CN108321375B - In-situ doped nano-molybdenum-based material, preparation method and use - Google Patents
In-situ doped nano-molybdenum-based material, preparation method and use Download PDFInfo
- Publication number
- CN108321375B CN108321375B CN201810117086.4A CN201810117086A CN108321375B CN 108321375 B CN108321375 B CN 108321375B CN 201810117086 A CN201810117086 A CN 201810117086A CN 108321375 B CN108321375 B CN 108321375B
- Authority
- CN
- China
- Prior art keywords
- molybdenum
- doped nano
- based material
- situ doped
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 54
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 47
- 229910052750 molybdenum Inorganic materials 0.000 title claims abstract description 42
- 239000011733 molybdenum Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 28
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000002243 precursor Substances 0.000 claims abstract description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 8
- 229910001631 strontium chloride Inorganic materials 0.000 claims abstract description 8
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 claims abstract description 8
- 239000007858 starting material Substances 0.000 claims abstract description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 21
- 239000007773 negative electrode material Substances 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000011259 mixed solution Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 7
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 7
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 claims description 7
- 239000011565 manganese chloride Substances 0.000 claims description 7
- 229940099607 manganese chloride Drugs 0.000 claims description 7
- 235000002867 manganese chloride Nutrition 0.000 claims description 7
- 150000003852 triazoles Chemical class 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910001868 water Inorganic materials 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 6
- 239000006258 conductive agent Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 239000006230 acetylene black Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 5
- 239000011889 copper foil Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 239000002033 PVDF binder Substances 0.000 claims description 2
- 239000006260 foam Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 5
- 230000002441 reversible effect Effects 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 3
- 239000002086 nanomaterial Substances 0.000 abstract description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003990 capacitor Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000010304 firing Methods 0.000 abstract description 2
- 238000005580 one pot reaction Methods 0.000 abstract description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000243 solution Substances 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000010405 anode material Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 210000003278 egg shell Anatomy 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种原位掺杂型纳米钼基材料、制备方法及用途,属于锂离子电池制备领域,以1,6‑双(三氮唑)己烷、七钼酸铵、氯化锰、氯化锶和磷酸为起始原料,通过中温水热一釜合成方法合成了锰取代的有机‑无机杂化的磷钼酸盐材料。以这种修饰的磷钼酸盐衍生物为前驱体,在氮气环境中经过高温灼烧成功制得了多孔的掺杂型纳米钼基复合材料。多种元素的原位掺杂,改善了材料表面的活性和稳定性,从根本上提高了电化学性能。此外,前驱体法形成的珊瑚形多孔的纳米结构实现了对钼基材料形貌、粒径分布、比表面积和振实密度的调控,进而提高了锂离子电池性能。在500mA/g大电流密度下循环300次,锂离子电容电池的可逆容量仍高于95%。
The invention discloses an in-situ doped nano-molybdenum-based material, a preparation method and use thereof, belonging to the field of lithium ion battery preparation. , strontium chloride and phosphoric acid are used as starting materials, and a manganese-substituted organic-inorganic hybrid phosphomolybdate material is synthesized by a medium-temperature hydrothermal one-pot synthesis method. Using the modified phosphomolybdate derivatives as precursors, porous doped nano-molybdenum-based composites were successfully prepared by high temperature firing in nitrogen atmosphere. The in-situ doping of various elements improves the activity and stability of the material surface and fundamentally improves the electrochemical performance. In addition, the coral-shaped porous nanostructures formed by the precursor method can control the morphology, particle size distribution, specific surface area and tap density of molybdenum-based materials, thereby improving the performance of lithium-ion batteries. After 300 cycles at a high current density of 500 mA/g, the reversible capacity of the lithium-ion capacitor battery is still higher than 95%.
Description
技术领域technical field
本发明属于锂离子电池技术领域,特别涉及一种原位掺杂型纳米钼基材料、制备方法及用途。The invention belongs to the technical field of lithium ion batteries, and particularly relates to an in-situ doped nano-molybdenum-based material, a preparation method and an application thereof.
背景技术Background technique
锂离子电池作为新一代清洁能源,具有体积小、储存能量大、工作电压高、循环寿命长、无记忆效应等显著优点,在智能手机、笔记本电脑、数码照相机、电子手表等领域得到广泛的应用。As a new generation of clean energy, lithium-ion batteries have significant advantages such as small size, large storage energy, high operating voltage, long cycle life, and no memory effect. They are widely used in smart phones, notebook computers, digital cameras, electronic watches and other fields. .
电极材料作为锂离子电池的关键部分,成本占据整个电池的50%以上。目前对商用的锂离子电池而言,石墨是常用的负极材料,但是石墨的能量密度和功率密度偏低,其较低的嵌锂电位也容易出现安全问题,因此发展一种高能量密度,高嵌锂电位的负极材料是十分必要的。相对于石墨而言,过渡金属氧化物、锡基、硅基负极材料,由于其高比容量,高电位以及丰富的储量近年来引起人们的广泛关注。但是这些负极材料在脱嵌锂时体积将会发生大的膨胀和收缩,大的体积变化会导致颗粒内部的应力变化而造成颗粒破裂和粉化,活性物质从集流体上剥落,活性物质之间以及活性物质与集流体之间失去电接触而造成容量衰减。因为电极材料的体积膨胀,使其在电解液中无法产生稳定的固体电解质界面膜(Solide Electrolyte Interface,SEI),循环过程中不断消耗电解液形成新的SEI层导致电极低的可逆容量和差的循环稳定性。为此人们采用了多种策略对此类负极材料的电化学性能进行改善:(1)通过纳米化结构设计来获得更多空间,以缓冲体积膨胀带来的应力。比如:中空结构、多孔结构、蛋壳结构等。(2)通过与其他柔性的材料复合来缓冲应力,比如与碳、石墨烯、碳纳米管等构建复合物。本文将结合这一领域近几年的研究进展,对这类体积膨胀型锂电池负极材料的结构设计和制备策略进行阐述。(3)通过掺杂和表面包覆对现有材料进行修饰和改性,利用多种导电材料的协同作用,制备具有无定形或多孔结构的多元复合材料。但目前的策略只能通过改变其形貌和粒径分布来达到改善材料电化学性能的目的,很难控制包覆和掺杂的量,以及表面的均匀程度,从根本上调控和提高电极材料的相容性能。As a key part of lithium-ion batteries, electrode materials account for more than 50% of the cost of the entire battery. At present, graphite is a commonly used anode material for commercial lithium-ion batteries, but the energy density and power density of graphite are low, and its low lithium intercalation potential is also prone to safety problems. A negative electrode material with lithium intercalation potential is very necessary. Compared with graphite, transition metal oxides, tin-based, and silicon-based anode materials have attracted widespread attention in recent years due to their high specific capacity, high potential, and abundant reserves. However, these negative electrode materials will experience large expansion and contraction in volume when lithium is deintercalated. Large volume changes will lead to changes in the internal stress of the particles, resulting in particle cracking and pulverization, and the active material will peel off from the current collector. And the loss of electrical contact between the active material and the current collector causes capacity fading. Due to the volume expansion of the electrode material, it cannot generate a stable solid electrolyte interface (SEI) in the electrolyte. During the cycle, the electrolyte is continuously consumed to form a new SEI layer, resulting in low reversible capacity and poor electrode performance. Cyclic Stability. To this end, various strategies have been adopted to improve the electrochemical performance of such anode materials: (1) To obtain more space through nanostructure design to buffer the stress caused by volume expansion. For example: hollow structure, porous structure, eggshell structure, etc. (2) Buffer stress by compounding with other flexible materials, such as constructing a compound with carbon, graphene, carbon nanotubes, etc. In this paper, the structure design and preparation strategy of this type of volume-expandable lithium battery anode material will be described in combination with the research progress in this field in recent years. (3) The existing materials are modified and modified by doping and surface coating, and the multi-component composite materials with amorphous or porous structure are prepared by using the synergistic effect of various conductive materials. However, the current strategy can only achieve the purpose of improving the electrochemical performance of the material by changing its morphology and particle size distribution. It is difficult to control the amount of coating and doping, as well as the uniformity of the surface, so as to fundamentally regulate and improve the electrode material. compatibility performance.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种原位掺杂型纳米钼基材料、制备方法及用途。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide an in-situ doped nano-molybdenum-based material, a preparation method and an application.
为实现上述目的,本发明采用的技术方案如下:For achieving the above object, the technical scheme adopted in the present invention is as follows:
一种原位掺杂型纳米钼基材料的制备方法,包括如下步骤:A preparation method of an in-situ doped nano-molybdenum-based material, comprising the following steps:
S1、以1,6-双(三氮唑)己烷、七钼酸铵、氯化锰、氯化锶和磷酸为起始原料,以水作为溶剂,进行混合并搅拌60min,调节pH值为3~4,得到混合液,其中,所述1,6-双(三氮唑)己烷、七钼酸铵、氯化锰、氯化锶、磷酸和水的摩尔比为1:2:4:3:30:2000~2500;S1, using 1,6-bis(triazole) hexane, ammonium heptamolybdate, manganese chloride, strontium chloride and phosphoric acid as starting materials, using water as a solvent, mixing and stirring for 60min, adjusting the pH value to be 3 to 4, to obtain a mixed solution, wherein the molar ratio of the 1,6-bis(triazole)hexane, ammonium heptamolybdate, manganese chloride, strontium chloride, phosphoric acid and water is 1:2:4 :3:30:2000~2500;
S2、将S1得到的混合液转移到反应釜中,于160℃下反应4~6天,反应结束后,自然冷却至室温,得到深蓝色多酸前驱体;S2, transfer the mixed solution obtained in S1 to the reaction kettle, and react at 160° C. for 4 to 6 days. After the reaction is completed, naturally cool to room temperature to obtain a dark blue polyacid precursor;
S3、将S2中得到的前驱体经洗涤、过滤、干燥,并于管式炉中在惰性气体保护下,于600~700℃煅烧6~8h,煅烧结束后,自然冷却至室温得煅烧产物,然后将煅烧产物研磨30~50min,过400目筛,得到原位掺杂型纳米钼基锂离子电池负极材料。S3. The precursor obtained in S2 is washed, filtered, dried, and calcined at 600-700 ° C for 6-8 h in a tube furnace under the protection of inert gas. After the calcination is completed, it is naturally cooled to room temperature to obtain a calcined product. Then, the calcined product is ground for 30-50 minutes and passed through a 400-mesh sieve to obtain an in-situ doped nano-molybdenum-based lithium ion battery negative electrode material.
本发明的特点还在于,S3中的惰性气体为N2。The present invention is also characterized in that the inert gas in S3 is N 2 .
本发明的另一技术方案是提供一种上述方法制备得到的原位掺杂型纳米钼基材料。Another technical solution of the present invention is to provide an in-situ doped nano-molybdenum-based material prepared by the above method.
本发明的另一技术方案是提供一种上述原位掺杂型纳米钼基材料作为锂离子电池负极材料的用途。Another technical solution of the present invention is to provide the use of the above-mentioned in-situ doped nano-molybdenum-based material as a negative electrode material for a lithium ion battery.
本发明的特点还在于,原位掺杂型纳米钼基材料作为锂离子电池负极材料的过程包括如下步骤:将原位掺杂型纳米钼基材料、导电剂和粘结剂加入到适量溶剂中混合均匀,使混合物形成膏状,然后涂覆到集流体上,于80~120℃干燥6~12h,得到锂离子电池负极材料,其中,原位掺杂型纳米钼基材料、导电剂和粘结剂的质量比为8.0~9.5:0.2~1.0:0.3~1.0。The present invention is also characterized in that the process of using the in-situ doped nano-molybdenum-based material as a negative electrode material for a lithium ion battery includes the following steps: adding the in-situ doped nano-molybdenum-based material, a conductive agent and a binder into an appropriate amount of solvent Mix evenly to make the mixture into a paste, then coat it on the current collector, and dry it at 80 to 120 ° C for 6 to 12 hours to obtain a lithium-ion battery negative electrode material, wherein the in-situ doped nano-molybdenum-based material, the conductive agent and the adhesive The mass ratio of the binder is 8.0-9.5:0.2-1.0:0.3-1.0.
本发明的特点还在于,溶剂为N-甲基-2-吡咯烷酮(NMP)。The present invention is also characterized in that the solvent is N-methyl-2-pyrrolidone (NMP).
本发明的特点还在于,导电剂为乙炔黑、碳纳米管、石墨烯中的一种或两种以上组合。The present invention is also characterized in that the conductive agent is one or a combination of two or more selected from acetylene black, carbon nanotubes and graphene.
本发明的特点还在于,粘结剂为聚偏氟乙烯。The present invention is also characterized in that the binder is polyvinylidene fluoride.
本发明的特点还在于,集流体为铜箔、泡沫镍中的一种。The present invention is also characterized in that the current collector is one of copper foil and nickel foam.
本发明具有的优点和积极效果是:The advantages and positive effects that the present invention has are:
本发明利用中温水热一釜合成方法合成了锰取代的有机-无机杂化的磷钼酸盐材料。以这种修饰的磷钼酸盐衍生物为前驱体,在氮气环境中经过高温灼烧成功制得了多孔的掺杂型纳米钼基复合材料。多种元素的原位掺杂,改善了材料表面的活性和稳定性,从根本上提高了电化学性能。此外,前驱体法形成的均匀、多孔的纳米结构实现了对钼基材料形貌、粒径分布、比表面积和振实密度的调控,进而提高了锂离子电池性能。将这种原位掺杂型纳米钼基材料作为锂离子电池负极材料组装成CR2025型号的扣式电池,表现出较高的放电比容量(1108mAh/g)、倍率性能以及良好的循环性能,在500mA/g大电流密度下循环300次,锂离子电容电池的容量仍高于95%。其电极性能优于目前常用的电极材料。The invention utilizes a medium-temperature hydrothermal one-pot synthesis method to synthesize a manganese-substituted organic-inorganic hybrid phosphomolybdate material. Using the modified phosphomolybdate derivatives as precursors, porous doped nano-molybdenum-based composites were successfully prepared by high temperature firing in nitrogen atmosphere. The in-situ doping of various elements improves the activity and stability of the material surface and fundamentally improves the electrochemical performance. In addition, the uniform and porous nanostructures formed by the precursor method realize the regulation of the morphology, particle size distribution, specific surface area, and tap density of molybdenum-based materials, thereby improving the performance of lithium-ion batteries. This in-situ doped nano-molybdenum-based material was used as a negative electrode material for lithium-ion batteries and assembled into a CR2025 button battery, which showed high discharge specific capacity (1108mAh/g), rate performance and good cycle performance. After 300 cycles at a high current density of 500mA/g, the capacity of the lithium-ion capacitor battery is still higher than 95%. Its electrode performance is better than that of currently commonly used electrode materials.
附图说明Description of drawings
图1为原位掺杂型纳米钼基材料的SEM图。Figure 1 is a SEM image of the in-situ doped nano-Mo-based material.
图2为原位掺杂型纳米钼基材料在100mA/g电流密度下,第10次循环的充放电曲线图。Fig. 2 is a charge-discharge curve diagram of the in-situ doped nano-molybdenum-based material at a current density of 100 mA/g for the 10th cycle.
图3为原位掺杂型纳米钼基材料在100、200、500、800、1000mA/g电流密度下的倍率性能图。Figure 3 is a graph showing the rate performance of the in-situ doped nano-Mo-based material at current densities of 100, 200, 500, 800, and 1000 mA/g.
图4为原位掺杂型纳米钼基材料在500mA/g大电流密度下循环300次的循环性能图。Figure 4 shows the cycle performance of the in-situ doped nano-Mo-based material at a high current density of 500 mA/g for 300 cycles.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
以下实施例中,将所制备的锂离子电池负极材料作为工作电极,锂片为对电极,1MLiPF6(1:1:1体积比的碳酸亚乙酯、碳酸二甲酯和碳酸二乙酯为混合溶剂)为电解液,Celgard 2500为隔膜,共同装配成CR2025型号的扣式电池,其中工作电极的活性物质负载量为1~3mg/cm-2。In the following examples, the prepared lithium ion battery negative electrode material is used as the working electrode, the lithium sheet is the counter electrode, and 1MLiPF 6 (1:1:1 volume ratio of ethylene carbonate, dimethyl carbonate and diethyl carbonate is mixed solvent) as the electrolyte, Celgard 2500 as the separator, and assembled together to form a CR2025 button cell, wherein the active material loading of the working electrode is 1-3 mg/cm -2 .
实施例1Example 1
本发明实施例提供的一种原位掺杂型纳米钼基材料,其制备方法具体包括如下步骤:An in-situ doped nano-molybdenum-based material provided by an embodiment of the present invention, the preparation method of which specifically includes the following steps:
S1、以0.2200g的1,6-双(三氮唑)己烷、2.4000g七钼酸铵、0.6475g氯化锰、0.7999g氯化锶和2.00mL磷酸为起始原料,以36.00mL水作为溶剂,进行混合并搅拌60min,用氢氧化钠调节pH值为3,得到混合液;S1. Using 0.2200g of 1,6-bis(triazole)hexane, 2.4000g of ammonium heptamolybdate, 0.6475g of manganese chloride, 0.7999g of strontium chloride and 2.00mL of phosphoric acid as starting materials, and 36.00mL of water As a solvent, mix and stir for 60min, and adjust the pH value with sodium hydroxide to be 3 to obtain a mixed solution;
S2、将S1得到的混合液转移到反应釜中,于160℃下反应4天,反应结束后,自然冷却至室温,得到前驱体反应物晶体;S2, transfer the mixed solution obtained in S1 into the reactor, react at 160 ° C for 4 days, after the reaction is completed, naturally cool to room temperature to obtain the precursor reactant crystal;
S3、将S2中得到的前驱体反应物晶体经洗涤、过滤、干燥,并于管式炉中在N2保护下,于600℃煅烧8h,煅烧结束后,自然冷却至室温得煅烧产物,然后将煅烧产物研磨30min,过400目筛,得到原位掺杂型纳米钼基材料。S3. The precursor reactant crystals obtained in S2 are washed, filtered, dried, and calcined at 600 °C for 8 h in a tube furnace under the protection of N 2 . After the calcination is completed, naturally cool to room temperature to obtain a calcined product, The calcined product was ground for 30 minutes and passed through a 400-mesh sieve to obtain an in-situ doped nano-molybdenum-based material.
本发明实施例提供的原位掺杂型纳米钼基材料作为锂离子电池负极材料的过程具体包括如下步骤:将480mg原位掺杂型纳米钼基锂离子电池负极材料、60mg乙炔黑和60mg聚偏氟乙烯加入到适量NMP中,使混合物形成膏状,然后涂覆到铜箔上,于80℃干燥12h,得到锂离子电池负极材料。The process of using the in-situ doped nano-molybdenum-based material as the negative electrode material of a lithium ion battery provided in the embodiment of the present invention specifically includes the following steps: adding 480 mg of the in-situ doped nano-molybdenum-based lithium ion battery negative electrode material, 60 mg of acetylene black and 60 mg of polymer Vinylidene fluoride was added to an appropriate amount of NMP to make the mixture into a paste, which was then coated on copper foil and dried at 80°C for 12 hours to obtain a negative electrode material for lithium ion batteries.
实施例2Example 2
本发明实施例提供的一种原位掺杂型纳米钼基材料,其制备方法具体包括如下步骤:An in-situ doped nano-molybdenum-based material provided by an embodiment of the present invention, the preparation method of which specifically includes the following steps:
S1、以0.2200g的1,6-双(三氮唑)己烷、2.4000g七钼酸铵、0.6475g氯化锰、0.7999g氯化锶和2.00mL磷酸为起始原料,以40.50mL水作为溶剂,进行混合并搅拌60min,用氢氧化钠调节pH值为3.5,得到混合液;S1. Using 0.2200g of 1,6-bis(triazole)hexane, 2.4000g of ammonium heptamolybdate, 0.6475g of manganese chloride, 0.7999g of strontium chloride and 2.00mL of phosphoric acid as starting materials, and 40.50mL of water As a solvent, mix and stir for 60min, and adjust the pH value with sodium hydroxide to be 3.5 to obtain a mixed solution;
S2、将S1得到的混合液转移到反应釜中,于160℃下反应5天,反应结束后,自然冷却至室温,得到反应液;S2, the mixed solution obtained in S1 is transferred to the reactor, reacted at 160 ° C for 5 days, after the reaction is finished, naturally cooled to room temperature to obtain a reaction solution;
S3、将S2中得到的反应液经洗涤、过滤、干燥,并于管式炉中在N2保护下,于650℃煅烧7h,煅烧结束后,自然冷却至室温得煅烧产物,然后将煅烧产物研磨40min,过400目筛,得到原位掺杂型纳米钼基材料。S3. The reaction solution obtained in S2 is washed, filtered, dried, and calcined at 650° C. for 7h in a tube furnace under the protection of N 2 . After the calcination is completed, it is naturally cooled to room temperature to obtain a calcined product. Grind for 40 min, pass through a 400-mesh sieve, and obtain an in-situ doped nano-molybdenum-based material.
本发明实施例提供的原位掺杂型纳米钼基材料作为锂离子电池负极材料的过程具体包括如下步骤:将510mg原位掺杂型纳米钼基锂离子电池负极材料、54mg乙炔黑和36mg聚偏氟乙烯加入到适量NMP中,使混合物形成膏状,然后涂覆到铜箔上,于100℃干燥10h,得到锂离子电池负极材料。The process of using the in-situ doped nano-molybdenum-based material as the negative electrode material of a lithium ion battery provided in the embodiment of the present invention specifically includes the following steps: adding 510 mg of the in-situ doped nano-molybdenum-based lithium ion battery negative electrode material, 54 mg of acetylene black and 36 mg of polymer Vinylidene fluoride was added to an appropriate amount of NMP to make the mixture into a paste, which was then coated on copper foil and dried at 100° C. for 10 hours to obtain a negative electrode material for lithium ion batteries.
实施例3Example 3
本发明实施例提供的一种原位掺杂型纳米钼基材料,其制备方法具体包括如下步骤:An in-situ doped nano-molybdenum-based material provided by an embodiment of the present invention, the preparation method of which specifically includes the following steps:
S1、以0.2200g的1,6-双(三氮唑)己烷、2.4000g七钼酸铵、0.6475g氯化锰、0.7999g氯化锶和2.00mL磷酸为起始原料,以45.00mL水作为溶剂,进行混合并搅拌60min,用氢氧化钠调节pH值为4,得到混合液;S1. Using 0.2200g of 1,6-bis(triazole)hexane, 2.4000g of ammonium heptamolybdate, 0.6475g of manganese chloride, 0.7999g of strontium chloride and 2.00mL of phosphoric acid as starting materials, and 45.00mL of water As a solvent, mix and stir for 60min, and adjust the pH value with sodium hydroxide to be 4 to obtain a mixed solution;
S2、将S1得到的混合液转移到反应釜中,于160℃下反应6天,反应结束后,自然冷却至室温,得到反应液;S2, the mixed solution obtained in S1 is transferred to the reactor, reacted at 160 ° C for 6 days, and after the reaction is finished, naturally cooled to room temperature to obtain a reaction solution;
S3、将S2中得到的反应液经洗涤、过滤、干燥,并于管式炉中在N2保护下,于700℃煅烧6h,煅烧结束后,自然冷却至室温得煅烧产物,然后将煅烧产物研磨50min,过400目筛,得到原位掺杂型纳米钼基材料。S3. The reaction solution obtained in S2 is washed, filtered, dried, and calcined at 700° C. for 6 h in a tube furnace under the protection of N 2 . After the calcination is completed, it is naturally cooled to room temperature to obtain a calcined product. Grind for 50 min, pass through a 400-mesh sieve, and obtain an in-situ doped nano-molybdenum-based material.
本发明实施例提供的原位掺杂型纳米钼基材料作为锂离子电池负极材料的过程具体包括如下步骤:将540mg原位掺杂型纳米钼基锂离子电池负极材料、30mg乙炔黑和30mg聚偏氟乙烯加入到适量NMP中,使混合物形成膏状,然后涂覆到铜箔上,于120℃干燥6h,得到锂离子电池负极材料。The process of using the in-situ doped nano-molybdenum-based material as the negative electrode material of a lithium ion battery provided by the embodiment of the present invention specifically includes the following steps: adding 540 mg of the in-situ doped nano-molybdenum-based lithium ion battery negative electrode material, 30 mg of acetylene black and 30 mg of polymer Vinylidene fluoride was added to an appropriate amount of NMP to make the mixture into a paste, which was then coated on copper foil and dried at 120° C. for 6 hours to obtain a negative electrode material for lithium ion batteries.
在本发明具体实施例中,用扫描电镜(SEM)表征材料的形貌,并通过新威恒流充放电测试系统对所装配的电池进行充放电、倍率性能和循环性能的测试,所测试的电势范围为0.01-3.0V(vs.Li/Li+),测试电流密度为100、200、500、800、1000mA/g。In the specific embodiment of the present invention, the morphology of the material is characterized by scanning electron microscope (SEM), and the assembled battery is tested for charge and discharge, rate performance and cycle performance through the Xinwei constant current charge and discharge test system. The potential range was 0.01-3.0 V (vs. Li/Li + ), and the tested current densities were 100, 200, 500, 800, 1000 mA/g.
图1a和图1b分别为原位掺杂型纳米钼基材料在不同放大倍数下的SEM图,从图1a和图1b中可以看出,灼烧后的钼基材料具有珊瑚状三维多孔的表面形貌,大大增大了材料的表面积,使其可以在极短的时间内实现大量电荷的储存和释放。Figure 1a and Figure 1b are the SEM images of the in-situ doped nano-Mo-based material at different magnifications, respectively. It can be seen from Figure 1a and Figure 1b that the fired Mo-based material has a coral-like three-dimensional porous surface. The morphology greatly increases the surface area of the material, making it possible to store and release a large amount of charge in a very short period of time.
图2为原位掺杂型纳米钼基材料在100mA/g电流密度下,第10次循环的充放电曲线图。从图2中可以看出,原位掺杂型纳米钼基材料第10次循环后的可逆容量为1108mAh/g。Fig. 2 is a charge-discharge curve diagram of the in-situ doped nano-molybdenum-based material at a current density of 100 mA/g for the 10th cycle. It can be seen from Figure 2 that the reversible capacity of the in-situ doped nano-Mo-based material after the 10th cycle is 1108 mAh/g.
图3为原位掺杂型纳米钼基材料在100、200、500、800、1000mA/g电流密度下的倍率性能图。从图3中可以看出,原位掺杂型纳米钼基材料在100、200、500、800、1000mA/g电流密度下的对应的可逆容量分别为1059、957、839、726、652mAh/g。Figure 3 is a graph showing the rate performance of the in-situ doped nano-Mo-based material at current densities of 100, 200, 500, 800, and 1000 mA/g. It can be seen from Figure 3 that the corresponding reversible capacities of the in-situ doped nano-Mo-based materials at current densities of 100, 200, 500, 800, and 1000 mA/g are 1059, 957, 839, 726, and 652 mAh/g, respectively. .
图4为原位掺杂型纳米钼基材料在500mA/g大电流密度下循环300次的循环性能图。从图4中可以看出,原位掺杂型纳米钼基材料在500mA/g大电流密度下,初始放电容量为852mAh/g,循环300次后,放电容量仍保持在826mAh/g,其容量保持率仍高于95%。Figure 4 shows the cycle performance of the in-situ doped nano-Mo-based material at a high current density of 500 mA/g for 300 cycles. It can be seen from Figure 4 that the in-situ doped nano-molybdenum-based material has an initial discharge capacity of 852mAh/g at a large current density of 500mA/g, and after 300 cycles, the discharge capacity remains at 826mAh/g. The retention rate is still above 95%.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810117086.4A CN108321375B (en) | 2018-02-06 | 2018-02-06 | In-situ doped nano-molybdenum-based material, preparation method and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810117086.4A CN108321375B (en) | 2018-02-06 | 2018-02-06 | In-situ doped nano-molybdenum-based material, preparation method and use |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108321375A CN108321375A (en) | 2018-07-24 |
CN108321375B true CN108321375B (en) | 2020-06-09 |
Family
ID=62903663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810117086.4A Expired - Fee Related CN108321375B (en) | 2018-02-06 | 2018-02-06 | In-situ doped nano-molybdenum-based material, preparation method and use |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108321375B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11682531B1 (en) * | 2022-01-20 | 2023-06-20 | Imam Abdulrahman Bin Faisal University | Nanocomposite electrodes and method of preparation thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102623677A (en) * | 2012-04-09 | 2012-08-01 | 华中科技大学 | A kind of preparation method of high-capacity molybdenum dioxide/carbon negative electrode material |
CN103066288A (en) * | 2012-12-07 | 2013-04-24 | 上海锦众信息科技有限公司 | Preparation method of molybdenum-carbon composite cathode material of lithium ion battery |
CN104393254A (en) * | 2014-09-30 | 2015-03-04 | 上海交通大学 | Nitrogen-doped graphene/molybdenum disulfide composite material, and preparation method and application thereof |
CN105731409A (en) * | 2016-01-21 | 2016-07-06 | 华中科技大学 | Molybdenum-base positive pole material and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4747482B2 (en) * | 2003-07-29 | 2011-08-17 | 三菱化学株式会社 | Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery |
-
2018
- 2018-02-06 CN CN201810117086.4A patent/CN108321375B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102623677A (en) * | 2012-04-09 | 2012-08-01 | 华中科技大学 | A kind of preparation method of high-capacity molybdenum dioxide/carbon negative electrode material |
CN103066288A (en) * | 2012-12-07 | 2013-04-24 | 上海锦众信息科技有限公司 | Preparation method of molybdenum-carbon composite cathode material of lithium ion battery |
CN104393254A (en) * | 2014-09-30 | 2015-03-04 | 上海交通大学 | Nitrogen-doped graphene/molybdenum disulfide composite material, and preparation method and application thereof |
CN105731409A (en) * | 2016-01-21 | 2016-07-06 | 华中科技大学 | Molybdenum-base positive pole material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108321375A (en) | 2018-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103380529B (en) | Cathode material and the lithium ion battery being made from | |
CN105185954B (en) | A kind of LiAlO2Coat LiNi1-xCoxO2Anode material for lithium-ion batteries and preparation method thereof | |
CN105576209A (en) | High-capacity silicon-based anode material for lithium ion battery and preparation method thereof, and lithium ion battery | |
CN107910532B (en) | A kind of preparation method of graphene-coated nickel cobalt lithium manganate composite material | |
CN114715953A (en) | Method for preparing Cu and Zn doped layered oxide sodium ion battery anode material with assistance of precursor and application of method | |
CN101924211A (en) | A kind of graphene/silicon lithium ion battery negative electrode material and preparation method | |
CN106450295B (en) | A kind of sodium ion battery positive electrode material Na3Fe2(PO4)3 and preparation method thereof | |
CN106887575B (en) | Zinc cobaltate/graphene composite negative electrode material, preparation method thereof and lithium ion battery | |
CN101580273A (en) | High energy density spinel structural lithium titanate material and preparation method thereof | |
CN110797529A (en) | Doped high-nickel high-voltage NCM positive electrode material and preparation method thereof | |
CN107311119B (en) | Hollow nanometer prism material of nickel cobalt diselenide, preparation method and application thereof | |
CN110165206B (en) | A kind of spherical sodium-ion battery cathode material and preparation method thereof | |
CN108598394A (en) | Carbon coating titanium phosphate manganese sodium micron ball and its preparation method and application | |
CN110311103A (en) | A kind of P2 type sodium ion battery ternary positive electrode material, preparation method and application | |
CN102969493B (en) | For the preparation method of the negative material of non-aqueous secondary batteries, non-aqueous secondary batteries negative pole and non-aqueous secondary batteries | |
CN115504525B (en) | P2 type layered transition metal oxide and its preparation method and application | |
CN102376950B (en) | Positive electrode material for lithium battery and preparing method thereof as well as positive electrode of lithium battery and lithium battery | |
CN113582253B (en) | Quaternary positive electrode material, and preparation method and application thereof | |
CN106848254B (en) | Sodium-ion battery negative electrode material, preparation method thereof and sodium-ion battery | |
CN114335661A (en) | Electrolyte additive for improving stability of neutral water system rechargeable zinc-manganese battery and electrolyte | |
CN113422014A (en) | Polyaniline-coated tin dioxide composite negative electrode material and preparation method thereof | |
CN108682828A (en) | A kind of preparation method of nitrogen-doped carbon clad anode material | |
CN108321375B (en) | In-situ doped nano-molybdenum-based material, preparation method and use | |
CN102983324A (en) | Positive material of AZO-coated lithium nickel manganese oxide secondary lithium battery and preparation method of positive pole material | |
CN117239092A (en) | Sodium ion battery positive electrode material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200609 Termination date: 20220206 |