CN108306488B - 获得较低的最小升压比的可变电压转换器 - Google Patents
获得较低的最小升压比的可变电压转换器 Download PDFInfo
- Publication number
- CN108306488B CN108306488B CN201810011834.0A CN201810011834A CN108306488B CN 108306488 B CN108306488 B CN 108306488B CN 201810011834 A CN201810011834 A CN 201810011834A CN 108306488 B CN108306488 B CN 108306488B
- Authority
- CN
- China
- Prior art keywords
- converter
- dead time
- gate signal
- ratio
- boost ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001172 regenerating effect Effects 0.000 claims abstract description 15
- 230000008929 regeneration Effects 0.000 claims description 13
- 238000011069 regeneration method Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 239000003990 capacitor Substances 0.000 description 14
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by AC motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/007—Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/24—Using the vehicle's propulsion converter for charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
- H02M1/385—Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
用于电驱动系统的可变电压转换器具有在正母线和负母线之间串联的上部和下部开关器件。电感器将开关器件之间的连接点连接到DC电池。控制器配置为根据基于转换器的预期升压比的PWM栅极信号来驱动开关。当预期升压比大于预定升压比时,PWM栅极信号对于上部和下部开关器件都插入标称死区时间。当预期升压比小于预定升压比时,为了在再生操作期间扩大可实现的升压比范围,PWM栅极信号对上部开关器件不插入死区时间并且使下部开关器件保持持续断开。
Description
技术领域
本发明大体涉及用于电动车辆的电驱动系统中的可变电压转换器,并且更具体地,涉及占空比调制以及使用转换器中的功率开关器件的可选死区时间插入,以在升压模式下操作时实现更大范围的升压比。
背景技术
诸如混合动力电动车辆(hybrid electric vehicle,HEV)、插电式混合动力电动车辆(plug-inhybrid electric vehicle,PHEV)、和电池电动车辆(battery electricvehicle,BEV)的电动车辆使用逆变器驱动的电机来提供牵引力矩。典型的电驱动系统可以包括直流(direct-current,DC)电源(诸如电池组或燃料电池),DC电源通过接触器开关连接到可变电压转换器(variable voltage converter,VVC)以调节主DC链路电容器两端的主母线电压。一个三相马达逆变器连接在主母线和牵引马达之间,以便将DC母线电力转换成连接到马达绕组的交流(alternating current,AC)电压以推动车辆。在车辆的再生制动期间,马达由车轮驱动并且可以用于传送电力以对电池充电。另一个三相变频器将发电机连接到DC母线。发电机可以由内燃发动机驱动以对电池充电。在充电期间,VVC将主母线电压转换为适于对DC电池组充电的电压。
使用电源开关的适当调制,VVC可以将由电池提供的直流电压提升为更高的电压以在改进的车辆性能水平下驱动马达。当用于从输入侧向输出侧提升电压时,该转换器被称为升压转换器。在混合动力车辆领域中,通常通过再生制动对电池充电,其中车轮的机械能通过发电机、或通过作为发电机运转的马达转换成电能并通过VVC提供给电池。VVC也可以在直通模式中工作,其中瞬态电流从电池侧流向逆变器侧/从变频器侧流向电池侧而电压不升高。
VVC包括上部和下部晶体管开关器件(例如绝缘栅双极型晶体管(insulated gatebipolar transistor),IGBT),上部和下部晶体管开关器件具有通过电感器连接到电源电池的中间连接点。开关器件串联在正和负DC母线之间。电子控制器根据提供所需的VVC模式的调制方案提供开关信号(即栅极信号)以接通和关断开关器件。通常使用脉冲宽度调制来控制由VVC导致的电压升高,其中可以改变开关信号的占空比以便于将VVC电压调节到所需大小。VVC的“升压比”定义为输出电压与输入电压之比。在直通模式下,升压比为1。在其他情况下,升压比大于1(即VVC的逆变器侧的电压高于VVC的电池侧的电压)。
为了避免DC链路短路,重要的是上部和下部器件不同时导通(即打开)。通常在开关信号的任何转换处插入短时间间隔(称为死区时间),在该转换期间,上部和下部开关器件均关断以便于防止这种直通。然而,插入死区时间会改变脉冲宽度调制(PWM,Pulsewidth modulation)开关信号的有效占空比。在再生操作期间,例如死区时间可以使最小可实现的升压比增益到显著高于1.0的值(例如在20kHz附近的高PWM开关频率时高达1.25)。较低的升压比的不可用性可能导致主DC母线上的电压高于所需、或导致强制使用直通模式,使得由于主DC母线电压低于所需而导致电机产生的转矩较低。
发明内容
在本发明的一个方面中,电驱动系统中的可变电压转换器包括在正母线和负母线之间串联的上部开关器件和下部开关器件。电感器将上部和下部开关器件之间的连接点连接到DC电源。控制器配置为根据基于转换器的预期升压比的PWM栅极信号来驱动开关。当预期升压比大于预定升压比时,PWM栅极信号对于上部和下部开关器件都插入标称死区时间。当预期升压比小于预定升压比时,PWM栅极信号对于上部开关器件不插入死区时间并且使下部开关器件保持持续关断。
附图说明
图1是示出用于实施本发明的混合动力电动车辆的电驱动装置的示意性框图;
图2A、2B、和2C分别是PWM载波、没有死区时间的PWM栅极信号、和插入死区时间的PWM栅极信号的波形图;
图3是示出常规的插入死区时间可获得的升压比的坐标图;
图4是示出当可变电压转换器处于再生模式时用于实现更大范围的升压比的本发明的PWM栅极信号模式的波形图;
图5是示出使用本发明可获得的额外升压比的坐标图;
图6是示出本发明的一个优选方法的流程图。
具体实施方式
参考图1,电动车辆驱动系统10包括通过接触器开关12和13连接到输入电容器14的DC电源11(诸如电池组或燃料电池)。接触器12和13优选地是具有打开状态和关闭状态的机械开关,用于根据驱动系统10的驱动模式选择性地将电池11连接到输入电容器14。
例如,可变电压转换器(VVC)15将输入电容器14连接到主电容器16,主电容器16用作逆变器17和变频器19的链路电容器。每个逆变器和变频器包括桥式配置中的多个开关器件。以所需的方式切换逆变器17中的开关以驱动马达18。切换变频器19以将来自发电机20的能量再生到主电容器16上。在VVC 15的马达操作中,电力从DC电源11通过VVC 15流向逆变器17(例如用于车辆推进)。在VVC 15的再生操作中,电力从变频器19通过VVC 15流向DC电源11(例如使用在再生制动期间回收的能量对电池组再充电)。
逆变器17和变频器19中的每个相位开关器件优选地包括绝缘栅双极型晶体管(IGBT)。每个IGBT优选地包括反向并联二极管。例如,逆变器17的第一支路21示为具有相位开关22。每个IGBT具有连接到控制器30的相应控制(即栅极)端子,控制器30根据逆变器和变频器的各种操作模式通过本领域已知的PWM信号来控制开关。
VVC 15的已知配置包括上部开关器件23、下部开关器件24、和反向二极管25和26。开关23和24串联在正母线31和负母线32之间。开关24和25之间的连接点通过电感器27连接到输入电容器14。VVC 15可以如本领域中已知的在马达操作(例如,为了驱动马达18而将输入电容器14上的电池电压VB转换成电容器16两端的较高的DC链路电压VDC)或再生操作(例如,为了对电池11充电而将来自发电机20和变频器19的电容器16上的电压转换成电容器14两端的电压)中,在电容器14和16之间双向传送电荷。
VVC 15中的每个开关器件同样优选地包括绝缘栅双极晶体管(IGBT)。每个IGBT具有连接到控制器30的相应的控制(例如基极)端子,控制器30根据转换器和逆变器和变频器的各种操作模式来控制开关。控制器30可以包括市售类型的马达-发电机控制单元(motor-generator control unit,MGCU),并且符合在2015年8月11日公布的美国专利9,106,162(该专利通过引用整体并入本文)中的描述。
为了在VVC 15两端获得所需的升压比,通常使用已知的脉冲宽度调制(PWM)方法来生成用于IGBT 23和24的栅极信号。VVC 15两端(即从电池电压VB到主DC链路电压VDC)的升压比定义为使用图1所示的VVC 15的拓扑结构,升压比根据上部开关器件23的导通时间占空比D确定为
图2A-2C中示出了用于插入标称死时间Td的脉冲宽度调制(PWM)方法。图2A示出了例如以10kHz左右的频率产生的三角波形的PWM载波信号35。PWM调制信号36由MGCU或其他控制器根据电驱动单元的当前状态下的VVC的电力要求(例如升压要求)来确定。监视的条件和用于确定由VVC传送的预期升压比的控制器过程是本领域已知的。在死区时间插入之前,如图2B所示将调制信号36与PWM载波信号35进行比较,以生成用于上部晶体管的原始PWM栅极信号S1和用于下部晶体管的原始PWM栅极信号S2。在该示例中,当载波信号35大于占空比信号36时栅极信号S1具有高逻辑电平,并且栅极信号S2与S1反相。TS是载波周期(例如对于10kHz的载波频率是100μs的周期),并且TO是在一个载波周期期间上部晶体管的导通时间(即高逻辑电平部分)。在插入死区时间之前的导通时间占空比DO为
如图2C所示,在PWM栅极信号S1的每个转换处插入死区时间Td,使得具有高逻辑电平的两个信号S1和S2中的无论哪一个都被复位到低(关断)逻辑电平。死区时间的持续时间具有根据所使用的晶体管的特性开关时间确定的标称值。在一个典型示例中,Td的持续时间可能约为5μS。在车辆运行期间死区时间Td通常保持恒定。死区时间避免可能在上部和下部晶体管同时处于导通状态或部分处于导通状态情况下发生的直通。然而由于上部晶体管的导通时间改变,插入的死区时间也会影响VVC的有效占空比。
对有效占空比的影响因VVC处于马达操作或再生操作中而不同。为了在有效占空比中包括死区时间的影响,VVC的升压比变为:
其中DO是插入死区时间之前的原始占空比(即DO=TO/TS),Dd是具有插入死区时间(即Dd=Td/Ts)的占空比。为了保证足够的死区时间,具有VVC的驱动系统的设计和配置保证了TO小于TS-Td。同样地,最大有效占空比不大于1-Dd。在马达操作的情况下,由于DO+Dd的值接近1,可实现的最小升压比是1。然而对于再生操作,使用常规PWM开关模式的最小升压比大于1(因为DO-Dd总是小于1,意味着其倒数总是大于1)。
图3示出了VVC的一个示例的升压比范围。曲线40示出了一直下降到在最大占空比处的1的马达操作的升压比范围。曲线41示出了即使在最大占空比下仍大于1的再生操作的升压比范围。对于再生操作中的VVC,可能的最小升压比由下式给出:
Gmin=1/(1-2Dd)
使用10kHz(即TS=100μS)的PWM载波频率和5μS的标称死区时间Td,获得了最小升压比1.11。在更高的载波频率下,可获得的最小升压比会增加到更大。例如,将载波频率增加到20kHz,最小升压比提高到1.25。在由于目标升压比(即将来自发电机的高DC电压降压转换为对适于电池充电的优选电压的电压比率)因小于Gmin而无法获得期间VVC在再生操作中运转的情况下,会导致过度升压。在这些情况下,可能有必要迫使VVC进入直通模式(即持续导通上部晶体管并且持续关断下部晶体管使得VB等于VDC),以防止在与VVC输入相关的电池或其他组件或线路上存在不可接受的高电压。但是,不能获得最佳充电并且将增加损失。
本发明在所需的升压比落入从1到最小升压比Gmin的范围内(以其他方式无法获得)期间,使用如图4所示的修改的PWM栅极信号模式42。在修改的模式42中,PWM栅极信号对于上部开关器件没有插入死区时间,并且下部开关器件保持持续关断。本质上,下部开关器件以直通模式下的方式工作(栅极信号S2为低逻辑电平),而上部开关器件继续以升压模式下的方式工作(栅极信号S1由载波信号35与调制信号36的比较来确定)。由于只有一个器件开启,不再需要死区时间。因此,上部开关器件的占空比不会由死区时间改变(即在这种情况下的升压比将是1/DO)。所得到的电感器电流大体上连续,并且被稳健地控制以向电池组提供所需的充电电压。
图5示出了本发明实现的升压比的全部范围。段45示出了使用具有对于上部和下部晶体管都插入死区时间的PWM栅极信号获得的升压比,其中可用的升压比范围从(在最低占空比处的)最大比率延伸到最小比率Gmin。使用修改的不插入死区时间的PWM栅极信号模式获得沿着段46从Gmin降到1的升压比范围。
图6示出了本发明的一种优选方法,该方法根据电驱动操作模式和目标升压比的大小进行操作以保持适当选择由VVC使用的PWM栅极信号模式。根据预定的采样和控制周期,在步骤50的车辆操作期间定期调用该过程。在步骤51,马达-发电机控制单元识别VVC的操作模式并且以已知的方式确定要由VVC产生的预期升压比。在步骤52,确定VVC是否处于再生操作中。如果否,则在步骤53MGCU使用插入死区时间的PWM栅极信号模式来控制VVC晶体管的开关。否则,在步骤54执行检查以确定预期升压比是否小于最小升压比Gmin。如果否,则在步骤53MGCU使用插入死区时间的PWM栅极信号模式来控制VVC晶体管的开关。否则,在步骤55MGCU使用不插入死区时间的PWM栅极信号模式来控制VVC晶体管的开关。
本发明的优点可以说明如下。例如,假设主母线电压VDC的典型最大值定为500V并且具有标称死区时间的最小升压比Gmin是1.25,则VVC的再生操作将仅在电池电压小于400V(即500V/1.25)时可用。在任何电池电压高于此值的情况下,再生操作将由于导致过度升压并且VVC的VDC输出将超过最大值500V而不可用。相比之下,当将修改的PWM栅极信号模式与传统模式相结合使用时,可以根据需要对电压高达500V的所有电池使用升压和直通模式。这样,VVC可以在扩展的电池电压范围内输出所需的电压,从而为逆变器/马达提供更高的转矩能力。
Claims (15)
1.一种电驱动系统中的可变电压转换器,包括:
在正母线和负母线之间串联的上部开关器件和下部开关器件,其中在所述正母线和所述负母线之间设置有DC链路电压VDC,所述DC链路电压VDC适于耦接到所述电驱动系统的逆变器;
将所述上部开关器件和所述下部开关器件之间的连接点连接到DC电源的电感器,其中所述DC电源提供DC电压VB;和
控制器,所述控制器配置为根据基于所述转换器的预期升压比VDC/VB的PWM栅极信号来驱动所述上部开关器件和所述下部开关器件,其中当所述预期升压比大于预定升压比时所述PWM栅极信号对于所述上部开关器件和所述下部开关器件都插入标称死区时间,并且其中当所述预期升压比小于所述预定升压比时所述PWM栅极信号对于所述上部开关器件不插入死区时间并且使所述下部开关器件保持持续关断。
2.根据权利要求1所述的转换器,其中所述转换器具有马达操作和再生操作,在所述马达操作中电力从所述DC电源流动通过所述转换器,并且在所述再生操作中电力从所述转换器流到所述DC电源,并且其中用于所述上部开关器件的不插入死区时间的所述PWM栅极信号仅在所述再生操作时用于驱动所述上部开关器件和所述下部开关器件。
3.根据权利要求1所述的转换器,其中用于所述上部开关器件的所述PWM栅极信号具有根据所述预期升压比而变化的占空比。
4.根据权利要求1所述的转换器,其中所述预定升压比是对应于下式的最小死区时间升压比Gmin:
Gmin=1/(1-2Dd)
其中Dd是基于所述PWM栅极信号的载波频率的所述标称死区时间的占空比当量。
5.根据权利要求1所述的转换器,其中所述开关器件包括绝缘栅双极型晶体管,并且其中每个所述晶体管与相应的反向二极管并联。
6.一种控制可变电压转换器的方法,其中所述可变电压转换器包括在正母线和负母线之间串联的上部开关器件和下部开关器件,其中在所述正母线和所述负母线之间设置有DC链路电压VDC,所述DC链路电压VDC适于耦接到电驱动系统的逆变器;将所述上部开关器件和所述下部开关器件之间的连接点连接到DC电源的电感器,其中所述DC电源提供DC电压VB,所述方法包括以下步骤:
确定由所述转换器产生的预期升压比VDC/VB;
识别所述转换器是否处于再生操作中;
如果所述转换器不处于所述再生操作中,则对上部开关器件和下部开关器件二者使用插入标称死区时间的PWM栅极信号来驱动所述转换器的所述上部开关器件和所述下部开关器件;
如果所述转换器处于所述再生操作中并且所述预期升压比大于预定升压比,则对所述上部开关器件和所述下部开关器件二者使用插入所述标称死区时间的所述PWM栅极信号来驱动所述转换器的所述上部开关器件和所述下部开关器件;和
如果所述转换器处于所述再生操作中并且所述预期升压比小于所述预定升压比,则使用不插入死区时间的所述PWM栅极信号驱动所述上部开关器件同时保持所述下部开关器件持续关断。
7.如权利要求6所述的方法,其中所述预定升压比是对应于下式的最小死区时间升压比Gmin:
Gmin=1/(1-2Dd)
其中Dd是基于所述PWM栅极信号的载波频率的所述标称死区时间的占空比当量。
8.根据权利要求6所述的方法,还包括响应于所述预期升压比而改变所述上部开关器件的所述PWM栅极信号占空比的步骤。
9.根据权利要求6所述的方法,其中所述可变电压转换器包括在正母线和负母线之间串联的上部开关器件和下部开关器件以及将所述上部开关器件和所述下部开关器件之间的连接点连接到DC电源的电感器,并且其中识别所述转换器是否处于所述再生操作中的步骤包括检测所述转换器处于马达操作或再生操作,其中在所述马达操作中电力从所述DC电源流动通过所述转换器,在所述再生操作中电力从所述转换器流到所述DC电源。
10.一种用于电动车辆的可变电压转换器,包括:
串联的上部晶体管和下部晶体管,其中DC链路电压VDC设置在串联的晶体管两端;
将所述晶体管连接到电池的电感器,其中所述电池提供DC电压VB;和
控制器,所述控制器使用根据预期升压比VDC/VB的PWM栅极信号驱动所述晶体管,当所述预期升压比高于阈值时所述PWM栅极信号中插入死区时间,并且当所述预期升压比低于所述阈值时所述PWM栅极信号中不插入死区时间。
11.根据权利要求10所述的转换器,其中当所述预期升压比低于所述阈值时所述下部晶体管的所述PWM栅极信号持续断开。
12.根据权利要求10所述的转换器,其中所述转换器具有马达操作和再生操作,在所述马达操作中电力从所述电池流动通过所述转换器,并且在所述再生操作中电力从所述转换器流到所述电池,并且其中不插入死区时间的所述PWM栅极信号仅在所述再生操作时用于驱动所述晶体管。
13.根据权利要求10所述的转换器,其中用于所述上部晶体管的所述PWM栅极信号具有根据所述预期升压比而变化的占空比。
14.根据权利要求10所述的转换器,其中所述阈值是对应于下式的最小死区时间升压比Gmin:
Gmin=1/(1-2Dd)
其中Dd是基于所述PWM栅极信号的载波频率的标称死区时间的占空比当量。
15.根据权利要求10所述的转换器,其中所述晶体管包括绝缘栅双极型晶体管,并且其中每个所述晶体管与相应的反向二极管并联。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/404,393 | 2017-01-12 | ||
US15/404,393 US10576828B2 (en) | 2017-01-12 | 2017-01-12 | Variable voltage converter modulation obtaining lower minimum boost ratio |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108306488A CN108306488A (zh) | 2018-07-20 |
CN108306488B true CN108306488B (zh) | 2021-10-26 |
Family
ID=62636726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810011834.0A Active CN108306488B (zh) | 2017-01-12 | 2018-01-05 | 获得较低的最小升压比的可变电压转换器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10576828B2 (zh) |
CN (1) | CN108306488B (zh) |
DE (1) | DE102018100381A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017200978A1 (de) * | 2017-01-23 | 2018-07-26 | Audi Ag | Verfahren zum Betreiben eines Fahrzeugs |
US10790763B2 (en) * | 2018-06-12 | 2020-09-29 | Ford Global Technologies, Llc | HEV e-drives with HV boost ratio and wide DC bus voltage range |
JP2022515022A (ja) | 2018-12-03 | 2022-02-17 | イルディズ テクニク ユニヴァーシテシ | パワーエレクトロニクスコンバータのためのデッドタイム制御方法、およびこの方法を適用するための回路 |
US11254223B2 (en) * | 2019-11-06 | 2022-02-22 | GM Global Technology Operations LLC | Operating mode optimization for electric propulsion system with downsized DC-DC converter |
IL271478A (en) * | 2019-12-16 | 2021-06-30 | Irp Nexus Group Ltd | Optimal drive system for brushless DC motors |
IL275886A (en) * | 2020-07-06 | 2022-02-01 | Irp Nexus Group Ltd | Direct drive system for brushless DC motors |
DE102020214810B3 (de) | 2020-11-25 | 2022-02-03 | Conti Temic Microelectronic Gmbh | Verfahren zum Betreiben eines Gleichstrommotors |
EP4376941A1 (en) | 2021-09-08 | 2024-06-05 | Boston Scientific Neuromodulation Corporation | Closed loop stimulation adjustments based on local and surround receptive field stimulation |
EP4175135A1 (en) * | 2021-10-29 | 2023-05-03 | Mazda Motor Corporation | Vehicle drive unit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101729020A (zh) * | 2008-10-22 | 2010-06-09 | 通用电气公司 | 使用变换器用于能量转移的设备和制造其的方法 |
CN102437814A (zh) * | 2010-09-29 | 2012-05-02 | 无锡爱光电气科技有限公司 | 双方向升降压型逆变器装置 |
CN103414337A (zh) * | 2013-08-23 | 2013-11-27 | 中国矿业大学 | 一种电动车开关磁阻电机功率变换器拓扑结构 |
CN105814787A (zh) * | 2013-12-12 | 2016-07-27 | 丰田自动车株式会社 | 车辆的电源装置及用于控制所述电源装置的方法 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3718847A (en) | 1971-05-28 | 1973-02-27 | Gen Electric | Adjustable speed polyphase a-c motor drive utilizing an in-phase current signal for motor control |
US6477067B1 (en) * | 2001-10-02 | 2002-11-05 | Rockwell Automation Technologies, Inc. | Method and apparatus for compensating for device dynamics in inverter based control systems |
US6714424B2 (en) | 2001-11-30 | 2004-03-30 | Ballard Power Systems Corporation | Dead-time compensation with narrow pulse elimination in solid- state switch devices |
US7049778B2 (en) * | 2004-02-09 | 2006-05-23 | Nippon Yusoki Co., Ltd. | Inverter control apparatus and inverter control method |
JP4557005B2 (ja) | 2005-03-31 | 2010-10-06 | トヨタ自動車株式会社 | 電圧変換装置および車両 |
JP4710588B2 (ja) * | 2005-12-16 | 2011-06-29 | トヨタ自動車株式会社 | 昇圧コンバータの制御装置 |
JP4749874B2 (ja) | 2006-01-30 | 2011-08-17 | 日立オートモティブシステムズ株式会社 | 電力変換装置及びそれを用いたモータ駆動装置 |
CA2646226C (en) * | 2006-03-22 | 2011-05-24 | Hidetoshi Kitanaka | Bidirectional buck boost dc-dc converter, railway coach drive control system, and railway feeder system |
JP4288333B1 (ja) * | 2007-12-18 | 2009-07-01 | トヨタ自動車株式会社 | 車両の電源装置 |
US7738267B1 (en) | 2009-01-07 | 2010-06-15 | Rockwell Automation Technologies, Inc. | Systems and methods for common-mode voltage reduction in AC drives |
JP5246508B2 (ja) * | 2009-05-28 | 2013-07-24 | アイシン・エィ・ダブリュ株式会社 | 電動機駆動装置の制御装置 |
CN102342017B (zh) * | 2009-06-22 | 2014-01-08 | 爱信艾达株式会社 | 电机驱动装置的控制装置 |
WO2011052253A1 (en) * | 2009-10-28 | 2011-05-05 | Three Eye Co., Ltd. | Motor-driving apparatus for variable-speed motor |
US8088224B2 (en) | 2010-01-15 | 2012-01-03 | Solopower, Inc. | Roll-to-roll evaporation system and method to manufacture group IBIIAVIA photovoltaics |
US9088224B2 (en) * | 2010-07-21 | 2015-07-21 | Lihua Chen | Variable voltage converter with stabilized output voltage |
US8503207B2 (en) | 2010-09-29 | 2013-08-06 | Rockwell Automation Technologies, Inc. | Discontinuous pulse width drive modulation method and apparatus for reduction of common-mode voltage in power conversion systems |
US9246348B2 (en) * | 2011-10-06 | 2016-01-26 | Intersil Americas Llc. | Battery charge modulator with boost capability |
CN103201948B (zh) * | 2011-10-26 | 2016-01-06 | 丰田自动车株式会社 | 电动机控制装置 |
JP5565432B2 (ja) * | 2012-04-20 | 2014-08-06 | 株式会社デンソー | 回転機の制御装置 |
US9106162B2 (en) | 2012-08-31 | 2015-08-11 | Ford Global Technologies, Llc | Control strategy for an electric machine in a vehicle |
TW201419721A (zh) * | 2012-11-12 | 2014-05-16 | Novatek Microelectronics Corp | 電荷幫浦模組及其電壓產生方法 |
JP5839011B2 (ja) | 2013-09-18 | 2016-01-06 | 株式会社デンソー | 電力変換装置、および、これを用いた電動パワーステアリング装置 |
JP5987846B2 (ja) * | 2014-01-27 | 2016-09-07 | トヨタ自動車株式会社 | ハイブリッド車両 |
JP6364199B2 (ja) * | 2014-02-06 | 2018-07-25 | 日立オートモティブシステムズ株式会社 | 電力変換システム |
JP6160601B2 (ja) * | 2014-12-02 | 2017-07-12 | トヨタ自動車株式会社 | 電源システム |
US10381836B2 (en) * | 2014-12-15 | 2019-08-13 | Solantro Semiconductor Corp. | Power converter communications |
US10270364B2 (en) * | 2015-01-21 | 2019-04-23 | Ford Global Technologies, Llc | Power converter with dead-time variation to disperse distortion |
US9906167B2 (en) * | 2015-01-21 | 2018-02-27 | Ford Global Technologies, Llc | Power converter with selective dead-time insertion |
US9553540B2 (en) * | 2015-01-21 | 2017-01-24 | Ford Global Technologies, Llc | Power converter with pre-compensation for dead-time insertion |
US10097017B2 (en) * | 2015-06-24 | 2018-10-09 | Apple Inc. | Systems and methods for bidirectional two-port battery charging with boost functionality |
JP6593242B2 (ja) * | 2016-04-12 | 2019-10-23 | 株式会社デンソー | 交流電動機の制御装置 |
JP6489111B2 (ja) * | 2016-12-20 | 2019-03-27 | トヨタ自動車株式会社 | 電気自動車用の電源システム |
-
2017
- 2017-01-12 US US15/404,393 patent/US10576828B2/en active Active
-
2018
- 2018-01-05 CN CN201810011834.0A patent/CN108306488B/zh active Active
- 2018-01-09 DE DE102018100381.1A patent/DE102018100381A1/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101729020A (zh) * | 2008-10-22 | 2010-06-09 | 通用电气公司 | 使用变换器用于能量转移的设备和制造其的方法 |
CN102437814A (zh) * | 2010-09-29 | 2012-05-02 | 无锡爱光电气科技有限公司 | 双方向升降压型逆变器装置 |
CN103414337A (zh) * | 2013-08-23 | 2013-11-27 | 中国矿业大学 | 一种电动车开关磁阻电机功率变换器拓扑结构 |
CN105814787A (zh) * | 2013-12-12 | 2016-07-27 | 丰田自动车株式会社 | 车辆的电源装置及用于控制所述电源装置的方法 |
Also Published As
Publication number | Publication date |
---|---|
US10576828B2 (en) | 2020-03-03 |
CN108306488A (zh) | 2018-07-20 |
DE102018100381A1 (de) | 2018-07-12 |
US20180198401A1 (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108306488B (zh) | 获得较低的最小升压比的可变电压转换器 | |
CN107222099B (zh) | 具有降低的旁路二极管导通的可变电压转换系统 | |
CN110014849B (zh) | 可配置的混合动力驱动系统 | |
US10500965B2 (en) | Dithering a pulse width modulated base frequency to reduce EV noise | |
CN108696107B (zh) | 单电源供电的混合动力驱动谐振栅极驱动器 | |
US7728562B2 (en) | Voltage link control of a DC-AC boost converter system | |
US9000711B2 (en) | Power converter | |
US10272785B2 (en) | Fault detection of a bypass diode in a variable voltage convert system | |
EP2202872B1 (en) | Power supply device and vehicle including the same, control method for power supply device, and computer-readable recording medium having program for causing computer to execute that control method recorded thereon | |
US9975449B2 (en) | Power conversion device | |
US10211827B2 (en) | Resonant gate driver | |
US20190149145A1 (en) | Variable resistance power switch feedback | |
US20060006832A1 (en) | Power conversion and vehicle | |
CN107222091B (zh) | 用于降低开关损耗的动态igbt栅极驱动 | |
US10239407B2 (en) | Variable carrier switching frequency control of variable voltage converter | |
US10965207B2 (en) | Interleaved variable voltage converter | |
US9855850B2 (en) | Variable carrier switching frequency control of variable voltage converter | |
CN107306077B (zh) | 用于降低开关损耗的截止期间的igbt栅极驱动 | |
US10715042B2 (en) | High gain DC-DC converter for electrified vehicles | |
JP5152573B2 (ja) | 回転電機の制御装置 | |
CN110626183A (zh) | 隔离双总线混合动力车辆动力传动系统 | |
CN115528766A (zh) | 利用马达驱动系统的车辆电池充电系统 | |
KR102008752B1 (ko) | 차량용 전력 제어 장치 | |
CN115520046A (zh) | 利用马达驱动系统的车辆电池充电系统 | |
KR20200011090A (ko) | 친환경 차량의 컨버터 제어 시스템 및 그 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |