CN108321432B - A carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting lithium dendrite growth and its preparation method and application - Google Patents
A carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting lithium dendrite growth and its preparation method and application Download PDFInfo
- Publication number
- CN108321432B CN108321432B CN201710036162.4A CN201710036162A CN108321432B CN 108321432 B CN108321432 B CN 108321432B CN 201710036162 A CN201710036162 A CN 201710036162A CN 108321432 B CN108321432 B CN 108321432B
- Authority
- CN
- China
- Prior art keywords
- electrolyte
- lithium
- carbon
- nitrogen polymer
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 118
- 239000003792 electrolyte Substances 0.000 title claims abstract description 83
- 229920000642 polymer Polymers 0.000 title claims abstract description 69
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 65
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 210000001787 dendrite Anatomy 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 230000002401 inhibitory effect Effects 0.000 title abstract description 7
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 67
- 239000000945 filler Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 11
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 10
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 10
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 claims description 10
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 9
- -1 lithium hexafluorophosphate Chemical compound 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 7
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000008151 electrolyte solution Substances 0.000 claims description 6
- 239000002608 ionic liquid Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 3
- 229910010941 LiFSI Inorganic materials 0.000 claims description 3
- 229910010707 LiFePO 4 Inorganic materials 0.000 claims description 3
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 3
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 3
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 3
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000006104 solid solution Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 claims description 2
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims 3
- 150000003949 imides Chemical class 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- 230000008021 deposition Effects 0.000 description 10
- 238000001465 metallisation Methods 0.000 description 10
- 230000010287 polarization Effects 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 229910052960 marcasite Inorganic materials 0.000 description 7
- 229910052683 pyrite Inorganic materials 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000001453 impedance spectrum Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000005077 polysulfide Substances 0.000 description 4
- 229920001021 polysulfide Polymers 0.000 description 4
- 150000008117 polysulfides Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910003003 Li-S Inorganic materials 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
本发明涉及一种用于抑制锂枝晶生长的碳氮聚合物基准固态电解质及其制备方法和应用,该准固态电解质包括电解液、和电解液填充剂,所述电解液填充剂为轻质碳氮聚合物。本发明以轻质碳氮聚合物为电解液填充剂,制备得到一种能有效抑制锂金属电池中锂枝晶的生长的准固态电解质。其中轻质碳氮聚合物具有惊喜的分层结构,有利于电解液的吸收,从而形成泥状的准固态电解质,可用于抑制锂金属电池中锂负极枝晶的生长。
The invention relates to a carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting the growth of lithium dendrites and its preparation method and application. The quasi-solid-state electrolyte includes an electrolyte and an electrolyte filler, and the electrolyte filler is a lightweight carbon nitrogen polymer. The invention uses light carbon-nitrogen polymers as electrolyte filling agents to prepare a quasi-solid electrolyte capable of effectively inhibiting the growth of lithium dendrites in lithium metal batteries. Among them, the lightweight carbon-nitrogen polymer has a surprising layered structure, which is conducive to the absorption of electrolyte, thereby forming a mud-like quasi-solid electrolyte, which can be used to suppress the growth of lithium anode dendrites in lithium metal batteries.
Description
技术领域technical field
本发明属于新能源技术领域,特别涉及一种用于抑制锂枝晶生长的轻质碳氮聚合物基准固态电解质及其制备方法和应用。The invention belongs to the technical field of new energy, and in particular relates to a light carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting the growth of lithium dendrites, a preparation method and application thereof.
背景技术Background technique
以Li-S和Li-O2为代表的锂金属电池由于比锂离子电池具有更高的能量密度而受到广泛重视。负极金属锂由于低的电压、高的理论比容量(3860mAh/g),是这类高容量转化反应电池体系的最佳候选。然而,在电化学循环过程中,锂金属在负极表面发生不均匀的沉积/剥离,导致锂枝晶生长及其带来的电池电化学性能的恶化,锂枝晶甚至可以穿透隔膜导致电池短路。近年来,多种策略被尝试用于改善锂沉积过程,抑制锂枝晶生长。如将金属锂融化渗入到具有亲锂表面的导电框架基体中,构造出体积变化小的柔性金属锂负极,这样可以消除锂枝晶。通过构建三维纳米结构的集流体,用以取代二维的载锂平面,可以改善锂金属的沉积行为,从而避免锂枝晶的生长。改变电解液的本征属性、浓度或者引入电解液添加剂也是重要的策略,如基于离子液体或者高浓度的氟磺酰亚胺根离子(FSI-)能有效保证锂金属电池高倍率、稳定的锂沉积过程,FSI-能在锂金属表面还原(主要生成LiF),原位形成稳固的固体电解液界面层(SEI),进而确保锂金属沉积过程中不会产生锂枝晶。对于Li-S电池体系,锂的多硫化物和硝酸锂的同时加入可产生协同效应,加固SEI,从而保护锂负极免受腐蚀。对于隔膜的改性(如在隔膜纤维表面上引入极性的功能基团)也能有效确保锂金属在负极的均匀沉积。Lithium metal batteries represented by Li-S and Li- O2 have attracted extensive attention due to their higher energy density than Li-ion batteries. Due to its low voltage and high theoretical specific capacity (3860mAh/g), the negative metal lithium is the best candidate for this type of high-capacity conversion reaction battery system. However, during the electrochemical cycle, lithium metal is deposited/stripped unevenly on the surface of the negative electrode, leading to the growth of lithium dendrites and the deterioration of the electrochemical performance of the battery, and the lithium dendrites can even penetrate the separator and cause a short circuit of the battery. . In recent years, various strategies have been attempted to improve the Li deposition process and suppress Li dendrite growth. For example, metal lithium is melted and infiltrated into a conductive framework matrix with a lithium-friendly surface to construct a flexible metal lithium negative electrode with small volume change, which can eliminate lithium dendrites. By constructing a current collector with a three-dimensional nanostructure to replace a two-dimensional Li-loading plane, the deposition behavior of Li metal can be improved, thereby avoiding the growth of Li dendrites. Changing the intrinsic properties and concentration of the electrolyte or introducing electrolyte additives is also an important strategy. For example, based on ionic liquids or high-concentration fluorosulfonimide ions (FSI - ), it can effectively ensure high rate and stable lithium metal batteries. During the deposition process, FSI - can be reduced on the surface of lithium metal (mainly generating LiF), forming a solid solid electrolyte interfacial layer (SEI) in situ, thereby ensuring that lithium dendrites will not be generated during lithium metal deposition. For the Li-S battery system, the simultaneous addition of lithium polysulfides and lithium nitrate can produce a synergistic effect to strengthen the SEI, thereby protecting the lithium anode from corrosion. The modification of the separator (such as introducing polar functional groups on the surface of the separator fiber) can also effectively ensure the uniform deposition of lithium metal on the negative electrode.
相比于添加剂加强的电解液,固态或者准固态电解质具有更好的机械强度,被期望对锂枝晶有着更好的抑制作用。然而全固态电解质通常导电率不够,差的界面接触问题也难以解决。准固态电解质具有与电解液类似的电导率,以及良好的界面湿润能力,被认为是新型锂金属电池电解质的最佳候选之一。准固态电解质常常是将非水系电解液或锂盐加入聚合物骨架(如聚氧化乙烯)或者无机纳米颗粒(如纳米二氧化硅)填充物固化而成。电解质的准固态化不但不会导致电导率的显著降低,在有些情况下,由于空间电荷效应,反而可能增大其电导率。然而,传统的基于聚氧化乙烯的聚合物膜的机械强度较弱,不能有效抑制锂枝晶,常常需要添加硬质无机纳米颗粒加以改善。Compared with additive-enhanced electrolytes, solid or quasi-solid electrolytes have better mechanical strength and are expected to have a better inhibitory effect on lithium dendrites. However, the conductivity of all-solid electrolytes is usually not enough, and the problem of poor interfacial contact is also difficult to solve. Quasi-solid electrolytes have similar conductivity to electrolytes and good interfacial wetting ability, and are considered to be one of the best candidates for new electrolytes for lithium metal batteries. Quasi-solid electrolytes are often solidified by adding non-aqueous electrolyte or lithium salt to a polymer skeleton (such as polyethylene oxide) or inorganic nanoparticles (such as nano-silicon dioxide) filler. The quasi-solidification of the electrolyte not only does not lead to a significant decrease in conductivity, but in some cases, it may increase its conductivity due to the space charge effect. However, the traditional polyethylene oxide-based polymer film has weak mechanical strength and cannot effectively suppress lithium dendrites, and often needs to be improved by adding hard inorganic nanoparticles.
发明内容Contents of the invention
针对上述问题,本发明的目的在于提供一种高机械强度的新型聚合物基准固态电解质及其制备方法和应用。In view of the above problems, the object of the present invention is to provide a novel polymer base solid electrolyte with high mechanical strength and its preparation method and application.
一方面,本发明提供了一种用于抑制锂枝晶生长的轻质碳氮聚合物基准固态电解质(用于抑制锂枝晶生长的碳氮聚合物基准固态电解质),包括电解液、和电解液填充剂,所述电解液填充剂为轻质碳氮聚合物。On the one hand, the present invention provides a kind of light-weight carbon-nitrogen polymer benchmark solid electrolyte (for the carbon-nitrogen polymer benchmark solid-state electrolyte that is used to restrain lithium dendrite growth) for suppressing lithium dendrite growth, comprising electrolytic solution, and electrolytic Liquid filler, the electrolyte filler is light carbon nitrogen polymer.
本发明以轻质碳氮聚合物为电解液填充剂,制备得到一种能有效抑制锂金属电池中锂枝晶的生长的准固态电解质。其中轻质碳氮聚合物具有惊喜的分层结构,有利于电解液的吸收,从而形成泥状的准固态电解质,可用于抑制锂金属电池中锂负极枝晶的生长。聚合物g-C3N4本身具有高的机械强度,分层结构的密堆积使机械强度进一步增强,因此作为电解液填充剂,g-C3N4能有效抑制锂枝晶的生长。当所述轻质碳氮聚合物基准固态电解质与锂金属负极接触时,该准固态电解质还具有与常规电解液同一数量级的界面阻抗,以及良好的界面附着力。而且在锂金属对称电池的长循环过程中,该准固态电解质能够极大减缓锂金属沉积/剥离过程中电压极化的增加,增强了电池的循环稳定性。The invention uses light carbon-nitrogen polymers as electrolyte filling agents to prepare a quasi-solid electrolyte capable of effectively inhibiting the growth of lithium dendrites in lithium metal batteries. Among them, the lightweight carbon-nitrogen polymer has a surprising layered structure, which is conducive to the absorption of electrolyte, thereby forming a mud-like quasi-solid electrolyte, which can be used to suppress the growth of lithium anode dendrites in lithium metal batteries. The polymer gC 3 N 4 itself has high mechanical strength, and the close packing of the layered structure further enhances the mechanical strength. Therefore, as an electrolyte filler, gC 3 N 4 can effectively inhibit the growth of lithium dendrites. When the light-weight carbon-nitrogen polymer benchmark solid-state electrolyte is in contact with a lithium metal negative electrode, the quasi-solid-state electrolyte also has an interface impedance of the same order of magnitude as that of a conventional electrolyte, and good interface adhesion. Moreover, during the long cycle of lithium metal symmetric batteries, the quasi-solid electrolyte can greatly slow down the increase in voltage polarization during lithium metal deposition/stripping, and enhance the cycle stability of the battery.
较佳地,所述轻质碳氮聚合物包括自组装的三维介孔球g-C3N4、二维纳米薄层g-C3N4、氧掺杂的剥离少层O-g-C3N4、S掺杂的S-g-C3N4中的至少一种。Preferably, the lightweight carbon-nitrogen polymer includes self-assembled three-dimensional mesoporous spherical gC 3 N 4 , two-dimensional nano-thin layer gC 3 N 4 , oxygen-doped exfoliated few-layer OgC 3 N 4 , S-doped At least one of SgC 3 N 4 .
所述轻质碳氮聚合物基准固态电解质中轻质碳氮聚合物的质量百分比为20~25wt%。The mass percentage of the light carbon nitrogen polymer in the light carbon nitrogen polymer benchmark solid state electrolyte is 20-25 wt%.
较佳地,所述电解液包括溶质和溶剂,所述溶质为双三氟甲磺酰亚胺锂LiTFSI、六氟磷酸锂LiPF6、高氯酸锂LiClO4、双氟磺酰亚胺锂LiFSI中的至少一种;所述溶剂为二甘醇二甲醚DGM、三乙二醇二甲醚TEGDME、离子液体1-乙基-3甲基双三氟甲烷磺酰亚胺EmimTFSI、碳酸乙烯酯EC和二甲基碳酸酯DMC中的至少一种;所述电解液中溶质的浓度为0.5~1.5mol/L。Preferably, the electrolyte solution includes a solute and a solvent, and the solute is at least one of lithium bistrifluoromethanesulfonimide LiTFSI, lithium hexafluorophosphate LiPF 6 , lithium perchlorate LiClO 4 , and lithium bisfluorosulfonimide LiFSI A kind; The solvent is diglyme DGM, triethylene glycol dimethyl ether TEGDME, ionic liquid 1-ethyl-3 methyl bistrifluoromethanesulfonimide EmimTFSI, ethylene carbonate EC and two At least one of methyl carbonate DMC; the concentration of the solute in the electrolyte is 0.5-1.5 mol/L.
又,较佳地,所述电解液为溶质为双三氟甲磺酰亚胺锂LiTFSI的二甘醇二甲醚DGM溶液、溶质为LiTFSI的三乙二醇二甲醚TEGDME溶液、或溶质为六氟磷酸锂LiPF6的体积比为1:1的碳酸乙烯酯EC和二甲基碳酸酯DMC溶液;所述电解液中溶质的浓度为0.5~1.5mol/L。Also, preferably, the electrolyte is a diglyme DGM solution in which the solute is lithium bistrifluoromethanesulfonimide LiTFSI, a triethylene glycol dimethyl ether TEGDME solution in which the solute is LiTFSI, or a solute of Lithium hexafluorophosphate LiPF 6 is a solution of ethylene carbonate EC and dimethyl carbonate DMC with a volume ratio of 1:1; the concentration of solute in the electrolyte is 0.5-1.5 mol/L.
另一方面,本发明提供了一种轻质碳氮聚合物基准固态电解质的制备方法,将轻质碳氮聚合物与电解液充分混合,得到所述轻质碳氮聚合物基准固态电解质。On the other hand, the present invention provides a method for preparing a light carbon-nitrogen polymer benchmark solid electrolyte. The light carbon-nitrogen polymer is fully mixed with an electrolyte to obtain the light carbon-nitrogen polymer benchmark solid electrolyte.
较佳地,所述轻质碳氮聚合物的粒径分布为3.5~8μm。所述轻质碳氮聚合物为纳米结构时,极易与电解液混合成泥,确保了这种准固态电解质简易的成型工艺。Preferably, the particle size distribution of the light carbon nitrogen polymer is 3.5-8 μm. When the light carbon-nitrogen polymer has a nanometer structure, it is very easy to mix with the electrolyte to form a slurry, which ensures the simple molding process of the quasi-solid electrolyte.
第三方面,本发明还提供了一种基于轻质碳氮聚合物基准固态电解质的锂金属对称电池体系,所述锂金属对称电池体系包括轻质碳氮聚合物基准固态电解质、以及位于轻质碳氮聚合物基准固态电解质两侧的金属锂片。In a third aspect, the present invention also provides a lithium metal symmetric battery system based on a light carbon-nitrogen polymer benchmark solid electrolyte, the lithium metal symmetric battery system includes a light carbon nitrogen polymer benchmark solid electrolyte, and a lightweight Lithium flakes flanked by carbonitride polymer benchmark solid-state electrolytes.
当所述轻质碳氮聚合物基准固态电解质用于锂金属对称电池时,其具有良好的界面稳定性和低的界面阻抗,减小了金属锂沉积/剥离过程中的电压极化差,增强了对称电池的循环稳定性,对称电池长循环后的金属锂表面依旧平滑致密。When the lightweight carbon-nitrogen polymer benchmark solid electrolyte is used in a lithium metal symmetric battery, it has good interface stability and low interface impedance, which reduces the voltage polarization difference in the metal lithium deposition/stripping process, and enhances The cycle stability of the symmetrical battery is ensured, and the surface of metallic lithium after a long cycle of the symmetrical battery is still smooth and dense.
第四方面,本发明还提供了一种所述锂金属电池包括正极、负极、以及位于所述正极和负极之间的轻质碳氮聚合物基准固态电解质,所述负极为金属锂片,所述正极为FeS2、碳硫复合物、LiFePO4、LiMn2O4、LiCoO2、富镍三元体系和富锂锰基固溶体中的至少一种。In a fourth aspect, the present invention also provides a lithium metal battery comprising a positive electrode, a negative electrode, and a light carbon-nitrogen polymer base solid electrolyte between the positive electrode and the negative electrode, the negative electrode is a metal lithium sheet, and the The positive electrode is at least one of FeS 2 , carbon-sulfur compound, LiFePO 4 , LiMn 2 O 4 , LiCoO 2 , nickel-rich ternary system and lithium-rich manganese-based solid solution.
较佳地,所述正极优选为FeS2。当所述轻质碳氮聚合物基准固态电解质用于Li-FeS2锂金属电池时,其改善了锂负极的形貌,弱化了多硫化物的穿梭效应,确保了大于400次循环的电池长寿命。Preferably, the positive electrode is preferably FeS 2 . When the lightweight carbon-nitrogen polymer benchmark solid-state electrolyte is used in Li - FeS lithium metal batteries, it improves the morphology of the lithium negative electrode, weakens the shuttle effect of polysulfides, and ensures a long battery life of more than 400 cycles. life.
本发明具有以下积极进步效果。The present invention has the following positive and progressive effects.
(1)本发明以轻质碳氮聚合物作为准固态电解质的电解液填充剂,证实了其作为电解液填充剂的优越性。如在球状g-C3N4的合成过程中,大量的薄层纳米片自组装聚集成均匀的介孔球,这种精细的分层结构有利于电解液的吸收,同时纳米结构的粉末极易与电解液混合成泥,确保了这种准固态电解质简易的成型工艺。(1) The present invention uses light carbon-nitrogen polymers as electrolyte fillers for quasi-solid electrolytes, which proves its superiority as electrolyte fillers. For example, in the synthesis process of spherical gC 3 N 4 , a large number of thin-layer nanosheets self-assemble into uniform mesoporous spheres. This fine layered structure is conducive to the absorption of electrolyte, and at the same time, the nanostructured powder is very easy to mix with The electrolyte is mixed into mud, which ensures the simple molding process of this quasi-solid electrolyte.
(2)本发明中球状g-C3N4与电解液混合成的均匀泥状物能有效地附着在金属锂或电极材料表面,准固态电解质与金属锂负极的界面阻抗比纯电解液体系的界面阻抗更容易达到稳定,前者在界面处的传输阻抗可低至115Ωcm2,在30到70℃温度区间的界面处扩散活化能为0.45eV。(2) In the present invention, spherical gC 3 N 4 can be effectively attached to the surface of metal lithium or electrode material by the uniform mud mixed with the electrolyte, and the interface impedance of the quasi-solid electrolyte and the metal lithium negative electrode is higher than that of the pure electrolyte system. Impedance is easier to achieve stability, the transmission impedance of the former at the interface can be as low as 115Ωcm 2 , and the diffusion activation energy at the interface in the temperature range of 30 to 70°C is 0.45eV.
(3)本发明中准固态电解质用于锂金属对称电池时,显著降低了金属锂可逆沉积/剥离过程中的极化电势差,并增强了对称电池的循环稳定性。基于准固态电解质的锂金属对称电池稳定的沉积/剥离得益于该电解质对锂枝晶生长的抑制。(3) When the quasi-solid electrolyte in the present invention is used in a lithium metal symmetric battery, the polarization potential difference during the reversible deposition/stripping process of metal lithium is significantly reduced, and the cycle stability of the symmetric battery is enhanced. The stable deposition/stripping of lithium metal symmetric batteries based on quasi-solid electrolytes is benefited from the inhibition of lithium dendrite growth by the electrolytes.
(4)本发明中轻质碳氮聚合物基准固态电解质用于Li-FeS2锂金属电池时,由于锂枝晶被抑制,从而锂负极形貌被显著改善,该准固态电解质也能弱化多硫化物的穿梭效应,因此确保了Li-FeS2电池大于400次循环的长寿命。(4) When the lightweight carbon-nitrogen polymer benchmark solid electrolyte in the present invention is used in Li-FeS 2 lithium metal batteries, since the lithium dendrites are suppressed, the morphology of the lithium negative electrode is significantly improved, and the quasi-solid electrolyte can also weaken more The shuttling effect of sulfides thus ensures the long lifetime of the Li- FeS2 battery >400 cycles.
本发明所述方法生产工艺简便,适合大规模应用,对锂金属电池的发展具有重要意义。The method of the invention has a simple and convenient production process, is suitable for large-scale application, and is of great significance to the development of lithium metal batteries.
附图说明Description of drawings
图1为三维介孔球状颗粒组成的g-C3N4的XRD图;Figure 1 is the XRD pattern of gC 3 N 4 composed of three-dimensional mesoporous spherical particles;
图2为三维介孔球状颗粒组成的g-C3N4的SEM图;Figure 2 is the SEM image of gC 3 N 4 composed of three-dimensional mesoporous spherical particles;
图3为基于g-C3N4准固态电解质的金属锂对称电池的随时间演化的界面交流阻抗图谱,插入图:界面阻抗值随时间的变化;Figure 3 is the time-evolving interface AC impedance spectrum of a metallic lithium symmetric battery based on gC 3 N 4 quasi-solid electrolyte, insert figure: the change of interface impedance value with time;
图4为基于g-C3N4准固态电解质的金属锂对称电池的变温交流阻抗图谱;Figure 4 is the variable temperature AC impedance spectrum of a metal lithium symmetric battery based on gC 3 N 4 quasi-solid electrolyte;
图5为基于g-C3N4准固态电解质的金属锂对称电池在不同温度下阻抗值推导的阿伦尼乌斯点图;Fig. 5 is the Arrhenius point diagram of the impedance value derivation at different temperatures of the metallic lithium symmetric battery based on the gC 3 N 4 quasi-solid electrolyte;
图6为基于g-C3N4准固态电解质或基于纯电解液的锂金属对称电池在0.5mA/cm2时的锂金属沉积/剥离循环的电位曲线图,插入图:特定循环次数下放大的电位曲线比较;Figure 6 is a plot of potential curves of lithium metal deposition/stripping cycles at 0.5mA/ cm2 for lithium metal symmetric cells based on gC3N4 quasi-solid electrolyte or pure electrolyte, insert: enlarged potential at a specific number of cycles curve comparison;
图7为基于g-C3N4准固态电解质或基于纯电解液的锂金属对称电池在2mA/cm2时的锂金属沉积/剥离循环的电位曲线图,插入图:特定循环次数下放大的电位曲线比较;Figure 7 is a graph of potential curves of lithium metal deposition/stripping cycles at 2mA/ cm2 for lithium metal symmetric batteries based on gC 3 N 4 quasi-solid electrolyte or pure electrolyte, insert: enlarged potential curve at a specific number of cycles Compare;
图8为基于g-C3N4准固态电解质的锂金属对称电池在2mA/cm2时,锂金属沉积/剥离120次循环后的SEM表面形貌图;Fig. 8 is a SEM surface morphology image of lithium metal symmetric battery based on gC 3 N 4 quasi-solid electrolyte at 2mA/cm 2 after 120 cycles of lithium metal deposition/stripping;
图9为基于g-C3N4准固态电解质的Li-FeS2电池前200次循环的充放电曲线图;Fig. 9 is the charge-discharge curve diagram of the first 200 cycles of the Li-FeS battery based on gC 3 N 4 quasi-solid electrolyte;
图10为基于O-g-C3N4准固态电解质的金属锂对称电池的随时间演化的界面交流阻抗图谱,插入图:界面阻抗值随时间的变化;Figure 10 is the time-evolving interface AC impedance spectrum of a metal lithium symmetric battery based on OgC 3 N 4 quasi-solid electrolyte, insert figure: the change of interface impedance value with time;
图11为基于O-g-C3N4准固态电解质的锂金属对称电池在0.5和2mA/cm2时的锂金属沉积/剥离循环的电位曲线图。Fig. 11 is a potential curve diagram of the lithium metal deposition/stripping cycle of the lithium metal symmetric battery based on the OgC 3 N 4 quasi-solid electrolyte at 0.5 and 2 mA/cm 2 .
具体实施方式Detailed ways
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below through the following embodiments. It should be understood that the following embodiments are only used to illustrate the present invention, not to limit the present invention.
本发明在电解液中添加一种具有高机械强度的纳米结构聚合物填充剂,以固化电解液,构造准固态电解质,达到抑制锂金属电池中锂负极枝晶生长的目的。具体来说,以轻质碳氮聚合物作为电解液填充剂,与电解液均匀混合,形成泥状准固态电解质,可用于抑制锂金属电池中锂负极枝晶的生长。所述轻质轻质碳氮聚合物基准固态电解质中轻质碳氮聚合物的质量百分比可为20~25wt%,含量太高或者太低都难以形成较好的泥状电解质。In the invention, a nanostructure polymer filler with high mechanical strength is added to the electrolyte to solidify the electrolyte and construct a quasi-solid electrolyte to achieve the purpose of inhibiting the growth of lithium negative electrode dendrites in lithium metal batteries. Specifically, lightweight carbon-nitrogen polymers are used as electrolyte fillers and uniformly mixed with the electrolyte to form a mud-like quasi-solid electrolyte, which can be used to inhibit the growth of lithium anode dendrites in lithium metal batteries. The weight percentage of the light carbon nitrogen polymer in the light carbon nitrogen polymer standard solid state electrolyte can be 20-25 wt%. If the content is too high or too low, it will be difficult to form a good slimy electrolyte.
上轻质碳氮聚合物可选用为自组装的三维介孔球g-C3N4(棕黄色)、二维纳米薄层g-C3N4(亮黄色)、氧掺杂的剥离少层O-g-C3N4(白色)、S掺杂的S-g-C3N4(灰褐色)中的至少一种。The upper light carbon nitrogen polymer can be selected as self-assembled three-dimensional mesoporous spherical gC 3 N 4 (brown yellow), two-dimensional nano-thin layer gC 3 N 4 (bright yellow), oxygen-doped exfoliated few-layer OgC 3 N 4 (white), S-doped SgC 3 N 4 (taupe).
本发明所述轻质碳氮聚合物基准固态电解质,由碳氮聚合物和电解液均匀混合而成,其中电解液包括溶质和溶剂。所述溶质可为双三氟甲磺酰亚胺锂LiTFSI、六氟磷酸锂LiPF6、高氯酸锂LiClO4、双氟磺酰亚胺锂LiFSI中的至少一种。所述溶剂可为二甘醇二甲醚DGM、三乙二醇二甲醚TEGDME、离子液体1-乙基-3甲基双三氟甲烷磺酰亚胺EmimTFSI、碳酸乙烯酯EC和二甲基碳酸酯DMC中的至少一种。所述电解液中溶质的浓度可为0.5~1.5mol/L。所述电解液可优选为:溶质为双三氟甲磺酰亚胺锂(LiTFSI)的二甘醇二甲醚(DGM)溶液、溶质为LiTFSI的三乙二醇二甲醚(TEGDME)溶液、溶质为六氟磷酸锂(LiPF6)的体积比为1:1的碳酸乙烯酯(EC)和二甲基碳酸酯(DMC)溶液的一种,电解液浓度为0.5-1.5mol/L。The lightweight carbon-nitrogen polymer benchmark solid-state electrolyte of the present invention is formed by uniformly mixing carbon-nitrogen polymers and electrolytes, wherein the electrolytes include solutes and solvents. The solute may be at least one of lithium bistrifluoromethanesulfonimide LiTFSI, lithium hexafluorophosphate LiPF 6 , lithium perchlorate LiClO 4 , and lithium bisfluorosulfonimide LiFSI. The solvent can be diglyme DGM, triethylene glycol dimethyl ether TEGDME, ionic liquid 1-ethyl-3 methyl bistrifluoromethanesulfonimide EmimTFSI, ethylene carbonate EC and dimethyl At least one of carbonate DMC. The concentration of the solute in the electrolyte may be 0.5-1.5 mol/L. The electrolytic solution can be preferably: a solute is a diglyme (DGM) solution of bistrifluoromethanesulfonimide lithium (LiTFSI), a solute is a triethylene glycol dimethyl ether (TEGDME) solution of LiTFSI, The solute is a solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume ratio of lithium hexafluorophosphate (LiPF 6 ) of 1:1, and the concentration of the electrolyte is 0.5-1.5mol/L.
以下示例性地说明本发明提供的轻质碳氮聚合物基准固态电解质的制备方法。The preparation method of the light carbon-nitrogen polymer benchmark solid electrolyte provided by the present invention is exemplarily described below.
将轻质碳氮聚合物与电解液充分混合,得到所述轻质碳氮聚合物基准固态电解质。所述轻质碳氮聚合物的粒径分布可为3.5~8μm。作为一个示例,取50-150mg的g-C3N4粉末样品于玛瑙研钵中,然后加入250-350μl的电解液,充分研磨均匀,得到轻质碳氮聚合物基准固态电解质。所述轻质碳氮聚合物基准固态电解质的厚度可根据需要进行调节,其厚度一般可为80-120微米。The light carbon nitrogen polymer is fully mixed with the electrolyte to obtain the light carbon nitrogen polymer benchmark solid state electrolyte. The particle size distribution of the light carbon nitrogen polymer may be 3.5-8 μm. As an example, take 50-150 mg of gC 3 N 4 powder sample in an agate mortar, then add 250-350 μl of electrolyte solution, and grind thoroughly to obtain a light carbon-nitrogen polymer benchmark solid electrolyte. The thickness of the lightweight carbon-nitrogen polymer reference solid electrolyte can be adjusted according to needs, and its thickness can generally be 80-120 microns.
本发明提供的锂金属对称电池体系是指准固态电解质双侧皆为金属锂片的电池。其中所述锂金属对称电池体系的锂沉积和剥离循环测试的电流密度可为0.5-2mA/cm2,每次循环中沉积或剥离的时间可为1-3小时。The lithium metal symmetric battery system provided by the present invention refers to a battery in which both sides of the quasi-solid electrolyte are metallic lithium sheets. The current density of the lithium deposition and stripping cycle test of the lithium metal symmetric battery system can be 0.5-2 mA/cm 2 , and the deposition or stripping time in each cycle can be 1-3 hours.
本发明提供的锂金属电池,其负极用金属锂片,正极可为FeS2、碳硫复合物、LiFePO4、LiMn2O4、LiCoO2、富镍三元体系、富锂锰基固溶体中的至少一种,不需要隔膜,准固态电解质置于正负极之间。由于枝晶抑制,基于碳氮聚合物的Li-FeS2准固态电池具有大于400次循环的长寿命。In the lithium metal battery provided by the present invention, the metal lithium sheet is used for the negative electrode, and the positive electrode can be FeS 2 , carbon-sulfur compound, LiFePO 4 , LiMn 2 O 4 , LiCoO 2 , nickel-rich ternary system, and lithium-rich manganese-based solid solution. At least one, no separator is required, and a quasi-solid electrolyte is placed between the positive and negative electrodes. Due to dendrite suppression, the carbon-nitrogen polymer-based Li- FeS2 quasi-solid-state battery has a long lifetime greater than 400 cycles.
本发明以轻质碳氮聚合物为电解液填充剂,获得泥状准固态电解质,有效地抑制了锂金属电池中锂枝晶的生长。该准固态电解质具有与电解液类似的界面阻抗;用于锂金属对称电池时,其具有良好的界面稳定性和低的界面阻抗,极大减小了锂金属沉积/剥离过程中的电压极化差,增强了对称电池的循环稳定性,改善了沉积锂金属的形貌,对称电池长循环后的金属锂表面依旧平滑致密。用于Li-FeS2电池时,弱化了多硫化物的穿梭效应,显著减缓了电池容量的衰减,确保了电池大于400次循环的长寿命。The invention uses light carbon-nitrogen polymer as electrolyte filling agent to obtain mud-like quasi-solid electrolyte, and effectively inhibits the growth of lithium dendrites in lithium metal batteries. The quasi-solid electrolyte has an interface impedance similar to that of the electrolyte; when used in lithium metal symmetric batteries, it has good interface stability and low interface impedance, which greatly reduces the voltage polarization during lithium metal deposition/stripping Poor, the cycle stability of the symmetrical battery is enhanced, the morphology of the deposited lithium metal is improved, and the metal lithium surface of the symmetrical battery is still smooth and dense after a long cycle. When used in Li- FeS2 batteries, it weakens the shuttle effect of polysulfides, significantly slows down the decay of battery capacity, and ensures the long life of the battery greater than 400 cycles.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。Examples are given below to describe the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above contents of the present invention all belong to the present invention scope of protection. The specific process parameters and the like in the following examples are only examples of suitable ranges, that is, those skilled in the art can make a selection within a suitable range through the description herein, and are not limited to the specific values exemplified below.
实施例1Example 1
1)介孔球状g-C3N4的制备1) Preparation of mesoporous spherical gC 3 N 4
称取三聚氰胺1.9977g,溶于80mL的二甲基亚砜(DMSO)中;取相等摩尔数的三聚氰酸(2.0446g)溶于40mL的二甲基亚砜中。两种溶液各自在60℃下搅拌,均匀溶解后,相互混合,再保持在60℃下搅拌10分钟,然后静置至室温。将混合液离心后,用乙醇洗涤5遍,置于50℃的真空干燥箱中干燥,得到白色粉末。将白色粉末放入陶瓷坩埚中,置于管式炉中,在高纯氩气的氛围中,以2.3℃/min的升温速率升至550℃,烧结4小时,得到棕黄的样品粉末。其XRD如图1所示,衍射峰对应纳米结构的g-C3N4纯相。g-C3N4的SEM如图2所示,可以看到g-C3N4由约5微米大小的球状颗粒组成,每个颗粒又有大量的薄层纳米片自组装聚集而成,因此表现出多孔形貌。Weigh 1.9977g of melamine and dissolve it in 80mL of dimethyl sulfoxide (DMSO); dissolve cyanuric acid (2.0446g) with an equal number of moles in 40mL of dimethyl sulfoxide. The two solutions were each stirred at 60° C., and after being uniformly dissolved, they were mixed with each other, kept stirring at 60° C. for 10 minutes, and then left to stand at room temperature. After the mixture was centrifuged, washed with ethanol for 5 times, and dried in a vacuum oven at 50° C., a white powder was obtained. Put the white powder into a ceramic crucible, place it in a tube furnace, raise the temperature to 550°C at a rate of 2.3°C/min in an atmosphere of high-purity argon, and sinter it for 4 hours to obtain a brown-yellow sample powder. Its XRD is shown in Figure 1, and the diffraction peaks correspond to the pure phase of gC 3 N 4 with nanostructures. The SEM of gC 3 N 4 is shown in Figure 2. It can be seen that gC 3 N 4 is composed of spherical particles with a size of about 5 microns, and each particle is self-assembled and aggregated by a large number of thin-layer nanosheets, so it is porous shape.
2)电解液的配制2) Preparation of electrolyte
在水值、氧值小于0.1ppm的氩气手套箱中进行电解液的配制。将1.4354g(5mmol)的双三氟甲磺酰亚胺锂(LiTFSI)溶于5mL的二甘醇二甲醚(DGM)中,然后溶液置于磁力搅拌器上,搅拌24小时,得到1mol/L的LiTFSI/DGM电解液。The preparation of electrolyte is carried out in an argon glove box with water value and oxygen value less than 0.1ppm. 1.4354 g (5 mmol) of lithium bistrifluoromethanesulfonimide (LiTFSI) was dissolved in 5 mL of diglyme (DGM), then the solution was placed on a magnetic stirrer and stirred for 24 hours to obtain 1 mol/ L LiTFSI/DGM electrolyte.
3)准固态电解质的制备3) Preparation of quasi-solid electrolyte
将1)中所得到的g-C3N4粉末样品置于120℃的真空烘箱中真空干燥24小时,然后转移到氩气手套箱。取100mg的g-C3N4粉末样品于玛瑙研钵中,然后加入300μl的LiTFSI/DGM电解液,充分研磨均匀,得到介孔球状g-C3N4作为聚合物填充剂的准固态电解质。所述轻质碳氮聚合物基准固态电解质中轻质碳氮聚合物的质量百分比为20wt%。The gC 3 N 4 powder sample obtained in 1) was vacuum-dried in a vacuum oven at 120° C. for 24 hours, and then transferred to an argon glove box. Take 100 mg of gC 3 N 4 powder sample in an agate mortar, then add 300 μl of LiTFSI/DGM electrolyte, and grind it thoroughly to obtain a quasi-solid electrolyte with mesoporous spherical gC 3 N 4 as polymer filler. The mass percentage of the light carbon nitrogen polymer in the light carbon nitrogen polymer benchmark solid state electrolyte is 20wt%.
4)锂金属对称电池的组装和测试4) Assembly and testing of lithium metal symmetric batteries
在水值、氧值小于0.1ppm的氩气手套箱中进行2032纽扣电池的组装。具体来说,取直径为12mm的金属锂片,在表面均匀涂覆一层约0.1mm的3)中所述的准固态电解质后,再在准固态电解质表面铺上一直径为10mm的金属锂片,组装成扣式电池。作为对比,以Celgard为隔膜,加入70μl的LiTFFSI/DGM电解液,也类似组装成对称电池。在室温下,进行对称电池的交流阻抗测试,设置偏压为100mV,频率范围为10-2-106Hz。为测试金属锂与准固态电解质(或Celgard负载电解液)的界面阻抗随时间的演化,每隔24小时进行一次测试,直至阻抗值没有明显波动。图3显示了金属锂与准固态电解质之间界面阻抗随时间的变化,可以看出,界面阻抗值在48小时后稳定在115Ωcm2左右。接着,对室温稳定后的对称电池进行变温交流阻抗测试,温度范围为30-70℃,每隔10℃测试一次,在每一个温度节点上都保温1小时,确保电池体系的稳定。图4显示了基于准固态电解质的对称电池在30-70℃温度区间的交流阻抗谱图,根据不同温度下的交流阻抗值,可以根据阿伦尼乌斯方程算出界面处扩散活化能为0.45eV,图5即为对应的阿伦尼乌斯点。The assembly of 2032 button cells was carried out in an argon glove box with water value and oxygen value less than 0.1ppm. Specifically, take a metal lithium sheet with a diameter of 12 mm, uniformly coat a layer of quasi-solid electrolyte described in 3) of about 0.1 mm on the surface, and then spread a metal lithium sheet with a diameter of 10 mm on the surface of the quasi-solid electrolyte. pieces, assembled into button cells. As a comparison, using Celgard as the diaphragm and adding 70 μl of LiTFFSI/DGM electrolyte, a symmetrical battery is similarly assembled. At room temperature, carry out the AC impedance test of the symmetrical battery, set the bias voltage as 100mV, and the frequency range as 10 -2 -10 6 Hz. In order to test the evolution of the interface impedance of metal lithium and quasi-solid electrolyte (or Celgard load electrolyte) over time, a test was performed every 24 hours until the impedance value did not fluctuate significantly. Figure 3 shows the interfacial impedance between metallic lithium and the quasi-solid electrolyte over time. It can be seen that the interfacial impedance stabilizes at around 115Ωcm after 48 hours. Then, the variable temperature AC impedance test was carried out on the symmetrical battery after the room temperature was stabilized. The temperature range was 30-70°C, and the test was performed every 10°C. Each temperature node was kept warm for 1 hour to ensure the stability of the battery system. Figure 4 shows the AC impedance spectrum of a symmetric battery based on a quasi-solid electrolyte at a temperature range of 30-70°C. According to the AC impedance values at different temperatures, the diffusion activation energy at the interface can be calculated as 0.45eV according to the Arrhenius equation. , Figure 5 is the corresponding Arrhenius point.
将组装的2032扣式对称电池在LAND电化学工作站上进行充放电测试,在0.5mA/cm2的电流密度下,先恒流充电3小时,然后再恒流放电3小时,检测金属锂发生沉积/剥离过程的电压极化差,并以此步骤展开循环。图6和图7为基于介孔球g-C3N4准固态电解质和纯电解液的对称电池在不同电流密度下的锂金属沉积/剥离过程的循环曲线,从图中看出,准固态电解质显著地降低了金属锂沉积/剥离过程中的极化电势差,并增强了对称电池的循环稳定性。在0.5mA/cm2的电流密度下,50次循环后,极化电压差维持在50mV左右,而纯电解液体系对称电池在50次循环后,极化电压差已高达400mV。在高达2mA/cm2的电流密度下,仍然保持沉积/剥离时间不变(3小时),准固态体系的极化电压差仍可维持在低的100mV左右。在对称电池循环一定次数后,将电池在充满氩气的手套箱中拆解,取出金属锂片,置于电解液溶剂DGM中清洗数次,自然晾干,在氩气保护下放入扫描电子显微镜装置进行形貌观测。图8为2mA/cm2电流密度下,准固态电解质对称电池120次循环后金属锂表面的形貌,从图中可以看出,大电流密度循环后的锂金属表面仍然平滑致密,证实了负极锂枝晶生长被有效抑制。The assembled 2032 button-type symmetrical battery was charged and discharged on the LAND electrochemical workstation. At a current density of 0.5mA/ cm2 , it was charged at a constant current for 3 hours, and then discharged at a constant current for 3 hours to detect the deposition of lithium metal. The voltage polarization of the /stripping process is poor, and the cycle is unrolled at this step. Figure 6 and Figure 7 are cycle curves of lithium metal deposition/stripping processes based on mesoporous spherical gC 3 N 4 quasi-solid electrolyte and pure electrolyte at different current densities. It can be seen from the figure that the quasi-solid electrolyte significantly The polarization potential difference during metal Li deposition/stripping process is significantly reduced, and the cycle stability of the symmetric battery is enhanced. At a current density of 0.5mA/cm 2 , after 50 cycles, the polarization voltage difference is maintained at about 50mV, while the pure electrolyte system symmetric battery has a polarization voltage difference as high as 400mV after 50 cycles. At a current density as high as 2mA/cm 2 , the deposition/stripping time remains unchanged (3 hours), and the polarization voltage difference of the quasi-solid-state system can still be maintained at a low level of about 100mV. After the symmetrical battery cycled for a certain number of times, the battery was disassembled in a glove box filled with argon gas, and the metal lithium sheet was taken out, washed several times in the electrolyte solvent DGM, dried naturally, and placed in a scanning electron microscope under the protection of argon gas. Microscope device for morphology observation. Figure 8 shows the morphology of the metal lithium surface of the quasi-solid electrolyte symmetric battery after 120 cycles at a current density of 2mA/ cm2 . It can be seen from the figure that the lithium metal surface is still smooth and dense after a high current density cycle, confirming the Li dendrite growth was effectively suppressed.
5)基于准固态电解质的Li-FeS2电池的组装和测试5) Assembly and testing of Li- FeS2 batteries based on quasi-solid electrolytes
a)FeS2正极材料的制备a) Preparation of FeS2 cathode material
称取商业FeS2粉末样品35mg、Super P 10mg,放入研钵中研磨30min,之后加入PVDF浓度为20mg/μl的NMP溶液100μl,研磨10~15min。将黑色浆料均匀涂抹在面积为50mm2的铝箔上,并放入80℃真空烘箱干燥12小时。将真空干燥后的载有活性物质的铝箔再次进行称量,并装袋,放入手套箱;Weigh 35 mg of commercial FeS 2 powder sample and 10 mg of Super P, put them into a mortar and grind for 30 minutes, then add 100 μl of NMP solution with a PVDF concentration of 20 mg/μl, and grind for 10-15 minutes. Spread the black slurry evenly on an aluminum foil with an area of 50 mm 2 and dry it in a vacuum oven at 80°C for 12 hours. The aluminum foil loaded with active substance after vacuum drying is weighed again, and packed into a glove box;
b)电池的组装和测试b) Assembly and testing of batteries
在水值、氧值小于0.1ppm的氩气手套箱中进行2032纽扣电池的组装。具体过程为,在直径为10mm的锂片上均匀涂覆一层上述的准固态电解质,然后将载有活性物质的正极电极片置于电解质上,组装成Li-FeS2锂金属电池。将组装好的电池在LAND电化学工作站上进行充放电测试,电压区间为1-3V,电流倍率为0.1C(1C对应着FeS2的4电子转化反应或892mAh/g理论比容量在1小时完成所需的电流密度)。图9为Li-FeS2电池在前200次循环中典型的充放电曲线,由于锂枝晶被抑制,锂负极形貌被显著改善,该准固态电解质的极性也有利于弱化多硫化物的穿梭效应,因此保证了电池大于400次循环的长寿命。The assembly of 2032 button cells was carried out in an argon glove box with water value and oxygen value less than 0.1ppm. The specific process is to uniformly coat a layer of the above-mentioned quasi-solid electrolyte on a lithium sheet with a diameter of 10mm, and then place the positive electrode sheet loaded with active materials on the electrolyte to assemble a Li- FeS2 lithium metal battery. The assembled battery is charged and discharged on the LAND electrochemical workstation, the voltage range is 1-3V, and the current rate is 0.1C (1C corresponds to the 4-electron conversion reaction of FeS 2 or the theoretical specific capacity of 892mAh/g is completed in 1 hour required current density). Figure 9 is a typical charge-discharge curve of a Li- FeS2 battery in the first 200 cycles. Due to the inhibition of lithium dendrites, the morphology of the lithium negative electrode is significantly improved, and the polarity of the quasi-solid electrolyte is also conducive to weakening the polysulfides. Shuttle effect, thus ensuring a long life of the battery greater than 400 cycles.
实施例2Example 2
1)单层片状O-g-C3N4的制备1) Preparation of monolayer flake OgC 3 N 4
4g的三聚氰胺置于马弗炉中,马弗炉与空气连通,以2℃/min的速率升温至550℃,在此温度保温4个小时,得到亮黄色的块状疏松固体样品。将样品充分研磨成粉末后,置于燃烧舟中,以5℃/min的速率升温至550℃并保温1小时,得到淡黄色固体粉末。然后再将此粉末以2℃/min的速率升温至550℃并保温1小时,得到白色的最终样品。上述所有升温过程都在空气氛围中进行;4g of melamine was placed in a muffle furnace, the muffle furnace was connected to the air, and the temperature was raised to 550°C at a rate of 2°C/min, and kept at this temperature for 4 hours to obtain a bright yellow bulky loose solid sample. After the sample was fully ground into powder, it was placed in a combustion boat, and the temperature was raised to 550°C at a rate of 5°C/min and kept for 1 hour to obtain a light yellow solid powder. Then the powder was heated up to 550° C. at a rate of 2° C./min and held for 1 hour to obtain a white final sample. All the above-mentioned heating processes are carried out in the air atmosphere;
2)电解液的配置2) Electrolyte configuration
在水值、氧值小于0.1ppm的氩气手套箱中进行电解液的配制。将1.4354g(5mmol)的双三氟甲磺酰亚胺锂(LiTFSI)溶于5mL的二甘醇二甲醚(DGM)中,然后溶液置于磁力搅拌器上,搅拌24小时,得到1mol/L的LiTFSI/DGM电解液;The preparation of electrolyte is carried out in an argon glove box with water value and oxygen value less than 0.1ppm. 1.4354 g (5 mmol) of lithium bistrifluoromethanesulfonimide (LiTFSI) was dissolved in 5 mL of diglyme (DGM), then the solution was placed on a magnetic stirrer and stirred for 24 hours to obtain 1 mol/ L LiTFSI/DGM electrolyte;
3)准固态电解质的制备3) Preparation of quasi-solid electrolyte
将1)中所得到的片层状O-g-C3N4粉末样品置于120℃真空烘箱中真空干燥24小时,然后转移到氩气手套箱。取120mg的O-g-C3N4粉末样品于玛瑙研钵中,加入300μl的LiTFSI/DGM电解液,充分研磨均匀,得到氧掺杂片层状O-g-C3N4作为聚合物填充剂的准固态电解质。所述轻质碳氮聚合物基准固态电解质中轻质碳氮聚合物的质量百分比为25wt%;The lamellar OgC 3 N 4 powder sample obtained in 1) was vacuum-dried in a vacuum oven at 120° C. for 24 hours, and then transferred to an argon glove box. Take 120 mg of OgC 3 N 4 powder sample in an agate mortar, add 300 μl of LiTFSI/DGM electrolyte, and grind thoroughly to obtain a quasi-solid electrolyte with oxygen-doped lamellar OgC 3 N 4 as polymer filler. The mass percentage of light carbon nitrogen polymer in the light carbon nitrogen polymer benchmark solid state electrolyte is 25wt%;
4)锂金属对称电池的组装和测试4) Assembly and testing of lithium metal symmetric batteries
在水值、氧值小于0.1ppm的氩气手套箱中进行2032纽扣电池的组装。具体来说,取直径为12mm的金属锂片,在表面均匀涂覆一层约0.1mm的3)中所述的准固态电解质后,然后在准固态电解质上再铺上一直径为10mm的金属锂片,组装成扣式电池。作为对比,以Celgard为隔膜,负载上70μl的LiTFSI/DGM电解液,也组装成对称电池。对上述对称电池进行界面交流阻抗测试(包括界面阻抗的随时间稳定性以及变温交流阻抗),以及在不同电流密度下的锂金属沉积/剥离的充放电测试。图10表现了金属锂与O-g-C3N4基准固态电解质之间界面阻抗随时间的变化,可以看出,界面阻抗值在168小时后稳定在550Ωcm2左右。图11显示了基于O-g-C3N4准固态电解质的对称电池在0.5mA/cm2和2mA/cm2电流密度下的锂金属沉积/剥离过程的循环曲线,从图中看出,低电流密度可维持更好的循环稳定性,80次循环后的电位极化仍然维持在100mV左右。The assembly of 2032 button cells was carried out in an argon glove box with water value and oxygen value less than 0.1ppm. Specifically, take a metal lithium sheet with a diameter of 12 mm, uniformly coat the surface with the quasi-solid electrolyte described in 3) of about 0.1 mm, and then spread a metal lithium sheet with a diameter of 10 mm on the quasi-solid electrolyte. Lithium sheets, assembled into button cells. As a comparison, Celgard was used as a separator, loaded with 70 μl of LiTFSI/DGM electrolyte, and a symmetrical battery was also assembled. The interface AC impedance test (including the stability of the interface impedance over time and the temperature-varying AC impedance) was carried out on the above-mentioned symmetrical battery, and the charge-discharge test of lithium metal deposition/stripping under different current densities. Figure 10 shows the change of interface impedance over time between metal lithium and OgC 3 N 4 reference solid electrolyte. It can be seen that the interface impedance value stabilizes at about 550Ωcm 2 after 168 hours. Figure 11 shows the cycle curves of lithium metal deposition/stripping process of a symmetric battery based on OgC 3 N 4 quasi-solid electrolyte at current densities of 0.5 mA/cm 2 and 2 mA/cm 2 , it can be seen from the figure that low current density can Maintain better cycle stability, and the potential polarization after 80 cycles is still maintained at about 100mV.
最后有必要在此说明的是:以上实施例只用于对本发明的技术方案作进一步地详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。Finally, it is necessary to explain here that: the above examples are only used to further describe the technical solutions of the present invention in detail, and cannot be interpreted as limiting the protection scope of the present invention. Non-essential improvements and adjustments all belong to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710036162.4A CN108321432B (en) | 2017-01-17 | 2017-01-17 | A carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting lithium dendrite growth and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710036162.4A CN108321432B (en) | 2017-01-17 | 2017-01-17 | A carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting lithium dendrite growth and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108321432A CN108321432A (en) | 2018-07-24 |
CN108321432B true CN108321432B (en) | 2019-12-17 |
Family
ID=62891325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710036162.4A Active CN108321432B (en) | 2017-01-17 | 2017-01-17 | A carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting lithium dendrite growth and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108321432B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108982471B (en) * | 2018-08-02 | 2021-01-08 | 江苏师范大学 | AgNR/O-g-C3N4Substrate, preparation method thereof and application thereof in recyclable SERS (surface enhanced Raman scattering) sensitive detection |
CN109494362B (en) * | 2018-10-31 | 2020-09-08 | 贵州梅岭电源有限公司 | Positive electrode material for thermal battery and preparation method thereof |
CN109786870A (en) * | 2018-12-25 | 2019-05-21 | 上海力信能源科技有限责任公司 | A method of it reducing lithium battery and analyses lithium |
CN109802173B (en) * | 2019-01-24 | 2021-03-26 | 北京化工大学 | A three-phase organic/inorganic composite gel polymer electrolyte and preparation method thereof |
CN109755640A (en) * | 2019-03-13 | 2019-05-14 | 西安交通大学 | A kind of preparation method of composite solid polymer electrolyte |
CN114551793B (en) * | 2021-09-18 | 2023-10-03 | 万向一二三股份公司 | Lithium-based composite negative plate with long cycle life, preparation method thereof and solid lithium battery |
CN114725514B (en) * | 2022-04-07 | 2025-03-11 | 北京化工大学 | A lithium or sodium ion battery electrolyte additive and its application |
CN115051028A (en) * | 2022-07-21 | 2022-09-13 | 重庆交通大学绿色航空技术研究院 | Nanofiber-based composite solid electrolyte stable to lithium, and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103840111A (en) * | 2012-11-27 | 2014-06-04 | 比亚迪股份有限公司 | Polymer film, gel polymer electrolyte and polymer lithium battery, and preparation method of polymer lithium battery |
CN104332652A (en) * | 2014-09-02 | 2015-02-04 | 中国人民解放军国防科学技术大学 | Preparation method of perfluoroalkyl sulfonimide lithium polymer electrolyte and lithium-sulfur secondary cell |
CN105895956A (en) * | 2016-06-14 | 2016-08-24 | 东莞市联洲知识产权运营管理有限公司 | Safe lithium secondary battery with high energy density |
-
2017
- 2017-01-17 CN CN201710036162.4A patent/CN108321432B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103840111A (en) * | 2012-11-27 | 2014-06-04 | 比亚迪股份有限公司 | Polymer film, gel polymer electrolyte and polymer lithium battery, and preparation method of polymer lithium battery |
CN104332652A (en) * | 2014-09-02 | 2015-02-04 | 中国人民解放军国防科学技术大学 | Preparation method of perfluoroalkyl sulfonimide lithium polymer electrolyte and lithium-sulfur secondary cell |
CN105895956A (en) * | 2016-06-14 | 2016-08-24 | 东莞市联洲知识产权运营管理有限公司 | Safe lithium secondary battery with high energy density |
Non-Patent Citations (1)
Title |
---|
Influence of g‑C3N4 Nanosheets on Thermal Stability and Mechanical Properties of Biopolymer Electrolyte Nanocomposite Films: A Novel Investigation;Yongqian Shi、Saihua Jiang等;《APPLIED MATERIALS&INTERFACES》;20131006;第6卷(第1期);摘要,第429页左边栏第1段-第430页右边栏第2段 * |
Also Published As
Publication number | Publication date |
---|---|
CN108321432A (en) | 2018-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108321432B (en) | A carbon-nitrogen polymer benchmark solid-state electrolyte for inhibiting lithium dendrite growth and its preparation method and application | |
Wang et al. | Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries | |
Zhao et al. | Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode | |
Jin et al. | Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator | |
CN103794800B (en) | Lithium battery collector, pole piece and lithium battery and preparation method thereof, lithium battery applications | |
KR101397415B1 (en) | Lithiated metal carbon composite, method for preparing the same, and electrochemical device comprising the same | |
CN105551815B (en) | A kind of lithium-ion capacitor and preparation method thereof | |
CN104201339B (en) | Anode and preparation method thereof and the application in lithium-sulfur cell | |
Li et al. | Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries | |
Yubuchi et al. | All-solid-state cells with Li4Ti5O12/carbon nanotube composite electrodes prepared by infiltration with argyrodite sulfide-based solid electrolytes via liquid-phase processing | |
CN104538207B (en) | TiNb2O7The preparation method of/carbon nano tube compound material and using the material as the lithium-ion capacitor of negative pole | |
CN110635116B (en) | Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery | |
CN106463674A (en) | Bifunctional separators for lithium-sulfur batteries | |
US10403885B2 (en) | Active material for batteries | |
Zhao et al. | Effect of microstructure on low temperature electrochemical properties of LiFePO4/C cathode material | |
TWI636607B (en) | Carbon coated lithium sulfide | |
CN110504488A (en) | A kind of electrolytic solution modified by graphene quantum dots and preparation method thereof | |
CN106252663A (en) | Metal-organic framework materials CuBDC nanometer sheet and its preparation method and application | |
Xiong et al. | A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes | |
Dong et al. | A novel strategy for improving performance of lithium-oxygen batteries | |
Li et al. | Free-standing sulfur cathodes composited with carbon nanorods arrays for Li-S batteries application | |
Li et al. | Composite solid electrolyte with Li+ conducting 3D porous garnet-type framework for all-solid-state lithium batteries | |
Zhang et al. | In situ constructing lithiophilic and Ion/Electron Dual-Regulated current collector for highly stable lithium metal batteries | |
CN109037764A (en) | A kind of preparation method of the solid electrolyte of stable lithium an- ode | |
CN103094581A (en) | A kind of electric energy storage material and its synthesis method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |