造型模具、模子、泵和轴承的应用中。
依赖于渗透步骤的逐层形成独立金属性部件的方法包括:(a)提供金属合金颗粒,该金属合金颗粒至少包含50重量%的Fe和至少0.5重量%的B和选自Cr、Ni、Si和Mn的一种或多种元素,其中所述颗粒具有初始水平的硼化物相;(b)将金属性合金颗粒与粘合剂混合,其中粘合剂粘合所述颗粒并形成独立金属性部件的层,其中该层具有20%至60%的孔隙率;(c)加热金属性合金颗粒和粘合剂并在颗粒之间形成结合;(d)通过在大于或等于800℃的温度下加热来烧结金属性合金颗粒和粘合剂,并除去粘合剂和形成可具有15%至59.1%的孔隙率的多孔金属性骨架;(e)用渗透剂在大于或等于800℃的温度下渗透多孔金属性骨架并冷却和形成独立金属性部件,其中在所述烧结和/或渗透步骤期间,具有硼化物相水平的增加。独立金属性部件表示根据ASTM G65-10工序A(2010)测量的小于或等于200mm3的体积损失和根据ASTM E23-12(2012)测量的大于或等于55J的未切口的冲击韧性。
用于逐层形成不依赖于渗透的独立金属性部件的方法包括:(a)提供包含至少50重量%的Fe和至少0.5重量%的B以及选自Cr、Ni、Si和Mn的一种或多种元素的金属合金颗粒,其中所述颗粒具有初始水平的硼化物相;(b)将金属性合金颗粒与粘合剂混合,其中粘合剂结合所述颗粒并形成所述独立金属性部件的层,其中所述层具有20%至60%范围内的孔隙率;(c)加热金属性合金颗粒和粘合剂并在颗粒之间形成结合;(d)通过在大于或等于800℃的温度下加热来烧结金属性合金颗粒和粘合剂,并除去粘合剂和形成具有0%-55%的孔隙率的多孔金属性骨架,其中在烧结步骤期间,增加了硼化物相的水平。
附图简要说明
图1示出了本发明的铁类合金粉末A3的显微组织。
图2本发明的第二铁类合金粉末A4的显微组织。
图3示出了本发明的青铜渗透的铁类合金A3骨架的显微组织。
图4示出了本发明的青铜渗透的第二铁类合金骨架A4的显微组织。
图5示出了本发明的青铜渗透的铁类合金的元素(a)Fe、(b)Si、(c)Cr、(d)B、(e)O和(f)Cu的EDS元素图。
图6示出了本发明的青铜渗透的第二铁类合金的元素(a)Fe,(b)Si、(c)Cr、(d)B、(e)O和(f)Cu的EDS元素图。
具体实施方式
本发明涉及通过逐层堆积连续的金属层然后烧结和/或渗透该金属性结构来构造独立且相对硬和耐磨的铁基金属性材料的方法。因此,在本文提及的独立金属性材料被理解为这样的情况,其中采用逐层堆积以形成给定的构建(built)结构。然后优选将该部件烧结和用另一材料渗透以提供独立部件,或者仅烧结以在独立部件中实现0%至55%的孔隙率(即不渗透)。然后,最终渗透的结构或烧结(未渗透)的结构可以用作各种应用中的金属性部件零件,例如射压造型模具和泵和轴承部件。
本文所述的逐层工序优选地选自粘合剂喷射,其中将液体粘合剂选择性地印刷在粉末床上,干燥该粘合剂,使新的粉末层覆盖在先前的层上方,将粘合剂选择性地印刷在粉末上并干燥(优选通过加热),并且重复该过程,直到完全构造该部件。
粘合剂可以是可通过印刷头选择性地印刷的任何液体,并且当干燥时用于将粉末颗粒结合,使得随后可以在目前层的顶部上构建附加层,并且当干燥时产生颗粒之间的结合,其使部件能被处理而不损坏部件(“生结合”)。然后,粘合剂也优选能够在炉中烧掉,使得其不干扰部件中的粉末颗粒的后续烧结。适用于粘合剂喷射的粘合剂的实例是乙二醇单甲醚和二甘醇的溶液。在每个层中,在印刷粘合剂之后将其干燥,采用加热源将粉末表面加热到30-100℃的范围内。当部件完全构建时,可以任选将部件中的粘合剂在烘箱中在100-300℃的范围内,且更优选在150-200℃的范围内的温度下加热。在固化温度下的时间在2-20小时的范围内,且更优选在6-10小时的范围内。
本文中的逐层工序考虑了各自厚度在0.005-0.300mm范围内,且更优选地在0.070-0.130mm的范围内的单一层的堆积。然后,逐层工序可以提供总高度在0.010mm至大于100mm(且更典型地大于300mm)范围内的堆积构造。因此,堆积层的合适厚度范围为0.010mm及以上。然而,更通常,厚度范围为0.100-300mm。以逐层工序包装固体颗粒导致具有在20-60%的范围内,且更特别地在40-50%的范围内的颗粒间孔隙率的印刷和固化的部件。
在粉末层覆盖期间,球形颗粒比非球形颗粒流动更容易,因为它们具有更大的滚动自由度,并且具有较小的团聚的可能性,这归因于不规则形状相互钩住(catch onto)。用于生产烧结的铁类骨架的金属粉末可以是单一的铁类合金或多种铁类合金粉末的掺混物。所述粉末具有整体球形的形状并且粒度分布范围为0.005-0.300mm,且更优选范围为0.010-0.100mm,且甚至更优选范围为0.015-0.045mm。
用于制造钢骨架的铁基合金粉末的相对高的硬度被认为是在相对快速凝固事件例如液相粉末雾化中加工时在铁基合金中存在的相对精细规模的显微组织和相的结果。本文的铁基合金是这样的,当在升高的温度下形成为液相并使其冷却和凝固成粉末颗粒时,认为该结构含有过饱和固溶体,该固溶体优选含有分布的次级硼化物相的初始水平。图1和2显示了示例性铁类合金A3和A4中的粉末显微组织的SEM图像。纳米级暗色相被认为是由初级钢基体包围的初始次级硼化物相。
值得注意的是,以上铁类合金初始具有相对低的开裂敏感性。如本文所讨论的,在逐层工序中触发次级硼化物相的生长时,现在意外地提供了显著改善的耐磨性能。
接着,优选将用逐层工序生产的部件进行烧结以通过在颗粒之间形成冶金结合来增加部件强度。烧结工艺是在具有受控气氛以避免氧化的炉中进行的多级热工艺。气氛可以是真空或包括惰性气体(例如氩、氦和氮)、还原气体(例如氢)的气体或惰性气体和还原气体的混合物。烧结工艺阶段包括粘合剂烧掉、烧结和冷却,并且各自优选由特定温度和时间以及预定温度之间的温变(ramp)速率限定。去除粘合剂(例如粘合剂烧掉)的优选温度和时间取决于粘合剂和部件尺寸,用于烧掉的典型温度范围在300℃至800℃之间,和时间范围在30分钟至240分钟之间。在足以引起冶金结合的温度和时间下进行烧结,同时也使部件收缩率最小化。在800-1200℃的温度范围内,且更优选在950-1100℃的范围内进行烧结。对于要随后渗透的部件,整个部件处于烧结温度下的烧结时间优选在1-720分钟范围内,更优选在90-180分钟范围内。要随后渗透的部件的烧结导致孔隙率从初始孔隙率在20-60%范围内的固化粘合剂状态降低0.1-5%。因此,这些烧结部件可具有15-59.1%范围内的孔隙率,然后如本文所公开的那样将烧结部件暴露于渗透过程以提供独立部件。
不会随后渗透的部件的烧结优选导致孔隙率从初始孔隙率在20%至60%范围内的固化粘合剂状态降低大于5%至60%。因此,这种情况下的烧结导致具有在0%至55%范围内的最终孔隙率的部件。
当部件要么在烧结后冷却然后在炉内再加热并用另一种材料渗透,要么在烧结后可用另一材料渗透作为烧结炉循环中的附加步骤时,可以进行用逐层工序制造的烧结部件的渗透。在渗透过程中,通过例如毛细管作用将液相中的渗透剂吸入部件中以填充钢骨架的空隙。渗透温度优选比渗透剂的液相线温度高至少10℃,并且更优选比渗透剂的液相线温度高至少40℃。取决于部件尺寸和复杂程度,渗透时间优选在30-1000分钟的范围内。对于非常大的部件,时间可大于1000分钟。渗透剂与钢骨架的最终体积比在15/85至60/40的范围内。渗透后,通过降低炉温小于渗透剂的固相线温度来凝固渗透剂。渗透后的残余孔隙率优选在0-20%的范围内,且更优选地在0-5%的范围内。然后将炉和部件冷却至室温。与可硬化钢合金不同,本发明的钢合金具有对冷却速率的相对低依赖性,因此可以以相对慢的速率原样冷却以降低冷却过程中的变形、开裂和残余应力的可能性,同时保持高硬度和耐磨性。可以使用小于6℃/分钟,且更特别地小于2℃/分钟的冷却速率来降低变形、开裂和残余应力。在1℃/min和6℃/min之间的冷却速率是优选的。
用作随后与粘合剂混合的金属性合金颗粒的合金包括那些提供初始水平的硼化物相的合金,所述水平可以通过增材制造工序例如由本文中的烧结提供的加热和/或渗透步骤而增大。所述合金因此包含Fe基合金,其含有足够量的B以及其他元素,所述其它元素不影响增材制造工艺中增加硼化物相生长的能力。因此,本文的合金优选含有Fe和B以及选自Cr、Ni、Si和Mn中的一种或多种元素以及任选的C。
在一种特别优选的合金配方中,该合金含有Fe、B、Cr、Ni和Si。在另一种特别优选的合金组成中,该合金含有Fe、B、Cr、Ni、Si和Mn。碳再次任选地存在于这些优选组合物的任一种中。认为合金元素的优选水平按重量百分比计为Cr(15.0-22.0)、Ni(5.0-15.0)、Mn(0-3.5)、Si(2.0-5.0)、C(0-1.5)、B(0.5-3.0)、和余量Fe(77.5-50.0)。与本说明书一致、本文中的合金组合物A3按重量百分比计具有以下总体组成:Cr(15.0-20.0);Ni(11.0-15.0);Si(2.0-5.0);C(0-1.5);B(0.5-3.0),余量Fe(71.5-55.5),且本文的合金A4按重量百分比计具有以下总体组成:Cr(17.0-22.0);Ni(5.0-10.0);Mn(0.3-3.0),Si(2.0-5.0);C(0-1.5);B(0.5-3.0),余量Fe(75.2-55.5)。
在又一个优选的实施方案中,本文的合金含有Fe、B、Cr、Ni和Si,并且设计按重量百分比计具有以下组成:Cr(15.0-20.0);Ni(11.0-15.0);Si(0.5-2.0);C(0-1.5)和B(0.5-3.0)和Fe(60.0-73.0)。与本说明书一致,本文形成并且评估了合金组合物A7,其按重量百分比计具有以下组成:Cr(15.5-17.5);Ni(13.5-15.0);Si(0.9-1.1);C(0-1.5);B(1.0-1.3)和Fe(63.6-70.0)。可以理解的是,在这种优选的合金中,C和Mn都是任选的,并且可以制备合金使其不含这些元素。
可以使用各种金属合金作为渗透剂。渗透剂的一个优选标准是其液相线温度低于烧结骨架的液相线温度,并且其优选地润湿烧结骨架的表面。对于渗透,可遇到且优选最小化的主要问题包括残余孔隙率、材料反应和残余应力。残余孔隙率通常是由于以下中的一种或多种:烧结骨架与渗透剂之间的差的可润湿性、完全渗透的时间不足、或导致渗透剂高粘度的渗透温度不足。烧结骨架与渗透剂之间可发生材料反应,如烧结骨架的溶解侵蚀和金属间化合物的形成。残余应力也可能由于不匹配的材料性质而发展。
用于渗透本发明的钢骨架的优选渗透剂的例子是青铜。对于钢骨架,青铜是一种优选的渗透剂,因为(1)铜很好地润湿钢中的铁,(2)青铜中的锡将液相线温度降低到低于铜的液相线温度,能使青铜过热以降低粘度,同时仍然在低温下,(3)在过热温度下,Cu和Sn在Fe中的溶解度都低。在1083℃下,Cu在Fe中的溶解度,Fe在Cu中的溶解度,Sn在Fe中的溶解度和Fe在Sn中的溶解度分别仅为3.2、7.5、8.4和9.0原子百分比。可以使用各种青铜合金,包括Cu10Sn。
在大于或等于800℃的高温下原位进行烧结和渗透过程,认为本发明的铁类合金的次级硼化物相通过扩散从存在于粉末中的初始次级硼化物相生长,和/或从固溶体中析出,然后通过扩散生长。硼化物相可以含有硼以及铬、硅、铁和氧,它们也可以含有碳。认为硼化物相具有相对高的硬度并且使材料的高耐磨性成为可能。不受以下内容束缚,次级硼化物相的生长被认为是元素从基体中扩散出来以增加硼化物相的量的结果,这是耗尽了构成硼化物相的元素的基体的过程,观察到这导致增加了通过增材制造生产的最终部件的延展性和韧性。
图3显示了图1所示的粉末形式的示例性铁类合金A3在2500X放大倍数下的扫描电子显微镜(SEM)图像,该铁类合金A3现在已被粘合剂喷射,烧结并用青铜渗透。图4显示了图2所示的粉末形式的示例性铁类合金A4在5,000X放大倍数下的SEM图像,该铁类合金A4现在已被粘合剂喷射,烧结并用青铜渗透。可以看出,青铜在填充钢骨架构件之间的空隙中是有效的,并且钢骨架现在包含相对大的次级相。
图3和图4分别显示了示例性的粘合剂喷射,烧结和青铜渗透的合金A3-Cu10Sn和A4-Cu10Sn的用能量色散光谱学(EDS)产生的元素图。该元素图以像素亮度清楚地显示了在每个相中存在的元素的较高百分比,其中对于数字图中给定像素的灰度值对应于进入X射线检测器以显示元素分布的X射线的数量。SEM和EDS分析在Jeol JSM-7001F FieldEmission SEM和Oxford Inca EDS系统上进行。以背散射模式拍摄SEM图像,且以4keV的加速电压,14μA的探针电流和240s的活动时间进行EDS。图3和图4的元素图显示了次级相中硼、铬和氧的高浓度。显示延展性钢基体富含Fe、Si和Cr。可以看到渗透剂中的Cu和钢基体中的Fe具有非常低的扩散性和溶解度,因为具有非常低浓度的在渗透剂区域见到的Fe和钢骨架区域中的Cu。
尽管渗透的材料的复合结构从骨架材料和渗透剂的组合中获得其整体性能,但认为耐磨性主要由结构中的骨架提供。硬度通常用作材料耐磨性的代表;但是,它不一定是复合材料例如青铜渗透钢骨架的一个良好指示。宏观硬度测量的高的负荷和穿透深度导致复合材料的测量,即两种组分的硬度的掺混混合,而显微硬度测量可以单独在渗透剂和骨架区域中进行。表1中示出了对于各种渗透铁类合金,块体复合材料的宏观硬度以及在块体复合材料中的渗透剂和骨架材料的显微硬度。
表1:青铜渗透的铁类合金的硬度和耐磨性
1这些数据点依照ASTM G65-10工序A(2016)。
通过ASTM G65-10工序A(2010)测量的这些材料耐磨性以及通过ASTM E23-12(2012)测量的未切口冲击韧性也显示在表1中,除非另有说明。S42000合金按重量百分比计具有以下组成:12<Cr<14;Mn<1.0;Si<1.0;C≥0.15,余量为Fe。如可以看到的,通常通过ASTM G65-10工序A测量的本文合金的耐磨性通常显示小于或等于200mm3的体积损失,并且优选在100mm3至200mm3的范围内或者75mm3至200mm3的范围内。更优选地,对于合金A3和A4,耐磨性小于或等于150mm3并且在100mm3至150mm3的范围内。通过ASTM E23-12测量的冲击韧度落入55J至100J的范围内,更优选在55J至75J的范围内。
尽管在S42000中块体材料的宏观硬度和钢骨架的显微硬度明显大于本发明铁类合金的硬度值,但耐磨性完全不同。本发明的铁基合金与S42000之间的耐磨性差异被认为是因为S42000的非最佳淬硬条件,以及在烧结和/或渗透过程中在热处理前增加初始存在于钢骨架中的硼化物相的体积分数的能力。着重注意,青铜渗透的S42000的非最佳硬化是固有的工艺限制,这是由于渗透工艺的冷却速率不足以将组织中的奥氏体完全转变为马氏体。表1显示,本发明的铁类合金中的钢骨架具有低的显微硬度,但是耐磨性是S42000的大于约3倍,尽管S42000具有大于约2倍的显微硬度。本发明的铁类合金中的低显微硬度测量被认为是因为显微硬度测量结果,其含有来自较软基体和较硬的次级相的测量结果。认为高耐磨性是由于在烧结和/或渗透过程中通过加热增加了硼化物相。认为相对软和韧性的钢基体提供大于青铜渗透S42000的冲击韧性2倍的冲击韧性。
许多可淬硬金属具有相对低的最大工作温度能力,高于其时材料由于相变而软化或变脆。例如,S42000的稳定结构的最高工作温度为500℃。在本发明中,渗透部件中的钢骨架的高温稳定性被认为使至多1000℃的高操作温度成为可能。
渗透的铁类合金的热性能对于需要快速热循环的钢如射压造型模具是有吸引力的。青铜渗透的铁类合金的热导率被认为比典型的射压造型钢如P20钢种高得多,这是由于青铜与铁基合金的导热系数相差近一个数量级。渗透的铁基合金模具的高导热性使遍及材料的高加热和冷却速率成为可能。认为本发明的渗透钢部件由于钢骨架的低热膨胀而具有低的热膨胀,这在需要热循环例如射压造型模具的应用中有助于尺寸控制。虽然本发明的渗透的铁基合金的高导热性和低热膨胀导致提高的材料性能,但在需要高热循环的应用中,认为这些性能的组合导致材料提供高生产率和高尺寸控制,该组合是意想不到的,因为这些属性之一提高通常以牺牲另一个属性为代价。
Claims (21)
1.一种用于逐层形成独立金属性部件的方法,包括:
(a)供应金属合金颗粒,其包含至少50重量%的Fe和至少0.5重量%的B以及选自Cr、Ni、Si和Mn的一种或多种元素,其中所述颗粒具有初始水平的硼化物相;
(b)将所述金属性合金颗粒与粘合剂混合,其中所述粘合剂结合所述颗粒并形成所述独立金属性部件的层,其中所述层具有在20%-60%的范围内的孔隙率;
(c)加热所述金属性合金颗粒和所述粘合剂并在所述颗粒之间形成结合;
(d)通过在大于或等于800℃的温度下加热来烧结所述金属性合金颗粒和所述粘合剂,且去除所述粘合剂并冷却多孔金属性骨架;
(e)在大于或等于800℃的温度下用渗透剂渗透所述多孔金属性骨架,并冷却和形成所述独立金属性部件,其中在所述烧结和/或渗透步骤期间,增加硼化物相的水平;
其中所述独立金属性部件显示根据ASTM G65-10工序A(2010)测量的小于或等于200mm3的体积损失和根据ASTM E23-12(2012)的大于或等于55J的未切口冲击韧性。
2.如权利要求1所述的方法,其中所述选自Cr、Ni、Si和Mn的一种或多种元素包含Cr、Ni和Si。
3.如权利要求1所述的方法,其中所述选自Cr、Ni、Si和Mn的一种或多种元素包含Cr、Ni、B、Si和Mn。
4.如权利要求1所述的方法,其中所述合金包含15.0-22.0重量%的Cr、5.0-15.0重量%的Ni、0-3.5重量%的Mn、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B和77.5-50.0重量%的Fe。
5.如权利要求1所述的方法,其中所述合金包含15.0-20.0重量%的Cr、11.0-15.0重量%的Ni、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B和71.5-55.5重量%的Fe。
6.如权利要求1所述的方法,其中所述合金包含17.0-22.0重量%的Cr、5.0-10.0重量%的Ni、0.3-3.0重量%的Mn、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B和55.5-75.2重量%的Fe。
7.如权利要求1所述的方法,其中所述合金包含15.0-22.0重量%的Cr、5.0-15.0重量%的Ni、0-3.5重量%的Mn、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B和77.5-50.0重量%的Fe。
8.如权利要求1所述的方法、其中所述合金含有15.0-20.0重量%的Cr、11.0-15.0重量%的Ni、0.5-2.0重量%的Si;0-1.5重量%的C、0.5-3.0重量%的B和60.0-73.0重量%的Fe。
9.如权利要求1所述的方法,其中所述金属颗粒具有0.005-0.300mm范围内的粒度分布。
10.如权利要求1所述的方法,其中所述层具有在0.005至0.300mm的范围内的厚度。
11.根据权利要求1所述的方法,其中重复步骤(b)至(d)以提供具有在0.010mm至300mm范围内的总厚度的逐层堆积。
12.如权利要求1所述的方法,其中所述烧结提供孔隙率为15%至59.1%的金属性骨架。
13.如权利要求1所述的方法,其中所述多孔金属性骨架的所述渗透被配置为提供在15/85至60/40的范围内的渗透剂与骨架的最终体积比。
14.如权利要求1所述的方法,其中所述独立金属性部件显示在75mm3至200mm3范围内的体积损失。
15.如权利要求1所述的方法,其中所述独立金属性部件显示在55J至100J的范围内的未切口冲击韧性。
16.一种用于逐层形成独立金属性部件的方法,包括:
(a)供应金属合金颗粒,其包含至少50重量%的Fe和至少0.5重量%的B以及选自Cr、Ni、Si和Mn的一种或多种元素,其中所述颗粒具有初始水平的硼化物相;
(b)将所述金属性合金颗粒与粘合剂混合,其中所述粘合剂结合所述颗粒并形成所述独立金属性部件的层,其中所述层具有在20%-60%的范围内的孔隙率;
(c)加热所述金属性合金颗粒和所述粘合剂并在所述颗粒之间形成结合;
(d)通过在大于或等于800℃的温度下加热来烧结所述金属性合金颗粒和所述粘结剂,并除去所述粘合剂和形成孔隙率为0%至55%的多孔金属性骨架,其中在所述烧结步骤期间,增加硼化物相的水平。
17.如权利要求16所述的方法,其中所述合金包含15.0-22.0重量%的Cr、5.0-15.0重量%的Ni、0-3.5重量%的Mn、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B和77.5-50.0重量%的Fe。
18.如权利要求16所述的方法,其中所述合金包含15.0-20.0重量%的Cr、11.0-15.0重量%的Ni、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B和71.5-55.5重量%的Fe。
19.如权利要求16所述的方法,其中所述合金包含17.0-22.0重量%的Cr、5.0-10.0重量%的Ni、0.3-3.0重量%的Mn、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B和55.5-75.2重量%的Fe。
20.如权利要求16所述的方法,其中所述合金包含15.0-22.0重量%的Cr、5.0-15.0重量%的Ni、0-3.5重量%的Mn、2.0-5.0重量%的Si、0-1.5重量%的C、0.5-3.0重量%的B、和77.5-50.0重量%的Fe。
21.如权利要求16所述的方法,其中所述合金包含15.0-20.0重量%的Cr、11.0-15.0重量%的Ni、0.5-2.0重量%的Si;0-1.5重量%的C、0.5-3.0重量%的B和60.0-73.0重量%的Fe。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562221445P | 2015-09-21 | 2015-09-21 | |
US62/221,445 | 2015-09-21 | ||
US201562252867P | 2015-11-09 | 2015-11-09 | |
US62/252,867 | 2015-11-09 | ||
PCT/US2016/052681 WO2017053306A1 (en) | 2015-09-21 | 2016-09-20 | Infiltrated segregated ferrous materials |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108349214A true CN108349214A (zh) | 2018-07-31 |
Family
ID=58276380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680065337.8A Pending CN108349214A (zh) | 2015-09-21 | 2016-09-20 | 渗透的分离的铁类材料 |
Country Status (11)
Country | Link |
---|---|
US (1) | US20170080497A1 (zh) |
EP (1) | EP3352985A4 (zh) |
JP (1) | JP2018536097A (zh) |
KR (1) | KR20180058755A (zh) |
CN (1) | CN108349214A (zh) |
AU (1) | AU2016325532A1 (zh) |
CA (1) | CA2999475A1 (zh) |
IL (1) | IL258266A (zh) |
MX (1) | MX2018003443A (zh) |
WO (1) | WO2017053306A1 (zh) |
ZA (1) | ZA201802668B (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110198796B (zh) | 2017-02-24 | 2022-02-08 | 惠普发展公司,有限责任合伙企业 | 三维(3d)打印 |
WO2018156938A1 (en) * | 2017-02-24 | 2018-08-30 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
US11123796B2 (en) * | 2017-04-28 | 2021-09-21 | General Electric Company | Method of making a pre-sintered preform |
CN107267847B (zh) * | 2017-06-14 | 2019-08-27 | 湘潭大学 | 一种抗高温氧化、耐碱蚀的铁基多孔材料及其制备方法 |
BR112020000197B1 (pt) * | 2017-07-06 | 2022-12-13 | Hewlett-Packard Development Company, L.P | Método para imprimir um objeto tridimensional e sistema de impressão para imprimir objetos tridimensionais |
KR102151445B1 (ko) * | 2017-08-30 | 2020-09-03 | 가부시키가이샤 소딕 | 적층 조형 장치 및 적층 조형물의 제조 방법 |
AT520369A2 (de) * | 2017-09-14 | 2019-03-15 | Dr Kochanek Entw | Verfahren zur Herstellung von Gesenken |
US11465209B2 (en) * | 2018-05-10 | 2022-10-11 | Stackpole International Powder Metal LLC | Binder jetting and supersolidus sintering of ferrous powder metal components |
EP3962680A4 (en) * | 2019-04-27 | 2022-12-14 | Hewlett-Packard Development Company, L.P. | THREE-DIMENSIONAL PRINTING |
US11427902B2 (en) * | 2019-09-19 | 2022-08-30 | Cornerstone Intellectual Property, Llc | Additive manufacturing of iron-based amorphous metal alloys |
JP6864056B1 (ja) * | 2019-10-23 | 2021-04-21 | 株式会社ソディック | 積層造形装置 |
US20210302302A1 (en) * | 2020-03-26 | 2021-09-30 | Raytheon Company | Method and system for abrasion testing of materials |
JP2023530998A (ja) * | 2020-06-22 | 2023-07-20 | マクレーン-フォッグ カンパニー | 粉末床溶融結合付加製造のための耐摩耗性ホウ化物形成鉄合金 |
US11668314B2 (en) | 2020-11-10 | 2023-06-06 | Greenheck Fan Corporation | Efficient fan assembly |
CN112589117B (zh) * | 2020-12-11 | 2023-10-17 | 成都天齐增材智造有限责任公司 | 增材制造的17-4ph材料及其快速热处理工艺 |
US12226823B2 (en) * | 2020-12-22 | 2025-02-18 | Wisconsin Alumni Research Foundation | Alloy composition, method and apparatus therefor |
CN113967743B (zh) * | 2021-03-05 | 2023-08-18 | 暨南大学 | 一种结构形状复杂且耐磨损的316不锈钢件及其制备方法与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1400588A (en) * | 1971-09-20 | 1975-07-16 | Int Nickel Ltd | Steels |
US4731118A (en) * | 1986-06-25 | 1988-03-15 | Scm Metal Products, Inc. | High impact strength power metal part and method for making same |
US5745834A (en) * | 1995-09-19 | 1998-04-28 | Rockwell International Corporation | Free form fabrication of metallic components |
US20040226405A1 (en) * | 2003-03-19 | 2004-11-18 | 3D Systems, Inc. | Metal powder composition for laser sintering |
CN103132074A (zh) * | 2011-11-28 | 2013-06-05 | 钴碳化钨硬质合金公司 | 功能等级的涂层 |
WO2015094720A1 (en) * | 2013-12-20 | 2015-06-25 | United Technologies Corporation | Gradient sintered metal preform |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4430115A (en) * | 1980-05-27 | 1984-02-07 | Marko Materials, Inc. | Boron stainless steel powder and rapid solidification method |
US4976778A (en) * | 1988-03-08 | 1990-12-11 | Scm Metal Products, Inc. | Infiltrated powder metal part and method for making same |
US5775402A (en) * | 1995-10-31 | 1998-07-07 | Massachusetts Institute Of Technology | Enhancement of thermal properties of tooling made by solid free form fabrication techniques |
US6403210B1 (en) * | 1995-03-07 | 2002-06-11 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method for manufacturing a composite material |
CA2983062C (en) * | 2015-02-03 | 2022-06-14 | The Nanosteel Company, Inc. | Infiltrated ferrous materials |
EP3371337B1 (en) * | 2015-11-02 | 2021-10-06 | The Nanosteel Company, Inc. | Method of layer-by-layer construction of a metallic part |
-
2016
- 2016-09-20 JP JP2018534483A patent/JP2018536097A/ja active Pending
- 2016-09-20 KR KR1020187011179A patent/KR20180058755A/ko not_active Withdrawn
- 2016-09-20 EP EP16849428.4A patent/EP3352985A4/en not_active Withdrawn
- 2016-09-20 MX MX2018003443A patent/MX2018003443A/es unknown
- 2016-09-20 US US15/270,834 patent/US20170080497A1/en not_active Abandoned
- 2016-09-20 WO PCT/US2016/052681 patent/WO2017053306A1/en active Application Filing
- 2016-09-20 CN CN201680065337.8A patent/CN108349214A/zh active Pending
- 2016-09-20 CA CA2999475A patent/CA2999475A1/en not_active Abandoned
- 2016-09-20 AU AU2016325532A patent/AU2016325532A1/en not_active Abandoned
-
2018
- 2018-03-21 IL IL258266A patent/IL258266A/en unknown
- 2018-04-20 ZA ZA2018/02668A patent/ZA201802668B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1400588A (en) * | 1971-09-20 | 1975-07-16 | Int Nickel Ltd | Steels |
US4731118A (en) * | 1986-06-25 | 1988-03-15 | Scm Metal Products, Inc. | High impact strength power metal part and method for making same |
US5745834A (en) * | 1995-09-19 | 1998-04-28 | Rockwell International Corporation | Free form fabrication of metallic components |
US20040226405A1 (en) * | 2003-03-19 | 2004-11-18 | 3D Systems, Inc. | Metal powder composition for laser sintering |
CN103132074A (zh) * | 2011-11-28 | 2013-06-05 | 钴碳化钨硬质合金公司 | 功能等级的涂层 |
WO2015094720A1 (en) * | 2013-12-20 | 2015-06-25 | United Technologies Corporation | Gradient sintered metal preform |
Also Published As
Publication number | Publication date |
---|---|
IL258266A (en) | 2018-05-31 |
MX2018003443A (es) | 2018-08-01 |
AU2016325532A1 (en) | 2018-04-12 |
US20170080497A1 (en) | 2017-03-23 |
WO2017053306A1 (en) | 2017-03-30 |
CA2999475A1 (en) | 2017-03-30 |
EP3352985A1 (en) | 2018-08-01 |
ZA201802668B (en) | 2019-01-30 |
EP3352985A4 (en) | 2019-07-31 |
KR20180058755A (ko) | 2018-06-01 |
JP2018536097A (ja) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108349214A (zh) | 渗透的分离的铁类材料 | |
Nath et al. | Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion | |
Boes et al. | Gas atomization and laser additive manufacturing of nitrogen-alloyed martensitic stainless steel | |
Simchi et al. | On the development of direct metal laser sintering for rapid tooling | |
Boes et al. | Microstructure and properties of high-strength C+ N austenitic stainless steel processed by laser powder bed fusion | |
US20230249250A1 (en) | Infiltrated ferrous materials | |
JP6227871B2 (ja) | 焼結硬化鋼製部品を製造するための母合金、および焼結硬化部品を製造するためのプロセス | |
CN115003434A (zh) | 增材制造方法用金属粉末、金属粉末的用途、构件的制造方法以及构件 | |
TW201833346A (zh) | 用於製造雙相經燒結不銹鋼之不銹鋼粉末 | |
JP2009544841A (ja) | 鉄基粉末 | |
Köhler et al. | Influence of Cr3C2 additions to AISI H13 tool steel in the LPBF process | |
Cohen et al. | Sinter-based additive manufacturing of Ni–Ti shape memory alloy | |
Pascal et al. | Co-sintering and microstructural characterization of steel/cobalt base alloy bimaterials | |
JP2009185328A (ja) | 鉄基焼結合金およびその製造方法 | |
JP4397872B2 (ja) | 鉄基高硬度ショット材およびその製造方法 | |
Weigelt et al. | Metal‐Matrix Materials for High‐Temperature Applications with Liquid Aluminum | |
JP7524547B2 (ja) | Cr-Ni系合金部材およびその製造方法 | |
Rahman | EFFECTS OF SINTERING TEMPERATURE TO THE MECHANICAL PROPERTIES AND MICROSTRUCTURES OF Fe67Cr22Al11 POWDER COMPACTS | |
Chakraborty et al. | The Effect of Process Parameters and Post-fabrication Heat Treatment on the Microstructure and Mechanical Properties of Martensitic Steel SS420 Developed through Laser Powder Bed Fusion Technique | |
Kearns et al. | STUDIES ON THE EFFECTS OF NIOBIUM ON SINTERING AND PROPERTIES OF MIM 440C MADE BY PREALLOY AND MASTER-ALLOY ROUTES. | |
Fayazfar et al. | Third Revision | |
Zadehkabir et al. | Wire Direct Energy Deposition of Fe-Mn-Si Shape Memory Alloy Using Cored Wire: Microstructure and Mechanical Analysis | |
Olschewski et al. | Low Alloy Steels: Fatigue Properties of Diffusion-bonded Molybdenum Steel Powders for High Strength Applications | |
Martinez et al. | Preparation of Cutting Inserts with Binder of UHCS | |
Salgado et al. | Sintering of AISI M3: 2 High Speed Steel–Part II |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180731 |
|
WD01 | Invention patent application deemed withdrawn after publication |