CN108305877B - A gate-last junctionless NAND flash memory and method of making the same - Google Patents
A gate-last junctionless NAND flash memory and method of making the same Download PDFInfo
- Publication number
- CN108305877B CN108305877B CN201710028176.1A CN201710028176A CN108305877B CN 108305877 B CN108305877 B CN 108305877B CN 201710028176 A CN201710028176 A CN 201710028176A CN 108305877 B CN108305877 B CN 108305877B
- Authority
- CN
- China
- Prior art keywords
- layer
- gate
- carbon nanotube
- flash memory
- nand flash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000010410 layer Substances 0.000 claims abstract description 195
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 115
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 112
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 105
- 239000000463 material Substances 0.000 claims abstract description 42
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 230000000903 blocking effect Effects 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000011241 protective layer Substances 0.000 claims abstract description 16
- 229910021404 metallic carbon Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 40
- 238000005229 chemical vapour deposition Methods 0.000 claims description 16
- 230000004888 barrier function Effects 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 7
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 7
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 238000001039 wet etching Methods 0.000 claims description 5
- 239000003989 dielectric material Substances 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 230000008569 process Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000000231 atomic layer deposition Methods 0.000 description 8
- 238000005240 physical vapour deposition Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000001926 trapping method Methods 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052961 molybdenite Inorganic materials 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 206010067482 No adverse event Diseases 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
- H10B43/35—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提供一种后栅无结与非门闪存存储器及其制作方法,所述存储器包括:衬底、绝缘层、二维半导体材料沟道层、碳纳米管栅阵列、栅俘获结构、保护层、源接触电极和漏接触电极。所述栅俘获结构包括隧道层、电荷俘获层及阻挡层,其中,所述隧道层位于所述沟道层之上,所述阻挡层环绕所述碳纳米管栅阵列中碳纳米管的外侧面,所述电荷俘获层包括环绕所述阻挡层外侧面的第一部分及位于所述隧道层之上并与所述第一部分接触的第二部分。本发明的后栅无结与非门闪存存储器采用二维半导体材料水平沟道,并采用了金属性碳纳米管栅阵列,且阻挡层及电荷俘获层环绕碳纳米管栅,不仅可以简化器件结构,提高存储单元密度,还可以获得更强的栅极电荷俘获性能。
The present invention provides a gate-last non-junction NAND gate flash memory and a manufacturing method thereof. The memory includes: a substrate, an insulating layer, a two-dimensional semiconductor material channel layer, a carbon nanotube grid array, a gate trapping structure, and a protective layer , source contact electrode and drain contact electrode. The gate trapping structure includes a tunnel layer, a charge trapping layer and a blocking layer, wherein the tunnel layer is located on the channel layer, and the blocking layer surrounds the outer sides of the carbon nanotubes in the carbon nanotube grid array , the charge trapping layer includes a first portion surrounding the outer side of the blocking layer and a second portion overlying the tunnel layer and in contact with the first portion. The gate-last non-junction NAND flash memory of the present invention adopts a two-dimensional semiconductor material horizontal channel and a metallic carbon nanotube grid array, and the blocking layer and the charge trapping layer surround the carbon nanotube grid, which can not only simplify the device structure , improve the memory cell density, and can also obtain stronger gate charge trapping performance.
Description
技术领域technical field
本发明属于集成电路技术领域,涉及一种后栅无结与非门闪存存储器及其制作方法。The invention belongs to the technical field of integrated circuits, and relates to a gate-last non-junction NAND flash memory and a manufacturing method thereof.
背景技术Background technique
对于不同架构的与非门(NAND)存储器来说,按照存储层的材料划分可以分为三维浮栅存储器和三维电荷俘获存储器。前者主要由美国美光公司所推介,2015年底完成了技术上的准备,由于采用多晶硅浮栅作为存储层,存储单元面积更大,在实现更多层存储单元层叠时工艺难度较大,因此主要是通过把外围电路置于存储阵列下面来实现面积的缩减。对于后者三维电荷俘获存储器,又可以划分为垂直栅型和垂直沟道型。台湾旺宏推出的基于垂直栅结构的三维电荷俘获闪存结构,工艺上要难于垂直沟道型,一直未见其宣告量产。垂直沟道型三维电荷俘获存储器是最早实现大规模量产的闪存产品,2013年8月,三星电子推出了第一代24层的三维垂直沟道型电荷俘获三维存储器,2014年7月推出了第二代32层128Gb产品,2015年推出了48层256Gb的产品。For NAND memory with different architectures, it can be divided into three-dimensional floating gate memory and three-dimensional charge trapping memory according to the material of the storage layer. The former is mainly recommended by Micron in the United States, and the technical preparations were completed at the end of 2015. Since the polysilicon floating gate is used as the storage layer, the memory cell area is larger, and the process is more difficult to realize the stacking of more layers of memory cells. Therefore, it is mainly The area reduction is achieved by placing peripheral circuits under the memory array. For the latter three-dimensional charge trapping memory, it can be further divided into vertical gate type and vertical channel type. The three-dimensional charge trapping flash memory structure based on the vertical gate structure introduced by Taiwan Macronix is more difficult than the vertical channel type in the process, and it has never been announced for mass production. Vertical channel 3D charge trapping memory is the earliest flash memory product to achieve mass production. In August 2013, Samsung Electronics launched the first generation of 24-layer 3D vertical channel charge trapping 3D memory, which was launched in July 2014. The second generation of 32-layer 128Gb products, 48-layer 256Gb products were launched in 2015.
三星电子垂直沟道型三维电荷俘获存储器单元也是基于无结场效应晶体管结构。该芯片具有24层堆叠的字线(WL)。除最底层的单元选择晶体管为常规反型工作模式,其余每个字单元晶体管均为基于电荷捕获闪存无结薄膜晶体管(JL Charge Trap Flash Thin-film Transistor,JL-CTF TFT)。该器件关闭时要求多晶硅薄膜沟道(管状)处于全耗尽状态;因此,多晶硅薄膜厚度(TCH)要尽量薄。此外,进一步增加存储单元密度的强劲需求,也在不断推动缩小多晶硅薄膜沟道TCH。与工作在反型模式(IM)的器件相比,该产品表现出更优异的性能,可提供更快速的写入/擦除(P/E)速度,更大的内存窗口(>12V),和更好的耐力(>104次);在150℃测试条件下,还具有优良的10年数据保留能力。更为出色的是该器件开关电流比大于108,同时具备非常陡峭的亚阈值摆幅。但是器件沟道材料采用多晶硅薄膜,要求具有很好的结晶度和较大的晶粒,同时又要求多晶硅薄膜厚度(TCH)要尽量薄,工艺很难兼顾,影响产品良率。Samsung Electronics' vertical-channel three-dimensional charge-trapping memory cell is also based on a junctionless field-effect transistor structure. The chip has 24 stacked word lines (WLs). Except for the bottommost cell selection transistor, which is in the conventional inversion mode, each word cell transistor is based on a charge trap flash memory junctionless thin-film transistor (JL Charge Trap Flash Thin-film Transistor, JL-CTF TFT). The polysilicon film channel (tubular) is required to be fully depleted when the device is turned off; therefore, the polysilicon film thickness (TCH) should be as thin as possible. In addition, the strong demand to further increase the density of memory cells is also driving the shrinking of the polysilicon thin film channel TCH. Compared with devices operating in inversion mode (IM), this product exhibits superior performance, providing faster write/erase (P/E) speed, larger memory window (>12V), and better endurance (>10 4 times); also has excellent 10-year data retention ability under 150 ℃ test conditions. Even better is the fact that the device has a switch current ratio greater than 10 8 and a very steep subthreshold swing. However, the device channel material adopts polysilicon film, which requires good crystallinity and larger crystal grains. At the same time, the polysilicon film thickness (T CH ) is required to be as thin as possible. It is difficult to take into account the process and affects the product yield.
硅(Si)晶体管被预测其栅极长度无法缩小到低于5纳米,因为届时其会出现严重的短沟道效应。作为硅的替代品,某些层状半导体因具有均匀的单原子层厚度、较低的介电常数、更大的带隙以及更重的有效载流子质量等特性使其更具吸引力,允许更小的栅极控制其电流。Sujay等人展示了一种栅极长度仅1nm的MoS2晶体管,这种晶体管采用单壁碳纳米管作为栅极电极,其中,直径为1nm的单根碳纳米管嵌入位于MoS2薄层(0.65nm厚)下ZrO2薄膜中。这些超短器件表现出优异的开关特性,例如:摆动幅度约为65mV/dec的亚阈值,以及约106的开关电流比。仿真结果显示其有效沟道长度在关状态时约3.9纳米,开状态约1纳米。(Science DOI:10.1126/science.aah4698)Silicon (Si) transistors are not predicted to have gate lengths below 5 nanometers because of severe short-channel effects. As an alternative to silicon, some layered semiconductors are more attractive due to their uniform single-atom layer thickness, lower dielectric constant, larger band gap, and heavier effective carrier mass. Allows a smaller gate to control its current flow. Sujay et al. demonstrated a MoS2 transistor with a gate length of only 1 nm, which uses single-walled carbon nanotubes as the gate electrode, in which a single carbon nanotube with a diameter of 1 nm is embedded in a thin layer of MoS2 (0.65 nm thick) in the ZrO 2 film. These ultrashort devices exhibit excellent switching characteristics, such as subthreshold swing amplitudes of about 65mV/dec, and switching current ratios of about 10 6 . Simulation results show that the effective channel length is about 3.9 nm in the off state and about 1 nm in the on state. (Science DOI: 10.1126/science.aah4698)
因此,如何提供一种新的与非门闪存存储器及其制作方法,以利用二维半导体材料及碳纳米管的优点,进一步提高存储器的性能,并降低工艺难度,成为本领域技术人员亟待解决的一个重要技术问题。Therefore, how to provide a new NAND flash memory and a method for making the same, so as to take advantage of the advantages of two-dimensional semiconductor materials and carbon nanotubes, further improve the performance of the memory, and reduce the difficulty of the process, has become an urgent problem for those skilled in the art. an important technical issue.
发明内容SUMMARY OF THE INVENTION
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种后栅无结与非门闪存存储器及其制作方法,用于解决现有技术中与非门闪存存储器体积较大,结构复杂,工艺难度高的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a gate-last NAND-gate flash memory and a manufacturing method thereof, which are used to solve the problem that the NAND flash memory in the prior art is large in size and complex in structure , the problem of high technological difficulty.
为实现上述目的及其他相关目的,本发明提供一种后栅无结与非门闪存存储器,包括:In order to achieve the above-mentioned purpose and other related purposes, the present invention provides a gate-last non-junction NAND flash memory, comprising:
衬底;substrate;
绝缘层,位于所述衬底之上;an insulating layer on the substrate;
沟道层,位于所述绝缘层之上,采用二维半导体材料;A channel layer, located on the insulating layer, adopts a two-dimensional semiconductor material;
碳纳米管栅阵列,悬设于所述沟道层上方,包括若干分立设置的碳纳米管,所述碳纳米管作为存储器中晶体管的栅电极;A carbon nanotube grid array, suspended above the channel layer, includes a plurality of discrete carbon nanotubes, and the carbon nanotubes are used as gate electrodes of transistors in the memory;
栅俘获结构,包括隧道层、电荷俘获层及阻挡层;其中,所述隧道层位于所述沟道层之上,所述阻挡层环绕所述碳纳米管外侧面,所述电荷俘获层包括环绕所述阻挡层外侧面的第一部分及位于所述隧道层之上并与所述第一部分接触的第二部分;A gate trapping structure includes a tunnel layer, a charge trapping layer and a blocking layer; wherein, the tunnel layer is located on the channel layer, the blocking layer surrounds the outer side of the carbon nanotube, and the charge trapping layer includes a surrounding a first portion of the outer side of the barrier layer and a second portion located above the tunnel layer and in contact with the first portion;
保护层,覆盖所述栅俘获结构;a protective layer covering the gate trapping structure;
源接触电极和漏接触电极,分别位于所述碳纳米管栅阵列两端,并分别与所述沟道层连接。The source contact electrode and the drain contact electrode are respectively located at both ends of the carbon nanotube grid array, and are respectively connected to the channel layer.
可选地,还包括若干分别引出各碳纳米管的栅接触电极。Optionally, it also includes a plurality of gate contact electrodes respectively leading out the carbon nanotubes.
可选地,所述碳纳米管为金属性碳纳米管。Optionally, the carbon nanotubes are metallic carbon nanotubes.
可选地,所述碳纳米管管径为0.75~3nm,长度为100nm~50μm。Optionally, the diameter of the carbon nanotube is 0.75-3 nm, and the length is 100 nm-50 μm.
可选地,所述存储器包括多个串行,每个串行中均包括存储单元串及分别连接于所述存储单元串两端的无结开关晶体管;所述存储单元串包括若干串联连接的存储单元晶体管;其中,所述碳纳米管栅阵列与所述串行相对应,所述碳纳米管栅阵列中各碳纳米管分别作为所述串行中各晶体管的栅电极。Optionally, the memory includes a plurality of serial lines, and each serial line includes a memory cell string and a junctionless switching transistor respectively connected to both ends of the memory cell string; the memory cell string includes a plurality of memory cells connected in series. A unit transistor; wherein the carbon nanotube grid array corresponds to the series, and each carbon nanotube in the carbon nanotube grid array is used as the gate electrode of each transistor in the series.
可选地,连接于所述存储单元串两端的无结开关晶体管分别为串选择晶体管与地选择晶体管。Optionally, the junctionless switching transistors connected to both ends of the memory cell string are a string selection transistor and a ground selection transistor, respectively.
可选地,所述碳纳米管栅阵列中,各碳纳米管在一个水平面内平行排列。Optionally, in the carbon nanotube grid array, each carbon nanotube is arranged in parallel in one horizontal plane.
可选地,所述二维半导体材料选自MoS2、WS2、ReS2及SnO中的任意一种。Optionally, the two-dimensional semiconductor material is selected from any one of MoS 2 , WS 2 , ReS 2 and SnO.
可选地,所述电荷俘获层的材料包括氮化物及氧化铪中的至少一种,所述阻挡层与所述隧道层的材料均为介电常数大于3.9的高K介质。Optionally, the material of the charge trapping layer includes at least one of nitride and hafnium oxide, and the materials of the blocking layer and the tunnel layer are both high-K dielectrics with a dielectric constant greater than 3.9.
本发明还提供一种后栅无结与非门闪存存储器的制作方法,包括如下步骤:The present invention also provides a method for manufacturing a gate-last NAND-gate flash memory, comprising the following steps:
提供一衬底,在所述衬底上自下而上依次形成绝缘层、二维半导体材料沟道层及隧道层;A substrate is provided, and an insulating layer, a two-dimensional semiconductor material channel layer and a tunnel layer are sequentially formed on the substrate from bottom to top;
于所述隧道层上形成牺牲层;forming a sacrificial layer on the tunnel layer;
于所述牺牲层上形成碳纳米管栅阵列;所述碳纳米管栅阵列包括若干分立设置的碳纳米管,所述碳纳米管作为存储器中晶体管的栅电极;forming a carbon nanotube grid array on the sacrificial layer; the carbon nanotube grid array includes several discrete carbon nanotubes, and the carbon nanotubes are used as gate electrodes of transistors in the memory;
对所述牺牲层进行湿法腐蚀,使所述碳纳米管栅阵列悬空,并保留位于所述碳纳米管轴向两端的部分牺牲层作为支撑层;performing wet etching on the sacrificial layer, so that the carbon nanotube grid array is suspended, and retaining part of the sacrificial layer at both ends of the carbon nanotube in the axial direction as a support layer;
形成环绕所述碳纳米管外侧面的阻挡层;forming a barrier layer surrounding the outer sides of the carbon nanotubes;
形成电荷俘获层;所述电荷俘获层包括环绕所述阻挡层外侧面的第一部分及位于所述隧道层之上并与所述第一部分接触的第二部分;forming a charge trapping layer; the charge trapping layer includes a first portion surrounding the outer side of the blocking layer and a second portion overlying the tunnel layer and in contact with the first portion;
形成覆盖所述电荷俘获层的保护层;forming a protective layer covering the charge trapping layer;
形成分别位于所述碳纳米管栅阵列两端且与所述沟道层连接的源接触电极和漏接触电极,并形成分别引出各碳纳米管的栅接触电极。A source contact electrode and a drain contact electrode respectively located at both ends of the carbon nanotube grid array and connected to the channel layer are formed, and a gate contact electrode respectively leading out each carbon nanotube is formed.
可选地,采用化学气相沉积法在所述牺牲层上形成所述碳纳米管栅阵列,其中,所述牺牲层的材料包括碳纳米管生长催化剂材料。Optionally, the carbon nanotube grid array is formed on the sacrificial layer by chemical vapor deposition, wherein the material of the sacrificial layer includes a carbon nanotube growth catalyst material.
可选地,所述碳纳米管生长催化剂材料包括Ni、Ag、Fe、Co中的一种或多种。Optionally, the carbon nanotube growth catalyst material includes one or more of Ni, Ag, Fe, and Co.
可选地,形成所述源接触电极和漏接触电极的方法包括步骤:形成贯穿所述保护层、电荷俘获层及隧道层的通孔,并于所述通孔中填充导电材料。Optionally, the method for forming the source contact electrode and the drain contact electrode includes the steps of: forming a through hole penetrating the protective layer, the charge trapping layer and the tunnel layer, and filling the through hole with a conductive material.
可选地,形成所述栅接触电极的方法包括步骤:形成贯穿所述保护层、电荷俘获层及阻挡层的通孔,并于所述通孔中填充导电材料。Optionally, the method for forming the gate contact electrode includes the steps of: forming a through hole penetrating the protective layer, the charge trapping layer and the blocking layer, and filling the through hole with a conductive material.
如上所述,本发明的后栅无结与非门闪存存储器及其制作方法,具有以下有益效果:本发明的后栅无结与非门闪存存储器采用金属性碳纳米管栅阵列,利用碳纳米管作为存储单元晶体管的栅电极,显著减小了栅极尺寸,有利于提高存储单元密度;本发明的后栅无结与非门闪存存储器还采用栅极电荷俘获的方式,并以二维半导体材料沟道代替传统的硅掺杂沟道,使得碳纳米管栅极对沟道电流的控制更为容易;并且由于采用了水平沟道形式,相对于现有的垂直沟道型存储器,本发明的存储器结构更为简单。本发明的后栅无结与非门闪存存储器的制作方法采用后栅工艺,即先制作二维半导体材料沟道层,后制作碳纳米管栅极阵列,可以得到环绕碳纳米管栅极的阻挡层及电荷俘获层,可以进一步提高栅极电荷俘获能力。As mentioned above, the gate-last junctionless NAND flash memory and the manufacturing method thereof of the present invention have the following beneficial effects: the gate-back junctionless NAND flash memory of the present invention adopts a metallic carbon nanotube grid The transistor is used as the gate electrode of the memory cell transistor, which significantly reduces the gate size and is conducive to improving the density of the memory cell; the gate-back NAND flash memory of the present invention also adopts the gate charge trapping method, and uses a two-dimensional semiconductor The material channel replaces the traditional silicon-doped channel, making it easier for the carbon nanotube gate to control the channel current; and due to the use of the horizontal channel form, compared with the existing vertical channel type memory, the present invention has The memory structure is simpler. The manufacturing method of the gate-last non-junction NAND flash memory of the present invention adopts the gate-last process, that is, firstly fabricating a two-dimensional semiconductor material channel layer, and then fabricating a carbon nanotube grid array, so as to obtain a barrier surrounding the carbon nanotube grid. layer and charge trapping layer can further improve the gate charge trapping capability.
附图说明Description of drawings
图1显示为本发明的后栅无结与非门闪存存储器的结构示意图。FIG. 1 is a schematic diagram showing the structure of the gate-last junctionless NAND flash memory of the present invention.
图2显示为本发明的后栅无结与非门闪存存储器的制作方法在衬底上自下而上依次形成绝缘层、二维半导体材料沟道层及隧道层的示意图。FIG. 2 is a schematic diagram showing that an insulating layer, a two-dimensional semiconductor material channel layer and a tunnel layer are sequentially formed on the substrate from bottom to top in the method for fabricating the gate-last junctionless NAND flash memory according to the present invention.
图3显示为本发明的后栅无结与非门闪存存储器的制作方法于所述隧道层上形成牺牲层的示意图。FIG. 3 is a schematic diagram of forming a sacrificial layer on the tunnel layer according to the method for fabricating the gate-last junctionless NAND flash memory of the present invention.
图4显示为本发明的后栅无结与非门闪存存储器的制作方法于所述牺牲层上形成碳纳米管栅阵列的示意图。FIG. 4 is a schematic diagram of forming a carbon nanotube grid array on the sacrificial layer by the method for fabricating the gate-last junctionless NAND flash memory of the present invention.
图5显示为本发明的后栅无结与非门闪存存储器的制作方法对所述牺牲层进行湿法腐蚀的示意图。FIG. 5 is a schematic diagram illustrating wet etching of the sacrificial layer by the method for fabricating the gate-last junctionless NAND flash memory according to the present invention.
图6显示为本发明的后栅无结与非门闪存存储器的制作方法形成环绕所述碳纳米管外侧面的阻挡层的示意图。FIG. 6 is a schematic diagram of forming a barrier layer surrounding the outer side surface of the carbon nanotube by the method for fabricating the gate-last junctionless NAND flash memory according to the present invention.
图7显示为本发明的后栅无结与非门闪存存储器的制作方法形成电荷俘获层的示意图。FIG. 7 is a schematic diagram illustrating the formation of a charge trapping layer in a method for fabricating a gate-last junctionless NAND flash memory according to the present invention.
图8显示为本发明的后栅无结与非门闪存存储器的制作方法形成覆盖所述栅电荷俘获层的保护层的示意图。FIG. 8 is a schematic diagram of forming a protective layer covering the gate charge trapping layer by the method for fabricating the gate-last junctionless NAND flash memory according to the present invention.
图9显示为本发明的后栅无结与非门闪存存储器的制作方法形成源接触电极和漏接触电极的示意图。9 is a schematic diagram illustrating the formation of a source contact electrode and a drain contact electrode in a method for fabricating a gate-last junctionless NAND flash memory according to the present invention.
元件标号说明Component label description
1 衬底1 Substrate
2 绝缘层2 insulating layers
3 沟道层3 channel layers
4 碳纳米管4 Carbon Nanotubes
5 隧道层5 Tunnel layer
6 电荷俘获层6 Charge trapping layer
7 阻挡层7 Barrier
8 保护层8 protective layers
9 源接触电极9 Source Contact Electrode
10 漏接触电极10 Drain Contact Electrode
11 电荷11 Charge
12 牺牲层12 sacrificial layers
13 支撑层13 Support layers
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1-图9。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。See Figures 1-9. It should be noted that the drawings provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and the number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
实施例一Example 1
本发明提供一种后栅无结与非门闪存存储器,请参阅图1,显示为该存储器的结构示意图,包括:The present invention provides a gate-last non-junction NAND flash memory, please refer to FIG. 1 , which is a schematic structural diagram of the memory, including:
衬底1;
绝缘层2,位于所述衬底1之上;an insulating
沟道层3,位于所述绝缘层2之上,采用二维半导体材料;The
碳纳米管栅阵列,悬设于所述沟道层3上方,包括若干分立设置的碳纳米管4,所述碳纳米管4作为存储器中晶体管的栅电极;The carbon nanotube grid array, suspended above the
栅俘获结构,包括隧道层5、电荷俘获层6及阻挡层7;其中,所述隧道层5位于所述沟道层3之上,所述阻挡层7环绕所述碳纳米管4外侧面,所述电荷俘获层6包括环绕所述阻挡层7外侧面的第一部分及位于所述隧道层5之上并与所述第一部分接触的第二部分;The gate trapping structure includes a
保护层8,覆盖所述栅俘获结构;a
源接触电极9和漏接触电极10,分别位于所述碳纳米管栅阵列两端,并分别与所述沟道层3连接。The source contact electrode 9 and the
具体的,后栅无结与非门闪存存储器还包括若干分别引出各碳纳米管4的栅接触电极。作为示例,在应用过程中,所述源接触电极9上施加电压Vss,所述漏接触电极10上施加正电压Vdd,所述栅接触电极上施加电压Vg1、Vg2、……、Vgn、Vg(n+1)。其中,n为数目,代表第n根碳纳米管。Specifically, the gate-last junctionless NAND flash memory further includes a plurality of gate contact electrodes respectively leading out the carbon nanotubes 4 . As an example, in the application process, a voltage V ss is applied to the source contact electrode 9 , a positive voltage V dd is applied to the
作为示例,所述衬底1包括但不限于硅、锗、锗硅等合适的半导体衬底,所述绝缘层2包括但不限于氧化硅等合适的绝缘材料。所述沟道层3采用二维半导体材料,其厚度为1-10个原子层的厚度。所述二维半导体材料选自MoS2、WS2、ReS2及SnO中的任意一种,本实施例中,优选采用MoS2。由于所述沟道层3采用水平沟道形式,使得存储器结构更为简单。As an example, the
作为示例,所述存储器包括多个串行,每个串行中均包括存储单元串及分别连接于所述存储单元串两端的无结开关晶体管;所述存储单元串包括若干串联连接的存储单元晶体管;其中,所述碳纳米管栅阵列与所述串行相对应,所述碳纳米管栅阵列中各碳纳米管分别作为所述串行中各晶体管的栅电极。本实施例中,所述开关晶体管及存储单元晶体管均采用碳纳米管栅极,其栅介质层均采用所述栅俘获结构。As an example, the memory includes a plurality of serials, and each serial includes a memory cell string and a junctionless switching transistor connected to both ends of the memory cell string respectively; the memory cell string includes a plurality of memory cells connected in series A transistor; wherein the carbon nanotube grid array corresponds to the series, and each carbon nanotube in the carbon nanotube grid array is used as the gate electrode of each transistor in the series. In this embodiment, the switching transistors and the memory cell transistors use carbon nanotube gates, and the gate dielectric layers use the gate trapping structure.
作为示例,连接于所述存储单元串两端的无结开关晶体管分别为串选择晶体管与地选择晶体管。所述串选择晶体管的数量可以为一个或多个,所述地选择晶体管的数量可以为一个或多个,所述存储单元串中的存储单元晶体管数量可以根据需要进行设置,例如24个、32个、48个、甚至更多。As an example, the junctionless switching transistors connected to both ends of the memory cell strings are string selection transistors and ground selection transistors, respectively. The number of the string selection transistors may be one or more, the number of the ground selection transistors may be one or more, and the number of memory cell transistors in the memory cell string may be set as required, such as 24, 32 1, 48, or even more.
本实施例中,每个串行分别对应一个沟道,即一个串行中各个存储单元晶体管及开关晶体管均共用一个所述沟道层3。对于不同的串行,其沟道层相互隔离,可以通过在形成所述沟道层时将其图案化,并在相邻沟道层之间沉积绝缘材料来实现。In this embodiment, each series corresponds to one channel, that is, each memory cell transistor and switch transistor in one series share one
本实施例中,所述碳纳米管栅阵列中,各碳纳米管4在所述沟道层3上方的一个水平面上平行排列,使得一个串行中,各晶体管由左至右依次排列。当然其它实施例中,所述碳纳米管栅阵列中碳纳米管的排布形式可以根据需要进行调整,此处不应过分限制本发明的保护范围。In this embodiment, in the carbon nanotube grid array, the carbon nanotubes 4 are arranged in parallel on a horizontal plane above the
具体的,所述碳纳米管4为金属性碳纳米管。所述碳纳米管4管径为0.75~3nm,长度为100nm~50μm。由于所述碳纳米管4较小的管径,有利于降低栅极宽度,提高存储单元密度。Specifically, the carbon nanotubes 4 are metallic carbon nanotubes. The diameter of the carbon nanotube 4 is 0.75-3 nm, and the length is 100 nm-50 μm. Due to the small diameter of the carbon nanotubes 4, it is beneficial to reduce the gate width and increase the density of memory cells.
具体的,由于所述栅俘获结构中,所述阻挡层及电荷俘获层均环绕碳纳米管栅极,可以获得更强栅极电荷俘获能力。作为示例,所述电荷俘获层6的材料包括氮化物及氧化铪中的至少一种,所述阻挡层与所述隧道层的材料均为介电常数大于3.9的高K介质,例如氧化锆、氮化硅、氧化铪、氧化硅、氧化铝等。Specifically, since in the gate trapping structure, the blocking layer and the charge trapping layer both surround the carbon nanotube gate, a stronger gate charge trapping capability can be obtained. As an example, the material of the charge trapping layer 6 includes at least one of nitride and hafnium oxide, and the materials of the blocking layer and the tunnel layer are both high-K dielectrics with a dielectric constant greater than 3.9, such as zirconia, Silicon nitride, hafnium oxide, silicon oxide, aluminum oxide, etc.
本发明的后栅无结与非门闪存存储器采用金属性碳纳米管栅阵列,利用碳纳米管作为存储单元晶体管的栅电极,显著减小了栅极尺寸,有利于提高存储单元密度;本发明的后栅无结与非门闪存存储器还采用栅极电荷俘获的方式,并以二维半导体材料沟道代替传统的硅掺杂沟道,使得碳纳米管栅极对沟道电流的控制更为容易;阻挡层及电荷俘获层环绕碳纳米管栅极,使得栅极电荷俘获能力更强。并且由于采用了水平沟道形式,相对于现有的垂直沟道型存储器,本发明的存储器结构更为简单。The back-gate junctionless NAND flash memory of the present invention adopts a metallic carbon nanotube grid array, and uses carbon nanotubes as the gate electrode of the memory cell transistor, which significantly reduces the gate size and is beneficial to improve the memory cell density; the present invention The gate-last junctionless NAND flash memory also adopts the gate charge trapping method, and replaces the traditional silicon-doped channel with a two-dimensional semiconductor material channel, which makes the control of the channel current by the carbon nanotube gate more efficient. Easy; the blocking layer and the charge trapping layer surround the carbon nanotube gate, making the gate charge trapping ability stronger. And because the horizontal channel form is adopted, the memory structure of the present invention is simpler compared to the existing vertical channel memory.
实施例二
本发明还提供一种后栅无结与非门闪存存储器的制作方法,包括如下步骤:The present invention also provides a method for manufacturing a gate-last NAND-gate flash memory, comprising the following steps:
首先请参阅图2,提供一衬底1,在所述衬底1上自下而上依次形成绝缘层2、二维半导体材料沟道层3及隧道层5。Referring first to FIG. 2 , a
具体的,所述衬底1包括但不限于硅、锗、锗硅等合适的半导体衬底,所述绝缘层2包括但不限于氧化硅等合适的绝缘材料。例如可采用在硅衬底上生长氧化层的方式形成绝缘层。Specifically, the
所述沟道层3采用二维半导体材料,其厚度为1-10个原子层。作为示例,所述二维半导体材料选自MoS2、WS2、ReS2及SnO中的任意一种,本实施例中,优选采用MoS2。形成所述沟道层3的方法可以是化学气相沉积(CVD)、物理气相沉积(PVD)、金属有机化合物化学气相沉积(MOCVD)、原子层沉积(ALD)等沉积方法,或其他适合的工艺。The
所述隧道层5的材料为介电常数大于3.9的高K介质,例如氧化锆、氮化硅、氧化铪、氧化硅、氧化铝等。形成所述沟道层3、隧道层5的方法可以是化学气相沉积(CVD)、物理气相沉积(PVD)、金属有机化合物化学气相沉积(MOCVD)、原子层沉积(ALD)等沉积方法,或其他适合的工艺。The material of the
然后请参阅图3及图4,于所述隧道层5上形成牺牲层12,并于所述牺牲层12上形成碳纳米管栅阵列;所述碳纳米管栅阵列包括若干分立设置的碳纳米管4,所述碳纳米管作为存储器中晶体管的栅电极。3 and 4 , a
此处,所述牺牲层12指的是其可以通过湿法腐蚀去除。Here, the
作为示例,采用化学气相沉积法在所述牺牲层12上形成所述碳纳米管栅阵列,其中,所述牺牲层12的材料包括碳纳米管生长催化剂材料。例如,所述碳纳米管生长催化剂材料包括但不限于Ni、Ag、Fe、Co中的一种或多种。As an example, the carbon nanotube grid array is formed on the
本实施例中,在保护性气氛下,利用碳纳米管生长催化剂材料,并在反应腔室内通入碳源,通过化学气相沉积法形成所述碳纳米管栅阵列。所述保护性气氛包括N2、H2、Ar中的一种或多种,所述碳源包括但不限于甲烷、乙炔等含碳气体。In this embodiment, in a protective atmosphere, carbon nanotubes are used to grow the catalyst material, and a carbon source is passed into the reaction chamber to form the carbon nanotube grid array by chemical vapor deposition. The protective atmosphere includes one or more of N 2 , H 2 , and Ar, and the carbon source includes, but is not limited to, methane, acetylene and other carbon-containing gases.
再请参阅图5,对所述牺牲层进12行湿法腐蚀,使所述碳纳米管栅阵列悬空,并保留位于所述碳纳米管4轴向两端的部分牺牲层作为支撑层13。为了显示碳纳米管的悬空状态,图5中采用虚线框示出了所述支撑层13。Referring to FIG. 5 again, the sacrificial layer is subjected to 12 lines of wet etching, so that the carbon nanotube grid array is suspended, and part of the sacrificial layer at the two axial ends of the carbon nanotubes 4 is reserved as the
再请参阅图6,形成环绕所述碳纳米管4外侧面的阻挡层7。Referring to FIG. 6 again, a barrier layer 7 surrounding the outer side of the carbon nanotubes 4 is formed.
具体的,所述阻挡层7采用介电常数大于3.9的高K介质,例如氧化锆、氮化硅、氧化铪、氧化硅、氧化铝等。形成所述阻挡层7的方法可以是化学气相沉积(CVD)、物理气相沉积(PVD)、金属有机化合物化学气相沉积(MOCVD)、原子层沉积(ALD)等沉积方法,或其他适合的工艺。在形成所述阻挡层7的过程中,可能会有部分高K介质也沉积到所述隧道层5表面,但由于所述隧道层5也采用高K介质,不会产生不良影响。Specifically, the barrier layer 7 uses a high-K dielectric with a dielectric constant greater than 3.9, such as zirconia, silicon nitride, hafnium oxide, silicon oxide, aluminum oxide, and the like. The method of forming the barrier layer 7 can be chemical vapor deposition (CVD), physical vapor deposition (PVD), metal organic compound chemical vapor deposition (MOCVD), atomic layer deposition (ALD) and other deposition methods, or other suitable processes. In the process of forming the barrier layer 7, some high-K dielectrics may also be deposited on the surface of the
再请参阅图7,形成电荷俘获层6;所述电荷俘获层6包括环绕所述阻挡层7外侧面的第一部分及位于所述隧道层5之上并与所述第一部分接触的第二部分。Referring to FIG. 7 again, a charge trapping layer 6 is formed; the charge trapping layer 6 includes a first portion surrounding the outer side of the blocking layer 7 and a second portion located above the
具体的,所述电荷俘获层6的材料包括氮化物及氧化铪中的至少一种,形成所述电荷俘获层6的方法可以是化学气相沉积(CVD)、物理气相沉积(PVD)、金属有机化合物化学气相沉积(MOCVD)、原子层沉积(ALD)等沉积方法,或其他适合的工艺。Specifically, the material of the charge trapping layer 6 includes at least one of nitride and hafnium oxide, and the method for forming the charge trapping layer 6 may be chemical vapor deposition (CVD), physical vapor deposition (PVD), metal organic Deposition methods such as compound chemical vapor deposition (MOCVD), atomic layer deposition (ALD), or other suitable processes.
然后请参阅图8,形成覆盖所述电荷俘获层6的保护层8。Then, referring to FIG. 8 , a
具体的,所述保护层8采用氧化硅或其它绝缘材料。Specifically, the
最后请参阅图9,形成分别位于所述碳纳米管栅阵列两端且与所述沟道层3连接的源接触电极9和漏接触电极10,并形成分别引出各碳纳米管4的栅接触电极。Finally, referring to FIG. 9 , a source contact electrode 9 and a
作为示例,形成所述源接触电极9和漏接触电极10的方法包括步骤:在相应位置形成贯穿所述保护层8、电荷俘获层6及隧道层5的通孔,并于所述通孔中填充导电材料。形成所述栅接触电极的方法包括步骤:在相应位置形成贯穿所述保护层8、电荷俘获层6及阻挡层7的通孔,并于所述通孔中填充导电材料。As an example, the method for forming the source contact electrode 9 and the
本发明的后栅无结与非门闪存存储器的制作方法采用后栅工艺,即先制作二维半导体材料沟道层,后制作碳纳米管栅极阵列,可以得到环绕碳纳米管栅极的阻挡层及电荷俘获层,使得栅极电荷俘获能力更强。The manufacturing method of the gate-last non-junction NAND flash memory of the present invention adopts the gate-last process, that is, firstly fabricating a two-dimensional semiconductor material channel layer, and then fabricating a carbon nanotube grid array, so as to obtain a barrier surrounding the carbon nanotube grid. layer and charge trapping layer, making the gate charge trapping ability stronger.
综上所述,本发明的后栅无结与非门闪存存储器采用金属性碳纳米管栅阵列,利用碳纳米管作为存储单元晶体管的栅电极,显著减小了栅极尺寸,有利于提高存储单元密度;本发明的后栅无结与非门闪存存储器还采用栅极电荷俘获的方式,并以二维半导体材料沟道代替传统的硅掺杂沟道,使得碳纳米管栅极对沟道电流的控制更为容易;并且由于采用了水平沟道形式,相对于现有的垂直沟道型存储器,本发明的存储器结构更为简单。本发明的后栅无结与非门闪存存储器的制作方法采用后栅工艺,即先制作二维半导体材料沟道层,后制作碳纳米管栅极阵列,可以得到环绕碳纳米管栅极的阻挡层及电荷俘获层,可以进一步提高栅极电荷俘获能力。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the back-gate junctionless NAND flash memory of the present invention adopts a metallic carbon nanotube grid array, and uses carbon nanotubes as the gate electrode of the memory cell transistor, which significantly reduces the gate size and is conducive to improving the storage capacity. Cell density; the gate-back NAND-gate flash memory of the present invention also adopts the gate charge trapping method, and replaces the traditional silicon-doped channel with a two-dimensional semiconductor material channel, so that the carbon nanotube gate is opposite to the channel. The control of the current is easier; and the memory structure of the present invention is simpler compared with the existing vertical channel type memory due to the use of the horizontal channel form. The manufacturing method of the gate-last non-junction NAND flash memory of the present invention adopts a gate-last process, that is, firstly fabricating a two-dimensional semiconductor material channel layer, and then fabricating a carbon nanotube grid array, so as to obtain a barrier surrounding the carbon nanotube grid. layer and charge trapping layer can further improve the gate charge trapping capability. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can make modifications or changes to the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710028176.1A CN108305877B (en) | 2017-01-13 | 2017-01-13 | A gate-last junctionless NAND flash memory and method of making the same |
TW106130196A TWI656628B (en) | 2017-01-13 | 2017-09-04 | Back gate without junction and gate flash memory and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710028176.1A CN108305877B (en) | 2017-01-13 | 2017-01-13 | A gate-last junctionless NAND flash memory and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108305877A CN108305877A (en) | 2018-07-20 |
CN108305877B true CN108305877B (en) | 2020-09-25 |
Family
ID=62872164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710028176.1A Active CN108305877B (en) | 2017-01-13 | 2017-01-13 | A gate-last junctionless NAND flash memory and method of making the same |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108305877B (en) |
TW (1) | TWI656628B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112885830B (en) * | 2019-11-29 | 2023-05-26 | 芯恩(青岛)集成电路有限公司 | Stacked neuron device structure and method of making the same |
CN111279481B (en) * | 2020-01-14 | 2022-01-28 | 长江存储科技有限责任公司 | Channel structure including tunneling layer with adjusted nitrogen weight percentage and method of forming the same |
KR20210154602A (en) * | 2020-06-12 | 2021-12-21 | 삼성전자주식회사 | Semiconductor device and a method for manufacturing the same |
JP2022147421A (en) * | 2021-03-23 | 2022-10-06 | キオクシア株式会社 | Semiconductor memory |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101124638A (en) * | 2004-12-06 | 2008-02-13 | 哈佛大学 | Data storage based on nanoscale wires |
CN101252148A (en) * | 2007-02-23 | 2008-08-27 | 高丽大学校产学协力团 | Non-volatile electronic memory device and method of making the same |
CN102893382A (en) * | 2010-05-17 | 2013-01-23 | 桑迪士克科技股份有限公司 | Memory device comprising junctionless thin- film transistor |
CN102969359A (en) * | 2012-12-11 | 2013-03-13 | 深港产学研基地 | Independent grid controlled nano line tunneling field effect device and manufacturing method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10250829B4 (en) * | 2002-10-31 | 2006-11-02 | Infineon Technologies Ag | Nonvolatile memory cell, memory cell array, and method of making a nonvolatile memory cell |
US7262991B2 (en) * | 2005-06-30 | 2007-08-28 | Intel Corporation | Nanotube- and nanocrystal-based non-volatile memory |
KR100829579B1 (en) * | 2006-11-27 | 2008-05-14 | 삼성전자주식회사 | Field effect transistor using nanotube and manufacturing method |
US7790560B2 (en) * | 2007-03-12 | 2010-09-07 | Board Of Regents Of The Nevada System Of Higher Education | Construction of flash memory chips and circuits from ordered nanoparticles |
KR101463064B1 (en) * | 2007-10-17 | 2014-11-19 | 삼성전자주식회사 | Method of forming nano dot, memory device comprising nano dot formed using the same and method of manufacturing the same |
WO2010022097A1 (en) * | 2008-08-19 | 2010-02-25 | Sandisk 3D, Llc | Methods for increasing carbon nano-tube (cnt) yield in memory devices |
-
2017
- 2017-01-13 CN CN201710028176.1A patent/CN108305877B/en active Active
- 2017-09-04 TW TW106130196A patent/TWI656628B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101124638A (en) * | 2004-12-06 | 2008-02-13 | 哈佛大学 | Data storage based on nanoscale wires |
CN101252148A (en) * | 2007-02-23 | 2008-08-27 | 高丽大学校产学协力团 | Non-volatile electronic memory device and method of making the same |
CN102893382A (en) * | 2010-05-17 | 2013-01-23 | 桑迪士克科技股份有限公司 | Memory device comprising junctionless thin- film transistor |
CN102969359A (en) * | 2012-12-11 | 2013-03-13 | 深港产学研基地 | Independent grid controlled nano line tunneling field effect device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201841351A (en) | 2018-11-16 |
TWI656628B (en) | 2019-04-11 |
CN108305877A (en) | 2018-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10014317B2 (en) | Three-dimensional non-volatile NOR-type flash memory | |
US9613981B2 (en) | Vertical channel-type 3D semiconductor memory device and method for manufacturing the same | |
Hubert et al. | A stacked SONOS technology, up to 4 levels and 6nm crystalline nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3D integration | |
CN108305877B (en) | A gate-last junctionless NAND flash memory and method of making the same | |
CN104241294B (en) | Nonvolatile three-dimensional semiconductor memory and manufacturing method thereof | |
Cao et al. | Can 2D-nanocrystals extend the lifetime of floating-gate transistor based nonvolatile memory? | |
TWI587488B (en) | A nano-wire memory structure and the method for preparing the same | |
CN109244078B (en) | Semiconductor memory device and conductor structure | |
CN204130535U (en) | A kind of nonvolatile three-dimensional semiconductor memory | |
JP2013058592A (en) | Nonvolatile semiconductor storage device | |
CN110148598A (en) | A kind of three-dimensional flash memory memory and its preparation based on two-dimensional semiconductor material vertical-channel | |
US20230077181A1 (en) | Three-dimensional nor memory string arrays of thin-film ferroelectric transistors | |
CN103872055A (en) | Vertical channel type three-dimensional semiconductor memory device and preparation method thereof | |
TWI611563B (en) | A nano-tube memory structure and the method for preparing the same | |
JPWO2008146760A1 (en) | Storage element and reading method thereof | |
TWI630706B (en) | Memory structure and method for making the same | |
TWI638447B (en) | Connectionless semiconductor channel gate array memory structure and preparation method thereof | |
TWI651836B (en) | Gate array contactless semiconductor channel memory structure and preparation method thereof | |
CN115867038A (en) | Memory device and method of manufacturing the same | |
CN104269407B (en) | Nonvolatile high-density three-dimensional semiconductor storage device and manufacturing method thereof | |
Chen et al. | Improved Erasing Speed in Junctionless Flash Memory Device by ${\rm HfO} _ {2}/{\rm Si} _ {3}{\rm N} _ {4} $ Stacked Trapping Layer | |
KR102304800B1 (en) | Memory device based on igo channel layer and manufacturing method thereof | |
CN204130534U (en) | A kind of non-volatile high density three dimensional semiconductor memory device | |
US9401434B2 (en) | E-flash cell band engineering for erasing speed enhancement | |
CN103646949B (en) | Floating gate transistor array and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |