CN108336222A - A kind of memory resistor based on ferromagnetic material - Google Patents
A kind of memory resistor based on ferromagnetic material Download PDFInfo
- Publication number
- CN108336222A CN108336222A CN201810051734.0A CN201810051734A CN108336222A CN 108336222 A CN108336222 A CN 108336222A CN 201810051734 A CN201810051734 A CN 201810051734A CN 108336222 A CN108336222 A CN 108336222A
- Authority
- CN
- China
- Prior art keywords
- layer
- ferromagnetic
- memristive device
- electrode
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003302 ferromagnetic material Substances 0.000 title claims abstract description 43
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 119
- 230000005381 magnetic domain Effects 0.000 claims abstract description 66
- 230000008859 change Effects 0.000 claims abstract description 33
- 239000010408 film Substances 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 230000005291 magnetic effect Effects 0.000 claims description 25
- 230000005415 magnetization Effects 0.000 claims description 21
- 239000010409 thin film Substances 0.000 claims description 14
- 239000007769 metal material Substances 0.000 claims description 12
- 229910001385 heavy metal Inorganic materials 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 7
- 239000011810 insulating material Substances 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 11
- 238000003860 storage Methods 0.000 abstract description 7
- 238000013528 artificial neural network Methods 0.000 abstract description 5
- 238000013473 artificial intelligence Methods 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 15
- 239000010936 titanium Substances 0.000 description 14
- 229910052715 tantalum Inorganic materials 0.000 description 12
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 12
- 229910019236 CoFeB Inorganic materials 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000009916 joint effect Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004549 pulsed laser deposition Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005307 ferromagnetism Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000003977 synaptic function Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
Landscapes
- Hall/Mr Elements (AREA)
- Semiconductor Memories (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
本发明公开了一种基于铁磁材料的忆阻器件,具有多层薄膜结构,并且包括一个铁磁层,或者包括一个由第一铁磁层、非磁性层以及第二铁磁层构成的MTJ或自旋阀结构;基于SOT效应或者STT效应,通过向忆阻器件施加电流可以使得铁磁层或者MTJ或自旋阀结构中的第一铁磁层的磁畴状态发生改变,从而实现器件的阻值在高阻态和低阻态之间的连续变化,进而实现信息的存储、运算、神经网络和人工智能。本发明提供的忆阻器件使用铁磁材料,并且基于SOT效应或者STT效应,利用铁磁材料的磁畴状态的改变实现信息的存储,一方面具有较好的读写性能,另一方面具有较好的耐久性;同时,本发明提出的忆阻器件的结构为多层薄膜结构,器件尺寸小,能够实现很高的集成度。
The invention discloses a memristive device based on a ferromagnetic material, which has a multilayer film structure and includes a ferromagnetic layer, or includes an MTJ composed of a first ferromagnetic layer, a nonmagnetic layer and a second ferromagnetic layer or spin valve structure; based on the SOT effect or STT effect, the magnetic domain state of the ferromagnetic layer or the first ferromagnetic layer in the MTJ or spin valve structure can be changed by applying current to the memristive device, thereby realizing the device's The continuous change of resistance value between high resistance state and low resistance state realizes information storage, computing, neural network and artificial intelligence. The memristive device provided by the present invention uses ferromagnetic materials, and based on the SOT effect or STT effect, uses the change of the magnetic domain state of the ferromagnetic material to store information. On the one hand, it has better read and write performance, and on the other hand, it has relatively Good durability; at the same time, the structure of the memristive device proposed by the present invention is a multi-layer film structure, the device size is small, and a high integration degree can be achieved.
Description
技术领域technical field
本发明属于自旋电子学以及自旋电子器件领域,更具体地,涉及一种基于铁磁材料的忆阻器件。The invention belongs to the field of spintronics and spintronic devices, and more specifically relates to a memristive device based on a ferromagnetic material.
背景技术Background technique
现在社会高速发展,科技不断进步,信息量爆炸增长,为了对逐步增长的海量信息进行存储和运算,我们需要一种速度更快,密度更大,功耗更低,寿命更长的非易失性的兼具存储和运算功能的存储器。忆阻器作为纳米级别器件,集成密度极高,具有非易失性,并且其存储与运算集于一体的特点使得其有望实现神经网络和人工智能,从而改变计算机存储与处理信息的方式和速度,,所以忆阻器有望成为未来存储器发展的方向。With the rapid development of society, the continuous advancement of science and technology, and the explosive growth of information volume, in order to store and calculate the gradually increasing massive information, we need a faster, higher density, lower power consumption, and longer life non-volatile It is a memory with both storage and computing functions. As a nanometer-level device, memristor has extremely high integration density and non-volatility, and its characteristics of integrating storage and computing make it expected to realize neural networks and artificial intelligence, thereby changing the way and speed of computer storage and processing information ,, so memristor is expected to become the direction of future memory development.
目前影响忆阻器材料选用及应用的因素包括成本、性能、抗辐射能力等,在材料的选用上还要考虑是否能与集成电路工艺兼容。在模拟神经网络中,突触功能一般可由软件和硬件来完成,软件和硬件相比较,软件完成的速度较慢、整体效率较低。硬件一般通过模拟电路、模数混合电路和数字电路来完成。目前,忆阻器的功能是相对于其他器件更接近神经元突触的电子器件,在构建模拟神经元网络中,忆阻器具有巨大的优势。因此,忆阻器具有非常广阔的发展前景,社会需求度高,一旦忆阻器发展成熟,将在神经网络、人工智能、存储等方面发挥巨大的作用,极大推动社会的发展。基于上述应用需求,需要研制出成本低、制备简单、抗辐射能力强、集成度高的忆阻器件。At present, factors affecting the selection and application of memristor materials include cost, performance, radiation resistance, etc. In the selection of materials, it is also necessary to consider whether they can be compatible with integrated circuit technology. In the simulated neural network, the synaptic function can generally be completed by software and hardware. Compared with software and hardware, the speed of software completion is slower and the overall efficiency is lower. Hardware is generally completed through analog circuits, analog-digital hybrid circuits, and digital circuits. At present, the function of memristor is an electronic device that is closer to neuron synapse than other devices, and memristor has great advantages in constructing simulated neuron network. Therefore, memristors have very broad development prospects and high social demand. Once memristors mature, they will play a huge role in neural networks, artificial intelligence, storage, etc., and greatly promote the development of society. Based on the above application requirements, it is necessary to develop memristive devices with low cost, simple preparation, strong radiation resistance and high integration.
发明内容Contents of the invention
针对现有技术的缺陷和改进需求,本发明提供了一种基于铁磁材料的忆阻器件,其目的在于,基于自旋轨道力矩(Spin-Orbit Torque,SOT)效应或者自旋转移力矩(Spin-transfer torque,STT)效应,提供具备忆阻特性,并且制备工艺简单、结构简洁的忆阻器件。Aiming at the defects and improvement needs of the prior art, the present invention provides a memristive device based on ferromagnetic materials, the purpose of which is, based on the spin-orbit torque (Spin-Orbit Torque, SOT) effect or the spin-transfer torque (Spin -transfer torque, STT) effect, providing a memristive device with memristive properties, simple fabrication process, and simple structure.
为实现上述目的,按照本发明的第一方面,提供了一种基于铁磁材料的忆阻器件,具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的铁磁层、由绝缘材料制成的绝缘层、盖帽层;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变铁磁层的磁畴状态,其中,磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例;铁磁层的磁畴状态在自旋流的自旋力矩和施加于所述忆阻器件的平面磁场的共同作用下发生改变,从而改变器件电阻值;绝缘层用于提供垂直磁各向异性,使得铁磁层的易磁化方向垂直于其膜面;盖帽层用于保护自旋流生成层、铁磁层以及绝缘层;忆阻器件具有第一电极对和第二电极对。In order to achieve the above object, according to the first aspect of the present invention, a memristive device based on ferromagnetic material is provided, which has a multi-layer film structure, including from bottom to top: spin current made of heavy metal material or topological insulator Generated layer, ferromagnetic layer made of ferromagnetic material, insulating layer made of insulating material, capping layer; spin current generating layer is used to generate spin current and change ferromagnetism by spin torque of spin current The magnetic domain state of the layer, wherein the magnetic domain state refers to the ratio of the magnetic domains with the magnetization direction up to the magnetic domains with the magnetization direction down; Under the joint action of the planar magnetic field of the resistance device, the resistance value of the device is changed; the insulating layer is used to provide perpendicular magnetic anisotropy, so that the easy magnetization direction of the ferromagnetic layer is perpendicular to its film surface; the capping layer is used to protect the spin A flow generating layer, a ferromagnetic layer and an insulating layer; the memristive device has a first electrode pair and a second electrode pair.
基于SOT效应,在第一电极对之间或者第二电极对之间施加电流,并对忆阻器件施加平行或反平行于电流方向的磁场,电流流过自旋流生成层时,由于自旋霍尔效应,自旋流生成层会产生自旋流,在外加磁场的作用下,自旋流的自旋力矩作用于铁磁层,使得铁磁层的磁畴状态发生变化;其中,磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例,两种磁畴之间的过渡区称为磁畴壁,自旋力矩会推动畴壁移动,磁畴壁的移动会造成两种磁畴比例的变化;使磁畴壁(单磁畴壁或多磁畴壁)依据电流方向向前或者向后运动,磁畴壁运动距离由电流大小和施加时间确定,磁畴壁的运动距离可由器件的电阻即反常霍尔电阻读出,磁畴壁的连续运动对应器件阻值的连续变化,使器件阻值不再只具有“0”和“1”两个态,从而实现忆阻器的功能。Based on the SOT effect, a current is applied between the first electrode pair or between the second electrode pair, and a magnetic field parallel or antiparallel to the direction of the current is applied to the memristive device. When the current flows through the spin current generation layer, due to the spin Hall effect, the spin current generation layer will generate spin current, under the action of an external magnetic field, the spin torque of the spin current acts on the ferromagnetic layer, so that the magnetic domain state of the ferromagnetic layer changes; among them, the magnetic domain The state refers to the ratio of the magnetic domains whose magnetization direction is upward to the magnetic domains whose magnetization direction is downward. The transition region between the two magnetic domains is called a magnetic domain wall. The spin torque will push the domain wall to move, and the movement of the magnetic domain wall will cause The change of the ratio of the two magnetic domains; make the magnetic domain wall (single magnetic domain wall or multi-magnetic domain wall) move forward or backward according to the direction of the current, the moving distance of the magnetic domain wall is determined by the magnitude of the current and the application time, the magnetic domain wall The movement distance can be read by the resistance of the device, that is, the abnormal Hall resistance. The continuous movement of the magnetic domain wall corresponds to the continuous change of the resistance value of the device, so that the resistance value of the device no longer only has two states of "0" and "1", thereby realizing memory function of the resistor.
优选地,常用的作为自旋流生成层的材料为钽(Ta)、铂(Pt)、钨(W)、Bi2Se3、Sb2Te3。Preferably, commonly used materials for the spin current generation layer are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 , and Sb 2 Te 3 .
优选地,常用的作为铁磁层的材料为CoFeB、Co。Preferably, commonly used materials for the ferromagnetic layer are CoFeB and Co.
优选地,常用的作为绝缘层的材料为MgO或者AlOx。Preferably, the material commonly used as the insulating layer is MgO or AlO x .
优选地,常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。Preferably, the commonly used material for the capping layer is tantalum (Ta) or titanium (Ti).
进一步地,通过在第一电极对之间或者在第二电极对之间施加写电流改变所阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极对或者第二电极对之间施加读电流,并读取另一电极对之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作;Further, by applying a write current between the first electrode pair or between the second electrode pair to change the resistance value of the resistive device, the write operation to the memristive device is realized; through the first electrode pair or the second electrode pair Apply a read current between them, and read the voltage between another electrode pair, and then calculate the resistance value of the memristive device according to the applied read current and the read voltage, and realize the read operation of the memristive device;
更进一步地,写电流的电流密度大于或等于106A/cm2;读电流的电流密度小于106A/cm2。Furthermore, the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/cm 2 .
结合本发明的第一方面,在本发明的第一实施例中,自旋流生成层为Hall Bar结构,其膜面呈十字形状;铁磁层、绝缘层以及盖帽层的膜面为大小相同的多边形或椭圆形,并且依次重叠于自旋流生成层十字形状的交叉部分之上;忆阻器件的第一电极对为自旋流生成层十字形状的一条直线的两端,忆阻器件的第二电极对为自旋流生成层十字形状的另一条直线的两端。In conjunction with the first aspect of the present invention, in the first embodiment of the present invention, the spin current generating layer is a Hall Bar structure, and its film surface is in the shape of a cross; the film surfaces of the ferromagnetic layer, the insulating layer and the capping layer are of the same size The polygon or ellipse, and overlap in turn on the cross-shaped intersection of the spin current generation layer; the first electrode pair of the memristive device is the two ends of a straight line of the cross-shaped spin current generation layer, the memristive device The second electrode pair is the two ends of another straight line in the cross shape of the spin current generation layer.
结合本发明的第一方面,在本发明的第二实施例中,忆阻器件的结构呈十字形状;忆阻器件各层薄膜均为Hall Bar结构,并且各层薄膜的膜面呈相同的十字形状;忆阻器件的第一电极对为忆阻器件十字形状的一条直线的两端,忆阻器件的第二电极对为忆阻器件十字形状的另一条直线的两端。In combination with the first aspect of the present invention, in the second embodiment of the present invention, the structure of the memristive device is in the shape of a cross; each layer of the film of the memristive device is a Hall Bar structure, and the film surfaces of each layer of film are in the same cross shape. Shape: the first electrode pair of the memristive device is the two ends of a straight line in the cross shape of the memristive device, and the second electrode pair of the memristive device is the two ends of another straight line in the cross shape of the memristive device.
进一步地,忆阻器件的结构先由膜层制备技术在硅晶元上依次制备出备出自旋流生成层、铁磁层、绝缘层和盖帽层的薄膜,然后进行刻蚀和微纳加工得到。Further, the structure of the memristive device is firstly prepared on the silicon wafer by the film layer preparation technology to prepare the spin current generation layer, the ferromagnetic layer, the insulating layer and the capping layer, and then perform etching and micro-nano processing get.
更进一步地,常用的用于制备忆阻器件各层薄膜的膜层制备技术为磁控溅射技术、电子束蒸发技术或者脉冲激光沉积技术。Furthermore, commonly used film preparation technologies for preparing thin films of various layers of memristive devices are magnetron sputtering technology, electron beam evaporation technology or pulsed laser deposition technology.
更进一步地,忆阻器件各层薄膜的厚度随根据使用材料的特性设定。Furthermore, the thickness of each film of the memristive device is set according to the characteristics of the materials used.
按照本发明的第二方面,提供了一种基于铁磁材料的忆阻器件,具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,自旋流生成层的膜面大于其他层膜面;自旋流生成层之上的各层薄膜依次重叠于自旋流生成层中部,使得自旋流生成层至少有两个相对的凸出端;自旋流生成层的两个相对的凸出端分别为忆阻器件的第一电极和第二电极,盖帽层为忆阻器件的第三电极;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变第一铁磁层的磁畴状态;第一铁磁层、非磁性层以及第二铁磁层构成经典“三明治”的MTJ(Magnetic Tunnel Junction,磁性隧道结)或自旋阀结构;MTJ或自旋阀结构的第一铁磁层在自旋流的自旋力矩的作用下,磁畴状态发生变化,从而使得MTJ或者自旋阀的电阻,即忆阻器件的电阻值发生改变;钉扎层用于保证第二铁磁层的磁化方向不发生变化,使得第二铁磁层成为固定层,同时第一铁磁层成为自由层,其磁畴状态可以随电流发生改变;盖帽层用于作为忆阻器件的第三电极并保护自旋流生成层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层;当非磁性层由可用于电子隧穿的绝缘材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成MTJ结构;当非磁性层由金属材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成自旋阀结构。According to the second aspect of the present invention, there is provided a memristive device based on ferromagnetic materials, which has a multi-layer thin film structure, including from bottom to top: a spin current generation layer made of heavy metal materials or topological insulators, made of iron First ferromagnetic layer made of magnetic material, nonmagnetic layer, second ferromagnetic layer made of ferromagnetic material, pinning layer, and capping layer; first ferromagnetic layer, nonmagnetic layer, second ferromagnetic layer The film surfaces of the pinning layer and the capping layer are polygonal or elliptical in the same size, and the film surface of the spin flow generation layer is larger than that of other layers; each layer of film above the spin flow generation layer overlaps the spin current generation layer in turn. The middle part of the generation layer, so that the spin current generation layer has at least two opposite protruding ends; the two opposite protruding ends of the spin current generation layer are respectively the first electrode and the second electrode of the memristive device, and the capping layer is The third electrode of the memristive device; the spin current generating layer is used to generate spin current, and change the magnetic domain state of the first ferromagnetic layer through the spin torque of the spin current; the first ferromagnetic layer, the nonmagnetic layer and The second ferromagnetic layer constitutes the classic "sandwich" MTJ (Magnetic Tunnel Junction) or spin valve structure; the first ferromagnetic layer of the MTJ or spin valve structure is under the action of the spin torque of the spin current , the state of the magnetic domain changes, so that the resistance of the MTJ or spin valve, that is, the resistance value of the memristive device changes; the pinning layer is used to ensure that the magnetization direction of the second ferromagnetic layer does not change, so that the second ferromagnetic layer becomes a fixed layer, while the first ferromagnetic layer becomes a free layer, and its magnetic domain state can change with the current; the capping layer is used as the third electrode of the memristive device and protects the spin current generation layer, the first ferromagnetic layer , a nonmagnetic layer, a second ferromagnetic layer, and a pinning layer; when the nonmagnetic layer is made of an insulating material that can be used for electron tunneling, the first ferromagnetic layer, the nonmagnetic layer, and the second ferromagnetic layer constitute an MTJ structure ; When the nonmagnetic layer is made of metal material, the first ferromagnetic layer, the nonmagnetic layer and the second ferromagnetic layer constitute a spin valve structure.
基于SOT效应,在第一电极和第二电极之间施加写电流,并对忆阻器件施加平行或反平行于电流方向的磁场,电流流过自旋流生成层时,由于自旋霍尔效应,自旋流生成层会产生自旋流,在外加磁场的作用下,自旋流的自旋力矩作用于MTJ或自旋阀结构中的第一铁磁层,使得第一铁磁层的磁畴状态发生改变,从而忆阻器件的电阻阻值发生改变;其中,磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例,两种磁畴之间的过渡区称为磁畴壁,自旋力矩会推动畴壁移动,磁畴壁的移动会造成两种磁畴比例的变化;使磁畴壁(单磁畴壁或多磁畴壁)依据电流方向向前或者向后运动,磁畴壁运动距离由电流大小和施加时间确定,磁畴壁的运动距离可由器件的电阻即反常霍尔电阻读出,磁畴壁的连续运动对应器件阻值的连续变化,使器件阻值不再只具有“0”和“1”两个态,从而实现忆阻器的功能。Based on the SOT effect, a write current is applied between the first electrode and the second electrode, and a magnetic field parallel or antiparallel to the direction of the current is applied to the memristive device. When the current flows through the spin current generation layer, due to the spin Hall effect , the spin current generation layer will generate a spin current, and under the action of an external magnetic field, the spin torque of the spin current acts on the first ferromagnetic layer in the MTJ or spin valve structure, so that the magnetic field of the first ferromagnetic layer The domain state changes, so that the resistance value of the memristive device changes; the magnetic domain state refers to the ratio of the magnetic domain with the magnetization direction upward to the magnetic domain with the magnetization direction downward, and the transition region between the two magnetic domains is called The magnetic domain wall, the spin torque will push the domain wall to move, and the movement of the magnetic domain wall will cause the change of the ratio of the two magnetic domains; make the magnetic domain wall (single magnetic domain wall or multiple magnetic domain walls) forward or backward according to the current direction After the movement, the moving distance of the magnetic domain wall is determined by the magnitude of the current and the application time. The moving distance of the magnetic domain wall can be read by the resistance of the device, that is, the abnormal Hall resistance. The continuous movement of the magnetic domain wall corresponds to the continuous change of the resistance of the device, so that the device The resistance value no longer only has two states of "0" and "1", thus realizing the function of the memristor.
优选地,常用的作为自旋流生成层的材料为钽(Ta)、铂(Pt)、钨(W)、Bi2Se3或者Sb2Te3。Preferably, the commonly used materials for the spin current generation layer are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 .
优选地,常用的作为第一铁磁层的材料为CoFeB;常用的作为第二铁磁层的材料为CoFeB。Preferably, the commonly used material for the first ferromagnetic layer is CoFeB; the commonly used material for the second ferromagnetic layer is CoFeB.
优选地,常用的作为非磁性层的材料为MgO、Al2O3或Cu。Preferably, the commonly used materials for the non-magnetic layer are MgO, Al 2 O 3 or Cu.
优选地,常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。Preferably, the commonly used material for the capping layer is tantalum (Ta) or titanium (Ti).
进一步地,忆阻器件的结构先由膜层制备技术在硅晶元依次制备出自旋流生成层、第一铁磁层、非磁性层、第二铁磁层、钉扎层和盖帽层的薄膜,然后进行刻蚀和微纳加工得到。Further, the structure of the memristive device is first prepared by the film layer preparation technology on the silicon wafer to sequentially prepare the spin current generation layer, the first ferromagnetic layer, the non-magnetic layer, the second ferromagnetic layer, the pinning layer and the capping layer. Thin films are then etched and micro-nano-fabricated.
更进一步地,常用的用于制备忆阻器件各层薄膜的膜层制备技术为磁控溅射技术、电子束蒸发技术或者脉冲激光沉积技术。Furthermore, commonly used film preparation technologies for preparing thin films of various layers of memristive devices are magnetron sputtering technology, electron beam evaporation technology or pulsed laser deposition technology.
更进一步地,忆阻器件各层薄膜的厚度随根据使用材料的特性设定。Furthermore, the thickness of each film of the memristive device is set according to the characteristics of the materials used.
进一步地,通过在第一电极和第二电极之间施加写电流,改变忆阻器件的电阻值,实现对所述忆阻器件的写操作;在第一电极和第三电极之间或者在第二电极和第三电极之间施加读电流,并读取第一电极和第三电极之间或者第二电极和第三电极之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作;Further, by applying a write current between the first electrode and the second electrode, the resistance value of the memristive device is changed to realize the write operation of the memristive device; between the first electrode and the third electrode or between the first electrode and the second electrode Apply a read current between the second electrode and the third electrode, and read the voltage between the first electrode and the third electrode or between the second electrode and the third electrode, and then calculate according to the applied read current and the read voltage Obtain the resistance value of the memristive device, and realize the read operation of the memristive device;
更进一步地,写电流的电流密度大于或等于106A/cm2;读电流的电流密度小于106A/cm2。Furthermore, the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/cm 2 .
按照本发明的第三方面,本发明提供了一种基于铁磁材料的忆阻器件,具有多层薄膜结构,从下至上依次包括:由金属材料制成的金属层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,金属层的膜面大于其他层膜面;金属层之上的层依次重叠于金属层中部,使得金属层至少有一个凸出端;金属层的一个凸出端为忆阻器件的第一电极,盖帽层为忆阻器件的第二电极;金属层用于作为导体导通电流;第一铁磁层、非磁性层以及第二铁磁层构成MTJ或自旋阀结构,MTJ或自旋阀结构用于实现忆阻器件的读写操作;钉扎层用于保证第二铁磁层的磁化方向不发生变化,使得第二铁磁层成为固定层,同时第一铁磁层成为自由层,其磁畴状态可以随电流发生改变;盖帽层用于作为忆阻器件的第二电极并保护金属层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层;当非磁性层由可用于电子隧穿的绝缘材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成MTJ结构;当非磁性层由金属材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成自旋阀结构。According to the third aspect of the present invention, the present invention provides a memristive device based on ferromagnetic material, which has a multi-layer thin film structure, including from bottom to top: a metal layer made of metal material, a metal layer made of ferromagnetic material The first ferromagnetic layer, nonmagnetic layer, second ferromagnetic layer made of ferromagnetic material, pinning layer and cap layer; first ferromagnetic layer, nonmagnetic layer, second ferromagnetic layer, pinning layer And the film surface of the capping layer is a polygon or ellipse with the same size, and the film surface of the metal layer is larger than the film surfaces of other layers; the layers above the metal layer overlap in the middle of the metal layer in turn, so that the metal layer has at least one protruding end; the metal layer A protruding end of the layer is the first electrode of the memristive device, and the capping layer is the second electrode of the memristive device; the metal layer is used as a conductor to conduct current; the first ferromagnetic layer, the non-magnetic layer and the second ferromagnetic layer The layer constitutes the MTJ or spin valve structure, and the MTJ or spin valve structure is used to realize the read and write operations of the memristive device; the pinning layer is used to ensure that the magnetization direction of the second ferromagnetic layer does not change, so that the second ferromagnetic layer It becomes a fixed layer, while the first ferromagnetic layer becomes a free layer, and its magnetic domain state can change with the current; the capping layer is used as the second electrode of the memristive device and protects the metal layer, the first ferromagnetic layer, and the nonmagnetic layer. , the second ferromagnetic layer and the pinning layer; when the nonmagnetic layer is made of an insulating material that can be used for electron tunneling, the first ferromagnetic layer, the nonmagnetic layer and the second ferromagnetic layer constitute an MTJ structure; when the nonmagnetic When the layers are made of metal materials, the first ferromagnetic layer, the nonmagnetic layer and the second ferromagnetic layer constitute a spin valve structure.
基于STT效应,在第一电极和第二电极之间施加电流,电子流过第二铁磁层时电子将会被极化,形成自旋极化电子;自旋极化电子将改变第一铁磁层的磁畴状态(具体指磁化方向向上的磁畴与磁化方向向下的磁畴的比例,两种磁畴之间的过渡区称为磁畴壁,自旋力矩会推动畴壁移动,磁畴壁的移动会造成两种磁畴比例的变化),从而导致MTJ或自旋阀的电阻可以随电流发生连续变化,实现忆阻功能。Based on the STT effect, when a current is applied between the first electrode and the second electrode, the electrons will be polarized when they flow through the second ferromagnetic layer, forming spin-polarized electrons; the spin-polarized electrons will change the first ferromagnetic layer. The magnetic domain state of the magnetic layer (specifically refers to the ratio of magnetic domains with an upward magnetization direction to a magnetic domain with a downward magnetization direction. The transition region between the two magnetic domains is called a magnetic domain wall, and the spin torque will push the domain wall to move. The movement of the magnetic domain wall will cause the change of the ratio of the two magnetic domains), so that the resistance of the MTJ or spin valve can change continuously with the current to realize the memristive function.
优选地,常用的作为第一铁磁层的材料为CoFeB;常用的作为第二铁磁层的材料为CoFeB。Preferably, the commonly used material for the first ferromagnetic layer is CoFeB; the commonly used material for the second ferromagnetic layer is CoFeB.
优选地,常用的作为非磁性层的材料为MgO、Al2O3或者Cu。Preferably, the commonly used material for the non-magnetic layer is MgO, Al 2 O 3 or Cu.
优选地,常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。Preferably, the commonly used material for the capping layer is tantalum (Ta) or titanium (Ti).
进一步地,忆阻器件的结构先由膜层制备技术在硅晶元依次制备出金属层、第一铁磁层、非磁性层、第二铁磁层、钉扎层和盖帽层的薄膜,然后进行刻蚀和微纳加工得到。Further, the structure of the memristive device is firstly prepared by the film layer preparation technology on the silicon wafer to sequentially prepare the thin films of the metal layer, the first ferromagnetic layer, the non-magnetic layer, the second ferromagnetic layer, the pinning layer and the capping layer, and then obtained by etching and micro-nano-fabrication.
更进一步地,忆阻器件各层薄膜的厚度随根据使用材料的特性设定。Furthermore, the thickness of each film of the memristive device is set according to the characteristics of the materials used.
进一步地,通过在第一电极和第二电极之间施加写电流改变忆阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极和第二电极之间施加读电流并读取第一电极和第二电极之间的电压,然后根据所施加的读电流和所读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作;Further, by applying a write current between the first electrode and the second electrode to change the resistance value of the memristive device, the write operation to the memristive device is realized; by applying a read current between the first electrode and the second electrode and reading Taking the voltage between the first electrode and the second electrode, and then calculating the resistance value of the memristive device according to the applied read current and the read voltage, so as to realize the read operation of the memristive device;
更进一步地,写电流的电流密度大于或等于106A/cm2;读电流的电流密度小于106A/cm2。Furthermore, the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/cm 2 .
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:Generally speaking, through the above technical solutions conceived by the present invention, the following beneficial effects can be obtained:
(1)本发明提出的忆阻器件使用铁磁材料,并基于SOT效应或者STT效应使得铁磁材料的磁畴状态发生改变,使磁畴壁根据电流方向向前或者向后运动,磁畴壁运动距离可由电流大小和施加时间确定,磁畴壁的运动距离可由器件的电阻如反常霍尔电阻、TMR(Tunneling Magnetoresistance,隧穿磁电阻)或GMR(Giant Magnetoresistance,巨磁电阻)读出,磁畴壁的连续运动对应器件阻值的连续变化,使器件阻值不再只具有“0”和“1”两个态,从而实现信息的存储、运算,神经网络的搭建以及人工智能。由于铁磁材料的磁畴状态翻转速度快、时间短,因此本发明提出的忆阻器件具有较快的读写性能;此外,由于本发明提出的忆阻器件的存储原理是基于铁磁材料的磁畴状态的改变,不会对材料造成较大的损耗,因此本发明提出的器件具有很好的耐久性;(1) The memristive device proposed by the present invention uses a ferromagnetic material, and based on the SOT effect or STT effect, the magnetic domain state of the ferromagnetic material is changed, so that the magnetic domain wall moves forward or backward according to the direction of the current, and the magnetic domain wall The moving distance can be determined by the magnitude of the current and the application time. The moving distance of the magnetic domain wall can be read by the resistance of the device such as abnormal Hall resistance, TMR (Tunneling Magnetoresistance, tunneling magnetoresistance) or GMR (Giant Magnetoresistance, giant magnetoresistance), and the magnetic The continuous movement of the domain wall corresponds to the continuous change of the resistance of the device, so that the resistance of the device no longer has only two states of "0" and "1", thereby realizing the storage and calculation of information, the construction of neural networks and artificial intelligence. Due to the fast switching speed and short time of the magnetic domain state of the ferromagnetic material, the memristive device proposed by the present invention has faster read and write performance; in addition, because the storage principle of the memristive device proposed by the present invention is based on the The change of the magnetic domain state will not cause a large loss to the material, so the device proposed by the present invention has good durability;
(2)本发明提出的忆阻器件的结构为多层薄膜结构,器件尺寸小,能够实现很高的集成度。(2) The structure of the memristive device proposed by the present invention is a multi-layer thin film structure, the size of the device is small, and a high degree of integration can be achieved.
附图说明Description of drawings
图1为本发明第一实施例提供的基于铁磁材料的忆阻器件的示意图;1 is a schematic diagram of a memristive device based on a ferromagnetic material provided in the first embodiment of the present invention;
图2为本发明第二实施例提供的基于铁磁材料的忆阻器件的示意图;2 is a schematic diagram of a memristive device based on a ferromagnetic material according to a second embodiment of the present invention;
图3为本发明第三实施例提供的基于铁磁材料的忆阻器件的示意图;3 is a schematic diagram of a memristive device based on a ferromagnetic material according to a third embodiment of the present invention;
图4为本发明第四实施例提供的基于铁磁材料的忆阻器件的示意图。FIG. 4 is a schematic diagram of a memristive device based on a ferromagnetic material according to a fourth embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
在本发明的第一实施例中,如图1所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的铁磁层、由绝缘材料制成的绝缘层、盖帽层;自旋流生成层为Hall Bar结构,其膜面呈十字形状;铁磁层、绝缘层以及盖帽层的膜面为大小相同的多边形或椭圆形,并且依次重叠于自旋流生成层十字形状的交叉部分之上;自旋流生成层十字形状的一条直线的两端为忆阻器件的第一电极对,自旋流生成层十字形状的另一条直线的两端为忆阻器件的第二电极对;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变铁磁层的磁畴状态;铁磁层的磁畴状态在自旋流的自旋力矩和施加于忆阻器件的平面磁场的共同作用下发生改变,即磁畴壁发生移动,从而使得忆阻器件的电阻值发生改变;绝缘层用于提供垂直磁各向异性,使得铁磁层的磁化方向垂直于膜面;盖帽层用于保护自旋流生成层、铁磁层以及绝缘层。In the first embodiment of the present invention, as shown in Figure 1, the memristive device based on ferromagnetic material has a multi-layer film structure, including from bottom to top: a spin current generation layer made of heavy metal materials or topological insulators , a ferromagnetic layer made of ferromagnetic materials, an insulating layer made of insulating materials, and a capping layer; the spin current generation layer is a Hall Bar structure, and its film surface is in the shape of a cross; the ferromagnetic layer, insulating layer, and capping layer The film surface of the film is polygonal or elliptical in the same size, and overlaps in turn on the cross-shaped intersection of the spin current generation layer; the two ends of a straight line in the cross-shape of the spin current generation layer are the first electrodes of the memristive device Yes, the two ends of another straight line in the cross shape of the spin current generation layer are the second electrode pair of the memristive device; the spin current generation layer is used to generate spin current, and change the ferromagnetism through the spin torque of the spin current The magnetic domain state of the ferromagnetic layer; the magnetic domain state of the ferromagnetic layer changes under the joint action of the spin torque of the spin current and the planar magnetic field applied to the memristive device, that is, the magnetic domain wall moves, so that the memristive device The resistance value changes; the insulating layer is used to provide perpendicular magnetic anisotropy, so that the magnetization direction of the ferromagnetic layer is perpendicular to the film surface; the capping layer is used to protect the spin current generation layer, the ferromagnetic layer and the insulating layer.
作为自旋流生成层的常用材料为钽(Ta)、铂(Pt)、钨(W)、Bi2Se3或者Sb2Te3;作为铁磁层的常用材料为CoFeB;作为绝缘层的常用材料为MgO或者AlOx;作为盖帽层的常用材料为钽(Ta)或者钛(Ti)。Common materials used as spin current generation layers are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 ; common materials used as ferromagnetic layers are CoFeB; commonly used materials used as insulating layers The material is MgO or AlO x ; the common material used as the capping layer is tantalum (Ta) or titanium (Ti).
通过在第一电极对之间或者在第二电极对之间施加写电流改变所阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极对或者第二电极对之间施加读电流,并读取另一电极对之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。By applying a write current between the first electrode pair or between the second electrode pair to change the resistance value of the resistive device, the write operation to the memristive device is realized; by applying a write current between the first electrode pair or the second electrode pair Read the current, and read the voltage between another pair of electrodes, and then calculate the resistance value of the memristive device according to the applied read current and the read voltage, so as to realize the read operation of the memristive device.
在本发明的第二实施例中,如图2所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的铁磁层、由绝缘材料制成的绝缘层、盖帽层;自旋流生成层为Hall Bar结构,其膜面呈十字形状;忆阻器件的结构呈十字形状;忆阻器件各层薄膜均为Hall Bar结构,并且各层薄膜的膜面呈相同的十字形状;忆阻器件十字形状的一条直线的两端为忆阻器件的第一电极对,忆阻器件十字形状的另一条直线的两端为忆阻器件的第二电极对;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变铁磁层的磁畴状态;铁磁层的磁畴状态在自旋流的自旋力矩和施加于所述忆阻器件的平面磁场的共同作用下发生改变,从而使得忆阻器件的电阻值发生改变;绝缘层用于提供垂直磁各向异性,使得铁磁层的磁化方向垂直于其膜面;盖帽层用于保护自旋流生成层、铁磁层以及绝缘层。In the second embodiment of the present invention, as shown in Figure 2, the memristive device based on ferromagnetic material has a multi-layer thin film structure, including from bottom to top: a spin current generation layer made of heavy metal materials or topological insulators 1. A ferromagnetic layer made of ferromagnetic material, an insulating layer made of insulating material, and a cap layer; the spin current generation layer is a Hall Bar structure, and its film surface is in the shape of a cross; the structure of the memristive device is in the shape of a cross; Each layer of the memristive device has a Hall Bar structure, and the film surface of each layer of film has the same cross shape; the two ends of a straight line in the memristive device's cross shape are the first electrode pair of the memristive device, and the cross The two ends of another straight line of the shape are the second electrode pair of the memristive device; the spin current generation layer is used to generate spin current, and change the magnetic domain state of the ferromagnetic layer through the spin torque of the spin current; the ferromagnetic The magnetic domain state of the layer changes under the joint action of the spin torque of the spin current and the planar magnetic field applied to the memristive device, so that the resistance value of the memristive device changes; the insulating layer is used to provide the perpendicular magnetic Anisotropy, so that the magnetization direction of the ferromagnetic layer is perpendicular to its film surface; the capping layer is used to protect the spin current generation layer, ferromagnetic layer and insulating layer.
作为自旋流生成层的常用材料为钽(Ta)、铂(Pt)、钨(W)、Bi2Se3或者Sb2Te3;作为铁磁层的常用材料为CoFeB;作为绝缘层的常用材料为MgO或者AlOx;作为盖帽层的常用材料为钽(Ta)或者钛(Ti)。Common materials used as spin current generation layers are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 ; common materials used as ferromagnetic layers are CoFeB; commonly used materials used as insulating layers The material is MgO or AlO x ; the common material used as the capping layer is tantalum (Ta) or titanium (Ti).
通过在第一电极对之间或者在第二电极对之间施加写电流改变忆阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极对或者第二电极对之间施加读电流,并读取另一电极对之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。By applying a write current between the first electrode pair or between the second electrode pair to change the resistance value of the memristive device, the write operation to the memristive device is realized; by applying a write current between the first electrode pair or the second electrode pair Read the current, and read the voltage between another pair of electrodes, and then calculate the resistance value of the memristive device according to the applied read current and the read voltage, so as to realize the read operation of the memristive device.
在本发明实施例的第三实施例中,如图3所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,自旋流生成层的膜面大于其他层膜面;自旋流生成层之上的各层薄膜依次重叠于自旋流生成层中部,使得自旋流生成层至少有两个相对的凸出端;自旋流生成层的两个相对的凸出端分别为忆阻器件的第一电极和第二电极,盖帽层为忆阻器件的第三电极;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变第一铁磁层的磁畴状态;第一铁磁层、非磁性层以及第二铁磁层构成经典“三明治”的MTJ(Magnetic Tunnel Junction,磁性隧道结)或自旋阀结构;MTJ或自旋阀结构在自旋流的自旋力矩的作用下,第一铁磁层中的磁畴状态发生变化,从而使得忆阻器件的电阻值发生改变;钉扎层用于保证第二铁磁层的磁化方向不发生变化;盖帽层用于作为忆阻器件的第三电极并保护自旋流生成层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层。In the third embodiment of the embodiment of the present invention, as shown in Figure 3, the memristive device based on ferromagnetic material has a multi-layer thin film structure, including from bottom to top: spin current made of heavy metal materials or topological insulators A generation layer, a first ferromagnetic layer made of a ferromagnetic material, a nonmagnetic layer, a second ferromagnetic layer made of a ferromagnetic material, a pinning layer, and a capping layer; the first ferromagnetic layer, the nonmagnetic layer, The film surfaces of the second ferromagnetic layer, the pinning layer, and the capping layer are polygonal or oval in the same size, and the film surface of the spin current generation layer is larger than the film surfaces of other layers; the films of each layer above the spin current generation layer are in turn Overlaid on the middle of the spin current generation layer, so that the spin current generation layer has at least two opposite protruding ends; the two opposite protruding ends of the spin current generation layer are the first electrode and the second electrode of the memristive device respectively. The electrode, the capping layer is the third electrode of the memristive device; the spin current generation layer is used to generate spin current, and change the magnetic domain state of the first ferromagnetic layer through the spin torque of the spin current; the first ferromagnetic layer , the nonmagnetic layer and the second ferromagnetic layer constitute the classic "sandwich" MTJ (Magnetic Tunnel Junction, magnetic tunnel junction) or spin valve structure; the MTJ or spin valve structure is under the action of the spin torque of the spin flow, The magnetic domain state in the first ferromagnetic layer changes, so that the resistance value of the memristive device changes; the pinning layer is used to ensure that the magnetization direction of the second ferromagnetic layer does not change; the capping layer is used as a memristive device The third electrode protects the spin current generation layer, the first ferromagnetic layer, the nonmagnetic layer, the second ferromagnetic layer and the pinning layer.
作为自旋流生成层的常用材料为钽(Ta)、铂(Pt)、钨(W)、Bi2Se3或者Sb2Te3;作为第一铁磁层的常用材料为CoFeB;作为第二铁磁层的常用材料为CoFeB;作为非磁性层的常用材料为MgO、Al2O3或Cu;作为盖帽层的常用材料为钽(Ta)或者钛(Ti)。Commonly used materials for the spin current generation layer are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 ; common materials for the first ferromagnetic layer are CoFeB; A common material for the ferromagnetic layer is CoFeB; a common material for the nonmagnetic layer is MgO, Al 2 O 3 or Cu; a common material for the capping layer is tantalum (Ta) or titanium (Ti).
通过在第一电极和第二电极之间施加写电流,改变忆阻器件的电阻值,实现对所述忆阻器件的写操作;在第一电极和第三电极之间或者在第二电极和第三电极之间施加读电流,并读取第一电极和第三电极之间或者第二电极和第三电极之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。By applying a write current between the first electrode and the second electrode, the resistance value of the memristive device is changed to realize the writing operation of the memristive device; between the first electrode and the third electrode or between the second electrode and the second electrode Apply a read current between the third electrodes, and read the voltage between the first electrode and the third electrode or between the second electrode and the third electrode, and then calculate the memristor according to the applied read current and the read voltage The resistance value of the device realizes the read operation of the memristive device.
在本发明的第四实施例中,如图4所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由金属材料制成的金属层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,金属层的膜面大于其他层膜面;金属层之上的层依次重叠于金属层中部,使得金属层至少有一个凸出端;金属层的一个凸出端为忆阻器件的一个电极,盖帽层为忆阻器件的另一个电极;金属层用于作为导体导通电流;第一铁磁层、非磁性层以及第二铁磁层构成MTJ结构或自旋阀结构,MTJ结构或自旋阀结构用于实现忆阻器件的读写操作;钉扎层用于保证第二铁磁层的磁畴状态不发生变化;盖帽层用于作为忆阻器件的电极并保护金属层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层。In the fourth embodiment of the present invention, as shown in FIG. 4 , the memristive device based on ferromagnetic material has a multi-layer thin film structure, including from bottom to top: a metal layer made of metal material, a metal layer made of ferromagnetic material A first ferromagnetic layer, a nonmagnetic layer, a second ferromagnetic layer made of ferromagnetic material, a pinning layer and a capping layer; a first ferromagnetic layer, a nonmagnetic layer, a second ferromagnetic layer, a pinning The film surfaces of the layer and the capping layer are polygonal or oval in the same size, and the film surface of the metal layer is larger than the film surfaces of other layers; the layers above the metal layer are sequentially overlapped in the middle of the metal layer, so that the metal layer has at least one protruding end; One protruding end of the metal layer is an electrode of the memristive device, and the capping layer is the other electrode of the memristive device; the metal layer is used as a conductor to conduct current; the first ferromagnetic layer, the non-magnetic layer and the second ferromagnetic layer The layer constitutes an MTJ structure or a spin valve structure, and the MTJ structure or spin valve structure is used to realize the read and write operations of the memristive device; the pinning layer is used to ensure that the magnetic domain state of the second ferromagnetic layer does not change; the capping layer is used for It serves as the electrode of the memristive device and protects the metal layer, the first ferromagnetic layer, the nonmagnetic layer, the second ferromagnetic layer and the pinning layer.
常用的作为第一铁磁层的材料为CoFeB;常用的作为第二铁磁层的材料为CoFeB;常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。The commonly used material for the first ferromagnetic layer is CoFeB; the commonly used material for the second ferromagnetic layer is CoFeB; the commonly used material for the capping layer is tantalum (Ta) or titanium (Ti).
通过在忆阻器件的两个电极之间施加写电流改变忆阻器件的电阻值,实现对忆阻器件的写操作;通过在在忆阻器件的两个电极之间施加读电流并读取两个电极之间的电压,然后根据所施加的读电流和所读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。By applying a write current between the two electrodes of the memristive device to change the resistance value of the memristive device, the write operation to the memristive device is realized; by applying a read current between the two electrodes of the memristive device and reading the two The voltage between the two electrodes, and then calculate the resistance value of the memristive device according to the applied read current and the read voltage, and realize the read operation of the memristive device.
在本发明的第一实施例、第二实施例、第三实施例以及第四实施例中,写电流的电流密度大于或等于106A/cm2;读电流的电流密度小于106A/cm2。In the first embodiment, the second embodiment, the third embodiment and the fourth embodiment of the present invention, the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/cm 2 cm 2 .
在以上四个实施例中,忆阻器件的结构先由膜层制备技术在硅晶元依次制备出各层薄膜,然后进行刻蚀和微纳加工得到;忆阻器件各层薄膜的厚度随根据使用材料的特性设定;用于制备忆阻器件各层薄膜的膜层制备技术可以是磁控溅射技术、电子束蒸发技术或者脉冲激光沉积技术。In the above four embodiments, the structure of the memristive device is first obtained by sequentially preparing each layer of thin film on the silicon wafer by the film layer preparation technology, and then performing etching and micro-nano processing; the thickness of each layer of the memristive device varies according to the The characteristics of the material used are set; the film layer preparation technology used to prepare the thin films of each layer of the memristive device can be magnetron sputtering technology, electron beam evaporation technology or pulsed laser deposition technology.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810051734.0A CN108336222A (en) | 2018-01-19 | 2018-01-19 | A kind of memory resistor based on ferromagnetic material |
PCT/CN2018/076216 WO2019140729A1 (en) | 2018-01-19 | 2018-02-11 | Memristive device employing ferromagnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810051734.0A CN108336222A (en) | 2018-01-19 | 2018-01-19 | A kind of memory resistor based on ferromagnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108336222A true CN108336222A (en) | 2018-07-27 |
Family
ID=62925175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810051734.0A Pending CN108336222A (en) | 2018-01-19 | 2018-01-19 | A kind of memory resistor based on ferromagnetic material |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108336222A (en) |
WO (1) | WO2019140729A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109507617A (en) * | 2018-10-29 | 2019-03-22 | 华中科技大学 | The detection method of vector detector and unknown magnetic field based on Quantum geometrical phase |
CN109521996A (en) * | 2018-11-16 | 2019-03-26 | 武汉华芯纳磁科技有限公司 | Polymorphic real random number generator based on electron spin |
CN110212087A (en) * | 2019-05-29 | 2019-09-06 | 中国科学院金属研究所 | A kind of spin(-)orbit torque device without outfield auxiliary |
CN110535460A (en) * | 2019-09-23 | 2019-12-03 | 四川师范大学 | A kind of new logic gate circuit based on antiferromagnetic Skyrmion |
CN110610022A (en) * | 2019-08-06 | 2019-12-24 | 华中科技大学 | An Electronic Analog Integrator Based on Ferromagnetic Materials |
CN110752287A (en) * | 2019-09-29 | 2020-02-04 | 华中科技大学 | Reconfigurable PUF (physical unclonable function) construction method based on random magnetic domain wall movement |
CN110752288A (en) * | 2019-09-29 | 2020-02-04 | 华中科技大学 | Method for constructing reconfigurable PUF (physical unclonable function) based on device with SOT (spin on temperature) effect |
CN110851882A (en) * | 2019-10-21 | 2020-02-28 | 华中科技大学 | Method and system for generating physical unclonable functions based on SOT effect |
CN110895953A (en) * | 2018-09-12 | 2020-03-20 | Tdk株式会社 | Reservoir element and neuromorphic element |
CN110957420A (en) * | 2018-09-27 | 2020-04-03 | 台湾积体电路制造股份有限公司 | Magnetic random access memory assisted non-volatile device and method of making the same |
CN111725386A (en) * | 2019-09-23 | 2020-09-29 | 中国科学院上海微系统与信息技术研究所 | A magnetic storage device and its manufacturing method, memory and neural network system |
CN111933789A (en) * | 2020-08-11 | 2020-11-13 | 兰州大学 | Multi-state memory, preparation method and storage method thereof, and artificial synapse device |
CN113193110A (en) * | 2021-03-19 | 2021-07-30 | 中国科学院微电子研究所 | Activation function generator based on magnetic domain wall driving type magnetic tunnel junction and preparation method |
CN113451355A (en) * | 2020-12-10 | 2021-09-28 | 北京航空航天大学 | Spin orbit torque based magnetic memory device |
JP2022082452A (en) * | 2020-11-20 | 2022-06-01 | 高麗大学校産学協力団 | Spin-orbit torque-based magnetic tunnel junction and its manufacturing method |
WO2022193290A1 (en) * | 2021-03-19 | 2022-09-22 | 中国科学院微电子研究所 | Activation function generator based on magnetic domain wall driving type magnetic tunnel junction, and preparation method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111640865B (en) * | 2020-06-10 | 2023-06-20 | 中国科学技术大学 | An artificial synaptic device for neuromorphic computing |
CN114068804A (en) * | 2021-11-16 | 2022-02-18 | 中国科学院苏州纳米技术与纳米仿生研究所 | A synaptic device based on two-dimensional magnetic material and its application |
CN114975770B (en) * | 2022-05-13 | 2024-08-06 | 华中科技大学 | Current comparator and analog-to-digital converter based on spin orbit torque device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103890855A (en) * | 2011-08-18 | 2014-06-25 | 康奈尔大学 | Spin hall effect magnetic apparatus, method and applications |
CN105280214A (en) * | 2015-09-10 | 2016-01-27 | 中国科学院物理研究所 | Current-driven magnetic random access memory and spin logic device |
WO2016069547A2 (en) * | 2014-10-27 | 2016-05-06 | Brown University | Beta tungsten thin films with giant spin hall effect for use in compositions and structures with perpendicular magnetic anisotropy |
CN107004440A (en) * | 2014-07-17 | 2017-08-01 | 康奈尔大学 | Circuit and device based on the enhancing logic gates for effective spin-transfer torque |
US20170249550A1 (en) * | 2016-02-28 | 2017-08-31 | Purdue Research Foundation | Electronic synapse having spin-orbit torque induced spiketiming dependent plasticity |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4934582B2 (en) * | 2007-12-25 | 2012-05-16 | 株式会社日立製作所 | Magnetic sensor, magnetic head and magnetic memory using spin Hall effect element |
CN105304812B (en) * | 2015-06-08 | 2018-01-23 | 清华大学 | Phase transformation spin nonvolatile memory cell |
CN106784299B (en) * | 2017-02-10 | 2020-04-24 | 中国科学院物理研究所 | Multilayer film heterostructure, preparation method and application thereof |
CN106876582B (en) * | 2017-02-21 | 2019-11-29 | 中国科学院物理研究所 | Magnetic tunnel junction and magnetic device and electronic equipment including it |
-
2018
- 2018-01-19 CN CN201810051734.0A patent/CN108336222A/en active Pending
- 2018-02-11 WO PCT/CN2018/076216 patent/WO2019140729A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103890855A (en) * | 2011-08-18 | 2014-06-25 | 康奈尔大学 | Spin hall effect magnetic apparatus, method and applications |
CN107004440A (en) * | 2014-07-17 | 2017-08-01 | 康奈尔大学 | Circuit and device based on the enhancing logic gates for effective spin-transfer torque |
WO2016069547A2 (en) * | 2014-10-27 | 2016-05-06 | Brown University | Beta tungsten thin films with giant spin hall effect for use in compositions and structures with perpendicular magnetic anisotropy |
CN105280214A (en) * | 2015-09-10 | 2016-01-27 | 中国科学院物理研究所 | Current-driven magnetic random access memory and spin logic device |
US20170249550A1 (en) * | 2016-02-28 | 2017-08-31 | Purdue Research Foundation | Electronic synapse having spin-orbit torque induced spiketiming dependent plasticity |
Non-Patent Citations (2)
Title |
---|
ABHRONIL SENGUPTA ET AL.: ""Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets"", 《IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS》 * |
STEVEN LEQUEUX ET AL.: ""A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy"", 《SCIENTIFIC REPORT》 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110895953A (en) * | 2018-09-12 | 2020-03-20 | Tdk株式会社 | Reservoir element and neuromorphic element |
CN110895953B (en) * | 2018-09-12 | 2023-08-04 | Tdk株式会社 | Reservoir element and neuromorphic element |
DE102019125887B4 (en) | 2018-09-27 | 2025-01-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | MAGNETIC DIRECT ACCESS MEMORY-BASED COMPONENTS AND METHODS OF MANUFACTURING THE SAME |
CN110957420B (en) * | 2018-09-27 | 2023-04-18 | 台湾积体电路制造股份有限公司 | MRAM assisted non-volatile devices and methods of manufacture |
US11195991B2 (en) | 2018-09-27 | 2021-12-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Magnetic random access memory assisted devices and methods of making |
TWI717038B (en) * | 2018-09-27 | 2021-01-21 | 台灣積體電路製造股份有限公司 | Magnetic random access memory non-volatile assisted device and manufacturing method thereof |
CN110957420A (en) * | 2018-09-27 | 2020-04-03 | 台湾积体电路制造股份有限公司 | Magnetic random access memory assisted non-volatile device and method of making the same |
CN109507617B (en) * | 2018-10-29 | 2020-02-14 | 华中科技大学 | Detection method of unknown magnetic field |
CN109507617A (en) * | 2018-10-29 | 2019-03-22 | 华中科技大学 | The detection method of vector detector and unknown magnetic field based on Quantum geometrical phase |
CN109521996A (en) * | 2018-11-16 | 2019-03-26 | 武汉华芯纳磁科技有限公司 | Polymorphic real random number generator based on electron spin |
CN109521996B (en) * | 2018-11-16 | 2021-08-24 | 武汉华芯纳磁科技有限公司 | Multi-state true random number generator based on electron spin |
CN110212087A (en) * | 2019-05-29 | 2019-09-06 | 中国科学院金属研究所 | A kind of spin(-)orbit torque device without outfield auxiliary |
CN110212087B (en) * | 2019-05-29 | 2021-01-08 | 中国科学院金属研究所 | Spin orbit torque device without external field assistance |
CN110610022A (en) * | 2019-08-06 | 2019-12-24 | 华中科技大学 | An Electronic Analog Integrator Based on Ferromagnetic Materials |
CN110610022B (en) * | 2019-08-06 | 2021-11-19 | 华中科技大学 | Electronic analog integrator based on ferromagnetic material |
CN111725386A (en) * | 2019-09-23 | 2020-09-29 | 中国科学院上海微系统与信息技术研究所 | A magnetic storage device and its manufacturing method, memory and neural network system |
CN110535460A (en) * | 2019-09-23 | 2019-12-03 | 四川师范大学 | A kind of new logic gate circuit based on antiferromagnetic Skyrmion |
CN110752287B (en) * | 2019-09-29 | 2021-04-20 | 华中科技大学 | A Reconfigurable PUF Construction Method Based on Random Domain Wall Movement |
CN110752287A (en) * | 2019-09-29 | 2020-02-04 | 华中科技大学 | Reconfigurable PUF (physical unclonable function) construction method based on random magnetic domain wall movement |
CN110752288A (en) * | 2019-09-29 | 2020-02-04 | 华中科技大学 | Method for constructing reconfigurable PUF (physical unclonable function) based on device with SOT (spin on temperature) effect |
CN110752288B (en) * | 2019-09-29 | 2022-05-20 | 华中科技大学 | Method for constructing reconfigurable strong PUF (physical unclonable function) based on nonvolatile device array |
CN110851882A (en) * | 2019-10-21 | 2020-02-28 | 华中科技大学 | Method and system for generating physical unclonable functions based on SOT effect |
CN111933789B (en) * | 2020-08-11 | 2022-07-08 | 兰州大学 | A kind of polymorphic memory, its preparation method and storage method, and artificial synapse |
CN111933789A (en) * | 2020-08-11 | 2020-11-13 | 兰州大学 | Multi-state memory, preparation method and storage method thereof, and artificial synapse device |
JP2022082452A (en) * | 2020-11-20 | 2022-06-01 | 高麗大学校産学協力団 | Spin-orbit torque-based magnetic tunnel junction and its manufacturing method |
JP7350363B2 (en) | 2020-11-20 | 2023-09-26 | 高麗大学校産学協力団 | Spin-orbit torque-based magnetic tunnel junction and its manufacturing method |
US12161051B2 (en) | 2020-11-20 | 2024-12-03 | Korea University Research And Business Foundation | Spin-orbit torque (SOT)-based magnetic tunnel junction and method of fabricating the same |
CN113451355A (en) * | 2020-12-10 | 2021-09-28 | 北京航空航天大学 | Spin orbit torque based magnetic memory device |
WO2022193290A1 (en) * | 2021-03-19 | 2022-09-22 | 中国科学院微电子研究所 | Activation function generator based on magnetic domain wall driving type magnetic tunnel junction, and preparation method |
CN113193110A (en) * | 2021-03-19 | 2021-07-30 | 中国科学院微电子研究所 | Activation function generator based on magnetic domain wall driving type magnetic tunnel junction and preparation method |
Also Published As
Publication number | Publication date |
---|---|
WO2019140729A1 (en) | 2019-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108336222A (en) | A kind of memory resistor based on ferromagnetic material | |
US9666793B2 (en) | Method of manufacturing magnetoresistive element(s) | |
CN104393169B (en) | Spin-orbit torque magnetic random access memory (SOT-MRAM) without external magnetic field | |
CN103794715B (en) | A kind of based on voltage-controlled magnetic memory | |
US20200357983A1 (en) | Magnetic tunnel junction reference layer, magnetic tunnel junctions and magnetic random access memory | |
CN112652706B (en) | A spin-orbit moment memory cell without external magnetic field | |
CN105633111A (en) | Electrical field assisted writing magnetic tunnel junction unit and writing method thereof | |
JP2012510731A (en) | Magnetic random access memory with double spin torque reference layer | |
CN107910439B (en) | Topologically Insulated Magnetoresistive Devices | |
CN104218035B (en) | A kind of magnetic tunnel junction cell and spin electric device | |
CN101834271A (en) | Magnetoelectric random storage unit and memory with the same | |
CN113451356B (en) | Magnetic random access memory unit, memory and device | |
CN112703674A (en) | Superconducting memory with josephson phase based torque | |
CN106654002A (en) | Low-power-consumption magnetic multi-resistance-state memory cell | |
CN106449970A (en) | Low-power-consumption magnetic storage unit | |
Hong et al. | 3D multilevel spin transfer torque devices | |
CN110931633B (en) | Magnetic tunnel junction memory cell and memory | |
CN103545339B (en) | A kind of can supercomputing, massive store memory cell | |
CN110797371A (en) | Magnetic memory, data storage device and control method | |
CN110635024A (en) | Controlled magnetic random access memory based on competitive spin current and its preparation method | |
CN105633275B (en) | A kind of vertical-type STT-MRAM mnemons and its reading/writing method | |
CN103280234A (en) | Magnetic element driven by electric field and magnetic random memory | |
CN110459254B (en) | Spintronic device and memory logic computing device | |
CN113224232B (en) | SOT-MRAM based on bottom electrode vertical voltage control and manufacturing and writing methods | |
CN108511602B (en) | MTJ cell and STT-MRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180727 |
|
RJ01 | Rejection of invention patent application after publication |