[go: up one dir, main page]

CN108330095B - A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application - Google Patents

A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application Download PDF

Info

Publication number
CN108330095B
CN108330095B CN201810171868.6A CN201810171868A CN108330095B CN 108330095 B CN108330095 B CN 108330095B CN 201810171868 A CN201810171868 A CN 201810171868A CN 108330095 B CN108330095 B CN 108330095B
Authority
CN
China
Prior art keywords
acetylneuraminic acid
corynebacterium glutamicum
ala
gene
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810171868.6A
Other languages
Chinese (zh)
Other versions
CN108330095A (en
Inventor
陈坚
堵国成
王淼
刘延峰
董迅衍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201810171868.6A priority Critical patent/CN108330095B/en
Publication of CN108330095A publication Critical patent/CN108330095A/en
Application granted granted Critical
Publication of CN108330095B publication Critical patent/CN108330095B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01056N-acetylneuraminate synthase (2.5.1.56)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01016Glutamine-fructose-6-phosphate transaminase (isomerizing) (2.6.1.16), i.e. glucosamine-6-phosphate-synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01108UDP-3-O-acyl-N-acetylglucosamine deacetylase (3.5.1.108)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02003Phosphoacetylglucosamine mutase (5.4.2.3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种积累N‑乙酰神经氨酸的重组谷氨酸棒杆菌及其应用,属于遗传工程领域。本发明以谷氨酸棒杆菌作为表达宿主,通过过量表达氨糖‑果糖‑6磷酸氨基转移酶基因、氨基葡萄糖乙酰化酶编码基因、磷酸酶编码基因、乙酰氨基葡萄糖异构酶编码基因和N‑乙酰神经氨酸合酶编码基因,加强了N‑乙酰神经氨酸合成途径;并通过敲除谷氨酸棒杆菌中N‑乙酰神经氨酸转运蛋白编码基因和胞内N‑乙酰神经氨酸分解利用代谢途径上的相关基因,得到了胞外积累N‑乙酰神经氨酸的谷氨酸棒杆菌基因工程菌,产量达到110mg/L,为进一步代谢工程改造谷氨酸棒杆菌生产N‑乙酰神经氨酸奠定了基础。

Figure 201810171868

The invention discloses a recombinant Corynebacterium glutamicum that accumulates N-acetylneuraminic acid and an application thereof, belonging to the field of genetic engineering. The present invention uses Corynebacterium glutamicum as an expression host, and by overexpressing glucosamine-fructose-6 phosphate aminotransferase gene, glucosamine acetylase coding gene, phosphatase coding gene, acetylglucosamine isomerase coding gene and N The gene encoding acetylneuraminic acid synthase enhances the N-acetylneuraminic acid synthesis pathway; and by knocking out the gene encoding the N-acetylneuraminic acid transporter and intracellular N-acetylneuraminic acid in Corynebacterium glutamicum Decomposition and utilization of the relevant genes on the metabolic pathway, the Corynebacterium glutamicum genetically engineered bacteria that accumulates N-acetylneuraminic acid extracellularly is obtained, and the yield reaches 110 mg/L, which is used for further metabolic engineering of Corynebacterium glutamicum to produce N-acetyl Neuraminidine lays the foundation.

Figure 201810171868

Description

一种积累N-乙酰神经氨酸的重组谷氨酸棒杆菌及其应用A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application

技术领域technical field

本发明涉及一种积累N-乙酰神经氨酸的重组谷氨酸棒杆菌及其应用,属于遗传工程领域。The invention relates to a recombinant Corynebacterium glutamicum that accumulates N-acetylneuraminic acid and its application, and belongs to the field of genetic engineering.

背景技术Background technique

N-乙酰神经氨酸作为唾液酸中最主要的化合物分子,是重要的食品营养添加剂和新型药物前体。其功效包括促进婴儿大脑发育、维持老年人脑功能健康和增强机体免疫力等。目前,N-乙酰神经氨酸的工业生产主要采用化学提取和全细胞转化方法生产。由于N-乙酰神经氨酸在天然原料(蛋黄、燕窝及牛初乳等)中总含量低,提取分离过程复杂,导致传统提取法收率低、成本高。因此,采用全细胞转化法生产N-乙酰神经氨酸成为近年研究热点。但是,全细胞转化法均需要添加N-乙酰氨基葡萄糖作为合成前体,且大部分方法仍需要添加丙酮酸作为合成前体。鉴于N-乙酰氨基葡萄糖和丙酮酸的价格成本较高(6-8万元/吨),开发出一种利用微生物发酵葡萄糖生产N-乙酰神经氨酸的方法将具有重要的研究意义及应用价值。N-acetylneuraminic acid, as the most important compound molecule in sialic acid, is an important food nutritional additive and a new type of drug precursor. Its effects include promoting brain development in infants, maintaining healthy brain function in the elderly, and enhancing immunity. At present, the industrial production of N-acetylneuraminic acid is mainly produced by chemical extraction and whole-cell transformation methods. Because the total content of N-acetylneuraminic acid in natural raw materials (eg, egg yolk, bird's nest and bovine colostrum, etc.) is low, the extraction and separation process is complicated, resulting in low yield and high cost of traditional extraction methods. Therefore, the production of N-acetylneuraminic acid by whole cell transformation has become a research hotspot in recent years. However, the whole-cell transformation methods all require the addition of N-acetylglucosamine as a synthetic precursor, and most methods still require the addition of pyruvate as a synthetic precursor. In view of the high cost of N-acetylglucosamine and pyruvic acid (60,000-80,000 yuan/ton), developing a method for producing N-acetylneuraminic acid by microbial fermentation of glucose will have important research significance and application value. .

谷氨酸棒杆菌作为常用工业菌株,具有遗传背景清晰、代谢改造工具成熟、发酵工艺成熟以及发酵过程不易受噬菌体污染等诸多优势,被广泛用于重要化学品的发酵法生产。同时,谷氨酸棒杆菌是国际上公认的食品安全级菌株,是生产食品、营养品和药品的理想菌株。因此,运用代谢工程手段构建重组谷氨酸棒杆菌是生产食品安全级N-乙酰神经氨酸的有效途径。然而,谷氨酸棒杆菌中N-乙酰神经氨酸代谢途径调控严密,并不会形成N-乙酰神经氨酸的积累。如何改造谷氨酸棒杆菌中N-乙酰神经氨酸代谢途径是一个值得深入探讨的问题。As a common industrial strain, Corynebacterium glutamicum has many advantages, such as clear genetic background, mature metabolic transformation tools, mature fermentation process, and the fermentation process is not susceptible to phage contamination. It is widely used in the fermentation production of important chemicals. At the same time, Corynebacterium glutamicum is an internationally recognized food-safe strain, and it is an ideal strain for the production of food, nutritional products and medicines. Therefore, the use of metabolic engineering methods to construct recombinant Corynebacterium glutamicum is an effective way to produce food-safe N-acetylneuraminic acid. However, the N-acetylneuraminic acid metabolic pathway in C. glutamicum is tightly regulated, and the accumulation of N-acetylneuraminic acid does not occur. How to modify the N-acetylneuraminic acid metabolic pathway in Corynebacterium glutamicum is a question worthy of further study.

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题是构建一种积累N-乙酰神经氨酸的重组谷氨酸棒杆菌。The technical problem to be solved by the present invention is to construct a recombinant Corynebacterium glutamicum that accumulates N-acetylneuraminic acid.

为解决上述技术问题,本发明的技术方案为:For solving the above-mentioned technical problems, the technical scheme of the present invention is:

将N-乙酰神经氨酸合成途径5个基因:同源氨糖-果糖-6磷酸氨基转移酶编码基因,特别是谷氨酸棒杆菌(Corynebacterium glutamicum ATCC13869)的glmS(编码的氨糖-果糖-6磷酸氨基转移酶的氨基酸序列如SEQ ID NO:1);外源氨基葡萄糖乙酰化酶编码基因,特别是酿酒酵母(Saccharomyces cerevisiae S288C)的GNA1(编码的氨基葡萄糖乙酰化酶的氨基酸序列如SEQ ID NO:2);外源磷酸酶编码基因,特别是大肠杆菌(Escherichiacoli K-12)的yqaB(编码的磷酸酶的氨基酸序列如SEQ ID NO:3);外源乙酰氨基葡萄糖异构酶编码基因,特别是项圈藻(Anabaena sp.CH1)的age(编码的乙酰氨基葡萄糖异构酶的氨基酸序列如SEQ ID NO:4);以及外源N-乙酰神经氨酸合酶编码基因,特别是大肠杆菌(Escherichia coli K-1)的neuB(编码的N-乙酰神经氨酸合酶的氨基酸序列如SEQ ID NO:5):克隆到表达载体pDXW-9,然后转化谷氨酸棒杆菌(Corynebacterium glutamicumATCC13869),通过改造代谢途径,实现N-乙酰神经氨酸的积累。Five genes in the N-acetylneuraminic acid synthesis pathway: the homologous glucosamine-fructose-6 phosphate aminotransferase encoding gene, especially the glmS (encoding glucosamine-fructose-) of Corynebacterium glutamicum ATCC13869 The amino acid sequence of 6-phosphate aminotransferase is such as SEQ ID NO: 1); the exogenous glucosamine acetylase coding gene, especially the GNA1 of Saccharomyces cerevisiae S288C (the amino acid sequence of the coded glucosamine acetylase such as SEQ ID NO: 1) ID NO: 2); exogenous phosphatase encoding gene, especially yqaB of Escherichia coli (Escherichiacoli K-12) (the amino acid sequence of the encoded phosphatase is as SEQ ID NO: 3); exogenous acetylglucosamine isomerase encoding Genes, especially the age of Anabaena sp. CH1 (the amino acid sequence of the acetylglucosamine isomerase encoded as SEQ ID NO: 4); and exogenous N-acetylneuraminic acid synthase encoding genes, especially neuB of Escherichia coli K-1 (the amino acid sequence of the encoded N-acetylneuraminic acid synthase is shown in SEQ ID NO: 5): cloned into the expression vector pDXW-9, and then transformed into Corynebacterium glutamicum glutamicumATCC13869), by modifying the metabolic pathway to achieve the accumulation of N-acetylneuraminic acid.

在本发明的一种实施方式中,选用表达载体pDXW-9表达氨糖-果糖-6磷酸氨基转移酶编码基因、氨基葡萄糖乙酰化酶编码基因、磷酸酶编码基因、乙酰氨基葡萄糖异构酶编码基因和N-乙酰神经氨酸合酶编码基因。In one embodiment of the present invention, the expression vector pDXW-9 is selected to express the gene encoding glucosamine-fructose-6 phosphate aminotransferase, the gene encoding glucosamine acetylase, the gene encoding phosphatase, the gene encoding acetylglucosamine isomerase Gene and the gene encoding N-acetylneuraminic acid synthase.

在本发明的一种实施方式中,age、neuB基因连接至pDXW-9表达载体上的EcoRI和HindIII酶切位点之间。In one embodiment of the present invention, the age and neuB genes are linked between the EcoRI and HindIII restriction sites on the pDXW-9 expression vector.

在本发明的一种实施方式中,glmS、GNA1、yqaB基因连接至pDXW-9表达载体上的NheI和HindIII酶切位点之间。In one embodiment of the present invention, the glmS, GNA1, and yqaB genes are linked between the NheI and HindIII restriction sites on the pDXW-9 expression vector.

在本发明的一种实施方式中,敲除所述谷氨酸棒杆菌的N-乙酰神经氨酸转运蛋白编码基因cg2937,具体地,是通过构建含有N-乙酰神经氨酸转运蛋白编码基因敲除框的自杀质粒,经同源重组将敲除框替代谷氨酸棒杆菌染色体上N-乙酰神经氨酸转运蛋白编码基因cg2937,以阻断N-乙酰神经氨酸由胞外向胞内的转运。In one embodiment of the present invention, the N-acetylneuraminic acid transporter-encoding gene cg2937 of the Corynebacterium glutamicum is knocked out, specifically, by constructing a knockout gene containing the N-acetylneuraminic acid transporter-encoding gene An out-of-frame suicide plasmid, the knockout box was replaced by homologous recombination to replace the gene cg2937 encoding N-acetylneuraminic acid transporter on the chromosome of Corynebacterium glutamicum to block the transport of N-acetylneuraminic acid from extracellular to intracellular .

在本发明的一种实施方式中,敲除所述谷氨酸棒杆菌的N-乙酰氨基甘露糖激酶编码基因nanK、N-乙酰氨基甘露糖-6-磷酸异构酶编码基因nanE、乙酰氨基葡萄糖-6-磷酸脱乙酰基酶编码基因nagA和氨基葡萄糖-6-磷酸脱氨基酶编码基因nagB,是通过构建含有N-乙酰神经氨酸操纵子5’-nagB-nagA-nanA-nanK-nanE-3’敲除框的自杀质粒,经同源重组将敲除框替代谷氨酸棒杆菌染色体上N-乙酰神经氨酸操纵子5’-nagB-nagA-nanA-nanK-nanE-3’,再在5’-nagB-nagA-nanA-nanK-nanE-3’敲除框中插入nanA基因,经同源重组将染色体上的nanA基因复原,以阻断N-乙酰神经氨酸在胞内的分解代谢。In one embodiment of the present invention, the N-acetylaminomannose kinase encoding gene nanK, the N-acetylaminomannose-6-phosphate isomerase encoding gene nanE, acetylamino Glucose-6-phosphate deacetylase-encoding gene nagA and glucosamine-6-phosphate deaminase-encoding gene nagB were constructed by constructing a gene containing N-acetylneuraminic acid operon 5'-nagB-nagA-nanA-nanK-nanE -Suicide plasmid with 3' knockout box, the knockout box is replaced by homologous recombination of the N-acetylneuraminic acid operon 5'-nagB-nagA-nanA-nanK-nanE-3' on the chromosome of Corynebacterium glutamicum, Then insert the nanA gene in the 5'-nagB-nagA-nanA-nanK-nanE-3' knockout box, and restore the nanA gene on the chromosome by homologous recombination to block the intracellular transfer of N-acetylneuraminic acid. Catabolism.

本发明要解决的另一个技术问题是提供一种构建上述重组谷氨酸棒杆菌的构建方法,其特征在于包括如下步骤:Another technical problem to be solved by the present invention is to provide a kind of construction method of constructing the above-mentioned recombinant Corynebacterium glutamicum, which is characterized in that comprising the steps:

1)构建重组质粒1) Construction of recombinant plasmid

克隆谷氨酸棒杆菌的氨糖-果糖-6磷酸氨基转移酶编码基因(glmS)、酿酒酵母的氨基葡萄糖乙酰化酶编码基因(GNA1)、大肠杆菌的磷酸酶编码基因(yqaB)、项圈藻的乙酰氨基葡萄糖异构酶编码基因(age)和大肠杆菌的N-乙酰神经氨酸合酶编码基因(neuB),连接到重组表达质粒上;Cloning of the glucosamine-fructose-6 phosphate aminotransferase encoding gene (glmS) of Corynebacterium glutamicum, the glucosamine acetylase encoding gene (GNA1) of Saccharomyces cerevisiae, the phosphatase encoding gene (yqaB) of Escherichia coli, and the algae The gene encoding acetylglucosamine isomerase (age) and the gene encoding N-acetylneuraminic acid synthase (neuB) of Escherichia coli are connected to the recombinant expression plasmid;

2)构建产N-乙酰神经氨酸重组谷氨酸棒杆菌2) Construction of N-acetylneuraminic acid-producing recombinant Corynebacterium glutamicum

将上述重组表达载体转化谷氨酸棒杆菌,得到产N-乙酰神经氨酸重组谷氨酸棒杆菌。The above recombinant expression vector is transformed into Corynebacterium glutamicum to obtain N-acetylneuraminic acid-producing recombinant Corynebacterium glutamicum.

所述谷氨酸棒杆菌为C.glutamicum ATCC13869或Corynebacterium glutamicumATCC13869△nanK△nanE△nagA△nagB或Corynebacterium glutamicum ATCC13869△cg2937△nanK△nanE△nagA△nagB;所述重组表达载体为pDXW-9。The Corynebacterium glutamicum is C.glutamicum ATCC13869 or Corynebacterium glutamicumATCC13869△nanK△nanE△nagA△nagB or Corynebacterium glutamicum ATCC13869△cg2937△nanK△nanE△nagA△nagB; the recombinant expression vector is pDXW-9.

本发明还提供了一种应用上述重组谷氨酸棒杆菌发酵生产N-乙酰神经氨酸的方法,将30-32℃、180-220rpm下培养12-24h的种子以5%-10%的接种量转入发酵培养基,于30-32℃、180-220rpm条件下培养30-50h。The present invention also provides a method for producing N-acetylneuraminic acid by using the above-mentioned recombinant Corynebacterium glutamicum by fermentation. The amount was transferred to the fermentation medium, and cultured at 30-32°C and 180-220rpm for 30-50h.

重组谷氨酸棒杆菌种子培养及发酵:Recombinant Corynebacterium glutamicum seed culture and fermentation:

种子培养基(g/L):葡萄糖10,尿素1.25,玉米浆20,磷酸二氢钾1,硫酸镁0.5。Seed medium (g/L): glucose 10, urea 1.25, corn steep liquor 20, potassium dihydrogen phosphate 1, magnesium sulfate 0.5.

发酵培养基(g/L):葡萄糖80,硫酸铵35,玉米浆20,磷酸二氢钾1,硫酸镁1,碳酸钙30。Fermentation medium (g/L): glucose 80, ammonium sulfate 35, corn steep liquor 20, potassium dihydrogen phosphate 1, magnesium sulfate 1, calcium carbonate 30.

培养条件:将30-32℃、180-220rpm下培养12-24h的种子以5%-10%的接种量转入发酵培养基,于30-32℃、180-220rpm条件下培养30-50h。Cultivation conditions: The seeds cultivated at 30-32°C and 180-220rpm for 12-24h were transferred to the fermentation medium with an inoculum of 5%-10%, and cultured at 30-32°C and 180-220rpm for 30-50h.

N-乙酰神经氨酸的测定方法:Determination method of N-acetylneuraminic acid:

高效液相色谱(HPLC)检测法:Agilent 1200,RID检测器,NH2柱(250×4.6mm,5μm),流动相:70%乙腈,流速0.6mL/min,柱温30℃,进样体积为10μL。High performance liquid chromatography (HPLC) detection method: Agilent 1200, RID detector, NH2 column (250×4.6mm, 5μm), mobile phase: 70% acetonitrile, flow rate 0.6mL/min, column temperature 30℃, injection volume to 10 μL.

本发明还提供一种能利用葡萄糖作为底物发酵生产N-乙酰神经氨酸的重组谷氨酸棒杆菌。所述重组谷氨酸棒杆菌为Corynebacterium glutamicum ATCC13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-Ptac-glmS-GNA1-yqaB),是以Corynebacteriumglutamicum ATCC13869△cg2937△nanK△nanE△nagA△nagB为宿主,用表达载体pDXW-9对glmS、GNA1、yqaB、age和neuB进行表达。The invention also provides a recombinant Corynebacterium glutamicum capable of producing N-acetylneuraminic acid by fermentation using glucose as a substrate. The recombinant Corynebacterium glutamicum is Corynebacterium glutamicum ATCC13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-P tac -glmS-GNA1-yqaB), which is Corynebacterium glutamicum ATCC13869△cg2937△nanK△nanE△ nagA△nagB was the host, and expression vector pDXW-9 was used to express glmS, GNA1, yqaB, age and neuB.

本发明提供的重组谷氨酸棒杆菌可实现N-乙酰神经氨酸在胞外积累,其浓度可达到110mg/L,为进一步代谢工程改造谷氨酸棒杆菌生产N-乙酰神经氨酸奠定了基础。本发明提供的重组谷氨酸棒杆菌构建方法简单,便于使用,属于食源性安全菌株,具有很好地应用前景。The recombinant Corynebacterium glutamicum provided by the invention can realize the extracellular accumulation of N-acetylneuraminic acid, and its concentration can reach 110 mg/L, which lays a solid foundation for the further metabolic engineering of Corynebacterium glutamicum to produce N-acetylneuraminic acid. Base. The recombinant Corynebacterium glutamicum provided by the invention has a simple construction method, is easy to use, belongs to a food-derived safe strain, and has a good application prospect.

附图说明Description of drawings

图1重组谷氨酸棒杆菌C.glutamicum ATCC13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-Ptac-glmS-GNA1-yqaB)代谢合成N-乙酰神经氨酸的途径。Fig. 1 The pathway of recombinant C. glutamicum ATCC13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-P tac -glmS-GNA1-yqaB) to synthesize N-acetylneuraminic acid.

具体实施方式Detailed ways

实施例1 重组质粒的构建Example 1 Construction of recombinant plasmid

根据NCBI上公布的项圈藻(Anabaena sp.CH1)中的乙酰氨基葡萄糖异构酶编码基因(age)序列,由金斯瑞生物科技有限公司合成出age基因,并设计引物age-F:5’-TTCACACAGGAAACAGAATTCGAAGGAGTCTTCACATGGGCAAAAACTTACAAGCTCT-3’,age-R:5’-CATTCTACTCTGACTTATGAAAGTGCTTCAAACTGTTGC-3’。使用上述引物以合成得到的age基因片段为模板,扩增乙酰氨基葡萄糖异构酶编码基因(age)。According to the sequence of the acetylglucosamine isomerase encoding gene (age) in Anabaena sp. CH1 published on NCBI, the age gene was synthesized by GenScript Biotechnology Co., Ltd., and the primer age-F: 5' was designed. -TTCACACAGGAAACAGAATTCGAAGGAGTCTTCACATGGGCAAAAACTTACAAGCTCT-3',age-R:5'-CATTCTACTCTGACTTATGAAAGTGCTTCAAACTGTTGC-3'. The acetylglucosamine isomerase-encoding gene (age) was amplified using the above-mentioned primers with the synthetically obtained age gene fragment as a template.

根据NCBI上公布的大肠杆菌(Escherichia coli K-1)中的N-乙酰神经氨酸合酶编码基因(neuB)序列,由金斯瑞生物科技有限公司合成出neuB基因,并设计引物neuB-F:5’-TCATAAGTCAGAGTAGAATGAGAAGGAGTAGATTCATGTCTAACATCTACATCGTGGC-3’,neuB-R:5’-CATCCGCCAAAACAGAAGCTTGTTAACTTTATTCTCCCTGGTTTTTAAATTCGC-3’。使用上述引物以合成得到的neuB基因片段为模板,扩增N-乙酰神经氨酸合酶编码基因(neuB)。According to the sequence of the N-acetylneuraminic acid synthase encoding gene (neuB) in Escherichia coli K-1 published on NCBI, the neuB gene was synthesized by GenScript Biotechnology Co., Ltd., and the primer neuB-F was designed. :5'-TCATAAGTCAGAGTAGAATGAGAAGGAGTAGATTCATGTCTAACATCTACATCGTGGC-3',neuB-R:5'-CATCCGCCAAAACAGAAGCTTGTTAACTTTATTCTCCCTGGTTTTTAAATTCGC-3'. The gene encoding N-acetylneuraminic acid synthase (neuB) was amplified using the above primers with the synthesized neuB gene fragment as a template.

将上述扩增得到的2个基因片段经一步克隆法(所使用一步克隆试剂盒购自南京诺唯赞生物技术有限公司)连接至pDXW-9表达载体(Xu D,Tan Y,Shi F,Wang X.Animproved shuttle vector constructed for metabolic engineering research inCorynebacteriun glutamicum.Plasmid.2010;64:85-91)上的EcoRI和HindIII酶切位点之间。酶切验证并测序,确认重组质粒p9-age-neuB构建成功。The 2 gene fragments obtained by the above amplification were connected to the pDXW-9 expression vector (Xu D, Tan Y, Shi F, Wang) through the one-step cloning method (the one-step cloning kit used was purchased from Nanjing Novizan Biotechnology Co., Ltd.). X. Animproved shuttle vector constructed for metabolic engineering research in Corynebacteriun glutamicum. Plasmid. 2010; 64:85-91) between the EcoRI and HindIII restriction sites. Enzyme digestion verification and sequencing confirmed that the recombinant plasmid p9-age-neuB was successfully constructed.

根据NCBI上公布的谷氨酸棒杆菌(Corynebacterium glutamicumATCC 13032)中氨糖-果糖-6磷酸氨基转移酶编码基因(glmS),设计引物glmS-F:5’-CAGGAAACAGAATTCGCTAGCGAAGGAGTAATACGATGTGTGGAATTGTTGGATATA-3’,glmS-R:5’-TAGAGAGAGAGAGGTGGAAATTATTCGACGGTGACAGACTTTGC-3’。使用上述引物从谷氨酸棒杆菌(Corynebacteriumglutamicum ATCC13869,购自美国典型微生物保藏中心)基因组中扩增氨糖-果糖-6磷酸氨基转移酶编码基因(glmS)。According to the gene encoding glucosamine-fructose-6 phosphate aminotransferase (glmS) in Corynebacterium glutamicumATCC 13032 published on NCBI, the primers glmS-F: 5'-CAGGAAACAGAATTCGCTAGCGAAGGAGTAATACGATGTGTGGAATTGTTGGATATA-3', glmS-R were designed: 5'-TAGAGAGAGAGAGGTGGAAATTATTCGACGGTGACAGACTTTGC-3'. The gene encoding glucosamine-fructose-6 phosphate aminotransferase (glmS) was amplified from the genome of Corynebacterium glutamicum ATCC13869 (purchased from American Type Collection) using the above primers.

根据NCBI上公布的酿酒酵母(Saccharomyces cerevisiae S288C,购自美国典型微生物保藏中心,编号ATCC 204508)中氨基葡萄糖乙酰化酶编码基因(GNA1),设计引物GNA1-F:5’-GGGGTACCATTATAGGTAAGAGAGGAATGTACACATGAGCTTACCCGATGGATTTTATA-3’,GNA1-R:5’-CCCAAGCTTCTATTTTCTAATTTGCATTTCCACG-3’。使用上述引物从酿酒酵母(Saccharomyces cerevisiaeS288C)基因组中扩增氨基葡萄糖乙酰化酶编码基因(GNA1)。According to the glucosamine acetylase encoding gene (GNA1) in Saccharomyces cerevisiae S288C published on NCBI (purchased from the American Collection of Types of Microorganisms, No. ATCC 204508), the primer GNA1-F was designed: 5'-GGGGTACCATTATAGGTAAGAGAGGAATGTACACATGAGCTTACCCGATGGATTTTATA-3', GNA1-R: 5'-CCCAAGCTTCTATTTTCTAATTTGCATTTCCACG-3'. The gene encoding glucosamine acetylase (GNA1) was amplified from the genome of Saccharomyces cerevisiae S288C using the above primers.

根据NCBI上公布的大肠杆菌(Escherichia coli K-12)的磷酸酶编码基因(yqaB),设计引物yqaB-F:5’-TAAGTGCTCCATGAAGTCGTGAAGGAGTGTCTACATGTACGAGCGTTATGCAGGTTTA-3’,yqaB-R:5’-CATCCGCCAAAACAGAAGCTTTCACAGCAAGCGAACATCCA-3’。使用上述引物从大肠杆菌(Escherichia coli K-12)基因组中扩增磷酸酶编码基因(yqaB)。According to the phosphatase encoding gene (yqaB) of Escherichia coli K-12 published on NCBI, primers yqaB-F: 5'-TAAGTGCTCCATGAAGTCGTGAAGGAGTGTCTACATGTACGAGCGTTATGCAGGTTTA-3', yqaB-R: 5'-CATCCGCCAAAACAGAAGCTTTCAGCAAGCGAACATCCA-3' were designed. The phosphatase-encoding gene (yqaB) was amplified from the Escherichia coli K-12 genome using the primers described above.

将上述扩增得到的3个基因片段glmS、GNA1、yqaB经一步克隆法(所使用一步克隆试剂盒购自南京诺唯赞生物技术有限公司)连接至pDXW-9表达载体(Xu D,TanY,Shi F,Wang X.An improved shuttle vector constructed for metabolic engineeringresearch in Corynebacteriun glutamicum.Plasmid.2010;64:85-91)上的NheI和HindIII酶切位点之间。酶切验证并测序,确认重组质粒p9-glmS-GNA1-yqaB构建成功。The 3 gene fragments glmS, GNA1, yqaB obtained by the above amplification were connected to the pDXW-9 expression vector (Xu D, TanY, Shi F, Wang X. An improved shuttle vector constructed for metabolic engineering research in Corynebacteriun glutamicum. Plasmid. 2010;64:85-91) between NheI and HindIII cleavage sites. Enzyme digestion verification and sequencing confirmed that the recombinant plasmid p9-glmS-GNA1-yqaB was successfully constructed.

根据tac启动子序列设计引物Ptac-F:5’-ATTACCCGGGAAGCTGGCGATGTGGTGATT-3’;根据NCBI上公布的大肠杆菌(Escherichia coli K-12)的磷酸酶编码基因(yqaB),设计引物yqaB-R2:5’-ATTACCCGGGTCACAGCAAGCGAACATCCA-3’。使用上述引物从重组质粒p9-glmS-GNA1-yqaB上扩增连有tac启动子的Ptac-glmS-GNA1-yqaB片段,并用SmaI酶切处理。将重组质粒p9-age-neuB经HindIII酶切、补平末端后,与PTac-glmS-GNA1-yqaB片段用T4连接酶相连接。酶切验证并测序,确认重组质粒p9-age-neuB-Ptac-glmS-GNA1-yqaB构建成功。The primer P tac -F was designed according to the tac promoter sequence: 5'-ATTACCCGGGAAGCTGGCGATGTGGTGATT-3'; the primer yqaB-R2:5 was designed according to the phosphatase encoding gene (yqaB) of Escherichia coli K-12 published on NCBI '-ATTACCCGGGTCACAGCAAGCGAACATCCA-3'. The Ptac-glmS-GNA1-yqaB fragment linked with the tac promoter was amplified from the recombinant plasmid p9-glmS-GNA1-yqaB using the above primers, and digested with SmaI. The recombinant plasmid p9-age-neuB was digested with HindIII, blunt-ended, and then ligated with the P Tac -glmS-GNA1-yqaB fragment using T4 ligase. Enzyme digestion and sequencing confirmed that the recombinant plasmid p9-age-neuB-P tac -glmS-GNA1-yqaB was successfully constructed.

实施例2 N-乙酰神经氨酸转运蛋白编码基因cg2937的敲除Example 2 Knockout of N-acetylneuraminic acid transporter-encoding gene cg2937

根据NCBI上公布的谷氨酸棒杆菌(Corynebacterium glutamicum ATCC 13032)中N-乙酰神经氨酸转运蛋白编码基因(cg2937)上下游序列,设计引物cg2937-U-F:5’-CTATGACATGATTACGAATTCGCTGTGAGCTTTGATGGTTTC-3’;cg2937-U-R:5’-ACATTGATCTCTACTCTGACTGCCGGTGTTGTCTGGTGCA-3’;cg2937-D-F:5’-GTCAGAGTAGAGATCAATGTCGAATCCTACGACCAGGTACA-3’;cg2937-D-R:5’-TGCCTGCAGGTCGACTCTAGAGGTGATTGGGGTGATCAGC-3’。以谷氨酸棒杆菌(Corynebacterium glutamicum ATCC13869,购自美国典型微生物保藏中心)基因组为PCR模板,使用引物cg2937-U-F和cg2937-U-R扩增出N-乙酰神经氨酸转运蛋白编码基因(cg2937)上游同源臂序列△cg2937-Up;使用引物cg2937-D-F和cg2937-D-R扩增出N-乙酰神经氨酸转运蛋白编码基因(cg2937)下游同源臂序列△cg2937-Down。将△cg2937-Up和△cg2937-Down经一步克隆法(所使用一步克隆试剂盒购自南京诺唯赞生物技术有限公司)连接至敲除载体pk18mobsacB(

Figure BDA0001586079880000051
A,Tauch A,
Figure BDA0001586079880000052
W,Kalinowski J,Thierbach G,PühlerA.Small mobilizable multi-purpose cloning vectors derived from theEscherichia coli plasmids pK18and pK19:selection of defined deletions in thechromosome of Corynebacterium glutamicum.Gene.1994;145(1):69-73.)上EcoRI和XbaI位点之间,即得到含有N-乙酰神经氨酸转运蛋白编码基因敲除框的自杀质粒pk18mobsacB△cg2937。将pk18mobsacB△cg2937转化谷氨酸棒杆菌Corynebacteriumglutamicum ATCC13869,通过卡那霉素抗性平板筛选,挑选平板转化子接种LB液体培养基于30℃、200rpm培养12h,将菌悬液稀释、涂布含有10%蔗糖的LB平板,筛选出不具有卡那抗性的平板单菌落,进行菌落PCR验证,确认N-乙酰神经氨酸转运蛋白编码基因(cg2937)敲除成功,得到重组谷氨酸棒杆菌13869△cg2937。According to the upstream and downstream sequences of the N-acetylneuraminic acid transporter gene (cg2937) in Corynebacterium glutamicum ATCC 13032 published on NCBI, the primer cg2937-UF: 5'-CTATGACATGATTACGAATTCGCTGTGAGCTTTGATGGTTTC-3'; cg2937- UR: 5'-ACATTGATCTCTACTCTGACTGCCGGTGTTGTCTGGTGCA-3'; cg2937-DF: 5'-GTCAGAGTAGAGATCAATGTCGAATCCTACGACCAGGTACA-3'; cg2937-DR: 5'-TGCCTGCAGGTCGACTCTAGAGGTGATTGGGGTGATCAGC-3'. Using the genome of Corynebacterium glutamicum ATCC13869 (purchased from the American Collection of Types of Microorganisms) as a PCR template, the upstream of the N-acetylneuraminic acid transporter-encoding gene (cg2937) was amplified using primers cg2937-UF and cg2937-UR The homology arm sequence Δcg2937-Up; the homology arm sequence Δcg2937-Down downstream of the N-acetylneuraminic acid transporter encoding gene (cg2937) was amplified by primers cg2937-DF and cg2937-DR. △cg2937-Up and △cg2937-Down were ligated into the knockout vector pk18mobsacB (
Figure BDA0001586079880000051
A,Tauch A,
Figure BDA0001586079880000052
W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in thechromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69-73.) on Between the EcoRI and XbaI sites, the suicide plasmid pk18mobsacB△cg2937 containing the knockout box of the N-acetylneuraminic acid transporter-encoding gene was obtained. Transform pk18mobsacB△cg2937 into Corynebacterium glutamicum ATCC13869, screen by kanamycin resistance plate, select the plate transformants to inoculate LB liquid culture based on 30 ℃, 200rpm culture for 12h, dilute the bacterial suspension, spread containing 10% The LB plate of sucrose was used to screen out the single colony of the plate without kana resistance, and the colony PCR was carried out to confirm that the gene encoding the N-acetylneuraminic acid transporter (cg2937) was successfully knocked out, and the recombinant Corynebacterium glutamicum 13869△ was obtained. cg2937.

实施例3 N-乙酰神经氨酸胞内分解代谢途径的阻断Example 3 Blockade of intracellular catabolic pathway of N-acetylneuraminic acid

通过敲除染色体上N-乙酰氨基甘露糖激酶编码基因nanK、N-乙酰氨基甘露糖-6-磷酸异构酶编码基因nanE、乙酰氨基葡萄糖-6-磷酸脱乙酰基酶编码基因nagA和氨基葡萄糖-6-磷酸脱氨基酶编码基因nagB,以阻断N-乙酰神经氨酸在胞内的分解代谢。By knocking out the genes encoding N-acetylaminomannose kinase nanK, N-acetylmannose-6-phosphate isomerase encoding genes nanE, acetylglucosamine-6-phosphate deacetylase encoding genes nagA and glucosamine on chromosomes -6-Phosphate deaminase encodes the gene nagB to block the intracellular catabolism of N-acetylneuraminic acid.

根据NCBI上公布的谷氨酸棒杆菌(Corynebacterium glutamicum ATCC 13032)中N-乙酰神经氨酸操纵子(5’-nagB-nagA-nanA-nanK-nanE-3’)上下游序列,设计引物NEU-U-F:5’-CTATGACATGATTACGAATTCGATTTCGGGGAGACATTCACT-3’;NEU-U-R:5’-GTACCTGAGAATGTAGTTTTTTGGTGCCAACGCGATCATC-3’;NEU-D-F:5’-AAAACTACATTCTCAGGTACAAACGCTGATCACTACCGTCT-3’;NEU-D-R:5’-TGCCTGCAGGTCGACTCTAGAGCGTAGAATTCATGGCCGAAAT-3’。以谷氨酸棒杆菌(Corynebacterium glutamicum ATCC13869,购自美国典型微生物保藏中心)基因组为PCR模板,使用引物NEU-U-F和NEU-U-R扩增出N-乙酰神经氨酸操纵子(5’-nagB-nagA-nanA-nanK-nanE-3’)上游同源臂序列△NEU-Up;使用引物NEU-D-F和NEU-D-R扩增出N-乙酰神经氨酸操纵子(5’-nagB-nagA-nanA-nanK-nanE-3’)下游同源臂序列△NEU-Down。将△NEU-Up和△NEU-Down经一步克隆法(所使用一步克隆试剂盒购自南京诺唯赞生物技术有限公司)连接至敲除载体pk18mobsacB(

Figure BDA0001586079880000061
A,Tauch A,
Figure BDA0001586079880000062
W,Kalinowski J,ThierbachG,Pühler A.Small mobilizable multi-purpose cloning vectors derived from theEscherichia coli plasmids pK18and pK19:selection of defined deletions in thechromosome of Corynebacterium glutamicum.Gene.1994;145(1):69-73.)上EcoRI和XbaI位点之间,即得到含有N-乙酰神经氨酸操纵子敲除框的自杀质粒pk18mobsacB△NEU。将pk18mobsacB△NEU转化谷氨酸棒杆菌Corynebacterium glutamicum ATCC13869以及13869△cg2937,通过卡那霉素抗性平板筛选,挑选平板转化子接种LB液体培养基于30℃、200rpm培养12h,将菌悬液稀释、涂布含有10%蔗糖的LB平板,筛选出不具有卡那抗性的平板单菌落,进行菌落PCR验证,确认N-乙酰神经氨酸操纵子敲除成功,得到重组谷氨酸棒杆菌13869△NEU以及13869△cg2937△NEU。The primer NEU- UF: 5'-CTATGACATGATTACGAATTCGATTTCGGGGAGACATTCACT-3'; NEU-UR: 5'-GTACCTGAGAATGTAGTTTTTTGGTGCCAACGCGATCATC-3'; NEU-DF: 5'-AAAACTACATTCTCAGGTACAAACGCTGATCACTACCGTCT-3'; NEU-DR: 5'-TGCCTGCAGGTCGACTCTAGAGCGTAGAATTCATGGCCGAAAT-3'. The N-acetylneuraminic acid operon (5'-nagB- nagA-nanA-nanK-nanE-3') upstream homology arm sequence △NEU-Up; using primers NEU-DF and NEU-DR to amplify the N-acetylneuraminic acid operon (5'-nagB-nagA-nanA -nanK-nanE-3') downstream homology arm sequence ΔNEU-Down. △NEU-Up and △NEU-Down were ligated into the knockout vector pk18mobsacB (
Figure BDA0001586079880000061
A,Tauch A,
Figure BDA0001586079880000062
W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in thechromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69-73.) on Between the EcoRI and XbaI sites, the suicide plasmid pk18mobsacBΔNEU containing the N-acetylneuraminic acid operon knockout box was obtained. The pk18mobsacB△NEU was transformed into Corynebacterium glutamicum ATCC13869 and 13869△cg2937, screened by kanamycin resistance plate, and the plate transformants were selected to inoculate LB liquid culture based on 30 ℃, 200rpm culture for 12h, the bacterial suspension was diluted, Coat the LB plate containing 10% sucrose, screen out the single colony on the plate without kana resistance, and perform colony PCR verification to confirm the successful knockout of the N-acetylneuraminic acid operon, and obtain the recombinant Corynebacterium glutamicum 13869△ NEU and 13869Δcg2937ΔNEU.

根据NCBI上公布的谷氨酸棒杆菌(Corynebacterium glutamicum ATCC 13032)中N-乙酰神经氨酸裂合酶编码基因(nanA)及其上游序列,设计引物nanA-F:5’-GTACCTGAGAATGTAGTTTTCACTTCTGCCATCTTTCTG-3’;nanA-R:5’-CGGAGATCTGGTACTTTCGAGGTGTGGGCCTTAAGCGGTGT-3’;NEU-U-F:5’-CTATGACATGATTACGAATTCGATTTCGGGGAGACATTCACT-3’;NEU-U-R2:5’-GTACCTGAGAATGTAGTTTTTTGGTGCCAACGCGATCATC-3’;NEU-D-F2:5’-CTCGAAAGTACCAGATCTCCGAAACGCTGATCACTACCGTCT-3’;NEU-D-R:5’-TGCCTGCAGGTCGACTCTAGAGCGTAGAATTCATGGCCGAAAT-3’。以谷氨酸棒杆菌(Corynebacterium glutamicum ATCC13869,购自美国典型微生物保藏中心)基因组为PCR模板,使用引物NEU-U-F和NEU-U-R2扩增出N-乙酰神经氨酸操纵子(5’-nagB-nagA-nanA-nanK-nanE-3’)上游同源臂序列△NEU-Up2;使用引物nanA-F和nanA-R扩增出N-乙酰神经氨酸裂合酶及其上游启动子序列nanA;使用引物NEU-D-F2和NEU-D-R扩增出N-乙酰神经氨酸操纵子(5’-nagB-nagA-nanA-nanK-nanE-3’)下游同源臂序列△NEU-Down2。将△NEU-Up2、nanA和△NEU-Down2经一步克隆法(所使用一步克隆试剂盒购自南京诺唯赞生物技术有限公司)连接至载体pk18mobsacB(

Figure BDA0001586079880000071
A,Tauch A,
Figure BDA0001586079880000072
W,Kalinowski J,Thierbach G,PühlerA.Small mobilizable multi-purpose cloningvectors derived from the Escherichia coli plasmids pK18and pK19:selection ofdefined deletions in the chromosome of Corynebacterium glutamicum.Gene.1994;145(1):69-73.)上EcoRI和XbaI位点之间,即得到nanA回补质粒pk18mobsacB△NEU::nanA。将pk18mobsacB△NEU::nanA转化谷氨酸棒杆菌13869△NEU以及13869△cg2937△NEU,通过卡那霉素抗性平板筛选,挑选平板转化子接种LB液体培养基于30℃、200rpm培养12-18h,将菌悬液稀释、涂布含有10%蔗糖的LB平板,筛选出不具有卡那抗性的平板单菌落,进行菌落PCR验证,确认染色体上nanA复原成功,既得到重组谷氨酸棒杆菌13869△nanK△nanE△nagA△nagB以及13869△cg2937△nanK△nanE△nagA△nagB。According to the N-acetylneuraminic acid lyase encoding gene (nanA) and its upstream sequence in Corynebacterium glutamicum ATCC 13032 published on NCBI, the primer nanA-F: 5'-GTACCTGAGAATGTAGTTTTCACTTCTGCCATCTTTTCG-3' was designed; nanA-R: 5'-CGGAGATCTGGTACTTTCGAGGTGTGGGCCTTAAGCGGTGT-3';NEU-UF:5'-CTATGACATGATTACGAATTCGATTTCGGGGAGACATTCACT-3';NEU-U-R2:5'-GTACCTGAGAATGTAGTTTTTTGGTGCCAACGCGATCATC-3';NEU-D-F2:5'-CTCGAAAGTACCAGATCTCCGAAACGCTGATCACTACC ';NEU-DR:5'-TGCCTGCAGGTCGACTCTAGAGCGTAGAATTCATGGCCGAAT-3'. The N-acetylneuraminic acid operon (5'- nagB-nagA-nanA-nanK-nanE-3') upstream homology arm sequence △NEU-Up2; use primers nanA-F and nanA-R to amplify N-acetylneuraminic acid lyase and its upstream promoter sequence nanA; using primers NEU-D-F2 and NEU-DR to amplify the downstream homology arm sequence of the N-acetylneuraminic acid operon (5'-nagB-nagA-nanA-nanK-nanE-3') △NEU-Down2 . △NEU-Up2, nanA and △NEU-Down2 were ligated into the vector pk18mobsacB (
Figure BDA0001586079880000071
A,Tauch A,
Figure BDA0001586079880000072
W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69-73.) on Between the EcoRI and XbaI sites, the nanA complementing plasmid pk18mobsacB△NEU::nanA was obtained. pk18mobsacB△NEU::nanA was transformed into Corynebacterium glutamicum 13869△NEU and 13869△cg2937△NEU, screened by kanamycin resistance plate, and the plate transformants were selected to inoculate LB liquid culture based on 30℃, 200rpm culture for 12-18h , the bacterial suspension was diluted, coated with LB plate containing 10% sucrose, and the single colony on the plate without kana resistance was screened out, and the colony PCR was carried out to confirm the successful recovery of nanA on the chromosome, and the recombinant Corynebacterium glutamicum was obtained. 13869△nanK△nanE△nagA△nagB and 13869△cg2937△nanK△nanE△nagA△nagB.

实施例4 积累N-乙酰神经氨酸的重组谷氨酸棒杆菌的构建Example 4 Construction of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid

将构建好的重组表达质粒p9-age-neuB-Ptac-glmS-GNA1-yqaB转化谷氨酸棒杆菌Corynebacterium glutamicum ATCC13869、13869△nanK△nanE△nagA△nagB以及13869△cg2937△nanK△nanE△nagA△nagB。采用age-F和yqaB-R引物对挑选转化子进行菌落PCR,出现5400bp条带,验证重组谷氨酸棒杆菌Corynebacterium glutamicum ATCC13869(p9-age-neuB-Ptac-glmS-GNA1-yqaB)、13869△nanK△nanE△nagA△nagB(p9-age-neuB-Ptac-glmS-GNA1-yqaB)和13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-Ptac-glmS-GNA1-yqaB)构建成功。The constructed recombinant expression plasmid p9-age-neuB-P tac -glmS-GNA1-yqaB was transformed into Corynebacterium glutamicum ATCC13869, 13869△nanK△nanE△nagA△nagB and 13869△cg2937△nanK△nanE△nagA ΔnagB. Using age-F and yqaB-R primers to select transformants for colony PCR, a 5400bp band appeared, verifying that the recombinant Corynebacterium glutamicum ATCC13869 (p9-age-neuB-P tac -glmS-GNA1-yqaB), 13869 △nanK△nanE△nagA△nagB(p9-age-neuB-P tac -glmS-GNA1-yqaB) and 13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-P tac -glmS-GNA1- yqaB) build successfully.

实施例5发酵生产N-乙酰神经氨酸Example 5 Fermentation to produce N-acetylneuraminic acid

种子培养基(g/L):葡萄糖10,尿素1.25,玉米浆20,磷酸二氢钾1,硫酸镁0.5。Seed medium (g/L): glucose 10, urea 1.25, corn steep liquor 20, potassium dihydrogen phosphate 1, magnesium sulfate 0.5.

发酵培养基(g/L):葡萄糖80,硫酸铵35,玉米浆20,磷酸二氢钾1,硫酸镁1,碳酸钙30。Fermentation medium (g/L): glucose 80, ammonium sulfate 35, corn steep liquor 20, potassium dihydrogen phosphate 1, magnesium sulfate 1, calcium carbonate 30.

将30-32℃、180-220rpm下培养12-24h的种子以5%-10%的接种量转入发酵培养基,于30-32℃、180-220rpm条件下培养30-50h。最终Corynebacterium glutamicum 13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-Ptac-glmS-GNA1-yqaB)发酵上清液中N-乙酰神经氨酸含量达到了110mg/L。过量表达氨糖-果糖-6磷酸氨基转移酶编码基因(glmS)、氨基葡萄糖乙酰化酶编码基因(GNA1)、磷酸酶编码基因(yqaB)、乙酰氨基葡萄糖异构酶编码基因(age)和N-乙酰神经氨酸合酶编码基因(neuB),并敲除染色体上N-乙酰神经氨酸转运蛋白编码基因(cg2937)和胞内N-乙酰神经氨酸分解利用代谢途径上的N-乙酰氨基甘露糖激酶编码基因(nanK)、N-乙酰氨基甘露糖-6-磷酸异构酶编码基因(nanE)、乙酰氨基葡萄糖-6-磷酸脱乙酰基酶编码基因(nagA)、氨基葡萄糖-6-磷酸脱氨基酶编码基因(nagB),实现了N-乙酰神经氨酸在重组谷氨酸棒杆菌胞外的积累。The seeds cultured at 30-32°C and 180-220rpm for 12-24h were transferred to the fermentation medium at an inoculum of 5%-10%, and cultured at 30-32°C and 180-220rpm for 30-50h. Finally, the content of N-acetylneuraminic acid in the fermentation supernatant of Corynebacterium glutamicum 13869△cg2937△nanK△nanE△nagA△nagB(p9-age-neuB-P tac -glmS-GNA1-yqaB) reached 110mg/L. Overexpression of the gene encoding glucosamine-fructose-6 phosphate aminotransferase (glmS), the gene encoding glucosamine acetylase (GNA1), the gene encoding phosphatase (yqaB), the gene encoding acetylglucosamine isomerase (age) and N - The gene encoding acetylneuraminic acid synthase (neuB), and the gene encoding the N-acetylneuraminic acid transporter (cg2937) on the chromosome and the N-acetylneuramidase on the metabolic pathway of intracellular N-acetylneuraminic acid catabolism are knocked out Mannokinase encoding gene (nanK), N-acetylaminomannose-6-phosphate isomerase encoding gene (nanE), acetylglucosamine-6-phosphate deacetylase encoding gene (nagA), glucosamine-6- Phosphate deaminase encoding gene (nagB) realizes the extracellular accumulation of N-acetylneuraminic acid in recombinant Corynebacterium glutamicum.

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention should be defined by the claims.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 江南大学<110> Jiangnan University

<120> 一种积累N-乙酰神经氨酸的重组谷氨酸棒杆菌及其应用<120> A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application

<160> 31<160> 31

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 623<211> 623

<212> PRT<212> PRT

<213> Corynebacterium glutamicum ATCC13869<213> Corynebacterium glutamicum ATCC13869

<400> 1<400> 1

Met Cys Gly Ile Val Gly Tyr Ile Gly Gln Ala Gly Asp Ser Arg AspMet Cys Gly Ile Val Gly Tyr Ile Gly Gln Ala Gly Asp Ser Arg Asp

1 5 10 151 5 10 15

Tyr Phe Ala Leu Asp Val Val Leu Glu Gly Leu Arg Arg Leu Glu TyrTyr Phe Ala Leu Asp Val Val Leu Glu Gly Leu Arg Arg Leu Glu Tyr

20 25 30 20 25 30

Arg Gly Tyr Asp Ser Ala Gly Val Ala Val His Ala Asn Gly Glu IleArg Gly Tyr Asp Ser Ala Gly Val Ala Val His Ala Asn Gly Glu Ile

35 40 45 35 40 45

Ser Tyr Arg Lys Lys Ala Gly Lys Val Ala Ala Leu Asp Ala Glu IleSer Tyr Arg Lys Lys Ala Gly Lys Val Ala Ala Leu Asp Ala Glu Ile

50 55 60 50 55 60

Ala Arg Ala Pro Leu Ala Asp Ser Ile Leu Ala Ile Gly His Thr ArgAla Arg Ala Pro Leu Ala Asp Ser Ile Leu Ala Ile Gly His Thr Arg

65 70 75 8065 70 75 80

Trp Ala Thr His Gly Gly Pro Thr Asp Ala Asn Ala His Pro His ValTrp Ala Thr His Gly Gly Pro Thr Asp Ala Asn Ala His Pro His Val

85 90 95 85 90 95

Val Asp Gly Gly Lys Leu Ala Val Val His Asn Gly Ile Ile Glu AsnVal Asp Gly Gly Lys Leu Ala Val Val His Asn Gly Ile Ile Glu Asn

100 105 110 100 105 110

Phe Ala Glu Leu Arg Ala Glu Leu Ser Ala Lys Gly Tyr Asn Phe ValPhe Ala Glu Leu Arg Ala Glu Leu Ser Ala Lys Gly Tyr Asn Phe Val

115 120 125 115 120 125

Ser Val Thr Asp Thr Glu Val Ala Ala Thr Leu Leu Ala Glu Ile TyrSer Val Thr Asp Thr Glu Val Ala Ala Thr Leu Leu Ala Glu Ile Tyr

130 135 140 130 135 140

Asn Thr Gln Ala Asn Gly Asp Leu Thr Lys Ala Met Gln Leu Thr GlyAsn Thr Gln Ala Asn Gly Asp Leu Thr Lys Ala Met Gln Leu Thr Gly

145 150 155 160145 150 155 160

Gln Arg Leu Glu Gly Ala Phe Thr Leu Leu Ala Ile His Ala Asp HisGln Arg Leu Glu Gly Ala Phe Thr Leu Leu Ala Ile His Ala Asp His

165 170 175 165 170 175

Asp Asp Arg Ile Val Ala Ala Arg Arg Asn Ser Pro Leu Val Ile GlyAsp Asp Arg Ile Val Ala Ala Arg Arg Asn Ser Pro Leu Val Ile Gly

180 185 190 180 185 190

Leu Gly Glu Gly Glu Asn Phe Leu Gly Ser Asp Val Ser Gly Phe IleLeu Gly Glu Gly Glu Asn Phe Leu Gly Ser Asp Val Ser Gly Phe Ile

195 200 205 195 200 205

Asp Tyr Thr Arg Lys Ala Val Glu Met Gly Asn Asp Gln Ile Val ThrAsp Tyr Thr Arg Lys Ala Val Glu Met Gly Asn Asp Gln Ile Val Thr

210 215 220 210 215 220

Ile Thr Ala Asn Asp Tyr Gln Ile Thr Asn Phe Asp Gly Ser Glu AlaIle Thr Ala Asn Asp Tyr Gln Ile Thr Asn Phe Asp Gly Ser Glu Ala

225 230 235 240225 230 235 240

Thr Gly Lys Pro Phe Asp Val Glu Trp Asp Ala Ala Ala Ala Glu LysThr Gly Lys Pro Phe Asp Val Glu Trp Asp Ala Ala Ala Ala Glu Lys

245 250 255 245 250 255

Gly Gly Phe Asp Ser Phe Met Asp Lys Glu Ile His Asp Gln Pro AlaGly Gly Phe Asp Ser Phe Met Asp Lys Glu Ile His Asp Gln Pro Ala

260 265 270 260 265 270

Ala Val Arg Asp Thr Leu Leu Gly Arg Leu Asp Glu Asp Gly Lys LeuAla Val Arg Asp Thr Leu Leu Gly Arg Leu Asp Glu Asp Gly Lys Leu

275 280 285 275 280 285

Val Leu Asp Glu Leu Arg Ile Asp Glu Ala Thr Leu Arg Ser Val AsnVal Leu Asp Glu Leu Arg Ile Asp Glu Ala Thr Leu Arg Ser Val Asn

290 295 300 290 295 300

Lys Ile Ile Val Val Ala Cys Gly Thr Ala Ala Tyr Ala Gly Gln ValLys Ile Ile Val Val Ala Cys Gly Thr Ala Ala Tyr Ala Gly Gln Val

305 310 315 320305 310 315 320

Ala Arg Tyr Ala Ile Glu His Trp Cys Arg Ile Pro Thr Glu Val GluAla Arg Tyr Ala Ile Glu His Trp Cys Arg Ile Pro Thr Glu Val Glu

325 330 335 325 330 335

Leu Ala His Glu Phe Arg Tyr Arg Asp Pro Ile Val Asn Glu Lys ThrLeu Ala His Glu Phe Arg Tyr Arg Asp Pro Ile Val Asn Glu Lys Thr

340 345 350 340 345 350

Leu Val Val Ala Leu Ser Gln Ser Gly Glu Thr Met Asp Thr Leu MetLeu Val Val Ala Leu Ser Gln Ser Gly Glu Thr Met Asp Thr Leu Met

355 360 365 355 360 365

Ala Val Arg His Ala Arg Glu Gln Gly Ala Lys Val Ile Ala Ile CysAla Val Arg His Ala Arg Glu Gln Gly Ala Lys Val Ile Ala Ile Cys

370 375 380 370 375 380

Asn Thr Val Gly Ser Thr Leu Pro Arg Glu Ala Asp Ala Ser Leu TyrAsn Thr Val Gly Ser Thr Leu Pro Arg Glu Ala Asp Ala Ser Leu Tyr

385 390 395 400385 390 395 400

Thr Tyr Ala Gly Pro Glu Ile Ala Val Ala Ser Thr Lys Ala Phe LeuThr Tyr Ala Gly Pro Glu Ile Ala Val Ala Ser Thr Lys Ala Phe Leu

405 410 415 405 410 415

Ala Gln Ile Thr Ala Ser Tyr Leu Leu Gly Leu Tyr Leu Ala Gln LeuAla Gln Ile Thr Ala Ser Tyr Leu Leu Gly Leu Tyr Leu Ala Gln Leu

420 425 430 420 425 430

Arg Gly Asn Lys Phe Ala Asp Glu Val Ser Ser Ile Leu Asp Ser LeuArg Gly Asn Lys Phe Ala Asp Glu Val Ser Ser Ile Leu Asp Ser Leu

435 440 445 435 440 445

Arg Glu Met Pro Glu Lys Ile Gln Gln Val Ile Asp Ala Glu Glu GlnArg Glu Met Pro Glu Lys Ile Gln Gln Val Ile Asp Ala Glu Glu Gln

450 455 460 450 455 460

Ile Lys Lys Leu Gly Gln Asp Met Ser Asp Ala Lys Ser Val Leu PheIle Lys Lys Leu Gly Gln Asp Met Ser Asp Ala Lys Ser Val Leu Phe

465 470 475 480465 470 475 480

Leu Gly Arg His Val Gly Phe Pro Val Ala Leu Glu Gly Ala Leu LysLeu Gly Arg His Val Gly Phe Pro Val Ala Leu Glu Gly Ala Leu Lys

485 490 495 485 490 495

Leu Lys Glu Ile Ala Tyr Leu His Ala Glu Gly Phe Ala Ala Gly GluLeu Lys Glu Ile Ala Tyr Leu His Ala Glu Gly Phe Ala Ala Gly Glu

500 505 510 500 505 510

Leu Lys His Gly Pro Ile Ala Leu Val Glu Glu Gly Gln Pro Val PheLeu Lys His Gly Pro Ile Ala Leu Val Glu Glu Gly Gln Pro Val Phe

515 520 525 515 520 525

Val Ile Val Pro Ser Pro Arg Gly Arg Asp Ser Leu His Ser Lys ValVal Ile Val Pro Ser Pro Arg Gly Arg Asp Ser Leu His Ser Lys Val

530 535 540 530 535 540

Val Ser Asn Ile Gln Glu Ile Arg Ala Arg Gly Ala Val Thr Ile ValVal Ser Asn Ile Gln Glu Ile Arg Ala Arg Gly Ala Val Thr Ile Val

545 550 555 560545 550 555 560

Ile Ala Glu Glu Gly Asp Glu Ala Val Asn Asp Tyr Ala Asn Phe IleIle Ala Glu Glu Gly Asp Glu Ala Val Asn Asp Tyr Ala Asn Phe Ile

565 570 575 565 570 575

Ile Arg Ile Pro Gln Ala Pro Thr Leu Met Gln Pro Leu Leu Ser ThrIle Arg Ile Pro Gln Ala Pro Thr Leu Met Gln Pro Leu Leu Ser Thr

580 585 590 580 585 590

Val Pro Leu Gln Ile Phe Ala Cys Ala Val Ala Thr Ala Lys Gly TyrVal Pro Leu Gln Ile Phe Ala Cys Ala Val Ala Thr Ala Lys Gly Tyr

595 600 605 595 600 605

Asn Val Asp Gln Pro Arg Asn Leu Ala Lys Ser Val Thr Val GluAsn Val Asp Gln Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu

610 615 620 610 615 620

<210> 2<210> 2

<211> 159<211> 159

<212> PRT<212> PRT

<213> Saccharomyces cerevisiae S288C<213> Saccharomyces cerevisiae S288C

<400> 2<400> 2

Met Ser Leu Pro Asp Gly Phe Tyr Ile Arg Arg Met Glu Glu Gly AspMet Ser Leu Pro Asp Gly Phe Tyr Ile Arg Arg Met Glu Glu Gly Asp

1 5 10 151 5 10 15

Leu Glu Gln Val Thr Glu Thr Leu Lys Val Leu Thr Thr Val Gly ThrLeu Glu Gln Val Thr Glu Thr Leu Lys Val Leu Thr Thr Val Gly Thr

20 25 30 20 25 30

Ile Thr Pro Glu Ser Phe Ser Lys Leu Ile Lys Tyr Trp Asn Glu AlaIle Thr Pro Glu Ser Phe Ser Lys Leu Ile Lys Tyr Trp Asn Glu Ala

35 40 45 35 40 45

Thr Val Trp Asn Asp Asn Glu Asp Lys Lys Ile Met Gln Tyr Asn ProThr Val Trp Asn Asp Asn Glu Asp Lys Lys Ile Met Gln Tyr Asn Pro

50 55 60 50 55 60

Met Val Ile Val Asp Lys Arg Thr Glu Thr Val Ala Ala Thr Gly AsnMet Val Ile Val Asp Lys Arg Thr Glu Thr Val Ala Ala Thr Gly Asn

65 70 75 8065 70 75 80

Ile Ile Ile Glu Arg Lys Ile Ile His Glu Leu Gly Leu Cys Gly HisIle Ile Ile Glu Arg Lys Ile Ile His Glu Leu Gly Leu Cys Gly His

85 90 95 85 90 95

Ile Glu Asp Ile Ala Val Asn Ser Lys Tyr Gln Gly Gln Gly Leu GlyIle Glu Asp Ile Ala Val Asn Ser Lys Tyr Gln Gly Gln Gly Leu Gly

100 105 110 100 105 110

Lys Leu Leu Ile Asp Gln Leu Val Thr Ile Gly Phe Asp Tyr Gly CysLys Leu Leu Ile Asp Gln Leu Val Thr Ile Gly Phe Asp Tyr Gly Cys

115 120 125 115 120 125

Tyr Lys Ile Ile Leu Asp Cys Asp Glu Lys Asn Val Lys Phe Tyr GluTyr Lys Ile Ile Leu Asp Cys Asp Glu Lys Asn Val Lys Phe Tyr Glu

130 135 140 130 135 140

Lys Cys Gly Phe Ser Asn Ala Gly Val Glu Met Gln Ile Arg LysLys Cys Gly Phe Ser Asn Ala Gly Val Glu Met Gln Ile Arg Lys

145 150 155145 150 155

<210> 3<210> 3

<211> 188<211> 188

<212> PRT<212> PRT

<213> Escherichia coli K-12<213> Escherichia coli K-12

<400> 3<400> 3

Met Tyr Glu Arg Tyr Ala Gly Leu Ile Phe Asp Met Asp Gly Thr IleMet Tyr Glu Arg Tyr Ala Gly Leu Ile Phe Asp Met Asp Gly Thr Ile

1 5 10 151 5 10 15

Leu Asp Thr Glu Pro Thr His Arg Lys Ala Trp Arg Glu Val Leu GlyLeu Asp Thr Glu Pro Thr His Arg Lys Ala Trp Arg Glu Val Leu Gly

20 25 30 20 25 30

His Tyr Gly Leu Gln Tyr Asp Ile Gln Ala Met Ile Ala Leu Asn GlyHis Tyr Gly Leu Gln Tyr Asp Ile Gln Ala Met Ile Ala Leu Asn Gly

35 40 45 35 40 45

Ser Pro Thr Trp Arg Ile Ala Gln Ala Ile Ile Glu Leu Asn Gln AlaSer Pro Thr Trp Arg Ile Ala Gln Ala Ile Ile Glu Leu Asn Gln Ala

50 55 60 50 55 60

Asp Leu Asp Pro His Ala Leu Ala Arg Glu Lys Thr Glu Ala Val ArgAsp Leu Asp Pro His Ala Leu Ala Arg Glu Lys Thr Glu Ala Val Arg

65 70 75 8065 70 75 80

Ser Met Leu Leu Asp Ser Val Glu Pro Leu Pro Leu Val Asp Val ValSer Met Leu Leu Asp Ser Val Glu Pro Leu Pro Leu Val Asp Val Val

85 90 95 85 90 95

Lys Ser Trp His Gly Arg Arg Pro Met Ala Val Gly Thr Gly Ser GluLys Ser Trp His Gly Arg Arg Pro Met Ala Val Gly Thr Gly Ser Glu

100 105 110 100 105 110

Ser Ala Ile Ala Glu Ala Leu Leu Ala His Leu Gly Leu Arg His TyrSer Ala Ile Ala Glu Ala Leu Leu Ala His Leu Gly Leu Arg His Tyr

115 120 125 115 120 125

Phe Asp Ala Val Val Ala Ala Asp His Val Lys His His Lys Pro AlaPhe Asp Ala Val Val Ala Ala Asp His Val Lys His His Lys Pro Ala

130 135 140 130 135 140

Pro Asp Thr Phe Leu Leu Cys Ala Gln Arg Met Gly Val Gln Pro ThrPro Asp Thr Phe Leu Leu Cys Ala Gln Arg Met Gly Val Gln Pro Thr

145 150 155 160145 150 155 160

Gln Cys Val Val Phe Glu Asp Ala Asp Phe Gly Ile Gln Ala Ala ArgGln Cys Val Val Phe Glu Asp Ala Asp Phe Gly Ile Gln Ala Ala Arg

165 170 175 165 170 175

Ala Ala Gly Met Asp Ala Val Asp Val Arg Leu LeuAla Ala Gly Met Asp Ala Val Asp Val Arg Leu Leu

180 185 180 185

<210> 4<210> 4

<211> 388<211> 388

<212> PRT<212> PRT

<213> Anabaena sp. CH1<213> Anabaena sp. CH1

<400> 4<400> 4

Met Gly Lys Asn Leu Gln Ala Leu Ala Gln Leu Tyr Lys Asn Ala LeuMet Gly Lys Asn Leu Gln Ala Leu Ala Gln Leu Tyr Lys Asn Ala Leu

1 5 10 151 5 10 15

Leu Asn Asp Val Leu Pro Phe Trp Glu Asn His Ser Leu Asp Ser GluLeu Asn Asp Val Leu Pro Phe Trp Glu Asn His Ser Leu Asp Ser Glu

20 25 30 20 25 30

Gly Gly Tyr Phe Thr Cys Leu Asp Arg Gln Gly Lys Val Tyr Asp ThrGly Gly Tyr Phe Thr Cys Leu Asp Arg Gln Gly Lys Val Tyr Asp Thr

35 40 45 35 40 45

Asp Lys Phe Ile Trp Leu Gln Asn Arg Gln Val Trp Thr Phe Ser MetAsp Lys Phe Ile Trp Leu Gln Asn Arg Gln Val Trp Thr Phe Ser Met

50 55 60 50 55 60

Leu Cys Asn Gln Leu Glu Lys Arg Glu Asn Trp Leu Lys Ile Ala ArgLeu Cys Asn Gln Leu Glu Lys Arg Glu Asn Trp Leu Lys Ile Ala Arg

65 70 75 8065 70 75 80

Asn Gly Ala Lys Phe Leu Ala Gln His Gly Arg Asp Asp Glu Gly AsnAsn Gly Ala Lys Phe Leu Ala Gln His Gly Arg Asp Asp Glu Gly Asn

85 90 95 85 90 95

Trp Tyr Phe Ala Leu Thr Arg Gly Gly Glu Pro Leu Val Gln Pro TyrTrp Tyr Phe Ala Leu Thr Arg Gly Gly Glu Pro Leu Val Gln Pro Tyr

100 105 110 100 105 110

Asn Ile Phe Ser Asp Cys Phe Ala Ala Met Ala Phe Ser Gln Tyr AlaAsn Ile Phe Ser Asp Cys Phe Ala Ala Met Ala Phe Ser Gln Tyr Ala

115 120 125 115 120 125

Leu Ala Ser Gly Glu Glu Trp Ala Lys Asp Val Ala Met Gln Ala TyrLeu Ala Ser Gly Glu Glu Trp Ala Lys Asp Val Ala Met Gln Ala Tyr

130 135 140 130 135 140

Asn Asn Val Leu Arg Arg Lys Asp Asn Pro Lys Gly Lys Tyr Thr LysAsn Asn Val Leu Arg Arg Lys Asp Asn Pro Lys Gly Lys Tyr Thr Lys

145 150 155 160145 150 155 160

Thr Tyr Pro Gly Thr Arg Pro Met Lys Ala Leu Ala Val Pro Met IleThr Tyr Pro Gly Thr Arg Pro Met Lys Ala Leu Ala Val Pro Met Ile

165 170 175 165 170 175

Leu Ala Asn Leu Thr Leu Glu Met Glu Trp Leu Leu Pro Gln Glu ThrLeu Ala Asn Leu Thr Leu Glu Met Glu Trp Leu Leu Pro Gln Glu Thr

180 185 190 180 185 190

Leu Glu Asn Val Leu Ala Ala Thr Val Gln Glu Val Met Gly Asp PheLeu Glu Asn Val Leu Ala Ala Thr Val Gln Glu Val Met Gly Asp Phe

195 200 205 195 200 205

Leu Asp Gln Glu Gln Gly Leu Met Tyr Glu Asn Val Ala Pro Asp GlyLeu Asp Gln Glu Gln Gly Leu Met Tyr Glu Asn Val Ala Pro Asp Gly

210 215 220 210 215 220

Ser His Ile Asp Cys Phe Glu Gly Arg Leu Ile Asn Pro Gly His GlySer His Ile Asp Cys Phe Glu Gly Arg Leu Ile Asn Pro Gly His Gly

225 230 235 240225 230 235 240

Ile Glu Ala Met Trp Phe Ile Met Asp Ile Ala Arg Arg Lys Asn AspIle Glu Ala Met Trp Phe Ile Met Asp Ile Ala Arg Arg Lys Asn Asp

245 250 255 245 250 255

Ser Lys Thr Ile Asn Gln Ala Val Asp Val Val Leu Asn Ile Leu AsnSer Lys Thr Ile Asn Gln Ala Val Asp Val Val Leu Asn Ile Leu Asn

260 265 270 260 265 270

Phe Ala Trp Asp Asn Glu Tyr Gly Gly Leu Tyr Tyr Phe Met Asp AlaPhe Ala Trp Asp Asn Glu Tyr Gly Gly Leu Tyr Tyr Phe Met Asp Ala

275 280 285 275 280 285

Ala Gly His Pro Pro Gln Gln Leu Glu Trp Asp Gln Lys Leu Trp TrpAla Gly His Pro Pro Gln Gln Leu Glu Trp Asp Gln Lys Leu Trp Trp

290 295 300 290 295 300

Val His Leu Glu Ser Leu Val Ala Leu Ala Met Gly Tyr Arg Leu ThrVal His Leu Glu Ser Leu Val Ala Leu Ala Met Gly Tyr Arg Leu Thr

305 310 315 320305 310 315 320

Gly Arg Asp Ala Cys Trp Ala Trp Tyr Gln Lys Met His Asp Tyr SerGly Arg Asp Ala Cys Trp Ala Trp Tyr Gln Lys Met His Asp Tyr Ser

325 330 335 325 330 335

Trp Gln His Phe Ala Asp Pro Glu Tyr Gly Glu Trp Phe Gly Tyr LeuTrp Gln His Phe Ala Asp Pro Glu Tyr Gly Glu Trp Phe Gly Tyr Leu

340 345 350 340 345 350

Asn Arg Arg Gly Glu Val Leu Leu Asn Leu Lys Gly Gly Lys Trp LysAsn Arg Arg Gly Glu Val Leu Leu Asn Leu Lys Gly Gly Lys Trp Lys

355 360 365 355 360 365

Gly Cys Phe His Val Pro Arg Ala Met Tyr Leu Cys Trp Gln Gln PheGly Cys Phe His Val Pro Arg Ala Met Tyr Leu Cys Trp Gln Gln Phe

370 375 380 370 375 380

Glu Ala Leu SerGlu Ala Leu Ser

385385

<210> 5<210> 5

<211> 346<211> 346

<212> PRT<212> PRT

<213> Escherichia coli K-1<213> Escherichia coli K-1

<400> 5<400> 5

Met Ser Asn Ile Tyr Ile Val Ala Glu Ile Gly Cys Asn His Asn GlyMet Ser Asn Ile Tyr Ile Val Ala Glu Ile Gly Cys Asn His Asn Gly

1 5 10 151 5 10 15

Ser Val Asp Ile Ala Arg Glu Met Ile Leu Lys Ala Lys Glu Ala GlySer Val Asp Ile Ala Arg Glu Met Ile Leu Lys Ala Lys Glu Ala Gly

20 25 30 20 25 30

Val Asn Ala Val Lys Phe Gln Thr Phe Lys Ala Asp Lys Leu Ile SerVal Asn Ala Val Lys Phe Gln Thr Phe Lys Ala Asp Lys Leu Ile Ser

35 40 45 35 40 45

Ala Ile Ala Pro Lys Ala Glu Tyr Gln Ile Lys Asn Thr Gly Glu LeuAla Ile Ala Pro Lys Ala Glu Tyr Gln Ile Lys Asn Thr Gly Glu Leu

50 55 60 50 55 60

Glu Ser Gln Leu Glu Met Thr Lys Lys Leu Glu Met Lys Tyr Asp AspGlu Ser Gln Leu Glu Met Thr Lys Lys Leu Glu Met Lys Tyr Asp Asp

65 70 75 8065 70 75 80

Tyr Leu His Leu Met Glu Tyr Ala Val Ser Leu Asn Leu Asp Val PheTyr Leu His Leu Met Glu Tyr Ala Val Ser Leu Asn Leu Asp Val Phe

85 90 95 85 90 95

Ser Thr Pro Phe Asp Glu Asp Ser Ile Asp Phe Leu Ala Ser Leu LysSer Thr Pro Phe Asp Glu Asp Ser Ile Asp Phe Leu Ala Ser Leu Lys

100 105 110 100 105 110

Gln Lys Ile Trp Lys Ile Pro Ser Gly Glu Leu Leu Asn Leu Pro TyrGln Lys Ile Trp Lys Ile Pro Ser Gly Glu Leu Leu Asn Leu Pro Tyr

115 120 125 115 120 125

Leu Glu Lys Ile Ala Lys Leu Pro Ile Pro Asp Lys Lys Ile Ile IleLeu Glu Lys Ile Ala Lys Leu Pro Ile Pro Asp Lys Lys Ile Ile Ile

130 135 140 130 135 140

Ser Thr Gly Met Ala Thr Ile Asp Glu Ile Lys Gln Ser Val Ser IleSer Thr Gly Met Ala Thr Ile Asp Glu Ile Lys Gln Ser Val Ser Ile

145 150 155 160145 150 155 160

Phe Ile Asn Asn Lys Val Pro Val Gly Asn Ile Thr Ile Leu His CysPhe Ile Asn Asn Lys Val Pro Val Gly Asn Ile Thr Ile Leu His Cys

165 170 175 165 170 175

Asn Thr Glu Tyr Pro Thr Pro Phe Glu Asp Val Asn Leu Asn Ala IleAsn Thr Glu Tyr Pro Thr Pro Phe Glu Asp Val Asn Leu Asn Ala Ile

180 185 190 180 185 190

Asn Asp Leu Lys Lys His Phe Pro Lys Asn Asn Ile Gly Phe Ser AspAsn Asp Leu Lys Lys His Phe Pro Lys Asn Asn Ile Gly Phe Ser Asp

195 200 205 195 200 205

His Ser Ser Gly Phe Tyr Ala Ala Ile Ala Ala Val Pro Tyr Gly IleHis Ser Ser Gly Phe Tyr Ala Ala Ile Ala Ala Val Pro Tyr Gly Ile

210 215 220 210 215 220

Thr Phe Ile Glu Lys His Phe Thr Leu Asp Lys Ser Met Ser Gly ProThr Phe Ile Glu Lys His Phe Thr Leu Asp Lys Ser Met Ser Gly Pro

225 230 235 240225 230 235 240

Asp His Leu Ala Ser Ile Glu Pro Asp Glu Leu Lys His Leu Cys IleAsp His Leu Ala Ser Ile Glu Pro Asp Glu Leu Lys His Leu Cys Ile

245 250 255 245 250 255

Gly Val Arg Cys Val Glu Lys Ser Leu Gly Ser Asn Ser Lys Val ValGly Val Arg Cys Val Glu Lys Ser Leu Gly Ser Asn Ser Lys Val Val

260 265 270 260 265 270

Thr Ala Ser Glu Arg Lys Asn Lys Ile Val Ala Arg Lys Ser Ile IleThr Ala Ser Glu Arg Lys Asn Lys Ile Val Ala Arg Lys Ser Ile Ile

275 280 285 275 280 285

Ala Lys Thr Glu Ile Lys Lys Gly Glu Val Phe Ser Glu Lys Asn IleAla Lys Thr Glu Ile Lys Lys Gly Glu Val Phe Ser Glu Lys Asn Ile

290 295 300 290 295 300

Thr Thr Lys Arg Pro Gly Asn Gly Ile Ser Pro Met Glu Trp Tyr AsnThr Thr Lys Arg Pro Gly Asn Gly Ile Ser Pro Met Glu Trp Tyr Asn

305 310 315 320305 310 315 320

Leu Leu Gly Lys Ile Ala Glu Gln Asp Phe Ile Pro Asp Glu Leu IleLeu Leu Gly Lys Ile Ala Glu Gln Asp Phe Ile Pro Asp Glu Leu Ile

325 330 335 325 330 335

Ile His Ser Glu Phe Lys Asn Gln Gly GluIle His Ser Glu Phe Lys Asn Gln Gly Glu

340 345 340 345

<210> 6<210> 6

<211> 58<211> 58

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 6<400> 6

ttcacacagg aaacagaatt cgaaggagtc ttcacatggg caaaaactta caagctct 58ttcacacagg aaacagaatt cgaaggagtc ttcacatggg caaaaactta caagctct 58

<210> 7<210> 7

<211> 39<211> 39

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 7<400> 7

cattctactc tgacttatga aagtgcttca aactgttgc 39cattctactc tgacttatga aagtgcttca aactgttgc 39

<210> 8<210> 8

<211> 58<211> 58

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 8<400> 8

tcataagtca gagtagaatg agaaggagta gattcatgtc taacatctac atcgtggc 58tcataagtca gagtagaatg agaaggagta gattcatgtc taacatctac atcgtggc 58

<210> 9<210> 9

<211> 54<211> 54

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 9<400> 9

catccgccaa aacagaagct tgttaacttt attctccctg gtttttaaat tcgc 54catccgccaa aacagaagct tgttaacttt attctccctg gtttttaaat tcgc 54

<210> 10<210> 10

<211> 57<211> 57

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 10<400> 10

caggaaacag aattcgctag cgaaggagta atacgatgtg tggaattgtt ggatata 57caggaaacag aattcgctag cgaaggagta atacgatgtg tggaattgtt ggatata 57

<210> 11<210> 11

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 11<400> 11

tagagagaga gaggtggaaa ttattcgacg gtgacagact ttgc 44tagagagaga gaggtggaaa ttattcgacg gtgacagact ttgc 44

<210> 12<210> 12

<211> 59<211> 59

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 12<400> 12

ggggtaccat tataggtaag agaggaatgt acacatgagc ttacccgatg gattttata 59ggggtaccat tataggtaag agaggaatgt acacatgagc ttacccgatg gattttata 59

<210> 13<210> 13

<211> 34<211> 34

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 13<400> 13

cccaagcttc tattttctaa tttgcatttc cacg 34cccaagcttc tattttctaa tttgcatttc cacg 34

<210> 14<210> 14

<211> 58<211> 58

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 14<400> 14

taagtgctcc atgaagtcgt gaaggagtgt ctacatgtac gagcgttatg caggttta 58taagtgctcc atgaagtcgt gaaggagtgt ctacatgtac gagcgttatg caggttta 58

<210> 15<210> 15

<211> 41<211> 41

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 15<400> 15

catccgccaa aacagaagct ttcacagcaa gcgaacatcc a 41catccgccaa aacagaagct ttcacagcaa gcgaacatcc a 41

<210> 16<210> 16

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 16<400> 16

attacccggg aagctggcga tgtggtgatt 30attacccggg aagctggcga tgtggtgatt 30

<210> 17<210> 17

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 17<400> 17

attacccggg tcacagcaag cgaacatcca 30attacccggg tcacagcaag cgaacatcca 30

<210> 18<210> 18

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 18<400> 18

ctatgacatg attacgaatt cgctgtgagc tttgatggtt tc 42ctatgacatg attacgaatt cgctgtgagc tttgatggtt tc 42

<210> 19<210> 19

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 19<400> 19

acattgatct ctactctgac tgccggtgtt gtctggtgca 40acattgatct ctactctgac tgccggtgtt gtctggtgca 40

<210> 20<210> 20

<211> 41<211> 41

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 20<400> 20

gtcagagtag agatcaatgt cgaatcctac gaccaggtac a 41gtcagagtag agatcaatgt cgaatcctac gaccaggtac a 41

<210> 21<210> 21

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 21<400> 21

tgcctgcagg tcgactctag aggtgattgg ggtgatcagc 40tgcctgcagg tcgactctag aggtgattgg ggtgatcagc 40

<210> 22<210> 22

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 22<400> 22

ctatgacatg attacgaatt cgatttcggg gagacattca ct 42ctatgacatg attacgaatt cgatttcggg gagacattca ct 42

<210> 23<210> 23

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 23<400> 23

gtacctgaga atgtagtttt ttggtgccaa cgcgatcatc 40gtacctgaga atgtagtttt ttggtgccaa cgcgatcatc 40

<210> 24<210> 24

<211> 41<211> 41

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 24<400> 24

aaaactacat tctcaggtac aaacgctgat cactaccgtc t 41aaaactacat tctcaggtac aaacgctgat cactaccgtc t 41

<210> 25<210> 25

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 25<400> 25

tgcctgcagg tcgactctag agcgtagaat tcatggccga aat 43tgcctgcagg tcgactctag agcgtagaat tcatggccga aat 43

<210> 26<210> 26

<211> 39<211> 39

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 26<400> 26

gtacctgaga atgtagtttt cacttctgcc atctttctg 39gtacctgaga atgtagtttt cacttctgcc atctttctg 39

<210> 27<210> 27

<211> 41<211> 41

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 27<400> 27

cggagatctg gtactttcga ggtgtgggcc ttaagcggtg t 41cggagatctg gtactttcga ggtgtgggcc ttaagcggtg t 41

<210> 28<210> 28

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 28<400> 28

ctatgacatg attacgaatt cgatttcggg gagacattca ct 42ctatgacatg attacgaatt cgatttcggg gagacattca ct 42

<210> 29<210> 29

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 29<400> 29

gtacctgaga atgtagtttt ttggtgccaa cgcgatcatc 40gtacctgaga atgtagtttt ttggtgccaa cgcgatcatc 40

<210> 30<210> 30

<211> 42<211> 42

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 30<400> 30

ctcgaaagta ccagatctcc gaaacgctga tcactaccgt ct 42ctcgaaagta ccagatctcc gaaacgctga tcactaccgt ct 42

<210> 31<210> 31

<211> 43<211> 43

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 31<400> 31

tgcctgcagg tcgactctag agcgtagaat tcatggccga aat 43tgcctgcagg tcgactctag agcgtagaat tcatggccga aat 43

Claims (8)

1. Recombinant corynebacterium glutamicum (C) for accumulating N-acetylneuraminic acidCorynebacterium glutamicum) Its special featureCharacterized in that the synthesis pathway of N-acetylneuraminic acid is divided into 5 genes: the coding gene of glucosamine-fructose-6 phosphate aminotransferase, the coding gene of glucosamine acetylase, the coding gene of phosphatase, the coding gene of acetylglucosamine isomerase and the coding gene of exogenous N-acetylneuraminic acid synthase are expressed in corynebacterium glutamicum to realize the accumulation of N-acetylneuraminic acid; the host bacterium is corynebacterium glutamicum ATCC13869 delta cg2937 delta nanK delta nanE delta nagB with the knock-out of an N-acetylneuraminic acid transporter coding gene cg2937, an N-acetylaminomannokinase coding gene nanK, an N-acetylaminomannose-6-phosphate isomerase coding gene nanE, an acetylglucosamine-6-phosphate deacetylase coding gene nagA and a glucosamine-6-phosphate deaminase coding gene nagB.
2. The Corynebacterium glutamicum accumulating N-acetylneuraminic acid of claim 1, wherein the glucosamine-fructose-6-phosphate aminotransferase encoding gene is derived from Corynebacterium glutamicum ATCC13869, and/or the glucosamine acetylase encoding gene is derived from Saccharomyces cerevisiae S288C, and/or the phosphatase encoding gene is derived from Escherichia coli K-12, and/or the acetylglucosamine isomerase encoding gene is derived from Colletocerina sp CH1, and/or the N-acetylneuraminic acid synthase encoding gene is derived from Escherichia coli K-1.
3. The method for constructing Corynebacterium glutamicum accumulating N-acetylneuraminic acid of claim 1 or 2, wherein a recombinant expression vector carrying a glucosamine-fructose-6-phosphate aminotransferase encoding gene, a glucosamine acetylase encoding gene, a phosphatase encoding gene, an acetylglucosamine isomerase encoding gene, and an exogenous N-acetylneuraminic acid synthase encoding gene is constructed using expression vector pDXW-9.
4. The method for constructing Corynebacterium glutamicum accumulating N-acetylneuraminic acid of claim 3, wherein the age and neuB genes are ligated between EcoRI and HindIII cleavage sites on the pDXW-9 expression vector; the glmS, GNA1, yqaB genes were ligated into the pDXW-9 expression vector between the NheI and HindIII cleavage sites.
5. The method for constructing Corynebacterium glutamicum accumulating N-acetylneuraminic acid of claim 3 or 4, wherein the knockout of the N-acetylneuraminic acid transporter coding gene cg2937 of Corynebacterium glutamicum is performed by constructing a suicide plasmid containing a knockout frame of the N-acetylneuraminic acid transporter coding gene, and replacing the knockout frame with the N-acetylneuraminic acid transporter coding gene cg2937 on the chromosome of Corynebacterium glutamicum through homologous recombination, so as to block the transport of N-acetylneuraminic acid from the outside to the inside of the cell.
6. The method of claim 5, wherein the knockout of the N-acetylneuraminic acid-encoding gene nanK, the N-acetylmannosyl-6-phosphate isomerase-encoding gene nanE, the acetylglucosamine-6-phosphate deacetylase-encoding gene nagA and the glucosamine-6-phosphate deaminase-encoding gene nagB is performed by constructing a suicide plasmid containing a knockout frame of the N-acetylneuraminic acid operon 5 '-nagB-nagA-nanA-nanK-nanE-3', substituting the knockout frame for the N-acetylneuraminic acid operon 5 '-nagB-nagA-nanA-nanK-nanE-3' on the chromosome of Corynebacterium glutamicum by homologous recombination, then the nanA gene is inserted into the 5 '-nagB-nagA-nanA-nanK-nanE-3' knockout frame, and the nanA gene on the chromosome is restored through homologous recombination so as to block the catabolism of the N-acetylneuraminic acid in the cells.
7. A method for producing N-acetylneuraminic acid by fermentation of the recombinant Corynebacterium glutamicum as claimed in claim 1 or 2, which is characterized in that the seed liquid cultured at 30-32 ℃ and 180-220rpm for 12-24h is transferred into the fermentation medium with an inoculum size of 5% -10% and cultured at 30-32 ℃ and 180-220rpm for 30-50 h.
8. The method of claim 7,
seed medium (g/L): 10 parts of glucose, 1.25 parts of urea, 20 parts of corn steep liquor, 1 part of monopotassium phosphate and 0.5 part of magnesium sulfate; fermentation medium (g/L): 80 parts of glucose, 35 parts of ammonium sulfate, 20 parts of corn steep liquor, 1 part of monopotassium phosphate, 1 part of magnesium sulfate and 30 parts of calcium carbonate.
CN201810171868.6A 2018-03-01 2018-03-01 A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application Active CN108330095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810171868.6A CN108330095B (en) 2018-03-01 2018-03-01 A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810171868.6A CN108330095B (en) 2018-03-01 2018-03-01 A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application

Publications (2)

Publication Number Publication Date
CN108330095A CN108330095A (en) 2018-07-27
CN108330095B true CN108330095B (en) 2020-12-29

Family

ID=62930451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810171868.6A Active CN108330095B (en) 2018-03-01 2018-03-01 A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application

Country Status (1)

Country Link
CN (1) CN108330095B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040979B (en) * 2018-10-11 2022-05-10 中国科学院天津工业生物技术研究所 Method for high-yield production of L-cysteine by corynebacterium glutamicum through metabolic engineering transformation
CN110195036B (en) * 2019-05-23 2021-06-25 江南大学 A kind of recombinant Corynebacterium glutamicum with high production of acetylglucosamine and its application
CN111394292B (en) * 2020-03-30 2022-08-09 江南大学 Multi-way composite neuraminic acid-producing bacillus subtilis and application thereof
CN113493785B (en) * 2020-04-07 2023-10-03 江南大学 A high-strength promoter suitable for Corynebacterium glutamicum and its application
CN113122490B (en) * 2021-03-25 2023-01-31 淮阴工学院 Double-gene defective engineering bacterium and application thereof in improving yield of N-acetylglucosamine
CN113122491B (en) * 2021-03-26 2022-08-02 清华大学 A kind of recombinant microorganism producing N-acetylneuraminic acid and its application
CN116200316B (en) * 2021-11-30 2024-08-06 虹摹生物科技(上海)有限公司 Genetically engineered bacterium and application thereof in preparation of sialyllactose
CN114716519B (en) * 2022-05-12 2023-02-10 江南大学 A kind of L-serine transport protein and its application in improving serine production

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286308A (en) * 1999-08-30 2001-03-07 协和发酵工业株式会社 Method for producing N-acetylneuraminic acid
CN103045527A (en) * 2012-12-25 2013-04-17 江南大学 Acetyl-glucosamine accumulating recombinant bacillus subtilis and application thereof
CN103060358A (en) * 2011-10-20 2013-04-24 中国科学院微生物研究所 Genetically engineered bacteria for producing N-acetylneuraminic acid as well as construction method and application thereof
CN103146630A (en) * 2013-03-13 2013-06-12 南通大学 Recombinant corynebacterium glutamicum for producing gamma-polyglutamic acid as well as construction method and use of recombinant corynebacterium glutamicum
CN102978149B (en) * 2012-12-25 2014-01-29 江南大学 A high-yield acetylglucosamine recombinant bacillus subtilis and its application
CN103602627A (en) * 2013-11-25 2014-02-26 武汉中科光谷绿色生物技术有限公司 Novel N-acetylneuraminic acid-producing escherichia coli engineering bacteria as well as construction method and application thereof
CN103060252B (en) * 2012-12-25 2015-04-15 江南大学 Bacillus subtilis engineering bacteria with high yield of acetylglucosamine and application thereof
CN104561194A (en) * 2013-10-16 2015-04-29 南京工业大学 Application of N-acetylneuraminic acid aldolase in catalytic synthesis of N-acetylneuraminic acid
CN104988108A (en) * 2015-05-27 2015-10-21 武汉中科光谷绿色生物技术有限公司 High-yield N-acetylneuraminic acid metabolic engineering bacterium and construction method and application
CN104059872B (en) * 2014-07-16 2017-01-11 华东理工大学 High-yield N-acetylglucosamine metabolic engineering bacterium, as well construction method and applications thereof
CN104498517B (en) * 2014-11-29 2017-04-12 滨州市金朗生物科技有限公司 Construction and application methods of escherichia coli with high yield of producing N-acetylglucosamine
CN106929462A (en) * 2017-04-25 2017-07-07 江南大学 One kind accumulation N n acetylneuraminic acid ns recombined bacillus subtilis and its application
CN106929461A (en) * 2017-04-25 2017-07-07 江南大学 A kind of recombined bacillus subtilis of raising N n acetylneuraminic acid n yield
CN107699533A (en) * 2017-10-12 2018-02-16 江南大学 A kind of recombined bacillus subtilis of acetylglucosamine output increased

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794989B2 (en) * 2004-12-28 2010-09-14 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing L-glutamic acid
ES2754080T3 (en) * 2010-11-18 2020-04-15 Green Chemicals Co Ltd Coryneform bacteria transformant and method to produce phenol that uses the same
US10017791B2 (en) * 2014-04-08 2018-07-10 Green Chemicals Co., Ltd. Coryneform bacterium transformant and process for producing 4-hydroxybenzoic acid or salt thereof using the same
CN106795486B (en) * 2014-08-21 2021-06-08 公益财团法人地球环境产业技术研究机构 Coryneform bacteria transformant and method for producing organic compound using the same
EP3287523B1 (en) * 2015-04-24 2022-06-29 Ajinomoto Co., Inc. Method for secretory production of protein
CN104928333B (en) * 2015-07-07 2017-09-22 江南大学 A kind of method that knockout glcK promotes bacillus subtilis synthesis of acetyl Glucosamine
CN105274182B (en) * 2015-10-28 2018-09-14 新疆阜丰生物科技有限公司 The technique of high efficiency extraction Valine from zymotic fluid
CN107267575B (en) * 2016-04-05 2020-11-06 孙镧 Method for producing N-acetyl-D-glucosamine and/or D-glucosamine salt by microbial fermentation
US10724015B2 (en) * 2016-05-18 2020-07-28 Korea University Research And Business Foundation Microorganism having improved ability to produce N-acetylglucosamine as a result of modulating glycolytic flux
CN105950517B (en) * 2016-06-30 2019-05-17 江南大学 A kind of Corynebacterium glutamicum and its application
CN106190938B (en) * 2016-07-18 2019-05-14 南开大学 A kind of method of the recombination bacillus coli and biosynthesis 3 '-saliva lactose of building
CN106635939A (en) * 2016-09-26 2017-05-10 江南大学 Genetically engineered bacterium for producing multiple L-amino acids and application

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1172003C (en) * 1999-08-30 2004-10-20 协和发酵工业株式会社 The production method of N-acetylneuraminic acid
CN1286308A (en) * 1999-08-30 2001-03-07 协和发酵工业株式会社 Method for producing N-acetylneuraminic acid
CN103060358A (en) * 2011-10-20 2013-04-24 中国科学院微生物研究所 Genetically engineered bacteria for producing N-acetylneuraminic acid as well as construction method and application thereof
CN103060252B (en) * 2012-12-25 2015-04-15 江南大学 Bacillus subtilis engineering bacteria with high yield of acetylglucosamine and application thereof
CN103045527A (en) * 2012-12-25 2013-04-17 江南大学 Acetyl-glucosamine accumulating recombinant bacillus subtilis and application thereof
CN102978149B (en) * 2012-12-25 2014-01-29 江南大学 A high-yield acetylglucosamine recombinant bacillus subtilis and its application
CN103146630A (en) * 2013-03-13 2013-06-12 南通大学 Recombinant corynebacterium glutamicum for producing gamma-polyglutamic acid as well as construction method and use of recombinant corynebacterium glutamicum
CN104561194A (en) * 2013-10-16 2015-04-29 南京工业大学 Application of N-acetylneuraminic acid aldolase in catalytic synthesis of N-acetylneuraminic acid
CN103602627B (en) * 2013-11-25 2015-03-18 武汉中科光谷绿色生物技术有限公司 Novel N-acetylneuraminic acid-producing escherichia coli engineering bacteria as well as construction method and application thereof
CN103602627A (en) * 2013-11-25 2014-02-26 武汉中科光谷绿色生物技术有限公司 Novel N-acetylneuraminic acid-producing escherichia coli engineering bacteria as well as construction method and application thereof
CN104059872B (en) * 2014-07-16 2017-01-11 华东理工大学 High-yield N-acetylglucosamine metabolic engineering bacterium, as well construction method and applications thereof
CN104498517B (en) * 2014-11-29 2017-04-12 滨州市金朗生物科技有限公司 Construction and application methods of escherichia coli with high yield of producing N-acetylglucosamine
CN104988108A (en) * 2015-05-27 2015-10-21 武汉中科光谷绿色生物技术有限公司 High-yield N-acetylneuraminic acid metabolic engineering bacterium and construction method and application
CN106929462A (en) * 2017-04-25 2017-07-07 江南大学 One kind accumulation N n acetylneuraminic acid ns recombined bacillus subtilis and its application
CN106929461A (en) * 2017-04-25 2017-07-07 江南大学 A kind of recombined bacillus subtilis of raising N n acetylneuraminic acid n yield
CN107699533A (en) * 2017-10-12 2018-02-16 江南大学 A kind of recombined bacillus subtilis of acetylglucosamine output increased

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum;Daqing Xu等;《Plasmid》;20100523;第64卷(第2期);第86页第2.5节,图1 *
Sialic acid utilization by the soil bacterium Corynebacterium;Nadine Gruteser 等;《FEMS Microbiol Lett》;20120913;第336卷(第2期);摘要,图4 *
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR;Andreas Uhde 等;《Journal of Bacteriology》;20160606;第198卷(第16期);第2204-2218页 *

Also Published As

Publication number Publication date
CN108330095A (en) 2018-07-27

Similar Documents

Publication Publication Date Title
CN108330095B (en) A kind of recombinant Corynebacterium glutamicum accumulating N-acetylneuraminic acid and its application
CN107142234B (en) A kind of method utilizing recombinant Corynebacterium glutamicum fermentation to produce tetrahydropyrimidine
CN113322218B (en) Recombinant corynebacterium glutamicum and method for producing L-threonine
CN111471638B (en) Construction and application of corynebacterium glutamicum mutant strain capable of producing L-homoserine
JP5597554B2 (en) Microorganism for L-amino acid production and method for producing L-amino acid using the same
CN106754807B (en) L-leucine producing strain and method for producing L-leucine
KR101695830B1 (en) Expression system for psicose epimerase and production for psicose using the same
CN111548979B (en) Recombinant escherichia coli for synthesizing lactoyl N-neotetraose and construction method and application thereof
CN112111437B (en) Recombinant bacillus subtilis with improved yield of 2&#39; -fucosyllactose and construction method thereof
WO2018152918A1 (en) L-homoserine-producing bacterial strain, construction method for same, and applications thereof
CN108486133B (en) Application method of L-serine transport protein
BR112013014441B1 (en) MICRO-ORGANISM HAVING A BETTER CAPACITY TO PRODUCE ORNITHINE AND METHOD TO PRODUCE ORNITHINE USING THE SAME
KR101991207B1 (en) cAMP receptor protein variant and method for producing L-amino acid using the same
CN109852572A (en) A method of it knocking out Escherichia coli PTS system and improves L-threonine yield
CN102234666B (en) Fed-batch fermentation preparation of lysine
CN107227283B (en) Corynebacterium glutamicum and construction method and application thereof
CN115806929A (en) A kind of genetically engineered bacteria producing L-arginine and its application
CN116676243A (en) Construction method and application of recombinant Escherichia coli producing 2&#39;-fucosyllactose
KR102112208B1 (en) Novel modified O-succinyl homoserine transferase and a method of producing O-succinyl homoserine using thereof
KR102112232B1 (en) Novel modified O-succinyl homoserine transferase and a method of producing O-succinyl homoserine using thereof
CN113308426B (en) A recombinant coryneform bacterium with modified TK gene 5&#39;-end sequence and its application
CN115927142A (en) Engineering bacterium for high yield of beta-alanine and application thereof
CN115197954B (en) Recombinant DNA for fermentative production of 1, 5-pentanediamine, strain and use thereof
CN110257313A (en) The bacillus amyloliquefaciens engineering bacteria of one plant height production spermidine
CN101336292B (en) Method for production of L-glutamine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant