CN108345177B - Device and method for measuring lamination error - Google Patents
Device and method for measuring lamination error Download PDFInfo
- Publication number
- CN108345177B CN108345177B CN201710060271.XA CN201710060271A CN108345177B CN 108345177 B CN108345177 B CN 108345177B CN 201710060271 A CN201710060271 A CN 201710060271A CN 108345177 B CN108345177 B CN 108345177B
- Authority
- CN
- China
- Prior art keywords
- light
- aperture
- stacking
- main pole
- diffracted light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7085—Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7088—Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Multimedia (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本公开提供层迭误差测量装置及方法。装置包括光源、光学系统、物镜及检测器。光源用于产生测量光。光学系统用于将测量光导引至物镜中。物镜用于将测量光导引至一层迭标记上,同时将从层迭标记绕射的正主极绕射光与负主极绕射光收集至物镜的光瞳面上。检测器设置于物镜的光瞳面上,用于检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一层迭误差信号。其中,光学系统包括一光圈,其具有至少一透光区域,其位置、尺寸及/或形状根据层迭误差信号中的噪声的位置为可调变的。本公开提供的层迭误差测量装置能够改善层迭误差信号的品质,并可提高层迭误差检测的准确度。
The present disclosure provides a stacking error measurement device and method. The device includes a light source, an optical system, an objective lens and a detector. The light source is used to generate measurement light. The optical system is used to guide the measurement light into the objective lens. The objective lens is used to guide the measurement light onto a stacking mark, and at the same time collect the positive main pole diffraction light and the negative main pole diffraction light diffracted from the stacking mark onto the pupil plane of the objective lens. The detector is arranged on the pupil plane of the objective lens, and is used to detect the light intensity distribution of the positive and negative main pole diffraction lights, and obtain a stacking error signal of the stacking mark by subtracting the light intensity distribution of the positive and negative main pole diffraction lights. Among them, the optical system includes an aperture, which has at least one light-transmitting area, and its position, size and/or shape are adjustable according to the position of the noise in the stacking error signal. The stacking error measurement device provided by the present disclosure can improve the quality of the stacking error signal and improve the accuracy of stacking error detection.
Description
技术领域technical field
本公开实施例涉及一种半导体制造技术,特别涉及一种层迭误差(overlayerror)测量装置及方法。Embodiments of the present disclosure relate to a semiconductor manufacturing technology, and in particular, to a device and method for measuring an overlay error.
背景技术Background technique
在半导体制造中,微影制程可以说是相当关键的步骤,其直接关系到最小特征尺寸的极限。对准与曝光是微影制程中最重要的技术,其中,对准的目的是使得掩模图案能正确的转移到光致抗蚀剂层,因为半导体元件(例如IC晶粒)是由许多结构层堆迭而成,因此若曝光位置对准不正确,层与层之间的图形就无法按照原先电路设计的图形密切配合,而造成短路、断路及电性不良等缺陷,使得产品良率降低,并增加生产成本。In semiconductor manufacturing, the lithography process can be said to be a very critical step, which is directly related to the limit of the minimum feature size. Alignment and exposure are the most important techniques in the lithography process, where the purpose of alignment is to enable the correct transfer of the mask pattern to the photoresist layer, because semiconductor components (such as IC dies) are composed of many structures The layers are stacked, so if the exposure position is not aligned correctly, the patterns between the layers cannot closely match the pattern of the original circuit design, resulting in defects such as short circuits, open circuits and poor electrical properties, resulting in lower product yields , and increase production costs.
前述层与层之间的图形覆盖位置上的误差又称为层迭误差(overlay error)。随着元件积集度越来越高,微影的次数与复杂度不断地增加,层迭误差容忍度显着降低,因此对于测量层迭误差的精度要求变得更加严苛。由于成像分辨率极限的限制,传统的基于成像和图像识别的层迭测量技术(Image-based overlay,简称IBO)已逐渐无法满足现今业界对于测量层迭误差的精度要求。而基于绕射光检测的层迭测量技术(Diffraction-basedoverlay,简称DBO)则正成为测量层迭误差的主要手段。The error in the overlay position of the pattern between the aforementioned layers is also called an overlay error. As the integration of components becomes higher and higher, the number and complexity of lithography continue to increase, and the tolerance of stacking errors is significantly reduced, so the accuracy requirements for measuring stacking errors become more stringent. Due to the limitation of the imaging resolution limit, the traditional image-based overlay (IBO) technology based on imaging and image recognition has gradually been unable to meet the accuracy requirements of the current industry for measuring the overlay error. Diffraction-based overlay (DBO for short) is becoming the main method for measuring overlay errors.
虽然目前DBO测量技术已符合一般的测量精度要求,但仍无法满足所有的方面。因此,需要提供一种绕射式层迭误差测量装置及方法的改进方案。Although the current DBO measurement technology has met the general measurement accuracy requirements, it still cannot meet all aspects. Therefore, there is a need to provide an improved solution for a diffractive layered error measurement device and method.
发明内容SUMMARY OF THE INVENTION
本公开一些实施例提供一种层迭误差测量装置,包括:一物镜;一光源,用于产生一测量光;一光学系统,用于将测量光导引至物镜中,物镜用于将测量光导引至一层迭标记上,同时将从层迭标记绕射的正主极绕射光与负主极绕射光收集至物镜的一光瞳面上;以及一检测器,设置于物镜的光瞳面上,用于检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一层迭误差信号;其中,前述光学系统包括一光圈,其具有至少一透光区域,且透光区域的位置、尺寸及/或形状根据层迭误差信号中的噪声的位置为可调变的。Some embodiments of the present disclosure provide a stacking error measurement device, including: an objective lens; a light source for generating a measurement light; an optical system for guiding the measurement light into an objective lens, and the objective lens is used for measuring the light Guided to the layer-by-layer mark, while collecting the positive main-pole diffracted light and the negative main-pole diffracted light from the layer-by-layer mark to a pupil surface of the objective lens; and a detector arranged on the pupil of the objective lens On the surface, it is used to detect the light intensity distribution of the above-mentioned positive and negative main pole diffracted light, and use the positive and negative main pole diffracted light to subtract the light intensity distribution to obtain the layered error signal of the layered mark; wherein, The aforementioned optical system includes an aperture having at least one light-transmitting region, and the position, size and/or shape of the light-transmitting region can be adjusted according to the position of noise in the stacking error signal.
本公开一些实施例提供一种层迭误差测量装置,包括:一光学系统,用于将来自一光源的一测量光导引至一物镜中,物镜用于将测量光导引至一层迭标记上,同时收集从层迭标记绕射的正主极绕射光与负主极绕射光,其中光学系统包括一光圈,其具有至少一透光区域与至少一非透光区域;以及一检测器,用于将前述正主极绕射光与负主极绕射光的光强度分布相减以得到层迭标记的一层迭误差信号,并根据层迭误差信号中的噪声的位置调变光圈的前述至少一透光区域与至少一非透光区域的位置、尺寸及/或形状。Some embodiments of the present disclosure provide a stacking error measuring apparatus, including: an optical system for guiding a measurement light from a light source into an objective lens for guiding the measurement light to a stacking mark , simultaneously collect the positive main pole diffracted light and the negative main pole diffracted light diffracted from the laminated mark, wherein the optical system includes an aperture, which has at least one light-transmitting area and at least one non-transmitting area; and a detector, It is used for subtracting the light intensity distribution of the aforementioned positive main pole diffracted light and negative main pole diffracted light to obtain a stacking error signal of the stacking mark, and adjusting the aforementioned at least one of the aperture according to the position of the noise in the stacking error signal. The position, size and/or shape of a light-transmitting area and at least one non-light-transmitting area.
本公开一些实施例提供一种层迭误差测量方法,包括:通过一光源发出一测量光;通过一光学系统将测量光导引至一物镜中;通过物镜将测量光导引至一层迭标记上,并将从层迭标记绕射的正主极绕射光与负主极绕射光收集至物镜的一光瞳面上;通过一检测器检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一参考的层迭误差信号;通过检测器根据参考的层迭误差信号中的噪声的位置,调变光学系统中的一光圈的至少一透光区域的位置、尺寸及/或形状;以及通过检测器检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一正式的层迭误差信号。Some embodiments of the present disclosure provide a method for measuring a stacking error, including: emitting a measuring light through a light source; guiding the measuring light into an objective lens through an optical system; and guiding the measuring light to a stacked mark through the objective lens and collect the diffracted light of the positive main pole and the diffracted light of the negative main pole from the layered mark to a pupil surface of the objective lens; detect the light intensity distribution of the above-mentioned positive and negative main pole diffracted light by a detector, And use the light intensity distributions of the positive and negative main pole diffracted lights to be subtracted to obtain a reference stacking error signal of the stacking mark; according to the position of the noise in the reference stacking error signal, the detector modulates the optical The position, size and/or shape of at least one light-transmitting area of an aperture in the system; and detecting the light intensity distribution of the above-mentioned positive and negative main pole diffracted light by a detector, and using the said positive and negative main pole diffracted light The light intensity distributions are subtracted to obtain a formal stacking error signal of the stacking marks.
附图说明Description of drawings
图1显示根据一些实施例的一层迭误差检测装置的结构示意图。FIG. 1 shows a schematic structural diagram of a layer-by-layer error detection apparatus according to some embodiments.
图2显示图1中的层迭标记的剖面结构示意图。FIG. 2 shows a schematic cross-sectional structure diagram of the stacked marker in FIG. 1 .
图3显示图1中的光圈的正视示意图。FIG. 3 shows a schematic front view of the aperture in FIG. 1 .
图4显示图1中的检测器检测到的正或负1阶绕射光的光强度分布图。FIG. 4 shows a light intensity distribution diagram of positive or negative 1st order diffracted light detected by the detector in FIG. 1 .
图5显示根据一些实施例的利用正、负1阶绕射光的光强度分布相减而得到的一层迭误差信号图。5 shows a graph of stacked error signals obtained by subtracting the light intensity distributions of positive and negative first-order diffracted light according to some embodiments.
图6显示根据一些实施例以主动式矩阵液晶模块作为光圈的示意图。FIG. 6 shows a schematic diagram of using an active matrix liquid crystal module as an aperture according to some embodiments.
图7A及图7B显示图6中的主动式矩阵液晶模块的各液晶单元的结构示意图,与其允许或不允许光线通过的工作原理示意图。7A and 7B are schematic diagrams showing the structure of each liquid crystal cell of the active matrix liquid crystal module in FIG. 6 , and a schematic diagram of the working principle of allowing or not allowing light to pass therethrough.
图8显示根据一些实施例的检测器及光圈(主动式矩阵液晶模块)组成的控制系统方框图。8 shows a block diagram of a control system consisting of a detector and an aperture (active matrix liquid crystal module) according to some embodiments.
图9显示根据一些实施例以微镜片阵列模块作为光圈时,各微镜片单元的结构示意图。FIG. 9 shows a schematic structural diagram of each micro-lens unit when the micro-lens array module is used as the aperture according to some embodiments.
图10显示根据一些实施例的一层迭误差检测方法的流程图。10 shows a flowchart of a method for stacking error detection according to some embodiments.
附图标记说明:Description of reference numbers:
10~层迭误差检测装置;10~Lamination error detection device;
11~光源;11 ~ light source;
12~光学系统;12~Optical system;
13~准直透镜;13~ collimating lens;
14~滤波片;14~Filter;
15~光圈;15~Aperture;
15A~透光部;15A~Transparent part;
15B~外围部;15B ~ peripheral part;
16~偏振片;16~polarizer;
17~第一透镜;17~ the first lens;
18~视场光阑;18~Field diaphragm;
19~第二透镜;19 ~ the second lens;
20~分光镜;20~spectroscope;
21~物镜;21~objective lens;
22~透镜组;22~Lens group;
23~检测器;23~Detector;
23A~处理单元;23A~processing unit;
71~第一偏振片;71 ~ the first polarizer;
72~第一电极;72~the first electrode;
72A~配向膜;72A~alignment film;
73~液晶层;73 ~ liquid crystal layer;
74~第二电极;74 ~ the second electrode;
74A~配向膜;74A~alignment film;
75~第二偏振片;75~Second polarizer;
80~位置数据;80~Location data;
91~微镜片;91~Micro lens;
92~支撑件;92 ~ support piece;
93~控制电路;93~Control circuit;
151~面板单元;151~Panel unit;
152~时序控制器;152~sequence controller;
153~扫描驱动单元;153~scanning drive unit;
154~数据驱动单元;154~data drive unit;
200~层迭误差检测方法;200~Lamination error detection method;
201~206~步骤;201~206~steps;
B~测试光;B ~ test light;
B1~光线;B1~light;
d~位置误差;d~position error;
D1~Dn~数据驱动信号;D 1 ~Dn~data drive signal;
G1~下层光栅结构;G1 ~ lower grating structure;
G2~上层光栅结构;G2 ~ upper grating structure;
L1~前层;L1~front layer;
L2~当层;L2 ~ on the floor;
L3~中间材料层;L3~intermediate material layer;
M~层迭标记;M~layer mark;
R1~透光区域;R1~transparent area;
R2~非透光区域;R2~non-transparent area;
S~基材;S ~ base material;
S1~Sm~扫描驱动信号;S 1 ~Sm~scanning drive signal;
Sd~数据控制信号;Sd~data control signal;
Ss~扫描控制信号;Ss ~ scan control signal;
T~倾斜角度;T~tilt angle;
U~液晶单元;U ~ liquid crystal cell;
U’~微镜片单元;U'~micro lens unit;
V~电压。V~Voltage.
具体实施方式Detailed ways
以下公开内容提供许多不同的实施例或范例以实施本公开的不同特征。以下公开内容叙述各个构件及其排列方式的特定范例,以简化说明。当然,这些特定的范例并非用以限定。例如,若实施例中叙述了一第一特征形成于一第二特征之上或上方,即表示其可能包含上述第一特征与上述第二特征是直接接触的情况,亦可能包含了有附加特征形成于上述第一特征与上述第二特征之间,而使得上述第一特征与第二特征未直接接触的情况。The following disclosure provides many different embodiments or examples for implementing different features of the present disclosure. The following disclosure describes specific examples of various components and their arrangements to simplify the description. Of course, these specific examples are not intended to be limiting. For example, if the embodiment describes that a first feature is formed on or above a second feature, it means that it may include the situation that the first feature and the second feature are in direct contact, and may also include additional features Formed between the first feature and the second feature so that the first feature and the second feature are not in direct contact.
在下文中使用的空间相关用词,例如“在…下方”、“下方”、“较低的”、“上方”、“较高的”及类似的用词,是为了便于描述图示中一个元件或特征与另一个(些)元件或特征之间的关系。除了在附图中示出的的方位外,这些空间相关用词也意指可能包含在不同的方位下使用或者操作附图中的装置。Spatially relative terms such as "below," "below," "lower," "above," "upper," and similar terms are used hereinafter to facilitate description of an element in an illustration The relationship between a feature or feature and another element or feature(s). In addition to the orientation shown in the figures, these spatially relative terms are also intended to mean that the devices in the figures may be used or operated in different orientations.
以下不同实施例中可能重复使用相同的元件标号及/或文字,这些重复是为了简化与清晰的目的,并非用以限定所讨论的不同实施例及/或结构之间有特定的关系。The same element numbers and/or words may be repeatedly used in different embodiments below, and these repetitions are for the purpose of simplicity and clarity, and are not intended to limit the specific relationship between the different embodiments and/or structures discussed.
在下文中使用的第一以及第二等词汇,仅作为清楚对其进行解释的目的,并非用以对应以及限制权利要求。此外,第一特征以及第二特征等词汇,并非限定为相同或是不同的特征。Terms such as first and second used in the following are only for the purpose of clearly explaining them, and are not used to correspond to and limit the claims. In addition, the terms such as the first feature and the second feature are not limited to the same or different features.
在附图中,结构的形状或厚度可能扩大,以简化或便于标示。必须了解的是,未特别描述或图示的元件可以本领域技术人士所熟知的各种形式存在。In the drawings, the shape or thickness of structures may be exaggerated for simplicity or ease of representation. It must be understood that elements not specifically described or illustrated may exist in various forms well known to those skilled in the art.
请先参阅图1,其显示根据本公开一些实施例的一层迭误差检测装置10的结构示意图。应先说明的是,层迭误差检测装置10为一绕射式(Diffraction-based)层迭误差测量装置,用于检测半导体元件的层与层之间的图形覆盖位置上的误差。举例来说,当一半导体基材(例如硅晶圆)上的最上方材料层(又称为当层(current layer))在完成例如微影制程后,层迭误差检测装置10能够通过绕射光检测同时形成在当层与下方的某一材料层(又称为前层(previous layer))上的至少一层迭标记(overlay mark),藉此判读当层与前层的图形之间的层迭误差。Please refer to FIG. 1 , which shows a schematic structural diagram of a layer-by-layer
由图1中可以看出,层迭误差检测装置10包括一光源11、一光学系统12、一物镜21以及一检测器23。As can be seen from FIG. 1 , the stacking
光源11用于产生一测量光。在一些实施例中,光源11可以是白光光源、宽波段光源或是由多个单色光组成的复合光源。在一些实施例中,白光光源可以选用例如Xe光源,宽波段是指产生包括紫外光、可见光、红外光波段或上述波段组合的光,而复合光源可以由多个不同波长的激光光束通过混频得到。The
光学系统12用于将光源11发出的测量光导引至物镜21中。具体而言,光学系统12沿测量光的传播方向按序可包括:一准直透镜13、一滤波片14、一偏振片16、一第一透镜17、一第二透镜19以及一分光镜20。准直透镜13用于将测量光进行准直。滤波片14用于使单一波长的光通过。在某些实施例中,滤波片14为单色的,但不限定于此。另外,当光源11使用雷射光源时,亦可省略滤波片14。偏振片16用于生成线偏振光。在某些实施例中,亦可使用偏振分光镜(polarizing beamsplitter)取代偏振片16。第一、第二透镜17及19例如为聚焦透镜,用于聚光。分光镜20用于将测量光导引及入射至物镜21中,在一些实施例中,分光镜20可为棱镜、光栅或棱镜与光栅的组合。此外,光学系统12还可以包括位于物镜21与检测器23之间的用于聚光的透镜组22。The optical system 12 is used to guide the measurement light emitted by the
再者,光学系统12还包括一光圈15及一视场光阑18,此两者用于将测量光调变成相对于物镜21的光轴中心为对称的入射光。具体而言,在平行光系统中,光圈15(又称为孔径光阑)设置于偏振片16前方,用于生成满足物镜21对入射光形状要求的光斑,亦即可决定成像的形状。在一些实施例中,光圈15的透光部15A可设计为圆形(如图3所示)、方形、矩形、狭缝或者任意多边形。视场光阑18设置于第一透镜17与第二透镜19之间,用于生成满足对入射光尺寸要求的光斑,亦即可决定成像的范围。Furthermore, the optical system 12 further includes an
请一并参阅图1及图2,物镜21用于将测量光B导引至一层迭标记M上。在一些实施例中,层迭标记M由在半导体基材S上制成的上下两层光栅结构组成(如图2所示)。在此,光栅结构指本领域已知的具周期性的结构。下层光栅结构G1可通过例如曝光、显影、蚀刻等制程而形成于半导体基材S上的某一材料层(又称为前层L1)。前层L1不限定于直接位在半导体基材S上,亦可在两者之间形成有其他结构层。上层光栅结构G2通常是在当次例如曝光、显影、蚀刻等制程后而形成于最上方材料层(又称为当层L2)。此外,上、下层光栅结构G1及G2之间具有至少一中间材料层L3。层迭误差是指上、下层光栅结构G1及G2之间的位置误差d(如图2中所示)。通过检测层迭标记M的层迭误差,可判读当层L2与前层L1之间的图形覆盖位置上的误差。Please refer to FIG. 1 and FIG. 2 together, the
应了解的是,为了检测当层L2与前层L1的对应的图形之间的层迭误差,一层迭标记M中通常包括多组分别沿第一方向(例如X方向)及第二方向(例如垂直于X方向的Y方向)排列的两层光栅结构。It should be understood that, in order to detect the stacking error between the corresponding graphics of the current layer L2 and the previous layer L1, the stacking mark M usually includes a plurality of groups along the first direction (for example, the X direction) and the second direction ( For example, a two-layer grating structure arranged in the Y direction perpendicular to the X direction).
请继续参阅图1,测量光在层迭标记M上可进行绕射,同时物镜21可收集来自层迭标记M的绕射光,尤其是除中央主极绕射光以外的各主极绕射光(亦即正主极绕射光与负主极绕射光,例如正1阶绕射光、负1阶绕射光、正2阶绕射光、负2阶绕射光等),并将这些绕射光收集至物镜21的光瞳面(未图示)上。Please continue to refer to FIG. 1 , the measurement light can be diffracted on the laminated mark M, and the
检测器23设置于物镜21的光瞳面上,用于检测来自层迭标记M的正主极绕射光与负主极绕射光的光信号。在一些实施例中,检测器23可采用感光耦合元件(CCD)或互补式金属氧化物半导体(CMOS)。The
须说明的是,本文中介绍的实施例可以仅利用检测正1阶绕射光与负1阶绕射光(如图1中所示的两光束)的光信号来计算层迭标记M的层迭误差,但是更高阶次(亦即2阶以上)的绕射光同样可被利用来检测层迭误差。It should be noted that, in the embodiments introduced in this paper, the stacking error of the stacking mark M can be calculated only by detecting the optical signals of the positive 1st-order diffracted light and the negative 1st-order diffracted light (two beams as shown in FIG. 1 ). , but the diffracted light of higher order (ie, above 2nd order) can also be used to detect stacking errors.
请参阅图4,由检测器23检测到的正1阶绕射光与负1阶绕射光的光信号各具有一圆形的光强度分布,其形状是对应于光圈15的透光部15A的形状。Please refer to FIG. 4 , the optical signals of the positive first-order diffracted light and the negative first-order diffracted light detected by the
当层迭标记M的上、下层光栅结构G1及G2之间的位置误差d为0时,由检测器23检测到的正1阶绕射光与负1阶绕射光的光信号可具有一致的光强度分布;相对地,当层迭标记M的上、下层光栅结构G1及G2之间的位置误差d非为0时,由检测器23检测到的正1阶绕射光与负1阶绕射光的光信号的光强度分布则有所不同。如此一来,通过比较正1阶绕射光与负1阶绕射光的光强度分布的差异(亦即利用正1阶绕射光与负1阶绕射光的光强度分布相减的结果),检测器23能够得到层迭标记M的一层迭误差信号。再通过例如检测器23中的一处理单元(图未示)分析上述层迭误差信号的光强度分布(如图5所示),即可以计算出层迭标记M的层迭误差。When the position error d between the upper and lower grating structures G1 and G2 of the stacked mark M is 0, the optical signals of the positive first-order diffracted light and the negative first-order diffracted light detected by the
然而,由图5中可以看出,上述层迭误差信号的部分区域(如图中圈选的区域,又称为坏区(bad area))中可能出现一些噪声N(或是强度非常低的信号),其会干扰层迭误差信号的判读,并造成层迭误差检测的准确度受到影响。However, as can be seen from Fig. 5, some noise N (or very low intensity) may appear in some areas of the above-mentioned stacked error signal (the area circled in the figure, also called bad area). signal), which will interfere with the interpretation of the stacking error signal and cause the accuracy of stacking error detection to be affected.
经研究发现,这些噪声N主要源自于以特定角度入射至层迭标记M上的光线,其在上、下层光栅结构G1及G2之间的中间材料层L3容易发生全反射(如图2中所示的光线B1))或是能量被吸收,故而无法良好地被检测器23检测。因此,若能够使得会产生噪声N的部分测试光由光圈15直接阻挡,即可有效地移除层迭误差信号中的噪声N,以防止其干扰层迭误差信号的判读,进而能够提高层迭误差检测的准确度。After research, it is found that these noises N mainly originate from the light incident on the stacked mark M at a specific angle, which is prone to total reflection in the intermediate material layer L3 between the upper and lower grating structures G1 and G2 (as shown in FIG. 2 ). The light B1)) shown is either absorbed in energy and cannot be detected well by the
为了达到上述目的,本公开一些实施例采用如第6、7A~7B及9图中所示的特殊的光圈15。在一些实施例中,光圈15可具有至少一透光区域,且透光区域的位置、尺寸及/或形状根据层迭误差信号中的噪声N的位置为可调变的。In order to achieve the above-mentioned purpose, some embodiments of the present disclosure employ
须先说明的是,由于检测器23检测到的层迭误差信号的光强度分布的形状(圆形,参见图5)是对应光圈15的透光部15A的形状,因此层迭误差信号中的噪声N的位置亦可与光圈15的透光部15A内的相对位置对应(亦即具有匹配(mapping)的关系)。It should be noted that, since the shape (circle, see FIG. 5 ) of the light intensity distribution of the stacking error signal detected by the
藉此特性,可根据层迭误差信号中的噪声N的位置来调变光圈15(透光部15A范围内)的至少一透光区域的位置、尺寸及/或形状(或是说调变光圈15的至少一非透光区域的位置、尺寸及/或形状),以使得会产生噪声N的部分测试光由光圈15直接阻挡,并可移除层迭误差信号中的噪声N。With this feature, the position, size and/or shape of at least one light-transmitting region of the aperture 15 (within the range of the light-transmitting
请一并参阅图6、图7A及图7B,在一些实施例中,光圈15为一主动式矩阵(activematrix)液晶模块,具有多个排列成矩阵的液晶单元U。Please refer to FIGS. 6 , 7A and 7B together. In some embodiments, the
各液晶单元U沿测量光通过光圈15的方向按序包括:一第一偏振片71、一第一电极72、一液晶层73、一第二电极74以及一第二偏振片75。更详细而言,液晶层73配置于第一、第二电极72及74之间,第一、第二电极72及74的内侧分别形成有一配向膜(alignment film)72A与74A。配向膜72A及配向膜74A的配向沟槽相互垂直,使得液晶层73中的液晶分子的排列方向(在没有电场作用下)由配向膜72A的一端至配向膜74A的一端可发生90度的扭转(如图7A所示)。第一偏振片71及第二偏振片75分别配置于第一、第二电极72及74的外侧,两者的偏振方向为相互垂直。此外,各液晶单元U包括一薄膜晶体管(thin film transistor,TFT)基板(图未示),用于输出电压V以控制液晶分子的排列方向。Each liquid crystal unit U sequentially includes: a
由图7A中可以看出,在没有施加电压于第一、第二电极72及74之间时,穿过液晶层73的测量光可随着液晶分子的扭转而发生90度转动,并穿过垂直的第一、第二偏振片71及75。由图7B中可以看出,当施加电压V于第一、第二电极72及74之间时,液晶层73中的液晶分子(例如正液晶分子)可沿着电场方向排列,此时测量光则不会发生转动,也就无法穿过第二偏振片75。As can be seen from FIG. 7A, when no voltage is applied between the first and
应了解的是,光圈15的各液晶单元U的结构及控制方式不以上述实施例为限制。例如,在一些实施例中,第一、第二偏振片71及75的偏振方向亦可为相互平行,并且在没有施加电压于第一、第二电极72及74之间时,随着液晶分子的扭转而发生90度转动的测量光无法穿过第二偏振片75,而当施加电压V于第一、第二电极72及74之间时,测量光则可以穿过第二偏振片75。It should be understood that the structure and control method of each liquid crystal unit U of the
由此,通过TFT基板控制施加于第一、第二电极72及74之间的电压,可控制各液晶单元U中液晶分子的方向以允许或不允许光线通过。如此一来,光圈15的透光部15A(虚线圆圈的内部)范围内的至少一透光区域R1与至少一非透光区域R2的位置、尺寸及/或形状成为可(任意)调变的,其中,透光区域R1对应于液晶单元U允许光线通过的状态(如图7A所示),而非透光区域R2对应于液晶单元U不允许光线通过的状态(如图7B所示)。Therefore, by controlling the voltage applied between the first and
值得一提的是,光圈15的外围部15B(亦即透光部15A外的部分)的液晶单元U可常态调控为不允许光线通过的状态(如图7B所示)。或者,在一些实施例中,仅有光圈15的透光部15A部分为一主动式矩阵液晶模块,而光圈15的外围部15B可改为一机械式挡光板,以节省能源消耗。It is worth mentioning that the liquid crystal unit U of the
进一步地,在一些实施例中,检测器23根据所检测到的层迭误差信号中的噪声的位置,可控制及调变上述光圈15(主动式矩阵液晶模块)的至少一透光区域R1与至少一非透光区域R2的位置、尺寸及/或形状。Further, in some embodiments, the
请参阅图8,其显示根据一些实施例的检测器23及光圈15组成的控制系统方框图。举例而言,当检测器23检测到层迭标记M的一层迭误差信号(光强度分布)时,检测器23中的一处理单元23A可经由分析层迭误差信号而得到其中噪声的分布位置,例如检测器23的处理单元23A可由层迭误差信号的光强度分布(如图5所示),而得到光强度高于及低于一特定数值的位置坐标,亦即得到一层迭误差信号中的正常信号部分及噪声的位置坐标。接着,处理单元23A可再通过运算转换而产生一包括对应于光圈15的透光区域R1及非透光区域R2的位置坐标的位置数据80。Please refer to FIG. 8 , which shows a block diagram of a control system composed of the
检测器23通过有线(例如电线、电缆或光纤)或无线(例如蓝牙、wifi或近场通信(NFC)传输)的方式电性连接光圈15(主动式矩阵液晶模块)。光圈15包括一面板单元151、一时序控制器(timing controller,TCON)152、一扫描驱动单元153以及一数据驱动单元154。在一些实施例中,面板单元151具有配置成多列及多行的液晶单元(又称为显示单元),且每一液晶单元的结构可参照例如图7A及图7B中所示。时序控制器152用于接收检测器23的处理单元23A所产生的位置数据80,并将一扫描控制信号Ss及一数据控制信号Sd分别提供至扫描驱动单元153及数据驱动单元154。扫描驱动单元153及数据驱动单元154用于根据上述控制信号产生驱动信号,以通过例如写入薄膜晶体管(TFT)的电压数据至面板单元151的各液晶单元的方式来操控面板单元151的运行。The
更具体而言,在一些实施例中,扫描驱动单元153可在一时间周期中根据一定的列扫描顺序,将基于扫描控制信号Ss所产生的扫描驱动信号S1~Sm施加至每一液晶单元的列的扫描线。如上所述,扫描驱动信号S1~Sm是施加至对应于每一液晶单元的TFT的栅极(未图示),以通过施加一栅极电压来开启对应的TFT,使得对应液晶单元的电压数据可为数据驱动单元154写入。More specifically, in some embodiments, the
另外,在一些实施例中,数据驱动单元154用于在每一时间周期中,基于数据控制信号Sd,将电压数据写入液晶单元阵列。例如,数据驱动单元154可同时将数据驱动信号D1~Dn施加至液晶单元的行的数据线,藉此以控制施加电压至每一TFT的源极的电压大小或时间。In addition, in some embodiments, the
如上所述,图6至图8的实施例可基于层迭误差信号中的噪声位置,来对应地控制每一液晶单元U为允许或不允许光线通过的状态(如图7A及图7B中所示)。举例来说,当检测器23的处理单元23A经由分析层迭误差信号而得到其中噪声的分布位置,可再通过运算转换而得到一包括对应于光圈15的透光区域R1及非透光区域R2的位置坐标的位置数据80。由此,检测器23基于此位置数据80能够进一步控制光圈15的每一液晶单元U的透光或非透光状态(通过施加或不施加电压),并使得光圈15(透光部15A范围内)的透光区域R1与非透光区域R2的位置分别与层迭误差信号中的正常的信号与噪声的位置相互对应,以使得会产生噪声的部分测试光由光圈15直接阻挡。如此一来,可实现自动及准确地移除层迭误差信号中的噪声,以改善层迭误差信号的品质,并提高层迭误差检测的准确度。As described above, the embodiments of FIGS. 6 to 8 can correspondingly control each liquid crystal cell U to allow or not allow light to pass through based on the noise position in the stacking error signal (as shown in FIGS. 7A and 7B ). Show). For example, when the
在一些实施例中,光圈15亦可为一微镜片(micro-lens)阵列模块,具有多个排列成矩阵的微镜片单元。由图9中可以看出,各微镜片单元U’包括一微镜片91、用于支持且允许微镜片91活动的一支撑件92、以及与支撑件92电性连接的一控制电路93。支撑件92为一致动件,并可根据控制电路93施加的电压大小,以改变微镜片91的倾斜角度T。当微镜片91的倾斜角度T超过一特定角度时,可改变光线的行进方向,使得光线不会穿过微镜片单元U’(如图中所示)。也就是说,通过改变微镜片91的倾斜角度T,亦可以达到允许或不允许光线通过微镜片单元U’的效果。In some embodiments, the
因此,在一些实施例中,亦可将图6至图8图的实施例中的光圈15改为一微镜片阵列模块,并通过控制微镜片阵列模块的每一微镜片单元U’中微镜片91的倾斜角度T以允许或不允许光线通过,使得光圈15的透光区域与非透光区域的位置、尺寸及/或形状能够被调变,进而达到移除层迭误差信号中的噪声的目的。Therefore, in some embodiments, the
图10显示根据一些实施例的一层迭误差检测方法200的流程图。在步骤201中,通过一光源发出一测量光。在步骤202中,通过一光学系统将测量光导引至一物镜中。在步骤203中,通过物镜将测量光导引至一层迭标记上,并将从层迭标记绕射的正主极绕射光与负主极绕射光收集至物镜的一光瞳面上。在步骤204中,通过一检测器检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一参考的层迭误差信号。在步骤205中,通过检测器根据参考的层迭误差信号中的噪声的位置,调变光学系统中的一光圈的至少一透光区域的位置、尺寸及/或形状。在步骤206中,通过检测器检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一正式的层迭误差信号。FIG. 10 shows a flowchart of a
要了解的是,上述介绍的层迭误差检测方法的步骤仅为范例,在一些实施例中的层迭误差检测方法亦可以包括其他步骤及步骤顺序。It should be understood that the steps of the stacking error detection method described above are only examples, and the stacking error detection method in some embodiments may also include other steps and sequence of steps.
综上所述,本公开实施例具有以下优点:由于光学系统中的光圈(孔径光阑)具有至少一透光区域,且透光区域的位置、尺寸及/或形状根据检测器检测到的层迭误差信号中的噪声的位置为可调变的,因此,通过调整光圈的透光区域(或是非透光区域)的位置、尺寸及/或形状,可改变测试光入射至层迭标记上的角度,并进一步移除层迭误差信号中的噪声。如此一来,能够改善层迭误差信号的品质,并可提高层迭误差检测的准确度。To sum up, the embodiments of the present disclosure have the following advantages: since the diaphragm (aperture stop) in the optical system has at least one light-transmitting area, and the position, size and/or shape of the light-transmitting area are based on the layer detected by the detector The position of the noise in the stacking error signal is adjustable. Therefore, by adjusting the position, size and/or shape of the light-transmitting area (or the non-light-transmitting area) of the aperture, the amount of test light incident on the stacking mark can be changed. angle, and further removes noise from the stacked error signal. In this way, the quality of the stacking error signal can be improved, and the accuracy of stacking error detection can be improved.
根据一些实施例,提供一种层迭误差测量装置,包括一物镜、一光源、一光学系统以及一检测器。光源用于产生一测量光。光学系统用于将测量光导引至物镜中。物镜用于将测量光导引至一层迭标记上,同时将收集从层迭标记绕射的正主极绕射光与负主极绕射光收集至物镜的一光瞳面上。检测器设置于物镜的光瞳面上,用于检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一层迭误差信号。其中,前述光学系统包括一光圈,其具有至少一透光区域,且透光区域的位置、尺寸及/或形状根据层迭误差信号中的噪声的位置为可调变的。According to some embodiments, a stacking error measuring apparatus is provided, which includes an objective lens, a light source, an optical system and a detector. The light source is used to generate a measurement light. The optical system is used to guide the measurement light into the objective. The objective lens is used to guide the measuring light to the stacked marks, and at the same time collects the positive main pole diffracted light and the negative main polar diffracted light diffracted from the stacked marks to a pupil plane of the objective lens. The detector is arranged on the pupil surface of the objective lens, and is used to detect the light intensity distribution of the above-mentioned positive and negative main pole diffracted light, and use the positive and negative main pole diffracted light to subtract the light intensity distribution to obtain the layered mark. Layer-by-layer error signal. Wherein, the aforementioned optical system includes an aperture having at least one light-transmitting region, and the position, size and/or shape of the light-transmitting region can be adjusted according to the position of noise in the stacking error signal.
根据一些实施例,层迭误差信号具有一光强度分布,其形状对应于光圈的一透光部的形状。According to some embodiments, the stacking error signal has a light intensity distribution whose shape corresponds to the shape of a light-transmitting portion of the aperture.
根据一些实施例,检测器电性连接光圈,并根据层迭误差信号中的噪声的位置调变光圈的至少一透光区域与至少一非透光区域的位置、尺寸及/或形状。According to some embodiments, the detector is electrically connected to the aperture, and adjusts the position, size and/or shape of at least one light-transmitting region and at least one non-light-transmitting region of the aperture according to the position of the noise in the stacking error signal.
根据一些实施例,光圈为一主动式矩阵液晶模块,通过控制主动式矩阵液晶模块的至少一液晶单元中液晶分子的方向以允许或不允许光线通过,可调变光圈的至少一透光区域与至少一非透光区域的位置、尺寸及/或形状。According to some embodiments, the aperture is an active matrix liquid crystal module. By controlling the direction of liquid crystal molecules in at least one liquid crystal cell of the active matrix liquid crystal module to allow or not allow light to pass through, at least one light-transmitting area of the adjustable aperture is connected to The position, size and/or shape of at least one non-transparent area.
根据一些实施例,光圈为一微镜片阵列模块,通过控制微镜片阵列模块的至少一微镜片单元中微镜片的倾斜角度以允许或不允许光线通过,可调变光圈的至少一透光区域与至少一非透光区域的位置、尺寸及/或形状。According to some embodiments, the aperture is a micro-lens array module, and by controlling the inclination angle of the micro-lens in at least one micro-lens unit of the micro-lens array module to allow or not allow light to pass through, at least one light-transmitting area of the adjustable aperture is connected to The position, size and/or shape of at least one non-transparent area.
根据一些实施例,光学系统沿测量光的传播方向按序包括:一准直透镜、一滤波片、光圈、一第一透镜、一视场光阑、一第二透镜以及一分光镜。According to some embodiments, the optical system sequentially includes: a collimating lens, a filter, an aperture, a first lens, a field stop, a second lens, and a beam splitter along the propagation direction of the measurement light.
根据一些实施例,正主极绕射光与负主极绕射光为正1阶绕射光与负1阶绕射光。According to some embodiments, the positive main pole diffracted light and the negative main pole diffracted light are positive 1st order diffracted light and negative 1st order diffracted light.
根据一些实施例,层迭标记由位在一基材上的一当层及一前层的两层光栅结构组成。According to some embodiments, the stacked mark consists of a two-layer grating structure of a current layer and a front layer on a substrate.
根据一些实施例,提供一种层迭误差测量装置,包括一光学系统以及一检测器。光学系统用于将来自一光源的一测量光导引至一物镜中,物镜用于将测量光导引至一层迭标记上,同时收集从层迭标记绕射的正主极绕射光与负主极绕射光,其中光学系统包括一光圈,其具有至少一透光区域与至少一非透光区。检测器用于将前述正主极绕射光与负主极绕射光的光强度分布相减以得到层迭标记的一层迭误差信号,并根据层迭误差信号中的噪声的位置调变光圈的至少一透光区域与至少一非透光区域的位置、尺寸及/或形状。According to some embodiments, a stacking error measuring apparatus is provided, which includes an optical system and a detector. The optical system is used to guide a measurement light from a light source into an objective lens, and the objective lens is used to guide the measurement light to the layer-by-layer mark, while collecting the positive main-pole diffracted light and the negative The main pole diffracted light, wherein the optical system includes an aperture, which has at least one light-transmitting area and at least one non-light-transmitting area. The detector is used for subtracting the light intensity distributions of the above-mentioned positive main pole diffracted light and negative main pole diffracted light to obtain a laminated error signal of the laminated mark, and modulates at least the aperture of the aperture according to the position of the noise in the laminated error signal. The position, size and/or shape of a light-transmitting area and at least one non-light-transmitting area.
根据一些实施例,提供一种层迭误差测量方法,包括:通过一光源发出一测量光;通过一光学系统将测量光导引至一物镜中;通过物镜将测量光导引至一层迭标记上,并将从层迭标记绕射的正主极绕射光与负主极绕射光收集至物镜的一光瞳面上;通过一检测器检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一参考的层迭误差信号;通过检测器根据参考的层迭误差信号中的噪声的位置,调变光学系统中的一光圈的至少一透光区域的位置、尺寸及/或形状;以及通过检测器检测前述正、负主极绕射光的光强度分布,并利用正、负主极绕射光的所述光强度分布相减而得到层迭标记的一正式的层迭误差信号。According to some embodiments, a method for measuring stacking errors is provided, comprising: emitting a measurement light through a light source; guiding the measurement light into an objective lens through an optical system; guiding the measurement light to a stack mark through the objective lens and collect the diffracted light of the positive main pole and the diffracted light of the negative main pole from the layered mark to a pupil surface of the objective lens; detect the light intensity distribution of the above-mentioned positive and negative main pole diffracted light by a detector, And use the light intensity distributions of the positive and negative main pole diffracted lights to be subtracted to obtain a reference stacking error signal of the stacking mark; according to the position of the noise in the reference stacking error signal, the detector modulates the optical The position, size and/or shape of at least one light-transmitting area of an aperture in the system; and detecting the light intensity distribution of the above-mentioned positive and negative main pole diffracted light by a detector, and using the said positive and negative main pole diffracted light The light intensity distributions are subtracted to obtain a formal stacking error signal of the stacking marks.
虽然本公开以前述的实施例公开如上,然其并非用以限定本公开。本公开所属技术领域中技术人员,在不脱离本公开的构思和范围内,当可做些许的变动与润饰。因此本公开的保护范围当视权利要求所界定者为准。Although the present disclosure is disclosed above with the aforementioned embodiments, it is not intended to limit the present disclosure. Those skilled in the art to which the present disclosure pertains may make slight changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the scope of protection of the present disclosure should be determined by what is defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710060271.XA CN108345177B (en) | 2017-01-24 | 2017-01-24 | Device and method for measuring lamination error |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710060271.XA CN108345177B (en) | 2017-01-24 | 2017-01-24 | Device and method for measuring lamination error |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108345177A CN108345177A (en) | 2018-07-31 |
CN108345177B true CN108345177B (en) | 2020-06-30 |
Family
ID=62961940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710060271.XA Active CN108345177B (en) | 2017-01-24 | 2017-01-24 | Device and method for measuring lamination error |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108345177B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1469449A (en) * | 2002-06-17 | 2004-01-21 | ������������ʽ���� | Mark position detecting apparatus and mark position detecting method |
CN101903832A (en) * | 2007-12-17 | 2010-12-01 | Asml荷兰有限公司 | Diffraction-based overlay metrology tools and methods |
CN103869628A (en) * | 2012-12-11 | 2014-06-18 | 上海微电子装备有限公司 | Self-reference interference alignment signal processing system for photoetching equipment |
CN105807573A (en) * | 2014-12-31 | 2016-07-27 | 上海微电子装备有限公司 | Device and method used for overlay error measurement |
EP3096342A1 (en) * | 2015-03-18 | 2016-11-23 | IMS Nanofabrication AG | Bi-directional double-pass multi-beam writing |
-
2017
- 2017-01-24 CN CN201710060271.XA patent/CN108345177B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1469449A (en) * | 2002-06-17 | 2004-01-21 | ������������ʽ���� | Mark position detecting apparatus and mark position detecting method |
CN101903832A (en) * | 2007-12-17 | 2010-12-01 | Asml荷兰有限公司 | Diffraction-based overlay metrology tools and methods |
CN103869628A (en) * | 2012-12-11 | 2014-06-18 | 上海微电子装备有限公司 | Self-reference interference alignment signal processing system for photoetching equipment |
CN105807573A (en) * | 2014-12-31 | 2016-07-27 | 上海微电子装备有限公司 | Device and method used for overlay error measurement |
EP3096342A1 (en) * | 2015-03-18 | 2016-11-23 | IMS Nanofabrication AG | Bi-directional double-pass multi-beam writing |
Also Published As
Publication number | Publication date |
---|---|
CN108345177A (en) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5600145B2 (en) | Structure of level sensor for lithographic apparatus and device manufacturing method | |
TWI605311B (en) | Measuring method, and exposure method and apparatus | |
US20240184218A1 (en) | Metrology Apparatus | |
JP7124212B2 (en) | Apparatus and method for measuring mark position | |
WO2013031901A1 (en) | Method and device for inspecting spatial light modulator, and exposure method and device | |
JP2010066256A (en) | Plane position detection apparatus, exposure system, method for detecting plane position, and method for manufacturing device | |
JP2010008408A (en) | Surface position detection device, surface position detection method, aligner, and device manufacturing method | |
TW201921162A (en) | Substrate Processing Device, Device Manufacturing System And Device Manufacturing Method | |
JP2009295977A (en) | Surface position detecting apparatus, exposure apparatus, surface position detecting method and device manufacturing method | |
CN108885289B (en) | Wire grid polarizer manufacturing method | |
WO2020038629A1 (en) | Apparatus and method for measuring a position of alignment marks | |
TWI530845B (en) | Optoelectronic sensor array, method of fabricating optoelectronic sensor array and display device | |
CN104220931A (en) | Apparatus and method for compensating defect of channel of microlithographic projection exposure system | |
JP5261442B2 (en) | Lithographic projection apparatus | |
CN108345177B (en) | Device and method for measuring lamination error | |
TWI649635B (en) | Apparatus and method for measuring overlay error | |
CN112859528A (en) | Overlay error measuring device and method | |
JP2007048819A (en) | Surface position detector, aligner and process for fabricating microdevice | |
JP2008152010A (en) | Method for manufacturing sharpening element | |
US20080204661A1 (en) | Deformable mirror device and apparatus for observing retina of eye | |
US8243260B2 (en) | Lithography apparatus | |
KR102665879B1 (en) | Digital exposing device having liquid shutter array and method for exposing using the same | |
TWI235291B (en) | Test ket layout for precisely monitoring 3-foil lens aberration effects | |
JP2007057244A (en) | Polarization measuring device, exposure device and exposure method | |
KR100964285B1 (en) | Optical lithographic apparatus and optical head manufacturing method used in optical lithographic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |