[go: up one dir, main page]

CN108311143B - 一种AgAlO2量子点的制备方法 - Google Patents

一种AgAlO2量子点的制备方法 Download PDF

Info

Publication number
CN108311143B
CN108311143B CN201810320471.9A CN201810320471A CN108311143B CN 108311143 B CN108311143 B CN 108311143B CN 201810320471 A CN201810320471 A CN 201810320471A CN 108311143 B CN108311143 B CN 108311143B
Authority
CN
China
Prior art keywords
quantum dot
agalo
solution
preparation
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810320471.9A
Other languages
English (en)
Other versions
CN108311143A (zh
Inventor
刘伟
刘海洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810320471.9A priority Critical patent/CN108311143B/zh
Publication of CN108311143A publication Critical patent/CN108311143A/zh
Application granted granted Critical
Publication of CN108311143B publication Critical patent/CN108311143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明公开了一种AgAlO2量子点的微波水热制备方法,属于半导体光催化材料领域。通过首先配置银源和铝源溶液,通过添加混合表面活性剂控制纳米颗粒生长,然后利用微波水热法快速晶化获得量子点。本发明能够在较低温度和较短时间内快速合成光催化材料量子点,工艺过程简单、节能、环保,有利于推进新型半导体光催化材料的产业化发展。

Description

一种AgAlO2量子点的制备方法
技术领域
本发明涉及半导体光催化材料领域,更具体的,涉及一种AgAlO2量子点的制备方法。
背景技术
半导体材料由于其独特的能带结构,被广泛应用于光催化领域。目前,光催化技术应用范围较广,主要涉及污染物降解、光解水制备氢气、光催化有机合成等。最早报道、工艺比较成熟的光催化材料为二氧化钛,但由于其对太阳能利用率低,大大限制了其应用。
目前来讲,对光催化材料的主要研究重点为两个:一个就是对上述二氧化钛半导体的修饰改性,如常见的金属掺杂或非金属掺杂,以达到延长二氧化钛吸收波长的目的,另外一种就是设计可开发出新型的半导体光催化材料。由于氧化钛半导体掺杂后一定程度上会使掺杂中心成为电子和空穴的复合中心,导致了光催化活性的降低。因此,目前研究的重点为开发设计新型的半导体光催化材料。目前已经报道的此类光催化材料包括:CaIn2O4、Bi2WO6、Bi2MoO6、InVO4、BiVO4等。
AgAlO2属于铜铁矿氧化物(Delafossite Oxide)中的一种,其为p-型半导体材料,由于AgAlO2独特的化学组成,其在光电化学,如太阳能电池、光催化和发光而激光等领域具有重要的应用价值。目前已经报道的制备方法为高温固相反应法、离子交换法、水热法和溶胶凝胶法等。如文献1“Electronic Structure and Photocatalytic Characterizationof a Novel Photocatalyst AgAlO2”(J. Phys. Chem. B 2006, 110, 11677-11682)和文献2 CN103433036A均报导了利用离子交换法制备AgAlO2,文献3 “Synthesis andCharacterization of CuAlO2 and AgAlO2 Delafossite Oxides through Low-Temperature Hydrothermal Methods”(Inorg. Chem. 2014, 53, 4106−4116)和文献4CN101687144A报导了利用水热法制备AgAlO2。以上制备工艺流程复杂、反应温度较高,难以获得粒径较低的AgAlO2纳米材料。
微波水热法是将传统水热法和微波场结合起来的一种新方法。其利用微波场作为热源,通过微波加热创造高温、高压反应环境,与传统水热法相比,其可以显著提高反应速率,改善加热均匀性,消除温度梯度的影响。目前,尚未发现利用微波水热法成功制备得到AgAlO2量子点的报道。
基于现有技术存在的以上问题,本发明所的方法目是提供一种快速、低温合成具有较低尺寸和较高催化活性的半导体光催化材料。
发明内容
本发明的目的在于根据现有技术的不足,提供一种AgAlO2量子点的制备方法。
本发明制备的量子点材料具有优异的光催化活性,对新型、高稳定半导体光催化材料的研制具有重要的指导意义。
为达到以上目的,本发明采用如下技术方案:
一种AgAlO2量子点的制备方法,其特征在于:由以下步骤组成:
(1)将硝酸银粉体溶于去离子水中获得硝酸银溶液;将异丙醇铝粉体溶于异丙醇中获得异丙醇铝溶液,将硝酸银溶液逐滴加入异丙醇铝溶液中获得混合溶液A,其中所述去离子水与异丙醇体积比为1:1,所述硝酸银溶液浓度为1 mol/L,所述异丙醇铝浓度为1-2mol/L,所述硝酸银与异丙醇铝摩尔比为1:1-2,优选为1:1;
(2)在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中依次加入混合表面活性剂和矿化剂,获得混合溶液B,所述混合表面活性剂由非离子表面活性剂与阴离子表面活性剂组成,所述非离子表面活性剂与阴离子表面活性剂摩尔比为1:0.5-1,所述非离子表面活性剂为烷基酚聚氧乙烯醚,阴离子表面活性剂为十二烷基苯磺酸钠,所述矿化剂为氢氧化钠、氢氧化钾其中一种或者二者混合物,所述矿化剂的加入量为混合溶液A体积的1-5%;
(3)将步骤(2)所得混合溶液B转移到水热反应釜中,密封后进行微波水热反应,微波水热反应温度为180-210℃,微波水热反应时间为20-60min,微波水热功率为500-800W;
(4)将步骤(3)所得产物自然冷却到室温,离心后使用去离子水和无水乙醇交替洗涤3-6次,获得高纯反应产物,冷冻干燥1-6h后获得AgAlO2量子点。
优选地,所述步骤(2)中,矿化剂优选为氢氧化钠,所述氢氧化钠浓度为0.5-1mol/L。
优选地,所述步骤(3)中,水热反应温度为190℃,水热时间为30min, 微波水热功率为600W。
优选地,所述AgAlO2量子点尺寸为3-8nm。
优选地,所述步骤(4)中冷冻干燥为真空冷冻干燥,干燥温度为-10~-5℃,优选为-8℃,冷冻干燥时间为1-6h,优选为4h。
在本发明的技术方案中,通过严格控制硝酸银和异丙醇铝浓度及其配比,利用特定的混合表面活性剂控制纳米材料的生长,同时设定合适的水热反应温度和时间,获得了具有量子尺寸的AgAlO2纳米颗粒。物料混合过程中通过磁力搅拌和超声分散的共同作用,有利于最终产品分散的均匀性和防止颗粒的过分长大。本发明制备工艺克服了现有技术中制备工艺复杂、反应温度高以及纳米颗粒尺寸大、不均匀的缺陷。
与现有技术相比,本发明具有以下有益效果:
本发明通过一步水热法,在低温下合成了具有量子尺寸、分布均匀的AgAlO2纳米颗粒,从而提高了材料的比表面积,大大增加了纳米颗粒的光催化效率。另外,由于本发明制备方法操作方便,反应温度低,节能环保,因此,有利于新型半导体光催化材料的产业化发展。
附图说明
图1为采用本发明实施例1中方法制备的AgAlO2纳米颗粒TEM图。
图2为采用本发明实施例1中方法制备的AgAlO2纳米颗粒HTEM图。
具体实施方式
以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1:
步骤(1),将1.7g硝酸银粉体溶于10mL去离子水中获得硝酸银溶液,将2g异丙醇铝粉体溶于10mL异丙醇中获得异丙醇铝溶液,使用胶头滴管将硝酸银溶液逐滴加入异丙醇铝溶液中获得混合溶液A。
步骤(2),取2mL浓度为0.1mol/L的烷基酚聚氧乙烯醚(APEO),加入等体积、等浓度的十二烷基苯磺酸钠(SDBS),获得混合表面活性剂溶液,然后在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中加入上述混合表面活性剂,然后加入2mL浓度为0.5mol/L的氢氧化钠,获得混合溶液B。
步骤(3),将步骤(2)所得混合溶液B转移到水热反应釜中,密封后进行微波水热反应,微波水热反应温度为190℃,微波水热反应时间为30min,微波水热功率为600W。
步骤(4),将步骤(3)所得产物自然冷却到室温,离心后使用去离子水和无水乙醇交替洗涤3次,获得高纯反应产物,在-8℃温度下冷冻干燥4h,获得产物。所得纳米颗粒尺寸为5nm左右。
实施例2:
步骤(1),将1.7g硝酸银粉体溶于10mL去离子水中获得硝酸银溶液,将2g异丙醇铝粉体溶于10mL异丙醇中获得异丙醇铝溶液,使用胶头滴管将硝酸银溶液逐滴加入异丙醇铝溶液中获得混合溶液A。
步骤(2),取2mL浓度为0.1mol/L的烷基酚聚氧乙烯醚,加入等体积、等浓度的十二烷基苯磺酸钠,获得混合表面活性剂溶液,然后在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中加入上述混合表面活性剂,然后加入2mL浓度为0.5mol/L的氢氧化钠,获得混合溶液B。
步骤(3),将步骤(2)所得混合溶液B转移到水热反应釜中,密封后进行微波水热反应,微波水热反应温度为210℃,微波水热反应时间为60min,微波水热功率为600W。
步骤(4),将步骤(3)所得产物自然冷却到室温,离心后使用去离子水和无水乙醇交替洗涤3次,获得高纯反应产物,在-8℃温度下冷冻干燥4h,获得产物。所得纳米颗粒尺寸为8nm左右。
实施例3:
步骤(1),将1.7g硝酸银粉体溶于10mL去离子水中获得硝酸银溶液,将2g异丙醇铝粉体溶于10mL异丙醇中获得异丙醇铝溶液,使用胶头滴管将硝酸银溶液逐滴加入异丙醇铝溶液中获得混合溶液A。
步骤(2),取2mL浓度为0.1mol/L的烷基酚聚氧乙烯醚,加入等体积、等浓度的十二烷基苯磺酸钠,获得混合表面活性剂溶液,然后在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中加入上述混合表面活性剂,然后加入2mL浓度为0.5mol/L的氢氧化钠,获得混合溶液B。
步骤(3),将步骤(2)所得混合溶液B转移到水热反应釜中,密封后进行微波水热反应,微波水热反应温度为180℃,微波水热反应时间为30min,微波水热功率为600W。
步骤(4),将步骤(3)所得产物自然冷却到室温,离心后使用去离子水和无水乙醇交替洗涤3次,获得高纯反应产物,在-8℃温度下冷冻干燥4h,获得产物。所得纳米颗粒尺寸为3nm左右。
实施例4:
步骤(1),将1.7g硝酸银粉体溶于10mL去离子水中获得硝酸银溶液,将2g异丙醇铝粉体溶于10mL异丙醇中获得异丙醇铝溶液,使用胶头滴管将硝酸银溶液逐滴加入异丙醇铝溶液中获得混合溶液A。
步骤(2),取2mL浓度为0.1mol/L的烷基酚聚氧乙烯醚,加入等体积,浓度为0.05mol/L的十二烷基苯磺酸钠,获得混合表面活性剂溶液,然后在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中加入上述混合表面活性剂,然后加入2mL浓度为0.5mol/L的氢氧化钾,获得混合溶液B。
步骤(3),将步骤(2)所得混合溶液B转移到水热反应釜中,密封后进行微波水热反应,微波水热反应温度为200℃,微波水热反应时间为30min,微波水热功率为600W。
步骤(4),将步骤(3)所得产物自然冷却到室温,离心后使用去离子水和无水乙醇交替洗涤3次,获得高纯反应产物,在-8℃温度下冷冻干燥4h,获得产物。所得纳米颗粒尺寸为10nm左右。
对比例1:
步骤(1)同实施例1。步骤(2),在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中依次加入2mL 0.2mol/L的烷基酚聚氧乙烯醚和2mL浓度为0.5mol/L的氢氧化钠,获得混合溶液B。步骤(3)-步骤(4)同实施例1。所得纳米颗粒尺寸为200nm左右。
对比例2:
步骤(1)同实施例1。步骤(2),在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中依次加入2mL 0.2mol/L的十二烷基苯磺酸钠和2mL浓度为0.5mol/L的氢氧化钠,获得混合溶液B。步骤(3)-步骤(4)同实施例1。所得纳米颗粒尺寸为350nm左右。

Claims (5)

1.一种AgAlO2量子点的制备方法,其特征在于:由以下步骤组成:
(1)将硝酸银粉体溶于去离子水中获得硝酸银溶液;将异丙醇铝粉体溶于异丙醇中获得异丙醇铝溶液,将硝酸银溶液逐滴加入异丙醇铝溶液中获得混合溶液A,其中所述去离子水与异丙醇体积比为1:1,所述硝酸银溶液浓度为1mol/L,所述异丙醇铝浓度为1-2mol/L,所述硝酸银与异丙醇铝摩尔比为1:1-2;
(2)在磁力搅拌和超声共同作用下,往步骤(1)所得的混合溶液A中依次加入混合表面活性剂和矿化剂,获得混合溶液B,所述混合表面活性剂由非离子表面活性剂与阴离子表面活性剂组成,所述非离子表面活性剂与阴离子表面活性剂摩尔比为1:0.5-1,所述非离子表面活性剂为烷基酚聚氧乙烯醚,阴离子表面活性剂为十二烷基苯磺酸钠,所述矿化剂为氢氧化钠、氢氧化钾中的一种或者二者混合物,所述矿化剂的加入量为所述混合溶液A体积的1-5%;
(3)将步骤(2)所得混合溶液B转移到水热反应釜中,密封后进行微波水热反应,微波水热反应温度为180-210℃,微波水热反应时间为20-60min,微波水热功率为500-800W;
(4)将步骤(3)所得产物自然冷却到室温,离心分离后使用去离子水和无水乙醇交替洗涤3-6次,获得高纯反应产物,将所得高纯反应产物置于冷冻干燥机内进行冷冻干燥,最终获得AgAlO2量子点。
2.根据权利要求1所述的一种AgAlO2量子点的制备方法,其特征在于:所述步骤(2)中,矿化剂为氢氧化钠,所述氢氧化钠浓度为0.5-1mol/L。
3.根据权利要求1所述的一种AgAlO2量子点的制备方法,其特征在于:所述步骤(3)中,水热反应温度为190℃,水热时间为30min,微波水热功率为600W。
4.根据权利要求1所述的一种AgAlO2量子点的制备方法,其特征在于:所述AgAlO2量子点尺寸为3-8nm。
5.根据权利要求1所述的一种AgAlO2量子点的制备方法,其特征在于:所述步骤(4)中冷冻干燥温度为-10~-5℃,冷冻干燥时间为1-6h。
CN201810320471.9A 2018-04-11 2018-04-11 一种AgAlO2量子点的制备方法 Active CN108311143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810320471.9A CN108311143B (zh) 2018-04-11 2018-04-11 一种AgAlO2量子点的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810320471.9A CN108311143B (zh) 2018-04-11 2018-04-11 一种AgAlO2量子点的制备方法

Publications (2)

Publication Number Publication Date
CN108311143A CN108311143A (zh) 2018-07-24
CN108311143B true CN108311143B (zh) 2019-11-08

Family

ID=62898219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810320471.9A Active CN108311143B (zh) 2018-04-11 2018-04-11 一种AgAlO2量子点的制备方法

Country Status (1)

Country Link
CN (1) CN108311143B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1113313A (en) * 1965-10-26 1968-05-15 Akad Wissenschaften Ddr Silver aluminate
CN102774883B (zh) * 2012-07-09 2013-11-06 青岛科技大学 一种金红石型二氧化钛纳米线薄膜及其制备方法和用途
CN103480372B (zh) * 2013-09-26 2015-10-21 长沙学院 一种AgAlO2/TiO2异质光催化材料的制备方法
CN105032410B (zh) * 2015-06-03 2017-08-11 中国科学院生态环境研究中心 一种Ag/Al2O3催化剂、制备方法及其用途
CN107233899A (zh) * 2017-05-08 2017-10-10 河南师范大学 一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法

Also Published As

Publication number Publication date
CN108311143A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
CN102974373B (zh) 一种可见光光催化材料制备方法
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN104941621B (zh) 一种高效降解抗生素的复合光催化剂及其制备方法与应用
CN102580739B (zh) 一种石墨烯/钼酸银复合可见光催化剂及其制备方法
CN106881079B (zh) 一种二维氧化钨/铌酸锡纳米片-片复合材料的制备方法
CN105502286B (zh) 一种多孔纳米NiFe2O4的制备方法
CN102553568A (zh) 采用高温微波水热法制备高光催化活性钨酸铋粉体的方法
CN106111137A (zh) 一种碳量子点‑氧化亚铜复合材料的制备方法及其应用
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN105664950B (zh) 一种多孔纳米ZnFe2O4的制备方法
CN103157461A (zh) 一种纳米光催化剂钨酸铋及其制备方法
CN106669744A (zh) 一种Ag2Mo2O7@AgBr复合光催化剂及其制备方法
CN109433185A (zh) 一步水热法制备钒酸铟/同质异相结钒酸铋复合光催化剂
CN106925304A (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
CN102580720B (zh) 可见光响应的纳米氧化锌-氧化铋复合光催化剂及其制备方法
CN107930633B (zh) 一种SrTiO3/Cu2O异质结复合纳米材料的制备方法及应用
CN106955699B (zh) 一种高效太阳能固氮光催化材料及其制备方法
CN109158125B (zh) 一种石墨氮化碳量子点改性氧化锌催化材料及其制备方法
CN107983386A (zh) 一种超薄BiOCl/氮掺杂石墨烯量子点复合光催化剂及制备方法
CN113351226B (zh) 一种负载花瓣状ZnIn2S4的氧化铋复合可见光催化材料的制备方法及其制得的产品
CN108311143B (zh) 一种AgAlO2量子点的制备方法
CN103657628A (zh) 一种SnO2-TiO2复合纳米光催化剂的制备方法
CN108654663B (zh) 一种混合硝酸盐熔盐法制备硼氮共掺杂单晶介孔TiO2催化材料的方法
CN103433036B (zh) 一种光催化材料Ag/AgMO2及其制备方法
CN105771988A (zh) 一种高催化活性分等级结构钼酸银的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Wei

Inventor after: Liu Haiyang

Inventor before: Liu Hai Yang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant