CN108347258B - KS-CSS modulation method - Google Patents
KS-CSS modulation method Download PDFInfo
- Publication number
- CN108347258B CN108347258B CN201810103885.6A CN201810103885A CN108347258B CN 108347258 B CN108347258 B CN 108347258B CN 201810103885 A CN201810103885 A CN 201810103885A CN 108347258 B CN108347258 B CN 108347258B
- Authority
- CN
- China
- Prior art keywords
- mode
- dimensional information
- spread spectrum
- pseudocode
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000001228 spectrum Methods 0.000 claims abstract description 25
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000003044 adaptive effect Effects 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 7
- 238000013506 data mapping Methods 0.000 abstract description 4
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/10—Frequency-modulated carrier systems, i.e. using frequency-shift keying
- H04L27/12—Modulator circuits; Transmitter circuits
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及扩频通信技术领域,尤其是涉及一种KS-CSS扩频调制方法。The invention relates to the technical field of spread spectrum communication, in particular to a KS-CSS spread spectrum modulation method.
背景技术Background technique
直接序列扩频凭借其在保密、抗噪、抗干扰、高精测量等方面的优势,逐渐成为移动通信、卫星导航等领域的重要支撑。目前直接序列扩频通信中常采用的调制方法主要有BPSK、QPSK、BOC等,虽然此系列调制方法在保密性及抗干扰能力方面具有明显优势,但是考虑到现有调制机制的传输速率受限、频谱利用率低等问题,为此,在未引入附加功率、未占用额外频带条件下,能够进行二维数据信息传输的调制机制成为了未来发展趋势和新方向。With its advantages in confidentiality, anti-noise, anti-jamming, and high-precision measurement, direct sequence spread spectrum has gradually become an important support in the fields of mobile communication and satellite navigation. At present, the modulation methods commonly used in direct sequence spread spectrum communication mainly include BPSK, QPSK, BOC, etc. Although this series of modulation methods have obvious advantages in terms of confidentiality and anti-interference ability, considering the limited transmission rate of the existing modulation mechanism, Due to low spectrum utilization and other issues, a modulation mechanism capable of transmitting two-dimensional data information without introducing additional power and occupying additional frequency bands has become a future development trend and a new direction.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种KS-CSS调制方法。本发明从复合维度角度出发,在一维数据扩频机理及发射功率不变的前提下,引入二维数据信息,通过数据映射机制选取扩频伪码,同时实现二维数据信息传输;并利用一维与二维的传输率关系以及数据应用需求,灵活配置调制阶数K,从而建立K阶复合扩频(KS-CSS,K Step-Complex Spread Spectrum)调制方法。该方法提高了数据传输速率及频带利用率,适用于所有的扩频通信系统。The purpose of the present invention is to provide a KS-CSS modulation method. From the perspective of composite dimensions, the invention introduces two-dimensional data information on the premise of one-dimensional data spreading mechanism and transmit power unchanged, selects spread spectrum pseudocode through data mapping mechanism, and realizes two-dimensional data information transmission at the same time; The relationship between one-dimensional and two-dimensional transmission rates and data application requirements, the modulation order K is flexibly configured, so as to establish a K-order composite spread spectrum (KS-CSS, K Step-Complex Spread Spectrum) modulation method. The method improves the data transmission rate and the frequency band utilization rate, and is suitable for all spread spectrum communication systems.
采用的技术方案是:The technical solutions adopted are:
一种KS-CSS调制方法,其特征在于,包括下述步骤:A KS-CSS modulation method, comprising the steps of:
步骤1:首先设置参数,设定R1为一维信息速率,R2为二维信息基础速率,一维与二维的信息周期为1s;一维信息D1(n)和二维信息D2(n)待传输。Step 1: First set the parameters, set R 1 to be the one-dimensional information rate, R 2 to be the basic rate of two-dimensional information, and the information period of one-dimensional and two-dimensional information is 1s; one-dimensional information D 1 (n) and two-dimensional information D 2 (n) to be transmitted.
步骤2:进行M1、M2模式配置,配置规则为:定义M为模式控制系数组,由M[M1 M2]表示,定义M1为自适应或主动模式的选择参数,M2为主动模式下的节能或高效模式的选择参数。e为增设系数,其是在主动高效模式下,用户控制伪码组数的自定义增量。当M1=0时为自适应模式,此时M2及e不起作用;当M2=1时为主动模式,此时M2起作用,当M2=0时为主动节能模式,且e不起作用;当M2=1时为主动高效模式,此时e起作用。Step 2: Perform M 1 , M 2 mode configuration, the configuration rule is: define M as a mode control coefficient group, represented by M[M 1 M 2 ], define M 1 as the selection parameter of the adaptive or active mode, and M 2 as Selection parameter for energy-saving or high-efficiency mode in active mode. e is an additional coefficient, which is a user-defined increment of the number of pseudo-code groups controlled by the user in the active high-efficiency mode. When M 1 =0, it is adaptive mode, and M 2 and e do not work at this time; when M 2 =1, it is active mode, and M 2 works at this time; when M 2 =0, it is active energy-saving mode, and e does not work; when M 2 =1, it is active high-efficiency mode, and e works at this time.
步骤3:调制阶数k计算,k值是瞬时二维与一维的信息传输率比值,计算规则为:Step 3: Calculate the modulation order k. The value of k is the ratio of instantaneous two-dimensional and one-dimensional information transmission rates. The calculation rule is:
当M1=0时,其中符号[]↑为向上取整函数;When M 1 =0, The symbol []↑ is the round-up function;
当M1=1,且M2=0时,其中符号[]↓为向下取整函数;When M 1 =1, and M 2 =0, The symbol []↓ is the round-down function;
当M1=1,且M2=1时, When M 1 =1, and M 2 =1,
步骤4:伪码组数N计算,N是扩频伪码集合中的有效伪码数,计算规则为:Step 4: Calculate the number of pseudocode groups N, where N is the number of valid pseudocodes in the spread spectrum pseudocode set, and the calculation rule is:
当M1=0时,N=2k;When M 1 =0, N=2 k ;
当M1=1,且M2=0时,N=2k;When M 1 =1, and M 2 =0, N=2 k ;
当M1=1,且M2=1时,N=2(k+e)。When M 1 =1, and M 2 =1, N=2 (k+e) .
步骤5:转换时间T计算,表明每T时间更换一次扩频伪码,计算规则为:Step 5: Calculate the conversion time T, indicating that the spread spectrum pseudocode is replaced every T time, and the calculation rule is:
当M1=0时, When M 1 =0,
当M1=1,且M2=0时, When M 1 =1, and M 2 =0,
当M1=1,且M2=1时, When M 1 =1, and M 2 =1,
步骤6:依据k和T的值,并利用二维信息D2(n)进行待传码片处理。Step 6: According to the values of k and T, and use the two-dimensional information D 2 (n) to process the chips to be transmitted.
步骤7:依据N值,并由待传的信息码片进行码集映射,从而得到其中,εj∈{1Λ N},εj是在1~N间选择。εj的配置规则为:j是从第一组k到第组k的伪码顺序取值。其表明D2(n)中每k位的持续时间为T,即每T时间传k位信息,每T时间利用下一个k位从伪码集中选伪码,共需要次选择。当j已经等于时,不再选择伪码,即T不起作用。Step 7: According to the value of N, code set mapping is performed by the information chips to be transmitted, so as to obtain Among them, ε j ∈{1Λ N}, ε j is selected from 1 to N. The configuration rules of εj are: j is from the first group k to the first Pseudocode order values for group k. It shows that the duration of each k bits in D 2 (n) is T, that is, k bits of information are transmitted every T time, and the next k bits are used to select pseudocodes from the pseudocode set every T time. selection. when j is already equal to , the pseudocode is no longer selected, i.e. T does not work.
步骤8:一维信息D1(n)与二维信息映射的伪码进行模二和运算,并通过基带处理,进一步进行载波调制,从而得到KS-CSS调制信号S(n),S(n)表示为其中n为离散序列值,ω0为信号调制载波的频率,θ为调制载波的相位。Step 8: Pseudocode for mapping one-dimensional information D 1 (n) to two-dimensional information Perform modulo-two sum operation, and further perform carrier modulation through baseband processing to obtain KS-CSS modulation signal S(n), S(n) is expressed as where n is the discrete sequence value, ω 0 is the frequency of the signal modulating carrier, and θ is the phase of the modulating carrier.
其优点在于:本发明从复合维度角度出发,在一维数据扩频机理及发射功率不变的前提下,引入二维数据信息,通过数据映射机制选取扩频伪码,同时实现二维数据信息传输;并利用一维与二维的传输率关系以及数据应用需求,灵活配置调制阶数K,从而建立K阶复合扩频(KS-CSS,K Step-Complex Spread Spectrum)调制方法。该方法提高了数据传输速率及频带利用率,适用于所有的扩频通信系统。The advantages are: from the perspective of composite dimensions, the present invention introduces two-dimensional data information on the premise of the one-dimensional data spreading mechanism and transmission power unchanged, selects the spread spectrum pseudocode through the data mapping mechanism, and realizes the two-dimensional data information at the same time. and use the one-dimensional and two-dimensional transmission rate relationship and data application requirements to flexibly configure the modulation order K, thereby establishing a K-order composite spread spectrum (KS-CSS, K Step-Complex Spread Spectrum) modulation method. The method improves the data transmission rate and the frequency band utilization rate, and is suitable for all spread spectrum communication systems.
附图说明Description of drawings
图1是本发明方法的原理图。Figure 1 is a schematic diagram of the method of the present invention.
具体实施方式Detailed ways
一种KS-CSS调制方法,其特征在于,包括下述步骤:A KS-CSS modulation method, comprising the steps of:
步骤1:首先设置参数,设定R1为一维信息速率,R2为二维信息基础速率,一维与二维的信息周期为1s;一维信息D1(n)和二维信息D2(n)待传输。Step 1: First set the parameters, set R 1 to be the one-dimensional information rate, R 2 to be the basic rate of two-dimensional information, and the information period of one-dimensional and two-dimensional information is 1s; one-dimensional information D 1 (n) and two-dimensional information D 2 (n) to be transmitted.
步骤2:进行M1、M2模式配置,配置规则为:定义M为模式控制系数组,由M[M1 M2]表示,定义M1为自适应或主动模式的选择参数,M2为主动模式下的节能或高效模式的选择参数。e为增设系数,其是在主动高效模式下,用户控制伪码组数的自定义增量。当M1=0时为自适应模式,此时M2及e不起作用;当M2=1时为主动模式,此时M2起作用,当M2=0时为主动节能模式,且e不起作用;当M2=1时为主动高效模式,此时e起作用。Step 2: Perform M 1 , M 2 mode configuration, the configuration rule is: define M as a mode control coefficient group, represented by M[M 1 M 2 ], define M 1 as the selection parameter of the adaptive or active mode, and M 2 as Selection parameter for energy-saving or high-efficiency mode in active mode. e is an additional coefficient, which is a user-defined increment of the number of pseudo-code groups controlled by the user in the active high-efficiency mode. When M 1 =0, it is adaptive mode, and M 2 and e do not work at this time; when M 2 =1, it is active mode, and M 2 works at this time; when M 2 =0, it is active energy-saving mode, and e does not work; when M 2 =1, it is active high-efficiency mode, and e works at this time.
步骤3:调制阶数k计算,k值是瞬时二维与一维的信息传输率比值,计算规则为:Step 3: Calculate the modulation order k. The value of k is the ratio of instantaneous two-dimensional and one-dimensional information transmission rates. The calculation rule is:
当M1=0时,其中符号[]↑为向上取整函数;When M 1 =0, The symbol []↑ is the round-up function;
当M1=1,且M2=0时,其中符号[]↓为向下取整函数;When M 1 =1, and M 2 =0, The symbol []↓ is the round-down function;
当M1=1,且M2=1时, When M 1 =1, and M 2 =1,
步骤4:伪码组数N计算,N是扩频伪码集合中的有效伪码数,计算规则为:Step 4: Calculate the number of pseudocode groups N, where N is the number of valid pseudocodes in the spread spectrum pseudocode set, and the calculation rule is:
当M1=0时,N=2k;When M 1 =0, N=2 k ;
当M1=1,且M2=0时,N=2k;When M 1 =1, and M 2 =0, N=2 k ;
当M1=1,且M2=1时,N=2(k+e)。When M 1 =1, and M 2 =1, N=2 (k+e) .
步骤5:转换时间T计算,表明每T时间更换一次扩频伪码,计算规则为:Step 5: Calculate the conversion time T, indicating that the spread spectrum pseudocode is replaced every T time, and the calculation rule is:
当M1=0时, When M 1 =0,
当M1=1,且M2=0时, When M 1 =1, and M 2 =0,
当M1=1,且M2=1时, When M 1 =1, and M 2 =1,
步骤6:依据k和T的值,并利用二维信息D2(n)进行待传码片处理。Step 6: According to the values of k and T, and use the two-dimensional information D 2 (n) to process the chips to be transmitted.
步骤7:依据N值,并由待传的信息码片进行码集映射,从而得到其中,εj∈{1Λ N},εj是在1~N间选择。εj的配置规则为:j是从第一组k到第组k的伪码顺序取值。其表明D2(n)中每k位的持续时间为T,即每T时间传k位信息,每T时间利用下一个k位从伪码集中选伪码,共需要次选择。当j已经等于时,不再选择伪码,即T不起作用。Step 7: According to the value of N, code set mapping is performed by the information chips to be transmitted, so as to obtain Among them, ε j ∈{1Λ N}, ε j is selected from 1 to N. The configuration rules of εj are: j is from the first group k to the first Pseudocode order values for group k. It shows that the duration of each k bits in D 2 (n) is T, that is, k bits of information are transmitted every T time, and the next k bits are used to select pseudocodes from the pseudocode set every T time. selection. when j is already equal to , the pseudocode is no longer selected, i.e. T does not work.
步骤8:一维信息D1(n)与二维信息映射的伪码进行模二和运算,并通过基带处理,进一步进行载波调制,从而得到KS-CSS调制信号S(n),S(n)表示为其中n为离散序列值,ω0为信号调制载波的频率,θ为调制载波的相位。Step 8: Pseudocode for mapping one-dimensional information D 1 (n) to two-dimensional information Perform modulo-two sum operation, and further perform carrier modulation through baseband processing to obtain KS-CSS modulation signal S(n), S(n) is expressed as where n is the discrete sequence value, ω 0 is the frequency of the signal modulating carrier, and θ is the phase of the modulating carrier.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810103885.6A CN108347258B (en) | 2018-02-02 | 2018-02-02 | KS-CSS modulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810103885.6A CN108347258B (en) | 2018-02-02 | 2018-02-02 | KS-CSS modulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108347258A CN108347258A (en) | 2018-07-31 |
CN108347258B true CN108347258B (en) | 2020-02-07 |
Family
ID=62958456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810103885.6A Active CN108347258B (en) | 2018-02-02 | 2018-02-02 | KS-CSS modulation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108347258B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109257343B (en) * | 2018-09-05 | 2020-11-10 | 沈阳理工大学 | A composite dimension anti-access authentication method based on matrix mapping |
CN110311707B (en) * | 2019-07-02 | 2020-12-29 | 沈阳理工大学 | Multi-criteria constraint-based complex dimension information transmission and reconstruction method |
CN111756404B (en) * | 2020-05-21 | 2021-11-09 | 沈阳理工大学 | Low-complexity ultrahigh-order code index modulation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101035104A (en) * | 2006-03-06 | 2007-09-12 | 华为技术有限公司 | Spread spectrum orthogonal frequency division multiplexing mixing system |
CN101645743A (en) * | 2009-03-24 | 2010-02-10 | 中国科学院声学研究所 | Chaotic sequence-based packet M element spread spectrum communication method and device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8811535B2 (en) * | 2009-07-17 | 2014-08-19 | Mitre Corporation | Time-frequency space constructions of families of signals |
-
2018
- 2018-02-02 CN CN201810103885.6A patent/CN108347258B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101035104A (en) * | 2006-03-06 | 2007-09-12 | 华为技术有限公司 | Spread spectrum orthogonal frequency division multiplexing mixing system |
CN101645743A (en) * | 2009-03-24 | 2010-02-10 | 中国科学院声学研究所 | Chaotic sequence-based packet M element spread spectrum communication method and device |
Also Published As
Publication number | Publication date |
---|---|
CN108347258A (en) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108347258B (en) | KS-CSS modulation method | |
JP4109119B2 (en) | Method and apparatus in communication system | |
CN1297072C (en) | Radio base station arrangement and decoding apparatus and decoding method used thereof | |
CN114337976B (en) | Transmission method combining AP selection and pilot frequency distribution | |
CN103997775A (en) | Frequency division multiplexing multi-user MIMO energy efficiency optimization method | |
Yan et al. | A top-down SCMA codebook design scheme based on lattice theory | |
CN111865383A (en) | A Space Constellation Design System in Spatial Modulation System | |
CN112003805A (en) | Joint time-frequency index modulation multimode differential chaos shift keying modulation and demodulation method | |
WO2021143426A1 (en) | Coding method and apparatus, modulation and coding method and apparatus, device, and storage medium | |
CN1812280A (en) | Efficient spreader for spread spectrum communication systems | |
CN105307181B (en) | Distribution method for the safe efficiency best power of green cognitive radio | |
CN104144039B (en) | Pilot distribution method based on coherence time in a kind of extensive mimo system | |
CN113543271B (en) | Effective capacity-oriented resource allocation method and system | |
CN108988923A (en) | Antenna selecting method based on signal leakage in the modulating system of safe space | |
CN108900221B (en) | Index modulation frequency hopping communication method based on IFFT/FFT framework | |
CN106941688A (en) | PDMA system power distribution methods based on historical information | |
CN106714312A (en) | Wireless network resource management method and device | |
CN115208544A (en) | Signal processing method and device based on sequence | |
CN104682996B (en) | Self-interference elimination method of full duplex system | |
US12088444B2 (en) | Communication method and communication apparatus | |
CN103647740B (en) | Multi-carrier modulation and demodulation method of orthogonal non-uniform multi-carrier spacing based on Ramanujan summation | |
Balevi et al. | Pareto optimization for uplink NOMA power control | |
CN106899337A (en) | A kind of extensive MIMO relay system multi-user power distribution method using mixing ADC | |
TWI602408B (en) | Method and apparatus for layer mapping and de-layer mapping in wireless communication system | |
CN103701511A (en) | System and method for realizing table lookup of downlink MIMO (Multi-input Multi-output) technology of LTE (Long Term Evolution) system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |