CN108292004B - Elongated optical laminated body and image display device - Google Patents
Elongated optical laminated body and image display device Download PDFInfo
- Publication number
- CN108292004B CN108292004B CN201680070747.1A CN201680070747A CN108292004B CN 108292004 B CN108292004 B CN 108292004B CN 201680070747 A CN201680070747 A CN 201680070747A CN 108292004 B CN108292004 B CN 108292004B
- Authority
- CN
- China
- Prior art keywords
- layer
- retardation
- retardation layer
- polarizer
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 80
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 238000010521 absorption reaction Methods 0.000 claims abstract description 26
- 229920005989 resin Polymers 0.000 claims description 83
- 239000011347 resin Substances 0.000 claims description 83
- 239000004973 liquid crystal related substance Substances 0.000 claims description 77
- 150000001875 compounds Chemical class 0.000 claims description 49
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 283
- 239000011241 protective layer Substances 0.000 abstract description 42
- 239000010408 film Substances 0.000 description 107
- 238000011282 treatment Methods 0.000 description 56
- 239000000463 material Substances 0.000 description 30
- 239000004372 Polyvinyl alcohol Substances 0.000 description 26
- 229920002451 polyvinyl alcohol Polymers 0.000 description 26
- 239000000178 monomer Substances 0.000 description 23
- -1 cyclic olefin Chemical class 0.000 description 21
- 238000000034 method Methods 0.000 description 18
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 18
- 239000012790 adhesive layer Substances 0.000 description 17
- 230000008859 change Effects 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 238000004132 cross linking Methods 0.000 description 12
- 239000011630 iodine Substances 0.000 description 12
- 229910052740 iodine Inorganic materials 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 11
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 11
- 239000004327 boric acid Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 10
- 238000004043 dyeing Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 7
- 229920005668 polycarbonate resin Polymers 0.000 description 7
- 239000004431 polycarbonate resin Substances 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 229920002799 BoPET Polymers 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229920002284 Cellulose triacetate Polymers 0.000 description 4
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229960002479 isosorbide Drugs 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 4
- 229920003050 poly-cycloolefin Polymers 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000012798 spherical particle Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004988 Nematic liquid crystal Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 206010042674 Swelling Diseases 0.000 description 3
- 239000003522 acrylic cement Substances 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000012295 chemical reaction liquid Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 238000003855 Adhesive Lamination Methods 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- TXTIIWDWHSZBRK-UHFFFAOYSA-N 2,4-diisocyanato-1-methylbenzene;2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound CCC(CO)(CO)CO.CC1=CC=C(N=C=O)C=C1N=C=O TXTIIWDWHSZBRK-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- VKNXYLFKIOFLJG-UHFFFAOYSA-N 4,4-dimethyl-2,3,6,7,8,8a-hexahydro-1H-naphthalene Chemical compound CC1(C)CCCC2CCCC=C12 VKNXYLFKIOFLJG-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- YSWATWCBYRBYBO-UHFFFAOYSA-N 5-butylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCC)CC1C=C2 YSWATWCBYRBYBO-UHFFFAOYSA-N 0.000 description 1
- QHJIJNGGGLNBNJ-UHFFFAOYSA-N 5-ethylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CC)CC1C=C2 QHJIJNGGGLNBNJ-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 125000002339 acetoacetyl group Chemical group O=C([*])C([H])([H])C(=O)C([H])([H])[H] 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- GVFOJDIFWSDNOY-UHFFFAOYSA-N antimony tin Chemical compound [Sn].[Sb] GVFOJDIFWSDNOY-UHFFFAOYSA-N 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- HANKSFAYJLDDKP-UHFFFAOYSA-N dihydrodicyclopentadiene Chemical compound C12CC=CC2C2CCC1C2 HANKSFAYJLDDKP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000005462 imide group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- NJWNEWQMQCGRDO-UHFFFAOYSA-N indium zinc Chemical compound [Zn].[In] NJWNEWQMQCGRDO-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000002535 lyotropic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- GNARHXWTMJZNTP-UHFFFAOYSA-N methoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[SiH2]CCCOCC1CO1 GNARHXWTMJZNTP-UHFFFAOYSA-N 0.000 description 1
- SEEYREPSKCQBBF-UHFFFAOYSA-N n-methylmaleimide Chemical compound CN1C(=O)C=CC1=O SEEYREPSKCQBBF-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
本发明提供一种长条状光学层叠体,其能够在裁断为规定尺寸而应用于图像显示装置的情况下减小各产品的显示特性的偏差。本发明的光学层叠体为长条状,其依次具有包含偏振器和位于偏振器的至少一侧的保护层的偏振片、第一相位差层、第二相位差层、导电层以及与导电层密合层叠而成的基材。基材的面内相位差Re(550)为3nm~6nm,宽度方向上的相位差的偏差为10%~30%,宽度方向上的慢轴方向的偏差为1°~5°。第一相位差层的面内相位差Re(550)为220nm~250nm,第一相位差层的慢轴与偏振器的吸收轴所成的角度为10°~20°,第二相位差层的面内相位差Re(550)为110nm~125nm,第二相位差层的慢轴与偏振器的吸收轴所成的角度为65°~85°。
The present invention provides an elongated optical layered body capable of reducing variation in display characteristics of each product when it is cut to a predetermined size and applied to an image display device. The optical laminated body of the present invention is elongated, and it has a polarizing plate including a polarizer and a protective layer on at least one side of the polarizer, a first retardation layer, a second retardation layer, a conductive layer, and a conductive layer. Adhesively laminated substrates. The in-plane retardation Re(550) of the substrate is 3nm to 6nm, the retardation variation in the width direction is 10% to 30%, and the variation in the slow axis direction in the width direction is 1° to 5°. The in-plane retardation Re(550) of the first retardation layer is 220nm~250nm, the angle formed by the slow axis of the first retardation layer and the absorption axis of the polarizer is 10°~20°, the second retardation layer The in-plane retardation Re(550) is 110nm-125nm, and the angle formed by the slow axis of the second retardation layer and the absorption axis of the polarizer is 65°-85°.
Description
技术领域technical field
本发明涉及长条状光学层叠体以及使用该长条状光学层叠体的图像显示装置。The present invention relates to an elongated optical layered body and an image display device using the elongated optical layered body.
背景技术Background technique
近年来,随着薄型显示器的普及,提出了搭载有有机EL面板的显示器(有机EL显示装置)。由于有机EL面板具有反射性高的金属层,因而容易产生外部光反射或背景的映入等问题。因此,已知有通过在目视确认侧设置圆偏振片来防止这些问题。另一方面,在显示单元(例如有机EL单元)与偏振片之间组装有触控传感器的所谓内置触控面板型输入显示装置的需求不断提高。这种构成的输入显示装置由于图像显示单元与触控传感器的距离近,因而可对使用者赋予自然的输入操作感。In recent years, with the spread of thin displays, displays (organic EL display devices) equipped with organic EL panels have been proposed. Since the organic EL panel has a highly reflective metal layer, problems such as reflection of external light or reflection of the background are likely to occur. Therefore, it is known to prevent these problems by providing a circular polarizing plate on the visual confirmation side. On the other hand, there is increasing demand for so-called built-in touch panel type input display devices in which a touch sensor is incorporated between a display unit (for example, an organic EL unit) and a polarizing plate. The input display device configured in this way can provide the user with a natural sense of input operation because the distance between the image display unit and the touch sensor is short.
对于内置触控面板型输入显示装置用偏振片(或圆偏振片),从薄型化、防止质量偏差、提高制造效率等观点考虑,正在研究偏振片(或圆偏振片)与触控传感器用导电性薄膜的一体化。例如,尝试将长条状偏振片(或圆偏振片)与长条状导电性薄膜通过所谓辊对辊(roll to roll)来贴合。但是,通过辊对辊与导电性薄膜一体化后的偏振片存在宽度方向的特性偏差大这样的问题。结果在将这种与导电性薄膜一体化后的偏振片裁断为规定尺寸而应用于图像显示装置的情况下,存在各产品的显示特性产生难以允许的偏差的情况。For polarizers (or circular polarizers) for input display devices with built-in touch panels, from the viewpoint of thinning, preventing quality deviation, and improving manufacturing efficiency, polarizers (or circular polarizers) and conductive polarizers for touch sensors are being studied. The integration of flexible films. For example, an attempt has been made to bond a long polarizing plate (or a circular polarizing plate) and a long conductive film by so-called roll-to-roll. However, the polarizing plate integrated with the conductive film by roll-to-roll has a problem that the characteristic variation in the width direction is large. As a result, when such a polarizing plate integrated with a conductive film is cut into a predetermined size and applied to an image display device, there may be unacceptable variations in the display characteristics of each product.
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开2003-311239号公报Patent Document 1: Japanese Patent Laid-Open No. 2003-311239
专利文献2:日本特开2002-372622号公报Patent Document 2: Japanese Patent Laid-Open No. 2002-372622
专利文献3:日本专利第3325560号公报Patent Document 3: Japanese Patent No. 3325560
专利文献4:日本特开2003-036143号公报Patent Document 4: Japanese Patent Laid-Open No. 2003-036143
发明内容Contents of the invention
发明所要解决的问题The problem to be solved by the invention
本发明是为了解决上述现有问题而完成的,其主要目的在于:提供一种长条状光学层叠体,该长条状光学层叠体能够在裁断为规定尺寸而应用于图像显示装置的情况下减小各产品的显示特性的偏差。The present invention was made to solve the above conventional problems, and its main object is to provide an elongated optical laminate that can be cut into a predetermined size and applied to an image display device. The variation in the display characteristics of each product is reduced.
用于解决问题的手段means of solving problems
本发明的光学层叠体为长条状,其依次具有包含偏振器和位于该偏振器的至少一侧的保护层的偏振片、第一相位差层、第二相位差层、导电层以及与该导电层密合层叠而成的基材。该基材的面内相位差Re(550)为3nm~6nm,该基材在宽度方向上的相位差的偏差为10%~30%,该基材在宽度方向上的慢轴方向的偏差为1°~5°。在本发明的光学层叠体中,该第一相位差层的面内相位差Re(550)为220nm~250nm,该第一相位差层的慢轴与该偏振器的吸收轴所成的角度为10°~20°;该第二相位差层的面内相位差Re(550)为110nm~125nm,该第二相位差层的慢轴与该偏振器的吸收轴所成的角度为65°~85°。The optical laminated body of the present invention is elongated, and it has a polarizing plate including a polarizer and a protective layer on at least one side of the polarizer, a first retardation layer, a second retardation layer, a conductive layer, and the A base material in which conductive layers are laminated in close contact. The in-plane retardation Re(550) of the substrate is 3nm to 6nm, the deviation of the retardation of the substrate in the width direction is 10% to 30%, and the deviation of the slow axis direction of the substrate in the width direction is 1°~5°. In the optical laminate of the present invention, the in-plane retardation Re(550) of the first retardation layer is 220 nm to 250 nm, and the angle formed by the slow axis of the first retardation layer and the absorption axis of the polarizer is 10°~20°; the in-plane retardation Re(550) of the second retardation layer is 110nm~125nm, and the angle formed by the slow axis of the second retardation layer and the absorption axis of the polarizer is 65°~ 85°.
就一个实施方式来说,上述光学层叠体为卷状。In one Embodiment, the said optical laminated body is roll shape.
就一个实施方式来说,上述光学层叠体的宽度为500mm以上。In one Embodiment, the width of the said optical laminated body is 500 mm or more.
就一个实施方式来说,上述第一相位差层和上述第二相位差层由环状烯烃系树脂薄膜构成。就另一实施方式来说,上述第一相位差层和上述第二相位差层为液晶化合物的取向固化层。In one embodiment, the first retardation layer and the second retardation layer are formed of a cyclic olefin-based resin film. According to another embodiment, the above-mentioned first retardation layer and the above-mentioned second retardation layer are alignment solidified layers of liquid crystal compounds.
根据本发明的另一方案,提供一种图像显示装置。该图像显示装置具备被裁断为规定尺寸的上述光学层叠体。According to another aspect of the present invention, an image display device is provided. This image display device includes the above-mentioned optical laminate cut to a predetermined size.
发明效果Invention effect
根据本发明,对于具有偏振片、相位差层和触控传感器用导电层的长条状光学层叠体,通过使特定的两个相位差层组合作为相位差层来进行光学补偿,尽管存在由于形成有导电层的基材的相位差和相位差的宽度方向的偏差等而引起的光学层叠体的宽度方向的特性的偏差,但在将该光学层叠体裁断为规定尺寸而应用于图像显示装置的情况下能够减小各产品的显示特性的偏差。According to the present invention, optical compensation is performed by combining specific two retardation layers as the retardation layer for the elongated optical laminated body having the polarizer, the retardation layer, and the conductive layer for the touch sensor. The deviation of the characteristics of the width direction of the optical laminate caused by the phase difference of the substrate having the conductive layer and the deviation of the width direction of the phase difference, etc., but when the optical laminate is cut into a predetermined size and applied to an image display device In some cases, it is possible to reduce the variation in the display characteristics of each product.
附图说明Description of drawings
图1是本发明的一个实施方式的光学层叠体的剖视示意图。FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
图2是对用于参考例4的斜向拉伸装置的整体构成进行说明的俯视示意图。FIG. 2 is a schematic plan view illustrating the overall configuration of a diagonal stretching device used in Reference Example 4. FIG.
图3是用于对在图2的斜向拉伸装置中改变夹具间距的连接机构进行说明的主要部分俯视示意图,示出夹具间距最小的状态。FIG. 3 is a schematic plan view of main parts for explaining a connection mechanism for changing the distance between clamps in the oblique stretching device of FIG. 2 , showing a state in which the distance between clamps is the smallest.
图4是用于对在图2的斜向拉伸装置中改变夹具间距的连接机构进行说明的主要部分俯视示意图,示出夹具间距最大的状态。FIG. 4 is a schematic plan view of main parts for explaining a connection mechanism for changing the distance between clamps in the oblique stretching device of FIG. 2 , showing a state where the distance between clamps is the largest.
图5是对用于参考例4的斜向拉伸的实施方式进行说明的示意图。FIG. 5 is a schematic diagram illustrating an embodiment of oblique stretching used in Reference Example 4. FIG.
图6是表示图5所示的斜向拉伸时的斜向拉伸装置的各区域与夹具间距的关系的图。Fig. 6 is a diagram showing the relationship between each region of the oblique stretching device and the distance between clips during the oblique stretching shown in Fig. 5 .
具体实施方式Detailed ways
以下,对本发明的实施方式进行说明,但本发明并不限于这些实施方式。Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
(用语和符号的定义)(Definition of terms and symbols)
本说明书中的用语和符号的定义如下所述。Definitions of terms and symbols used in this specification are as follows.
(1)折射率(nx、ny、nz)(1) Refractive index (nx, ny, nz)
“nx”为面内的折射率成为最大的方向(即慢轴方向)的折射率,“ny”为在面内与慢轴正交的方向(即快轴方向)的折射率,“nz”为厚度方向的折射率。"nx" is the refractive index in the direction in which the in-plane refractive index becomes the largest (that is, the slow axis direction), "ny" is the refractive index in the in-plane direction perpendicular to the slow axis (that is, the fast axis direction), and "nz" is the refractive index in the thickness direction.
(2)面内相位差(Re)(2) In-plane retardation (Re)
“Re(λ)”为利用23℃下的波长为λnm的光测得的面内相位差。例如,“Re(550)”为利用23℃下的波长为550nm的光测得的面内相位差。在将层(薄膜)的厚度设定为d(nm)时,Re(λ)可通过式Re(λ)=(nx-ny)×d求出。"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. When the thickness of the layer (thin film) is d (nm), Re(λ) can be obtained by the formula Re(λ)=(nx-ny)×d.
(3)厚度方向的相位差(Rth)(3) Phase difference in the thickness direction (Rth)
“Rth(λ)”为利用23℃下的波长为λnm的光测得的厚度方向的相位差。例如,“Rth(550)”为利用23℃下的波长为550nm的光测得的厚度方向的相位差。在将层(薄膜)的厚度设定为d(nm)时,Rth(λ)可通过式Rth(λ)=(nx-nz)×d求出。"Rth(λ)" is the retardation in the thickness direction measured with light having a wavelength of λnm at 23°C. For example, "Rth(550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. When the thickness of the layer (thin film) is set to d (nm), Rth(λ) can be obtained by the formula Rth(λ)=(nx-nz)×d.
(4)Nz系数(4) Nz coefficient
Nz系数可通过Nz=Rth/Re求出。The Nz coefficient can be obtained by Nz=Rth/Re.
A.光学层叠体的整体构成A. Overall configuration of the optical laminate
图1是本发明的一个实施方式的光学层叠体的剖视示意图。本实施方式的光学层叠体100依次具有偏振片10、第一相位差层20、第二相位差层30、导电层41和基材42。偏振片10包含偏振器11、配置于偏振器11的一侧的第一保护层12和配置于偏振器11的另一侧的第二保护层13。根据目的,也可省略第一保护层12和第二保护层13中的一者。例如,在第一相位差层20也可发挥作为偏振器11的保护层的功能的情况下,可省略第二保护层13。基材42与导电层41密合层叠。本说明书中,“密合层叠”是指两个层不隔着粘接层(例如粘接剂层、粘合剂层)而直接且粘合地层叠。导电层41和基材42代表性地可以基材42与导电层41的层叠体的形式导入至光学层叠体100。此外,为了容易观察,附图中的各层的厚度的比例与实际不同。FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminate 100 of this embodiment has the polarizing plate 10, the 1st retardation layer 20, the 2nd retardation layer 30, the conductive layer 41, and the base material 42 in this order. The polarizer 10 includes a polarizer 11 , a first protective layer 12 arranged on one side of the polarizer 11 , and a second protective layer 13 arranged on the other side of the polarizer 11 . Depending on purposes, one of the first protective layer 12 and the second protective layer 13 may also be omitted. For example, when the first retardation layer 20 can also function as a protective layer of the polarizer 11, the second protective layer 13 can be omitted. The substrate 42 is laminated closely with the conductive layer 41 . In this specification, "adhesive lamination" means that two layers are directly and adhesively laminated without interposing an adhesive layer (for example, an adhesive layer, an adhesive layer). Typically, the conductive layer 41 and the substrate 42 can be introduced into the optical laminate 100 as a laminate of the substrate 42 and the conductive layer 41 . In addition, the ratio of the thickness of each layer in the drawings is different from the actual one for easy observation.
虽然根据附图并不明确,但本发明的实施方式的光学层叠体为长条状。因此,光学层叠体的构成要素(例如偏振片、相位差层、基材)也为长条状。就一个实施方式来说,将光学层叠体卷绕成卷状。本说明书中,“长条状”是指长度相对于宽度足够长的细长形状,例如包含长度相对于宽度为10倍以上、优选为20倍以上的细长形状。因此,光学层叠体100例如可通过如下方式制作:将长条状偏振片10、构成第一相位差层20的长条状相位差薄膜、构成第二相位差层30的长条状相位差薄膜以及长条状导电性薄膜(导电层41与基材的层叠体)通过辊对辊来层叠。此外,本说明书中,“辊对辊”是指一边搬运卷状薄膜一边使相互的长条方向一致来贴合。Although it is not clear from the drawings, the optical layered body according to the embodiment of the present invention is elongated. Therefore, the constituent elements (for example, a polarizing plate, a retardation layer, a base material) of an optical laminated body are also elongated. In one embodiment, the optical laminate is wound into a roll. In the present specification, "elongated" refers to an elongated shape whose length is sufficiently long relative to the width, and includes, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, relative to the width. Therefore, the optical laminate 100 can be produced, for example, by combining the elongated polarizing plate 10, the elongated retardation film constituting the first retardation layer 20, and the elongated retardation film constituting the second retardation layer 30. And the long conductive film (the laminated body of the conductive layer 41 and the base material) is laminated by roll-to-roll. In addition, in this specification, "roll-to-roll" means to make a mutual longitudinal direction coincide and bond while conveying a roll-shaped film.
如上所述,光学层叠体100具有两个相位差层(第一相位差层20和第二相位差层30)。第一相位差层20具有慢轴。第一相位差层20的慢轴与偏振器11的吸收轴所成的角度为10°~20°,优选为13°~17°,更优选为约15°。第一相位差层优选折射率特性显示出nx>ny≥nz的关系。第一相位差层的面内相位差Re(550)为220nm~250nm,优选为230nm~240nm。第二相位差层30也具有慢轴。第二相位差层30的慢轴与偏振器11的吸收轴所成的角度为65°~85°,优选为72°~78°,更优选为约75°。第二相位差层优选折射率特性显示出nx>ny≥nz的关系。第二相位差层的面内相位差Re(550)为110nm~125nm,优选为115nm~120nm。如上所述,第一相位差层的面内相位差被设定为略小于所谓λ/2板,第二相位差层的面内相位差被设定为略小于所谓λ/4板。通过如此设定,可在使用下述材料构成各个相位差层的情况下,实现非常优异的反射率和反射色调。根据本发明,通过使具有如上所述的特性的两个相位差层组合来进行光学补偿,尽管存在由于基材的相位差和相位差的宽度方向的偏差等而引起的光学层叠体的宽度方向的特性的偏差,但在将该光学层叠体裁断为规定尺寸而应用于图像显示装置的情况下能够减小各产品的显示特性的偏差。这种效果是具有与上述两个相位差层的组合在光学上等效的特性的单一相位差层所无法得到的。即,这种效果是使上述两个相位差层组合使用来制作光学层叠体并且将该光学层叠体裁断为规定尺寸而应用于图像显示装置才得到的见解,其是预料不到的优异效果。As described above, the optical laminate 100 has two retardation layers (the first retardation layer 20 and the second retardation layer 30 ). The first retardation layer 20 has a slow axis. The angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is 10°-20°, preferably 13°-17°, more preferably about 15°. The first retardation layer preferably has a refractive index characteristic showing the relationship of nx>ny≧nz. The in-plane retardation Re(550) of the first retardation layer is 220 nm to 250 nm, preferably 230 nm to 240 nm. The second retardation layer 30 also has a slow axis. The angle formed by the slow axis of the second retardation layer 30 and the absorption axis of the polarizer 11 is 65°-85°, preferably 72°-78°, more preferably about 75°. The second retardation layer preferably has a refractive index characteristic showing the relationship of nx>ny≧nz. The in-plane retardation Re(550) of the second retardation layer is 110 nm to 125 nm, preferably 115 nm to 120 nm. As described above, the in-plane retardation of the first retardation layer is set slightly smaller than that of the so-called λ/2 plate, and the in-plane retardation of the second retardation layer is set slightly smaller than that of the so-called λ/4 plate. By setting in this way, very excellent reflectance and reflection color tone can be realized when each retardation layer is constituted using the following materials. According to the present invention, optical compensation is performed by combining two retardation layers having the characteristics as described above, although there is a deviation in the width direction of the optical laminate due to the retardation of the base material and the deviation in the width direction of the retardation, etc. However, when the optical laminate is cut into a predetermined size and applied to an image display device, the variation in display characteristics of each product can be reduced. Such an effect cannot be obtained by a single retardation layer having characteristics optically equivalent to the above-mentioned combination of the two retardation layers. That is, this effect is obtained by combining the above-mentioned two retardation layers to produce an optical laminate, cutting the optical laminate to a predetermined size and applying it to an image display device, and it is an unexpectedly excellent effect.
基材42的面内相位差Re(550)为3nm~6nm,优选为4nm~5nm。基材42在宽度方向上的相位差的偏差为10%~30%,优选为15%~25%。基材42在宽度方向上的慢轴方向的偏差为1°~5°,优选为1°~3°。根据本发明,就算是在基材具有相位差并且于宽度方向上该相位差和慢轴方向存在偏差而导致光学层叠体的宽度方向的特性存在偏差的情况下,通过如上所述使特定的两个相位差层组合来进行光学补偿,在将该光学层叠体裁断为规定尺寸而应用于图像显示装置的情况下也能减小各产品的显示特性的偏差。此外,本说明书中,“相位差的偏差”是指相对于设定相位差的偏差的最大值,“慢轴方向的偏差”是指相对于设定慢轴方向的偏差的最大值。The in-plane retardation Re(550) of the substrate 42 is 3 nm to 6 nm, preferably 4 nm to 5 nm. The deviation of the phase difference in the width direction of the substrate 42 is 10% to 30%, preferably 15% to 25%. The deviation of the slow axis direction of the substrate 42 in the width direction is 1° to 5°, preferably 1° to 3°. According to the present invention, even when the base material has a phase difference and the phase difference and the slow axis direction have deviations in the width direction, resulting in deviations in the characteristics of the width direction of the optical laminate, by making the specified two Combining two retardation layers to perform optical compensation, even when the optical laminate is cut into a predetermined size and applied to an image display device, the deviation of the display characteristics of each product can be reduced. In addition, in this specification, the "deviation in phase difference" means the maximum value of the deviation from the set phase difference, and the "deviation in the direction of the slow axis" means the maximum value of the deviation in the direction of the slow axis from the setting.
光学层叠体的宽度优选为500mm以上,更优选为800mm以上。宽度的上限例如为1500mm。宽度越宽,由于上述基材的相位差等而引起的光学层叠体的宽度方向的特性的偏差越大,因而可显著地发挥本发明的效果。The width of the optical laminate is preferably 500 mm or more, more preferably 800 mm or more. The upper limit of the width is, for example, 1500 mm. The wider the width, the larger the variations in the properties of the optical layered body in the width direction due to the retardation of the above-mentioned base materials, etc., so that the effect of the present invention can be significantly exhibited.
就一个实施方式来说,第一相位差层20和第二相位差层30分别由树脂薄膜构成。就另一实施方式来说,第一相位差层20和第二相位差层30可分别为液晶化合物的取向固化层。此外,对于树脂薄膜在C-2项和D-2项中进行详细说明,对于液晶化合物的取向固化层在C-3项和D-3项中进行详细说明。In one embodiment, the first retardation layer 20 and the second retardation layer 30 are respectively made of resin films. As for another embodiment, the first retardation layer 20 and the second retardation layer 30 may respectively be alignment solidified layers of liquid crystal compounds. In addition, the details of the resin film are described in Items C-2 and D-2, and the details of the aligned solidified layer of the liquid crystal compound are described in Items C-3 and D-3.
除了导电层41与基材42的密合层叠以外,构成光学层叠体的各层可隔着任意适当的粘接层(粘接剂层或粘合剂层:未图示)来层叠,也可与导电层41和基材42的情况同样地密合层叠。In addition to the close lamination of the conductive layer 41 and the base material 42, each layer constituting the optical laminate may be laminated via any appropriate adhesive layer (adhesive layer or adhesive layer: not shown), or Adhesive lamination is carried out similarly to the case of the conductive layer 41 and the base material 42 .
光学层叠体的尺寸变化率优选为1%以下,更优选为0.95%以下。光学层叠体的尺寸变化率越小越好。光学层叠体的尺寸变化率的下限例如为0.01%。当光学层叠体的尺寸变化率为这种范围内时,可显著地抑制高温高湿下的导电层的裂纹的产生。The dimensional change rate of the optical laminate is preferably 1% or less, more preferably 0.95% or less. The smaller the dimensional change rate of the optical layered body, the better. The lower limit of the dimensional change rate of the optical laminated body is, for example, 0.01%. When the dimensional change rate of the optical laminate is within such a range, the generation of cracks in the conductive layer under high temperature and high humidity can be significantly suppressed.
光学层叠体的总厚度优选为220μm以下,更优选为80μm~190μm。在第一相位差层20和第二相位差层30为液晶化合物的取向固化层的情况下,光学层叠体的总厚度优选为175μm以下,更优选为80μm~140μm。The total thickness of the optical layered body is preferably 220 μm or less, more preferably 80 μm to 190 μm. When the first retardation layer 20 and the second retardation layer 30 are alignment-cured layers of liquid crystal compounds, the total thickness of the optical laminate is preferably 175 μm or less, more preferably 80 μm to 140 μm.
以下,对构成光学层叠体的各层、光学薄膜和粘合剂进行更详细说明。Hereinafter, each layer, an optical film, and an adhesive agent which comprise an optical laminated body are demonstrated in detail.
B.偏振片B. Polarizer
B-1.偏振器B-1. Polarizer
作为偏振器11,可采用任意适当的偏振器。例如,形成偏振器的树脂薄膜可为单层的树脂薄膜,也可为两层以上的层叠体。As the polarizer 11, any appropriate polarizer can be used. For example, the resin film forming the polarizer may be a single-layer resin film, or may be a laminate of two or more layers.
作为由单层的树脂薄膜构成的偏振器的具体例子,可以列举出对聚乙烯醇(PVA)系薄膜、部分缩甲醛化PVA系薄膜、乙烯-乙酸乙烯酯共聚物系部分皂化薄膜等亲水性高分子薄膜实施利用碘、二色性染料等二色性物质的染色处理和拉伸处理而得到的物质;PVA的脱水处理物、聚氯乙烯的脱盐酸处理物等多烯系取向薄膜等。从光学特性优异的方面考虑,优选使用利用碘对PVA系薄膜进行染色并进行单轴拉伸而得到的偏振器。Specific examples of polarizers composed of single-layer resin films include polyvinyl alcohol (PVA)-based films, partially formalized PVA-based films, ethylene-vinyl acetate copolymer-based partially saponified films, and the like. Polyene-based oriented films such as dehydration-treated products of PVA and dehydrochloric acid-treated products of polyvinyl chloride, etc. . From the viewpoint of excellent optical properties, it is preferable to use a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching it.
上述利用碘进行的染色例如可通过将PVA系薄膜浸渍于碘水溶液来进行。上述单轴拉伸的拉伸倍率优选为3~7倍。拉伸可在染色处理后进行,也可一边进行染色一边进行拉伸。另外,也可在拉伸后进行染色。可视需要对PVA系薄膜实施溶胀处理、交联处理、清洗处理、干燥处理等。例如,在染色前将PVA系薄膜浸渍于水来进行水洗,由此不仅可清洗PVA系薄膜表面的污渍、抗粘连剂,也可使PVA系薄膜溶胀而防止染色不均等。The above-mentioned dyeing with iodine can be performed, for example, by immersing a PVA-based film in an iodine aqueous solution. The draw ratio of the uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment, or stretching may be performed while dyeing. In addition, dyeing may be performed after stretching. Swelling treatment, crosslinking treatment, cleaning treatment, drying treatment, etc. may be performed on the PVA-based film as needed. For example, before dyeing, immersing the PVA-based film in water and washing it with water not only removes stains and anti-blocking agents on the surface of the PVA-based film, but also swells the PVA-based film to prevent uneven dyeing.
作为使用层叠体而得到的偏振器的具体例子,可列举出使用树脂基材与层叠于该树脂基材的PVA系树脂层(PVA系树脂薄膜)的层叠体或者树脂基材与涂布形成于该树脂基材的PVA系树脂层的层叠体而得到的偏振器。使用树脂基材与涂布形成于该树脂基材的PVA系树脂层的层叠体而得到的偏振器例如可通过如下方式制作:将PVA系树脂溶液涂布于树脂基材,使之干燥而在树脂基材上形成PVA系树脂层,由此得到树脂基材与PVA系树脂层的层叠体;对该层叠体进行拉伸和染色来将PVA系树脂层制成偏振器。就本实施方式来说,代表性地是拉伸包含使层叠体浸渍于硼酸水溶液中并拉伸。进而,拉伸可进一步包含视需要在硼酸水溶液中的拉伸之前将层叠体以高温(例如95℃以上)进行空中拉伸。所得到的树脂基材/偏振器的层叠体可直接使用(即,可将树脂基材作为偏振器的保护层),也可将树脂基材从树脂基材/偏振器的层叠体剥离,并在该剥离面层叠与目的相应的任意适当的保护层来使用。这种偏振器的制造方法的详细内容例如记载于日本特开2012-73580号公报。该公报的整体的记载内容作为参考被援引至本说明书。Specific examples of polarizers obtained using a laminate include a laminate using a resin base material and a PVA-based resin layer (PVA-based resin film) laminated on the resin base material, or a resin base material formed on a layer coated with a resin base material. A polarizer obtained by laminating the PVA-based resin layer of the resin substrate. A polarizer obtained by using a laminate of a resin base material and a PVA-based resin layer coated and formed on the resin base material can be produced, for example, by applying a PVA-based resin solution to a resin base material, drying it, and A PVA-based resin layer is formed on the resin substrate to obtain a laminate of the resin substrate and the PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer into a polarizer. In this embodiment, stretching typically includes immersing and stretching the laminate in an aqueous solution of boric acid. Furthermore, the stretching may further include, if necessary, stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in a boric acid aqueous solution. The obtained resin substrate/polarizer laminate can be used as it is (that is, the resin substrate can be used as a protective layer of the polarizer), or the resin substrate can be peeled off from the resin substrate/polarizer laminate, and Any appropriate protective layer according to the purpose is laminated on the peeling surface and used. The details of such a method of manufacturing a polarizer are described in, for example, JP-A-2012-73580. The entire description content of this publication is taken in this specification as a reference.
偏振器的厚度优选为18μm以下,更优选为1μm~12μm,进一步优选为3μm~12μm,特别优选为5μm~12μm。The thickness of the polarizer is preferably 18 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 12 μm, particularly preferably 5 μm to 12 μm.
偏振器的硼酸含量优选为18重量%以上,更优选为18重量%~25重量%。在偏振器的硼酸含量为这种范围的情况下,可通过与下述碘含量的协同效应,良好地维持贴合时调整卷曲的容易性,并且良好地抑制加热时的卷曲,同时改善加热时的外观耐久性。硼酸含量例如可根据中和法使用下式作为每单位重量的偏振器中所包含的硼酸量来算出。The boric acid content of the polarizer is preferably 18% by weight or more, more preferably 18% by weight to 25% by weight. In the case where the boric acid content of the polarizer is within this range, the ease of adjusting curl during lamination can be well maintained, and curl during heating can be well suppressed, while improving appearance durability. The boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight by using the following formula according to the neutralization method, for example.
偏振器的碘含量优选为2.1重量%以上,更优选为2.1重量%~3.5重量%。在偏振器的碘含量为这种范围的情况下,可通过与上述硼酸含量的协同效应,良好地维持贴合时调整卷曲的容易性,并且良好地抑制加热时的卷曲,同时改善加热时的外观耐久性。本说明书中,“碘含量”是指偏振器(PVA系树脂薄膜)中所包含的所有碘的量。更具体来说,在偏振器中碘以碘离子(I-)、碘分子(I2)、多碘离子(I3 -、I5 -)等形态存在时,本说明书中的碘含量是指这些形态全部包含在内的碘的量。碘含量例如可通过荧光X射线分析的校正曲线法来算出。此外,多碘离子在偏振器中以形成PVA-碘络合物的状态存在。通过形成这种络合物,可在可见光的波长范围表现出吸收二色性。具体来说,PVA与三碘化物离子的络合物(PVA-I3 -)在470nm附近具有吸光峰,PVA与五碘化物离子的络合物(PVA-I5 -)在600nm附近具有吸光峰。结果多碘离子可根据其形态在可见光的广泛范围吸收光。另一方面,碘离子(I-)在230nm附近具有吸光峰,实质上不参与可见光的吸收。因此,以与PVA的络合物的状态存在的多碘离子可主要参与偏振器的吸收性能。The iodine content of the polarizer is preferably 2.1% by weight or more, more preferably 2.1% by weight to 3.5% by weight. In the case where the iodine content of the polarizer is within this range, the ease of adjusting curl during lamination can be well maintained, and curl during heating can be well suppressed, and at the same time, the stability during heating can be improved due to the synergistic effect with the above-mentioned boric acid content. Appearance durability. In this specification, "iodine content" means the quantity of all iodine contained in a polarizer (PVA-type resin film). More specifically, when iodine exists in the form of iodide ion (I - ), iodine molecule (I 2 ), polyiodide ion (I 3 - , I 5 - ) in the polarizer, the iodine content in this specification means The amount of iodine contained in all of these forms. The iodine content can be calculated by the calibration curve method of fluorescent X-ray analysis, for example. In addition, polyiodide ions exist in the state of forming a PVA-iodine complex in the polarizer. By forming such a complex, absorption dichroism can be exhibited in the wavelength range of visible light. Specifically, the complex of PVA and triiodide ions (PVA-I 3 - ) has an absorption peak near 470nm, and the complex of PVA and pentaiodide ions (PVA-I 5 - ) has an absorption peak near 600nm peak. As a result, polyiodide ions can absorb light in a wide range of visible light depending on their morphology. On the other hand, iodide ions (I - ) have an absorption peak around 230 nm and do not substantially participate in the absorption of visible light. Therefore, polyiodide ions existing in the state of a complex with PVA may mainly participate in the absorption performance of the polarizer.
偏振器优选在波长380nm~780nm的任一波长下显示出吸收二色性。偏振器的单独透射率(single transmission)如上所述为43.0%~46.0%,优选为44.5%~46.0%。偏振器的偏振度优选为97.0%以上,更优选为99.0%以上,进一步优选为99.9%以上。The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmission of the polarizer is 43.0% to 46.0% as described above, preferably 44.5% to 46.0%. The degree of polarization of the polarizer is preferably 97.0% or higher, more preferably 99.0% or higher, and still more preferably 99.9% or higher.
B-2.第一保护层B-2. First protective layer
第一保护层12由可用作偏振器的保护层的任意适当的薄膜形成。作为成为该薄膜的主要成分的材料的具体例子,可以列举出三乙酰纤维素(TAC)等纤维素系树脂、聚酯系、聚乙烯醇系、聚碳酸酯系、聚酰胺系、聚酰亚胺系、聚醚砜系、聚砜系、聚苯乙烯系、聚降冰片烯系、聚烯烃系、(甲基)丙烯酸系、乙酸酯系等的透明树脂等。另外,也可列举出(甲基)丙烯酸系、氨基甲酸酯系、(甲基)丙烯酸氨基甲酸酯系、环氧系、硅酮系等的热固化型树脂或紫外线固化型树脂等。此外,例如也可列举出硅氧烷系聚合物等玻璃质系聚合物。另外,也可使用日本特开2001-343529号公报(WO01/37007)所记载的聚合物薄膜。作为该薄膜的材料,例如可使用含有侧链具有经取代或未经取代的酰亚胺基的热塑性树脂以及侧链具有经取代或未经取代的苯基和腈基的热塑性树脂的树脂组合物,例如可列举出具有由异丁烯与N-甲基马来酰亚胺形成的交替共聚物以及丙烯腈-苯乙烯共聚物的树脂组合物。该聚合物薄膜例如可为上述树脂组合物的挤出成型物。The first protective layer 12 is formed of any suitable film that can be used as a protective layer of a polarizer. Specific examples of the material used as the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide resins, etc. Amine-based, polyethersulfone-based, polysulfone-based, polystyrene-based, polynorbornene-based, polyolefin-based, (meth)acrylic-based, acetate-based transparent resins, etc. In addition, thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins are also mentioned. Moreover, glassy polymers, such as a siloxane type polymer, are also mentioned, for example. In addition, a polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. As the material of the film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in a side chain can be used. For example, the resin composition which has the alternating copolymer which consists of isobutylene and N-methylmaleimide, and an acrylonitrile-styrene copolymer is mentioned. The polymer film may be, for example, an extruded product of the above-mentioned resin composition.
本发明的光学层叠体如下所述代表性地配置于图像显示装置的目视确认侧,第一保护层12代表性地配置于其目视确认侧。因此,可对第一保护层12视需要实施硬涂处理、抗反射处理、防粘处理、防眩处理等表面处理。并且/或者,也可对第一保护层12视需要实施改善隔着偏光太阳眼镜进行目视确认时的目视确认性的处理(代表性地赋予(椭)圆偏振功能、赋予超高相位差)。通过实施这种处理,就算是在隔着偏光太阳眼镜等偏光镜片而目视确认显示画面的情况下,也可实现优异的目视确认性。因此,光学层叠体也可合适应用于能够在室外使用的图像显示装置。The optical laminated body of this invention is typically arrange|positioned at the visual confirmation side of an image display apparatus as follows, and the 1st protective layer 12 is typically arrange|positioned at the visual confirmation side. Therefore, surface treatments such as hard coat treatment, antireflection treatment, antisticking treatment, and antiglare treatment may be performed on the first protective layer 12 as necessary. And/or, if necessary, the first protective layer 12 may also be subjected to treatment to improve the visibility when visually confirmed through polarized sunglasses (typically imparting (ellipso)polarization function, imparting ultra-high retardation ). By performing such processing, even when the display screen is visually recognized through polarized lenses such as polarized sunglasses, excellent visibility can be realized. Therefore, the optical laminated body can also be suitably applied to the image display apparatus which can be used outdoors.
就第一保护层的厚度来说,只要可得到上述所期望的偏振片的厚度和与第二保护层的厚度之差,就可采用任意适当的厚度。第一保护层的厚度例如为10μm~50μm,优选为15μm~40μm。此外,在实施了表面处理的情况下,第一保护层的厚度是包括表面处理层的厚度在内的厚度。As for the thickness of the first protective layer, any appropriate thickness can be adopted as long as the difference between the desired thickness of the polarizing plate and the thickness of the second protective layer can be obtained. The thickness of the first protective layer is, for example, 10 μm to 50 μm, preferably 15 μm to 40 μm. In addition, when surface treatment is performed, the thickness of the first protective layer is a thickness including the thickness of the surface treatment layer.
B-3.第二保护层B-3. Second protective layer
第二保护层13也由可用作偏振器的保护层的任意适当的薄膜形成。成为该薄膜的主要成分的材料如在上述B-2项中对第一保护层进行了说明的那样。第二保护层13优选为光学各向同性。本说明书中,“光学各向同性”是指面内相位差Re(550)为0nm~10nm,厚度方向的相位差Rth(550)为-10nm~+10nm。The second protective layer 13 is also formed of any appropriate film that can be used as a protective layer of a polarizer. The material constituting the main component of the thin film is as described for the first protective layer in the above item B-2. The second protective layer 13 is preferably optically isotropic. In this specification, "optically isotropic" means that the in-plane retardation Re(550) is 0 nm to 10 nm, and the retardation Rth(550) in the thickness direction is -10 nm to +10 nm.
第二保护层的厚度例如为15μm~35μm,优选为20μm~30μm。第一保护层的厚度与第二保护层的厚度之差优选为15μm以下,更优选为10μm以下。在厚度之差为这种范围的情况下,可良好地抑制贴合时的卷曲。第一保护层的厚度与第二保护层的厚度可以相同,也可第一保护层较厚,还可第二保护层较厚。代表性地,第一保护层比第二保护层更厚。The thickness of the second protective layer is, for example, 15 μm to 35 μm, preferably 20 μm to 30 μm. The difference between the thickness of the first protective layer and the thickness of the second protective layer is preferably 15 μm or less, more preferably 10 μm or less. When the difference in thickness is such a range, curling at the time of bonding can be suppressed favorably. The thickness of the first protective layer can be the same as that of the second protective layer, or the first protective layer can be thicker, and the second protective layer can also be thicker. Typically, the first protective layer is thicker than the second protective layer.
C.第一相位差层C. The first retardation layer
C-1.第一相位差层的特性C-1. Characteristics of the first retardation layer
如上所述,第一相位差层20具有慢轴。第一相位差层20的慢轴与偏振器11的吸收轴所成的角度优选为10°~20°,更优选为13°~17°,进一步优选为约15°。在第一相位差层20的慢轴与偏振器11的吸收轴所成的角度为这种范围的情况下,可通过如下所述将第一相位差层和第二相位差层的面内相位差分别设定为规定范围,并相对于偏振器的吸收轴以规定角度配置第二相位差层的慢轴,由此得到在宽频带具有非常优异的圆偏振光特性(结果为非常优异的抗反射特性)的光学层叠体。As described above, the first retardation layer 20 has a slow axis. The angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is preferably 10° to 20°, more preferably 13° to 17°, and even more preferably about 15°. In the case where the angle formed by the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is in such a range, the in-plane phase phase of the first retardation layer and the second retardation layer can be adjusted as follows. The difference is set to a specified range, and the slow axis of the second retardation layer is arranged at a specified angle with respect to the absorption axis of the polarizer, thereby obtaining very excellent circularly polarized light characteristics in a wide frequency band (resulting in very excellent anti- reflective properties) optical laminates.
第一相位差层优选折射率特性显示出nx>ny≥nz的关系。第一相位差层的面内相位差Re(550)为220nm~250nm,优选为230nm~240nm。此外,此处,“ny=nz”不仅包含ny与nz完全相等的情况,也包含实质上相等的情况。因此,在无损本发明的效果的范围,可存在ny<nz的情况。The first retardation layer preferably has a refractive index characteristic showing the relationship of nx>ny≧nz. The in-plane retardation Re(550) of the first retardation layer is 220 nm to 250 nm, preferably 230 nm to 240 nm. In addition, here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where they are substantially equal. Therefore, ny<nz may exist as long as the effect of the present invention is not impaired.
第一相位差层的Nz系数优选为0.9~3,更优选为0.9~2.5,进一步优选为0.9~1.5,特别优选为0.9~1.3。通过满足这种关系,在将所得到的光学层叠体用于图像显示装置的情况下,可实现非常优异的反射色调。The Nz coefficient of the first retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, particularly preferably 0.9 to 1.3. By satisfying such a relationship, when the obtained optical laminate is used for an image display device, a very excellent reflection color tone can be realized.
第一相位差层可显示出相位差值根据测定光的波长而变大的反向色散波长特性,也可显示出相位差值根据测定光的波长而变小的正向波长色散特性,还可显示出相位差值根据测定光的波长而几乎无变化的平坦的波长色散特性。就一个实施方式来说,第一相位差层显示出相位差值根据测定光的波长而几乎无变化的平坦的波长色散特性。在该情况下,相位差层的Re(450)/Re(550)优选为0.99~1.03,Re(650)/Re(550)优选为0.98~1.02。通过使显示出平坦的波长色散特性且具有规定面内相位差的第一相位差层与显示出平坦的波长色散特性且具有规定面内相位差的第二相位差层以规定慢轴角度组合来使用,可在宽频带实现非常优异的抗反射特性。The first retardation layer may exhibit a reverse dispersion wavelength characteristic in which the phase difference value becomes larger according to the wavelength of the measurement light, or may exhibit a forward wavelength dispersion characteristic in which the phase difference value becomes smaller according to the wavelength of the measurement light, or It exhibits a flat wavelength dispersion characteristic in which the retardation value hardly changes depending on the wavelength of the measurement light. In one embodiment, the first retardation layer exhibits flat wavelength dispersion characteristics in which the retardation value hardly changes depending on the wavelength of the measurement light. In this case, Re(450)/Re(550) of the retardation layer is preferably 0.99 to 1.03, and Re(650)/Re(550) is preferably 0.98 to 1.02. By combining a first retardation layer exhibiting flat wavelength dispersion characteristics and having a predetermined in-plane retardation with a second retardation layer exhibiting flat wavelength dispersion characteristics and having a predetermined in-plane retardation at a predetermined slow axis angle. Using it, very excellent anti-reflection characteristics can be realized in a wide frequency band.
第一相位差层包含光弹性系数的绝对值优选为2×10-11m2/N以下、更优选为2.0×10-13m2/N~1.5×10-11m2/N、进一步优选为1.0×10-12m2/N~1.2×10-11m2/N的树脂。在光弹性系数的绝对值为这种范围的情况下,在产生加热时的收缩应力的情况下不易发生相位差变化。其结果是,可良好地防止所得到的图像显示装置的热不均。The absolute value of the photoelastic coefficient contained in the first retardation layer is preferably 2×10 −11 m 2 /N or less, more preferably 2.0×10 −13 m 2 /N to 1.5×10 −11 m 2 /N, still more preferably The resin is 1.0×10 -12 m 2 /N to 1.2×10 -11 m 2 /N. In the case where the absolute value of the photoelastic coefficient is within such a range, a phase difference change is less likely to occur when shrinkage stress during heating occurs. As a result, thermal unevenness of the obtained image display device can be prevented favorably.
第一相位差层的尺寸变化率优选为1%以下,更优选为0.95%以下。第一相位差层的尺寸变化率越小越好。第一相位差层的尺寸变化率的下限例如为0.01%。在第一相位差层的尺寸变化率为这种范围的情况下,可显著地抑制高温高湿下的导电层的裂纹的产生。The dimensional change rate of the first retardation layer is preferably 1% or less, more preferably 0.95% or less. The smaller the dimensional change rate of the first retardation layer, the better. The lower limit of the dimensional change rate of the first retardation layer is, for example, 0.01%. When the dimensional change rate of the first retardation layer is in such a range, the occurrence of cracks in the conductive layer under high temperature and high humidity can be significantly suppressed.
C-2.由树脂薄膜构成的第一相位差层C-2. First retardation layer made of resin film
在第一相位差层由树脂薄膜构成的情况下,其厚度优选为60μm以下,优选为30μm~50μm。在第一相位差层的厚度为这种范围的情况下,可得到所期望的面内相位差。When the first retardation layer is made of a resin film, its thickness is preferably 60 μm or less, preferably 30 μm to 50 μm. When the thickness of the first retardation layer is within such a range, a desired in-plane retardation can be obtained.
第一相位差层20能够由可满足上述C-1项中所记载的特性的任意适当的树脂薄膜构成。作为这种树脂的代表例,可以列举出环状烯烃系树脂、聚碳酸酯系树脂、纤维素系树脂、聚酯系树脂、聚乙烯醇系树脂、聚酰胺系树脂、聚酰亚胺系树脂、聚醚系树脂、聚苯乙烯系树脂、丙烯酸系树脂。在第一相位差层由显示出平坦的波长特性的树脂薄膜构成的情况下,可适合使用环状烯烃系树脂。The first retardation layer 20 can be composed of any appropriate resin film that can satisfy the characteristics described in the above item C-1. Representative examples of such resins include cyclic olefin-based resins, polycarbonate-based resins, cellulose-based resins, polyester-based resins, polyvinyl alcohol-based resins, polyamide-based resins, and polyimide-based resins. , Polyether resin, polystyrene resin, acrylic resin. When the first retardation layer is formed of a resin film showing flat wavelength characteristics, a cyclic olefin-based resin can be suitably used.
环状烯烃系树脂是以环状烯烃作为聚合单元聚合的树脂的统称,例如可以列举出日本特开平1-240517号公报、日本特开平3-14882号公报、日本特开平3-122137号公报等所记载的树脂。作为具体例子,可以列举出环状烯烃的开环(共)聚合物、环状烯烃的加成聚合物、环状烯烃与乙烯、丙烯等α-烯烃的共聚物(代表性地为无规共聚物)以及将这些利用不饱和羧酸、其衍生物改性而成的接枝改性体以及它们的氢化物。作为环状烯烃的具体例子,可以列举出降冰片烯系单体。作为降冰片烯系单体,例如可以列举出降冰片烯以及其烷基和/或亚烷基取代物例如5-甲基-2-降冰片烯、5-二甲基-2-降冰片烯、5-乙基-2-降冰片烯、5-丁基-2-降冰片烯、5-亚乙基-2-降冰片烯等、它们的卤素等极性基团取代物;二环戊二烯、2,3-二氢二环戊二烯等;二甲桥八氢萘、其烷基和/或亚烷基取代物以及卤素等极性基团取代物例如6-甲基-1,4:5,8-二甲桥-1,4,4a,5,6,7,8,8a-八氢萘、6-乙基-1,4:5,8-二甲桥-1,4,4a,5,6,7,8,8a-八氢萘、6-亚乙基-1,4:5,8-二甲桥-1,4,4a,5,6,7,8,8a-八氢萘、6-氯-1,4:5,8-二甲桥-1,4,4a,5,6,7,8,8a-八氢萘、6-氰基-1,4:5,8-二甲桥-1,4,4a,5,6,7,8,8a-八氢萘、6-吡啶基-1,4:5,8-二甲桥-1,4,4a,5,6,7,8,8a-八氢萘、6-甲氧基羰基-1,4:5,8-二甲桥-1,4,4a,5,6,7,8,8a-八氢萘等;环戊二烯的三聚物~四聚物例如4,9:5,8-二甲桥-3a,4,4a,5,8,8a,9,9a-八氢-1H-苯并茚、4,11:5,10:6,9-三甲桥-3a,4,4a,5,5a,6,9,9a,10,10a,11,11a-十二氢-1H-环戊并蒽等。Cyclic olefin-based resins are collectively referred to as resins polymerized with cyclic olefins as polymerization units, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, etc. the resins described. Specific examples include ring-opening (co)polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers (typically random copolymers) of cyclic olefins and α-olefins such as ethylene and propylene. substances) and grafted modified products obtained by modifying these unsaturated carboxylic acids and their derivatives, and their hydrogenated products. Specific examples of cyclic olefins include norbornene-based monomers. Examples of norbornene-based monomers include norbornene and its alkyl and/or alkylene substituents such as 5-methyl-2-norbornene, 5-dimethyl-2-norbornene , 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, etc., their halogen and other polar group substitutions; dicyclopenta Diene, 2,3-dihydrodicyclopentadiene, etc.; Dimethyl octahydronaphthalene, its alkyl and/or alkylene substituents, and polar group substituents such as halogens such as 6-methyl-1 ,4:5,8-Dimethylo-1,4,4a,5,6,7,8,8a-Octahydronaphthalene, 6-Ethyl-1,4:5,8-Dimetho-1, 4,4a,5,6,7,8,8a-octahydronaphthalene, 6-ethylene-1,4:5,8-dimethylbridge-1,4,4a,5,6,7,8, 8a-octahydronaphthalene, 6-chloro-1,4:5,8-dimethylbridged-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-cyano-1,4 :5,8-Dimethylbridge-1,4,4a,5,6,7,8,8a-octahydronaphthalene, 6-pyridyl-1,4:5,8-Dimethylbridge-1,4, 4a,5,6,7,8,8a-octahydronaphthalene, 6-methoxycarbonyl-1,4:5,8-dimethylbridge-1,4,4a,5,6,7,8,8a -Octahydronaphthalene, etc.; trimers to tetramers of cyclopentadiene such as 4,9:5,8-dimethyl bridge-3a,4,4a,5,8,8a,9,9a-octahydro- 1H-Benzindene, 4,11:5,10:6,9-trimethylbridge-3a,4,4a,5,5a,6,9,9a,10,10a,11,11a-dodecahydro-1H - cyclopentanthracene etc.
本发明中,可在无损本发明的目的的范围内并用可开环聚合的其他环烯烃类。作为这种环烯烃的具体例子,例如可以列举出环戊烯、环辛烯、5,6-二氢二环戊二烯等具有一个反应性双键的化合物。In the present invention, other ring-opening polymerizable cycloolefins may be used in combination within the range not impairing the object of the present invention. Specific examples of such cycloolefins include compounds having one reactive double bond, such as cyclopentene, cyclooctene, and 5,6-dihydrodicyclopentadiene.
就上述环状烯烃系树脂来说,通过利用甲苯溶剂的凝胶渗透色谱(GPC)法测得的数均分子量(Mn)优选为25000~200000,进一步优选为30000~100000,最优选为40000~80000。在数均分子量为上述范围的情况下,能够使机械强度优异,使溶解性、成型性、流延的操作性良好。Regarding the above-mentioned cyclic olefin-based resin, the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) using a toluene solvent is preferably 25,000 to 200,000, more preferably 30,000 to 100,000, and most preferably 40,000 to 100,000. 80000. When the number average molecular weight is in the above range, excellent mechanical strength can be achieved, and solubility, moldability, and operability of casting can be improved.
在上述环状烯烃系树脂为将降冰片烯系单体的开环聚合物氢化而得到的物质的情况下,氢化率优选为90%以上,进一步优选为95%以上,最优选为99%以上。在为这种范围的情况下,耐热劣化性和耐光劣化性等优异。When the above-mentioned cyclic olefin-based resin is obtained by hydrogenating a ring-opening polymer of a norbornene-based monomer, the hydrogenation rate is preferably 90% or more, more preferably 95% or more, most preferably 99% or more . When it is such a range, heat deterioration resistance, light deterioration resistance, etc. are excellent.
也可使用市售的薄膜作为上述环状烯烃系树脂薄膜。作为具体例子,可以举出日本瑞翁公司制造的商品名“ZEONEX”、“ZEONOR”、JSR公司制造的商品名“Arton”、TICONA公司制造的商品名“TOPAS”、三井化学公司制造的商品名“APEL”。A commercially available film can also be used as the above-mentioned cyclic olefin-based resin film. As specific examples, the trade names "ZEONEX" and "ZEONOR" manufactured by Japan Zeon Corporation, the trade name "Arton" manufactured by JSR Corporation, the trade name "TOPAS" manufactured by TICONA, and the trade name manufactured by Mitsui Chemicals Co., Ltd. "APEL".
第一相位差层20例如可通过对由上述聚碳酸酯系树脂形成的薄膜进行拉伸来得到。作为由环状烯烃系树脂形成薄膜的方法,可采用任意适当的成型加工法。作为具体例子,可列举出:压缩成型法、转移成型法、注塑成型法、挤出成型法、吹塑成型法、粉末成型法、FRP(Fiber Reinforced Plastics;纤维强化塑料)成型法、浇铸涂布法(例如流延法)、压延成型法、热压法等。优选为挤出成型法或浇铸涂布法。其原因在于:可提高所得到的薄膜的平滑性,得到良好的光学均匀性。成型条件可根据所使用的树脂的组成或种类、相位差薄膜所期望特性等而适当设定。此外,如上所述,环状烯烃系树脂由于市售有大量薄膜产品,因而可将该市售薄膜直接供至拉伸处理。The first retardation layer 20 can be obtained, for example, by stretching a film made of the above-mentioned polycarbonate-based resin. As a method of forming a film from a cyclic olefin-based resin, any appropriate molding processing method can be adopted. Specific examples include compression molding, transfer molding, injection molding, extrusion molding, blow molding, powder molding, FRP (Fiber Reinforced Plastics; fiber reinforced plastics) molding, cast coating method (such as casting method), calendering method, hot pressing method, etc. Extrusion molding or cast coating is preferred. The reason for this is that the smoothness of the obtained thin film can be improved and good optical uniformity can be obtained. Molding conditions can be appropriately set according to the composition and type of resin to be used, desired properties of the retardation film, and the like. In addition, as mentioned above, since a large number of film products are commercially available in the cyclic olefin-based resin, this commercially available film can be directly subjected to stretching treatment.
树脂薄膜(未拉伸薄膜)的厚度可根据第一相位差薄膜的所期望厚度、所期望光学特性、后述拉伸条件等而设定为任意适当的值。优选为50μm~300μm。The thickness of the resin film (unstretched film) can be set to any appropriate value according to the desired thickness of the first retardation film, desired optical characteristics, stretching conditions described later, and the like. Preferably, it is 50 μm to 300 μm.
上述拉伸可采用任意适当的拉伸方法、拉伸条件(例如拉伸温度、拉伸倍率、拉伸方向)。具体来说,可将自由端拉伸、固定端拉伸、自由端收缩、固定端收缩等各种拉伸方法单独使用,也可同时或逐次使用。就拉伸方向来说,也能够在长度方向、宽度方向、厚度方向、斜向方向等各种方向或维度进行。拉伸的温度优选相对于树脂薄膜的玻璃化转变温度(Tg)为Tg-30℃~Tg+60℃,更优选为Tg-10℃~Tg+50℃。Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) can be used for the above-mentioned stretching. Specifically, various stretching methods such as free-end stretching, fixed-end stretching, free-end shrinkage, and fixed-end shrinkage can be used alone, or simultaneously or sequentially. The stretching direction can also be performed in various directions or dimensions such as the longitudinal direction, the width direction, the thickness direction, and the oblique direction. The stretching temperature is preferably Tg-30°C to Tg+60°C relative to the glass transition temperature (Tg) of the resin film, more preferably Tg-10°C to Tg+50°C.
通过适当选择上述拉伸方法、拉伸条件,可得到具有上述所期望光学特性(例如折射率特性、面内相位差、Nz系数)的相位差薄膜。By appropriately selecting the above-mentioned stretching method and stretching conditions, a retardation film having the above-mentioned desired optical properties (eg, refractive index properties, in-plane retardation, and Nz coefficient) can be obtained.
就一个实施方式来说,相位差薄膜可通过将长条状树脂薄膜相对于长度方向在规定角度的方向上连续地进行斜向拉伸来制作。通过采用斜向拉伸,可得到相对于薄膜的长度方向具有规定角度的取向角(在该角度的方向上具有慢轴)的长条状拉伸薄膜,例如可在与偏振器层叠时实现辊对辊,可简化制造步骤。此外,该角度可为光学层叠体中偏振器的吸收轴与第一相位差层的慢轴所成的角度。该角度如上所述优选为10°~20°,更优选为13°~17°,进一步优选为约15°。In one embodiment, the retardation film can be produced by continuously stretching an elongated resin film obliquely in a direction at a predetermined angle with respect to the longitudinal direction. By adopting oblique stretching, a long stretched film having an orientation angle (the slow axis in the direction of the angle) of a predetermined angle with respect to the longitudinal direction of the film can be obtained, for example, a roll can be realized when laminating with a polarizer For rollers, the manufacturing steps can be simplified. In addition, the angle may be an angle formed by the absorption axis of the polarizer in the optical laminate and the slow axis of the first retardation layer. As mentioned above, the angle is preferably 10° to 20°, more preferably 13° to 17°, and still more preferably about 15°.
作为用于斜向拉伸的拉伸机,例如可以列举出可在横向和/或纵向上附加速度左右不同的进给力或者拉伸力或牵引力的拉幅式拉伸机。拉幅式拉伸机有横向单轴拉伸机、同时双轴拉伸机等,只要可将长条状树脂薄膜连续地进行斜向拉伸,就可使用任意适当的拉伸机。As a stretching machine used for diagonal stretching, for example, a tenter type stretching machine that can add a feed force, a stretching force, or a pulling force at a laterally and/or longitudinally different speed can be used. The tenter-type stretching machine includes a transverse uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, and any appropriate stretching machine can be used as long as the elongated resin film can be continuously stretched obliquely.
通过对于上述拉伸机分别适当地控制左右的速度,可得到具有上述所期望面内相位差并且在上述所期望方向上具有慢轴的第一相位差层(实质上为长条状相位差薄膜)。By appropriately controlling the left and right speeds of the above-mentioned stretching machine, the first retardation layer (substantially a long retardation film) having the above-mentioned desired in-plane retardation and a slow axis in the above-mentioned desired direction can be obtained. ).
上述薄膜的拉伸温度可根据第一相位差层所期望面内相位差值和厚度、所使用的树脂的种类、所使用的薄膜的厚度、拉伸倍率等而变化。具体来说,拉伸温度优选为Tg-30℃~Tg+30℃,进一步优选为Tg-15℃~Tg+15℃,最优选为Tg-10℃~Tg+10℃。通过在这种温度下进行拉伸,可在本发明中得到具有适当特性的第一相位差层。此外,Tg为薄膜的构成材料的玻璃化转变温度。The stretching temperature of the above-mentioned film may vary depending on the desired in-plane retardation value and thickness of the first retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30°C to Tg+30°C, more preferably Tg-15°C to Tg+15°C, most preferably Tg-10°C to Tg+10°C. By stretching at such a temperature, a first retardation layer having appropriate characteristics can be obtained in the present invention. In addition, Tg is the glass transition temperature of the constituent material of a thin film.
C-3.由液晶化合物的取向固化层构成的第一相位差层C-3. First retardation layer composed of alignment solidified layer of liquid crystal compound
第一相位差层20也可为液晶化合物的取向固化层。通过使用液晶化合物,与非液晶材料相比可明显增大所得到的相位差层的nx与ny之差,因此可明显减小用于得到所期望面内相位差的第一相位差层的厚度。其结果是,可实现光学层叠体的进一步薄型化。在第一相位差层20由液晶化合物的取向固化层构成的情况下,其厚度优选为1μm~7μm,更优选为1.5μm~2.5μm。通过使用液晶化合物,能够以明显薄于树脂薄膜的厚度实现与树脂薄膜同等的面内相位差。The first retardation layer 20 may also be an alignment solidified layer of a liquid crystal compound. By using a liquid crystal compound, the difference between nx and ny of the obtained retardation layer can be significantly increased compared with non-liquid crystal materials, and thus the thickness of the first retardation layer for obtaining a desired in-plane retardation can be significantly reduced . As a result, further thinning of the optical laminated body can be achieved. When the first retardation layer 20 is composed of an alignment-cured layer of a liquid crystal compound, its thickness is preferably 1 μm to 7 μm, more preferably 1.5 μm to 2.5 μm. By using a liquid crystal compound, it is possible to realize an in-plane retardation equivalent to that of a resin film with a thickness considerably thinner than that of a resin film.
本说明书中,“取向固化层”是指液晶化合物在层内向规定方向取向并且其取向状态被固定的层。此外,“取向固化层”是包含如下所述使液晶单体固化而得到的取向固化层的概念。本实施方式中,代表性地,棒状的液晶化合物以排列在第一相位差层的慢轴方向的状态取向(水平取向)。作为液晶化合物,例如可以列举出液晶相为向列相的液晶化合物(向列液晶)。作为这种液晶化合物,例如可使用液晶聚合物、液晶单体。液晶化合物的液晶性的表现机制不论为溶致型抑或热致型均可。液晶聚合物和液晶单体可分别单独使用,也可进行组合。In the present specification, an "alignment-hardened layer" refers to a layer in which a liquid crystal compound is aligned in a predetermined direction within a layer and its orientation state is fixed. In addition, the "alignment hardened layer" is a concept including the alignment hardened layer obtained by hardening a liquid crystal monomer as follows. In this embodiment, typically, the rod-shaped liquid crystal compound is aligned (horizontally aligned) in a state of being aligned in the direction of the slow axis of the first retardation layer. As a liquid crystal compound, the liquid crystal compound (nematic liquid crystal) whose liquid crystal phase is a nematic phase is mentioned, for example. As such liquid crystal compounds, for example, liquid crystal polymers and liquid crystal monomers can be used. The expression mechanism of the liquid crystallinity of the liquid crystal compound may be lyotropic or thermotropic. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
在液晶化合物为液晶单体的情况下,该液晶单体优选为聚合性单体和交联性单体。其原因在于:通过使液晶单体聚合或交联(即固化),能够使液晶单体的取向状态固定。在使液晶单体取向后,例如在使液晶单体彼此聚合或交联的情况下,由此可使上述取向状态固定。此处,通过聚合而形成聚合物,通过交联来形成三维网状结构,这些为非液晶性。因此,所形成的第一相位差层例如不会发生液晶性化合物所特有的由于温度变化而引起的向液晶相、玻璃相、晶相的转变。其结果是,第一相位差层成为不受温度变化影响的稳定性极其优异的相位差层。In the case where the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or crosslinking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, in the case of polymerizing or crosslinking the liquid crystal monomers, the alignment state described above can be fixed thereby. Here, a polymer is formed by polymerization, and a three-dimensional network structure is formed by crosslinking, and these are non-liquid crystalline. Therefore, the formed first retardation layer does not undergo, for example, a transition to a liquid crystal phase, a glass phase, or a crystalline phase due to a change in temperature, which is unique to a liquid crystal compound. As a result, the first retardation layer is extremely excellent in stability against temperature changes.
液晶单体显示出液晶性的温度范围根据其种类而异。具体来说,该温度范围优选为40℃~120℃,进一步优选为50℃~100℃,最优选为60℃~90℃。The temperature range in which a liquid crystal monomer exhibits liquid crystallinity varies depending on its type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, most preferably 60°C to 90°C.
作为上述液晶单体,可采用任意适当的液晶单体。例如,可使用日本特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、和GB2280445等所记载的聚合性介晶化合物等。作为这种聚合性介晶化合物的具体例子,例如可以列举出BASF公司的商品名LC242、Merck公司的商品名E7、Wacker-Chem公司的商品名LC-Sillicon-CC3767。作为液晶单体,例如优选为向列性液晶单体。Any appropriate liquid crystal monomer can be used as the above-mentioned liquid crystal monomer. For example, polymerizable mesogen compounds described in JP 2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4408171, and GB2280445 can be used. Specific examples of such polymerizable mesogenic compounds include, for example, BASF's trade name LC242, Merck's trade name E7, and Wacker-Chem's trade name LC-Sillicon-CC3767. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
液晶化合物的取向固化层可通过如下方式形成:对规定基材的表面实施取向处理,在该表面涂布包含液晶化合物的涂布液而使该液晶化合物在与上述取向处理对应的方向上取向,并使该取向状态固定。通过使用这种取向处理,可使液晶化合物相对于长条状基材的长条方向在规定方向上取向,结果可在所形成的相位差层的规定方向上表现出慢轴。例如,可在长条状基材上形成在相对于长条方向为15°的方向上具有慢轴的相位差层。这种相位差层就算是在期望在斜向方向上具有慢轴的情况下也可使用辊对辊来进行层叠,因此光学层叠体的生产率可明显提高。就一个实施方式来说,基材为任意适当的树脂薄膜,形成于该基材上的取向固化层可被转印至偏振片10的表面。就另一实施方式来说,基材可为第二保护层13。在该情况下可省略转印工序,从取向固化层(第一相位差层)的形成连续地通过辊对辊进行层叠,因此生产率进一步提高。The alignment solidified layer of the liquid crystal compound can be formed by performing an alignment treatment on the surface of a predetermined substrate, coating the surface with a coating liquid containing a liquid crystal compound to align the liquid crystal compound in a direction corresponding to the alignment treatment, And make this orientation state fixed. By using such an alignment treatment, the liquid crystal compound can be aligned in a predetermined direction with respect to the longitudinal direction of the elongated substrate, and as a result, the slow axis can be expressed in the predetermined direction of the formed retardation layer. For example, a retardation layer having a slow axis in a direction of 15° with respect to the elongated direction can be formed on the elongated substrate. Even when such a retardation layer is desired to have a slow axis in the oblique direction, it can be laminated using roll-to-roll, so that the productivity of the optical layered body can be significantly improved. In one embodiment, the substrate is any suitable resin film, and the alignment cured layer formed on the substrate can be transferred to the surface of the polarizer 10 . In another embodiment, the substrate can be the second protective layer 13 . In this case, the transfer step can be omitted, and since the formation of the oriented solidified layer (first retardation layer) is continuously laminated by roll-to-roll, productivity is further improved.
作为上述取向处理,可采用任意适当的取向处理。具体来说,可以列举出机械性取向处理、物理性取向处理、化学性取向处理。作为机械性取向处理的具体例子,可以列举出摩擦处理、拉伸处理。作为物理性取向处理的具体例子,可以列举出磁场取向处理、电场取向处理。作为化学性取向处理的具体例子,可以列举出斜向蒸镀法、光取向处理。各种取向处理的处理条件可根据目的而采用任意适当的条件。As the above-mentioned orientation treatment, any appropriate orientation treatment can be adopted. Specifically, mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment are mentioned. Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment. Specific examples of physical orientation treatment include magnetic field orientation treatment and electric field orientation treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment. Any appropriate conditions can be adopted for the treatment conditions of various orientation treatments according to the purpose.
液晶化合物的取向通过根据液晶化合物的种类在显示出液晶相的温度下进行处理来进行。通过进行这种温度处理,使液晶化合物取液晶状态,使该液晶化合物根据基材表面的取向处理方向而取向。Alignment of the liquid crystal compound is carried out by treating the liquid crystal compound at a temperature at which a liquid crystal phase develops depending on the type of the liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound takes a liquid crystal state, and the liquid crystal compound is aligned according to the direction of the alignment treatment on the surface of the substrate.
就一个实施方式来说,取向状态的固定通过将如上所述取向后的液晶化合物冷却来进行。在液晶化合物为聚合性单体或交联性单体的情况下,取向状态的固定通过对如上所述取向后的液晶化合物实施聚合处理或交联处理来进行。In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to a polymerization treatment or a crosslinking treatment.
液晶化合物的具体例子和取向固化层的形成方法的详细情况记载于日本特开2006-163343号公报。该公报的记载内容作为参考被援引至本说明书中。Specific examples of liquid crystal compounds and details of a method for forming an alignment hardened layer are described in JP-A-2006-163343. The contents of the publication are incorporated in this specification as a reference.
D.第二相位差层D. Second retardation layer
D-1.第二相位差层的特性D-1. Characteristics of the second retardation layer
如上所述,第二相位差层30具有慢轴。第二相位差层30的慢轴与偏振器11的吸收轴所成的角度优选为65°~85°,更优选为72°~78°,进一步优选为约75°。第二相位差层30的慢轴与第一相位差层20的慢轴所成的角度优选为52°~68°,更优选为57°~63°,进一步优选为约60°。在第二相位差层30的慢轴与偏振器11的吸收轴所成的角度为这种范围的情况下,可通过如上所述将第一相位差层的面内相位差设定为规定范围,相对于偏振器的吸收轴以规定角度配置第一相位差层的慢轴,并如下所述将第二相位差层的面内相位差设定为规定范围,由此得到在宽频带具有非常优异的圆偏振光特性(结果为非常优异的抗反射特性)的光学层叠体。As described above, the second retardation layer 30 has a slow axis. The angle formed by the slow axis of the second retardation layer 30 and the absorption axis of the polarizer 11 is preferably 65° to 85°, more preferably 72° to 78°, and even more preferably about 75°. The angle formed by the slow axis of the second retardation layer 30 and the slow axis of the first retardation layer 20 is preferably 52°-68°, more preferably 57°-63°, even more preferably about 60°. When the angle between the slow axis of the second retardation layer 30 and the absorption axis of the polarizer 11 falls within this range, the in-plane retardation of the first retardation layer can be set within a predetermined range as described above. , arrange the slow axis of the first retardation layer at a predetermined angle with respect to the absorption axis of the polarizer, and set the in-plane retardation of the second retardation layer to a predetermined range as described below, thereby obtaining a very An optical laminate having excellent circularly polarized light properties (resulting in very excellent antireflection properties).
第二相位差层优选折射率特性显示出nx>ny≥nz的关系。第二相位差层的面内相位差Re(550)为110nm~125nm,优选为115nm~120nm。The second retardation layer preferably has a refractive index characteristic showing the relationship of nx>ny≧nz. The in-plane retardation Re(550) of the second retardation layer is 110 nm to 125 nm, preferably 115 nm to 120 nm.
第二相位差层的尺寸变化率优选为1%以下,更优选为0.95%以下。第二相位差层的尺寸变化率越小越好。第二相位差层的尺寸变化率的下限例如为0.01%。在第二相位差层的尺寸变化率为这种范围的情况下,可显著抑制高温高湿下导电层产生裂纹。The dimensional change rate of the second retardation layer is preferably 1% or less, more preferably 0.95% or less. The smaller the dimensional change rate of the second retardation layer, the better. The lower limit of the dimensional change rate of the second retardation layer is, for example, 0.01%. In the case where the dimensional change rate of the second phase difference layer is in such a range, it is possible to remarkably suppress the generation of cracks in the conductive layer under high temperature and high humidity.
就第二相位差层的其他特性来说,如在上述C-1项中对第一相位差层进行了说明的那样。Other characteristics of the second retardation layer are as described for the first retardation layer in the above item C-1.
D-2.由树脂薄膜构成的第二相位差层D-2. Second retardation layer made of resin film
在第二相位差层由树脂薄膜构成的情况下,其厚度优选为40μm以下,优选为25μm~35μm。在第二相位差层的厚度为这种范围的情况下,可得到所期望面内相位差。在第二相位差层由树脂薄膜构成的情况下,其材料、特性、制造方法等如在上述C-2项中对第一相位差层进行了说明的那样。When the second retardation layer is made of a resin film, its thickness is preferably 40 μm or less, preferably 25 μm to 35 μm. When the thickness of the second retardation layer is within such a range, a desired in-plane retardation can be obtained. When the second retardation layer is made of a resin film, its material, properties, production method, etc. are the same as those described for the first retardation layer in the above item C-2.
D-3.由液晶化合物的取向固化层构成的第二相位差层D-3. The second retardation layer composed of an alignment solidified layer of a liquid crystal compound
第二相位差层30可与第一相位差层同样地为液晶化合物的取向固化层。在第二相位差层30由液晶化合物的取向固化层构成的情况下,其厚度优选为0.5μm~2μm,更优选为1μm~1.5μm。在第二相位差层由液晶化合物的取向固化层构成的情况下,其材料、特性、制造方法等如在上述C-3项中对第一相位差层进行了说明的那样。Like the first retardation layer, the second retardation layer 30 may be an alignment-cured layer of a liquid crystal compound. When the second retardation layer 30 is composed of an alignment-cured layer of a liquid crystal compound, its thickness is preferably 0.5 μm to 2 μm, more preferably 1 μm to 1.5 μm. When the second retardation layer is composed of an alignment solidified layer of a liquid crystal compound, its material, characteristics, production method, etc. are the same as those described for the first retardation layer in the above item C-3.
D-4.第一相位差层与第二相位差层的组合D-4. Combination of the first retardation layer and the second retardation layer
第一相位差层和第二相位差层可作为任意适当的组合来使用。具体来说,可以是第一相位差层由树脂薄膜构成并且第二相位差层由液晶化合物的取向固化层构成;可以是第一相位差层由液晶化合物的取向固化层构成并且第二相位差层由树脂薄膜构成;可以是第一相位差层和第二相位差层均由树脂薄膜构成;也可以是第一相位差层和第二相位差层均由液晶化合物的取向固化层构成。优选的是:在第一相位差层由树脂薄膜构成的情况下,第二相位差层也由树脂薄膜构成;在第一相位差层由液晶化合物的取向固化层构成的情况下,第二相位差层也由液晶化合物的取向固化层构成。此外,在第一相位差层和第二相位差层均由树脂薄膜构成的情况下,第一相位差层和第二相位差层可以相同,也可以详细构成不同。在第一相位差层和第二相位差层均由液晶化合物的取向固化层构成的情况下也是相同的。The first retardation layer and the second retardation layer can be used in any appropriate combination. Specifically, it may be that the first retardation layer is composed of a resin film and the second retardation layer is composed of an alignment solidified layer of a liquid crystal compound; it may be that the first retardation layer is composed of an alignment solidified layer of a liquid crystal compound and the second retardation The layer is made of a resin film; both the first retardation layer and the second retardation layer can be made of a resin film; or both the first retardation layer and the second retardation layer can be made of an alignment solidified layer of a liquid crystal compound. Preferably: when the first phase difference layer is made of a resin film, the second phase difference layer is also made of a resin film; The poor layer is also composed of an alignment solidified layer of a liquid crystal compound. In addition, when both the first retardation layer and the second retardation layer are made of a resin film, the first retardation layer and the second retardation layer may be the same, or may have different detailed configurations. The same applies to the case where both the first retardation layer and the second retardation layer are composed of an alignment-cured layer of a liquid crystal compound.
E.导电层E. Conductive layer
导电层可通过任意适当的成膜方法(例如真空蒸镀法、溅镀法、CVD(ChemicalVapor Deposition;化学气相沉积)法、离子镀法、喷雾法等)在任意适当的基材上使金属氧化物膜成膜而形成。在成膜后,可视需要进行加热处理(例如100℃~200℃)。通过进行加热处理,可使非晶质膜结晶化。作为金属氧化物,例如可以列举出氧化铟、氧化锡、氧化锌、铟-锡复合氧化物、锡-锑复合氧化物、锌-铝复合氧化物、铟-锌复合氧化物。也可在铟氧化物中掺杂二价金属离子或四价金属离子。优选为铟系复合氧化物,更优选为铟-锡复合氧化物(ITO)。铟系复合氧化物具有在可见光区域(380nm~780nm)具有高透射率(例如80%以上)并且每单位面积的表面电阻值低这样的特征。The conductive layer can be oxidized on any suitable substrate by any suitable film-forming method (such as vacuum evaporation method, sputtering method, CVD (Chemical Vapor Deposition; chemical vapor deposition) method, ion plating method, spray method, etc.) Formed into a film. After film formation, heat processing (for example, 100 degreeC - 200 degreeC) may be performed as needed. By performing heat treatment, the amorphous film can be crystallized. Examples of metal oxides include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Indium oxide can also be doped with divalent metal ions or tetravalent metal ions. It is preferably an indium-based composite oxide, more preferably an indium-tin composite oxide (ITO). Indium-based composite oxides are characterized by high transmittance (for example, 80% or more) in the visible light region (380 nm to 780 nm) and low surface resistance per unit area.
在导电层包含金属氧化物的情况下,该导电层的厚度优选为50nm以下,更优选为35nm以下。导电层的厚度的下限优选为10nm。In the case where the conductive layer contains a metal oxide, the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less. The lower limit of the thickness of the conductive layer is preferably 10 nm.
导电层的表面电阻值优选为300Ω/sq以下,更优选为150Ω/sq以下,进一步优选为100Ω/sq以下。The surface resistance value of the conductive layer is preferably 300 Ω/sq or less, more preferably 150 Ω/sq or less, and still more preferably 100 Ω/sq or less.
导电层可视需要进行布图。通过布图,可形成导通部和绝缘部。作为布图方法,可采用任意适当的方法。作为布图方法的具体例子,可以列举出湿式蚀刻法、丝网印刷法。The conductive layer can be patterned as needed. Through patterning, conductive parts and insulating parts can be formed. As the layout method, any appropriate method can be adopted. Specific examples of the patterning method include wet etching and screen printing.
F.基材F. Substrate
作为基材,可使用任意适当的树脂薄膜。优选为具有优异的透明性的树脂薄膜。作为构成材料的具体例子,可以列举出环状烯烃系树脂、聚碳酸酯系树脂、纤维素系树脂、聚酯系树脂、丙烯酸系树脂。As the substrate, any appropriate resin film can be used. It is preferably a resin film having excellent transparency. Specific examples of constituent materials include cyclic olefin-based resins, polycarbonate-based resins, cellulose-based resins, polyester-based resins, and acrylic resins.
如上所述,基材具有面内相位差和慢轴,该面内相位差和慢轴方向在宽度方向上具有偏差。如上所述,根据本发明,就算是在存在由于这种基材而引起的宽度方向的特性的偏差的情况下,在将光学层叠体裁断为规定尺寸而应用于图像显示装置的情况下也能减小各产品的显示特性的偏差。As described above, the base material has an in-plane phase difference and a slow axis whose direction has a deviation in the width direction. As described above, according to the present invention, even in the case where there is variation in the properties in the width direction due to such a base material, when the optical laminate is cut into a predetermined size and applied to an image display device, it can The variation in the display characteristics of each product is reduced.
基材的厚度优选为10μm~200μm,更优选为20μm~60μm。The thickness of the substrate is preferably 10 μm to 200 μm, more preferably 20 μm to 60 μm.
也可视需要在导电层41与基材42之间设置硬涂层(未图示)。作为硬涂层,可使用具有任意适当的构成的硬涂层。硬涂层的厚度例如为0.5μm~2μm。只要雾度为允许范围,就可在硬涂层中添加用于减少牛顿环的微粒。进而,也可视需要在导电层41与基材42(在存在硬涂层的情况下为硬涂层)之间设置用于提高导电层的密合性的锚固涂层和/或用于调整反射率的折射率调整层。作为锚固涂层和折射率调整层,可采用任意适当的构成。锚固涂层和折射率调整层可为几纳米~几十纳米的薄层。A hard coat layer (not shown) may also be provided between the conductive layer 41 and the substrate 42 as needed. As the hard coat layer, a hard coat layer having any appropriate constitution can be used. The thickness of the hard coat layer is, for example, 0.5 μm to 2 μm. Fine particles for reducing Newton's rings may be added to the hard coat layer as long as the haze is within the allowable range. Furthermore, an anchor coating for improving the adhesion of the conductive layer and/or for adjusting A refractive index adjustment layer of reflectance. Any appropriate configuration can be adopted as the anchor coat layer and the refractive index adjustment layer. The anchor coat layer and the refractive index adjustment layer may be thin layers of several nanometers to tens of nanometers.
也可视需要在基材42的与导电层相反一侧(光学层叠体的最外侧)设置其他硬涂层。该硬涂层代表性地包含粘结剂树脂层和球状颗粒,并且球状颗粒从粘结剂树脂层突出而形成了凸部。这种硬涂层的详细情况记载于日本特开2013-145547号公报,该公报的记载内容作为参考被援引至本说明书。Another hard coat layer may also be provided on the side opposite to the conductive layer of the substrate 42 (the outermost side of the optical laminate) as needed. The hard coat layer typically includes a binder resin layer and spherical particles, and the spherical particles protrude from the binder resin layer to form protrusions. The details of such a hard-coat layer are described in Unexamined-Japanese-Patent No. 2013-145547, and the description content of this publication is taken in this specification as a reference.
G.其他G. Others
本发明的实施方式的光学层叠体也可进一步包含其他相位差层。其他相位差层的光学特性(例如折射率特性、面内相位差、Nz系数、光弹性系数)、厚度、配置位置等可根据目的而适当设定。The optical laminated body of embodiment of this invention may further contain another phase difference layer. The optical characteristics (for example, refractive index characteristics, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, etc. of other retardation layers can be appropriately set according to the purpose.
实用上,在基材42的表面设置有用于贴合至显示单元的粘合剂层(未图示)。优选在光学层叠体供至使用前在该粘合剂层的表面贴合有剥离膜。Practically, an adhesive layer (not shown) for attaching to the display unit is provided on the surface of the substrate 42 . A release film is preferably bonded to the surface of the pressure-sensitive adhesive layer before the optical laminate is used.
H.图像显示装置H. Image display device
上述A项至G项中所记载的长条状光学层叠体可被裁断为规定尺寸而应用于图像显示装置。因此,本发明包含使用了这种光学层叠体的图像显示装置。作为图像显示装置的代表例,可以列举出液晶显示装置、有机EL显示装置。本发明的实施方式的图像显示装置在其目视确认侧具备被裁断为规定尺寸的上述A项至G项中所记载的光学层叠体。光学层叠体以导电层成为显示单元(例如液晶单元、有机EL单元)侧的方式(以偏振器成为目视确认侧的方式)进行层叠。即,本发明的实施方式的图像显示装置可为在显示单元(例如液晶单元、有机EL单元)与偏振片之间组装有触控传感器的所谓内置触控面板型输入显示装置。在该情况下,触控传感器可配置于导电层(或带基材导电层)与显示单元之间。就触控传感器的构成来说,可采用业界所周知的构成,因此省略详细的说明。The elongated optical layered body described in the above items A to G can be cut to a predetermined size and applied to an image display device. Therefore, the present invention includes an image display device using such an optical laminate. Representative examples of image display devices include liquid crystal display devices and organic EL display devices. The image display device according to the embodiment of the present invention includes the optical layered body described in the above-mentioned A-terms to G-terms cut to a predetermined size on the visually recognizable side. The optical laminate is stacked so that the conductive layer is on the display cell (for example, liquid crystal cell, organic EL cell) side (so that the polarizer is on the visual recognition side). That is, the image display device according to the embodiment of the present invention may be a so-called built-in touch panel type input display device in which a touch sensor is incorporated between a display unit (for example, a liquid crystal unit, an organic EL unit) and a polarizing plate. In this case, the touch sensor can be disposed between the conductive layer (or the conductive layer with the substrate) and the display unit. As far as the structure of the touch sensor is concerned, a well-known structure in the industry can be used, so detailed description is omitted.
实施例Example
以下,通过实施例对本发明进行具体说明,但本发明并不受这些实施例限定。此外,各特性的测定方法如下所述。Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In addition, the measurement method of each characteristic is as follows.
(1)厚度(1) Thickness
对于涂布形成的相位差层(液晶化合物的取向固化层),使用大冢电子制造的MCPD2000通过干涉膜厚测定法来进行测定。对于其他薄膜,使用数字式测微计(安立公司制造的KC-351C)来进行测定。About the retardation layer (alignment hardened layer of a liquid crystal compound) formed by coating, it measured by the interference film thickness measurement method using MCPD2000 made from Otsuka Electronics. For other thin films, measurement was performed using a digital micrometer (KC-351C manufactured by Anritsu Corporation).
(2)相位差值(2) Phase difference
通过自动双折射测定装置(王子计测机器株式会社制造,自动双折射计KOBRA-WPR)测量用于实施例和比较例的相位差层和基材的折射率nx、ny和nz。面内相位差Re的测定波长为450nm和550nm,厚度方向相位差Rth的测定波长为550nm,测定温度为23℃。The refractive indices nx, ny, and nz of the retardation layer and the substrate used in Examples and Comparative Examples were measured by an automatic birefringence measurement device (manufactured by Oji Scientific Instruments, Ltd., automatic birefringence meter KOBRA-WPR). The measurement wavelengths of the in-plane retardation Re are 450 nm and 550 nm, the measurement wavelength of the thickness direction retardation Rth is 550 nm, and the measurement temperature is 23°C.
(3)相位差值和慢轴方向的偏差(3) The phase difference value and the deviation of the slow axis direction
在构成用于实施例和比较例的带基材导电层的基材的薄膜卷(参考例5的聚环烯烃薄膜卷)的宽度方向上以等间隔切割出五件50mm×50mm的样品。对于所切割出的样品,使用自动双折射测定装置(王子计测机器株式会社制造,自动双折射计KOBRA-WPR)求出面内相位差Re(550)和慢轴。将相对于设定相位差的偏差的最大值(%)设定为相位差值的偏差,将相对于设定慢轴方向的偏差的最大值设定为慢轴方向的偏差。Five samples of 50 mm x 50 mm were cut out at equal intervals in the width direction of the film roll (polycycloolefin film roll of Reference Example 5) constituting the base material with a base conductive layer used in Examples and Comparative Examples. The in-plane retardation Re(550) and the slow axis were determined for the cut sample using an automatic birefringence measuring device (manufactured by Oji Scientific Instruments, Ltd., automatic birefringence meter KOBRA-WPR). The maximum value (%) of the deviation from the set phase difference is set as the deviation of the phase difference value, and the maximum value of the deviation from the set slow axis direction is set as the deviation in the slow axis direction.
(4)图像显示装置的显示特性(4) Display characteristics of image display device
将三星无线公司制造的智能手机(Galaxy-S5)分拆而取出有机EL面板。在由实施例和比较例得到的宽度为500mm的光学层叠体卷的宽度方向上以等间隔切割出五件50mm×50mm的样品。将所切割出的样品与有机EL面板贴合,并以目视确认反射色调。评价基准如下所述。The smartphone (Galaxy-S5) manufactured by Samsung Wireless was disassembled to take out the organic EL panel. Five samples of 50 mm×50 mm were cut out at equal intervals in the width direction of the 500 mm-width optical laminate rolls obtained in Examples and Comparative Examples. The cut out sample was bonded to an organic EL panel, and the reflection color was confirmed visually. The evaluation criteria are as follows.
良好:显示中性的反射色调,并且对于五个样品反射色调未见差异Good: Shows a neutral reflection tint and no difference is seen for the five samples
不良:虽然为中性的反射色调,但对于各样品确认出色彩的差异Poor: Although it is a neutral reflection tone, a difference in color is confirmed for each sample
[参考例1:偏振片的制作][Reference Example 1: Production of Polarizer]
对于厚度为30μm的聚乙烯醇(PVA)系树脂薄膜(可乐丽制造,产品名“PE3000”)的长条卷,一边通过辊拉伸机以长度方向上成为5.9倍的方式在长度方向上进行单轴拉伸一边同时实施溶胀、染色、交联、清洗处理,最后实施干燥处理,由此制作厚度为12μm的偏振器1。A long roll of polyvinyl alcohol (PVA)-based resin film (manufactured by Kuraray, product name "PE3000") with a thickness of 30 μm is stretched in the longitudinal direction by a roll stretching machine so that it becomes 5.9 times the longitudinal direction. Swelling, dyeing, crosslinking, and washing treatments were performed simultaneously while uniaxially stretching, and finally drying treatment was performed, thereby producing a polarizer 1 with a thickness of 12 μm.
具体来说,溶胀处理一边利用20℃的纯水进行处理一边拉伸至2.2倍。接着,染色处理一边在以所得到的偏振器的单独透射率为45.0%的方式调整了碘浓度后的碘与碘化钾的重量比为1:7的30℃的水溶液中进行处理一边拉伸至1.4倍。进而,交联处理采用两阶段的交联处理,第一阶段的交联处理一边在40℃的溶解有硼酸和碘化钾的水溶液中进行处理一边拉伸至1.2倍。第一阶段的交联处理的水溶液的硼酸含量设定为5.0重量%,碘化钾含量设定为3.0重量%。第二阶段的交联处理一边在65℃的溶解有硼酸和碘化钾的水溶液中进行处理一边拉伸至1.6倍。第二阶段的交联处理的水溶液的硼酸含量设定为4.3重量%,碘化钾含量设定为5.0重量%。另外,清洗处理利用20℃的碘化钾水溶液来进行处理。清洗处理的水溶液的碘化钾含量设定为2.6重量%。最后,干燥处理以70℃干燥5分钟,得到长条状偏振器1。Specifically, in the swelling treatment, the film was stretched to 2.2 times while being treated with pure water at 20°C. Next, the dyeing treatment stretches to 1.4 while performing treatment in an aqueous solution at 30° C. with a weight ratio of iodine and potassium iodide of 1:7 after adjusting the iodine concentration so that the individual transmittance of the obtained polarizer is 45.0%. times. Furthermore, a two-stage cross-linking treatment was used for the cross-linking treatment, and the first-stage cross-linking treatment was stretched to 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40°C. The boric acid content of the aqueous solution of the first-stage crosslinking treatment was set to 5.0% by weight, and the potassium iodide content was set to 3.0% by weight. The cross-linking treatment of the second stage stretches to 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide are dissolved at 65°C. The boric acid content of the aqueous solution of the second-stage crosslinking treatment was set to 4.3% by weight, and the potassium iodide content was set to 5.0% by weight. In addition, the cleaning treatment was performed with a potassium iodide aqueous solution at 20°C. The potassium iodide content of the aqueous solution for cleaning treatment was set to 2.6% by weight. Finally, drying treatment was performed at 70° C. for 5 minutes to obtain a strip-shaped polarizer 1 .
隔着聚乙烯醇系粘接剂,将柯尼卡美能达株式会社制造的TAC薄膜(产品名:KC2UA,厚度:25μm,对应于第二保护层)和在该TAC薄膜的单面具有由硬涂处理形成的硬涂(HC)层的HC-TAC薄膜(厚度:32μm,对应于第一保护层)分别通过辊对辊而贴合于所得到的长条状偏振器1的两面,由此得到具有第一保护层/偏振器1/第二保护层的构成的长条状偏振片1。A TAC film manufactured by Konica Minolta Corporation (product name: KC2UA, thickness: 25 μm, corresponding to the second protective layer) and a hard film on one side of the TAC film were bonded through a polyvinyl alcohol-based adhesive. The HC-TAC film (thickness: 32 μm, corresponding to the first protective layer) of the hard coat (HC) layer formed by the coating process was respectively attached to both sides of the obtained elongated polarizer 1 by roll-to-roll, thereby A strip-shaped polarizing plate 1 having a configuration of first protective layer/polarizer 1/second protective layer was obtained.
[参考例2:构成第一相位差层的液晶取向固化层的制作][Reference Example 2: Fabrication of a Liquid Crystal Alignment and Solidification Layer Constituting the First Retardation Layer]
将显示出向列液晶相的聚合性液晶(BASF公司制造:商品名“Paliocolor LC242”,由下式表示)10g和对该聚合性液晶化合物的光聚合引发剂(BASF公司制造:商品名“Irgacure 907”)3g溶解于甲苯40g,由此制备液晶组合物(涂布液)。10 g of a polymerizable liquid crystal (manufactured by BASF Corporation: trade name "Paliocolor LC242", represented by the following formula) showing a nematic liquid crystal phase and a photopolymerization initiator for the polymerizable liquid crystal compound (manufactured by BASF Corporation: trade name "Irgacure 907" ”) 3 g was dissolved in 40 g of toluene to prepare a liquid crystal composition (coating liquid).
使用摩擦布摩擦长条状聚对苯二甲酸乙二醇酯(PET)薄膜(厚度为38μm)表面,实施取向处理。就取向处理的条件来说,摩擦次数(摩擦辊个数)为1,摩擦辊半径r为76.89mm,摩擦辊转速nr为1500rpm,薄膜搬运速度v为83mm/秒,在摩擦强度RS和压入量M如表1所示的五种条件(a)~(e)下进行。The surface of a long polyethylene terephthalate (PET) film (thickness: 38 μm) was rubbed with a rubbing cloth to perform orientation treatment. As far as the conditions of orientation treatment are concerned, the number of rubbing times (the number of rubbing rollers) is 1, the radius r of the rubbing roller is 76.89mm, the rotational speed nr of the rubbing roller is 1500rpm, and the film conveying speed v is 83mm/sec. The amount M was performed under the five conditions (a) to (e) shown in Table 1.
表1Table 1
取向处理的方向设定为在贴合至偏振片时相对于偏振器的吸收轴的方向从目视确认侧观察为-75°方向。在该取向处理表面通过棒涂机涂布上述液晶涂布液,在90℃下加热干燥2分钟,由此使液晶化合物取向。在条件(a)~(c)下液晶化合物的取向状态非常良好。在条件(d)和(e)下液晶化合物的取向产生略微的混乱,但为实用上没有问题的水平。对于如此形成的液晶层,使用金属卤化物灯照射1mJ/cm2的光,使该液晶层固化,由此在长条状PET薄膜上形成相位差层(液晶取向固化层)1。相位差层1的厚度为2μm,面内相位差Re(550)为236nm。进而,相位差层1具有nx>ny=nz的折射率分布。The direction of the orientation treatment was set to be a -75° direction when viewed from the visual confirmation side with respect to the direction of the absorption axis of the polarizer when it was bonded to a polarizing plate. The above-mentioned liquid crystal coating liquid was coated on the alignment-treated surface with a bar coater, and heated and dried at 90° C. for 2 minutes, thereby aligning the liquid crystal compound. The alignment state of the liquid crystal compound was very good under the conditions (a) to (c). The orientation of the liquid crystal compound was slightly disturbed under the conditions (d) and (e), but it was at a level that was practically not a problem. The thus-formed liquid crystal layer was irradiated with light of 1 mJ/cm 2 using a metal halide lamp to cure the liquid crystal layer, thereby forming a retardation layer (liquid crystal alignment solidified layer) 1 on the elongated PET film. The thickness of the retardation layer 1 was 2 μm, and the in-plane retardation Re(550) was 236 nm. Furthermore, the retardation layer 1 has a refractive index distribution of nx>ny=nz.
[参考例3:构成第二相位差层的液晶取向固化层的制作][Reference Example 3: Fabrication of a Liquid Crystal Alignment and Solidification Layer Constituting the Second Retardation Layer]
使用摩擦布摩擦长条状聚对苯二甲酸乙二醇酯(PET)薄膜(厚度为38μm)表面,实施取向处理。取向处理的方向设定为在贴合至偏振片时相对于偏振器的吸收轴的方向从目视确认侧观察为-15°方向。在该取向处理表面涂布与参考例2相同的液晶涂布液,以与参考例2相同的方式使液晶化合物取向和固化,由此在长条状PET薄膜上形成相位差层2。相位差层2的厚度为1.2μm,面内相位差Re(550)为115nm。进而,相位差层2具有nx>ny=nz的折射率分布。The surface of a long polyethylene terephthalate (PET) film (thickness: 38 μm) was rubbed with a rubbing cloth to perform orientation treatment. The direction of the orientation treatment was set to be a -15° direction when viewed from the visual confirmation side with respect to the direction of the absorption axis of the polarizer when it was bonded to a polarizing plate. The same liquid crystal coating solution as in Reference Example 2 was applied to the orientation-treated surface, and the liquid crystal compound was aligned and cured in the same manner as in Reference Example 2, thereby forming a retardation layer 2 on the elongated PET film. The thickness of the retardation layer 2 was 1.2 μm, and the in-plane retardation Re(550) was 115 nm. Furthermore, the retardation layer 2 has a refractive index distribution of nx>ny=nz.
[参考例4:构成相位差层的相位差薄膜的制作][Reference Example 4: Fabrication of Retardation Film Constituting Retardation Layer]
使用包含两台具备搅拌叶片和控制成100℃的回流冷却器的立式反应器的分批聚合装置进行聚合。将9,9-[4-(2-羟基乙氧基)苯基]芴(BHEPF)、异山梨糖醇(ISB)、二乙二醇(DEG)、碳酸二苯酯(DPC)和乙酸镁四水合物以按照摩尔比例计为BHEPF/ISB/DEG/DPC/乙酸镁=0.348/0.490/0.162/1.005/1.00×10-5的方式进行添加。在将反应器内充分进行氮置换后(氧浓度为0.0005~0.001体积%),利用热介质进行加热,在内温达到100℃的时刻开始搅拌。在升温开始40分钟后使内温达到220℃,以保持该温度的方式进行控制,同时开始减压,在达到220℃后90分钟设定为13.3kPa。将与聚合反应一并副产的苯酚蒸气导入至100℃的回流冷却器,使在苯酚蒸气中包含若干量的单体成分返回至反应器,将未冷凝的苯酚蒸气导入至45℃的冷凝器并进行回收。Polymerization was performed using a batch polymerization apparatus comprising two vertical reactors equipped with stirring blades and a reflux cooler controlled to 100°C. 9,9-[4-(2-hydroxyethoxy)phenyl]fluorene (BHEPF), isosorbide (ISB), diethylene glycol (DEG), diphenyl carbonate (DPC) and magnesium acetate The tetrahydrate was added so that BHEPF/ISB/DEG/DPC/magnesium acetate=0.348/0.490/0.162/1.005/1.00×10 −5 in molar ratio. After the inside of the reactor was sufficiently replaced with nitrogen (oxygen concentration: 0.0005 to 0.001% by volume), it was heated with a heat medium, and stirring was started when the internal temperature reached 100°C. 40 minutes after the start of the temperature rise, the internal temperature was controlled to be 220° C. to maintain the temperature, and at the same time, the pressure was reduced, and it was set to 13.3 kPa 90 minutes after reaching 220° C. Introduce the by-product phenol vapor together with the polymerization reaction to the reflux cooler at 100°C, return some monomer components contained in the phenol vapor to the reactor, and introduce the uncondensed phenol vapor into the condenser at 45°C and recycle.
向第一反应器导入氮气而暂时恢复压力至大气压,然后将第一反应器内的低聚物化后的反应液转移至第二反应器。接着,开始第二反应器内的升温和减压,由此在50分钟设定成内温为240℃、压力为0.2kPa。其后,进行聚合直至达到规定搅拌动力。在达到规定动力的时刻向反应器导入氮而恢复压力,将反应液以线料的形式抽出,并利用旋转式切割器进行粒料化,得到BHEPF/ISB/DEG=34.8/49.0/16.2[mol%]的共聚组成的聚碳酸酯树脂A。该聚碳酸酯树脂的比浓粘度为0.430dL/g,玻璃化转变温度为128℃。Nitrogen gas was introduced into the first reactor to temporarily return the pressure to atmospheric pressure, and then the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, the internal temperature was set to 240° C. and the pressure to 0.2 kPa within 50 minutes by starting the temperature rise and pressure reduction in the second reactor. Thereafter, polymerization is performed until a prescribed stirring power is achieved. When the specified power is reached, nitrogen is introduced into the reactor to restore the pressure, the reaction solution is extracted in the form of strands, and pelletized by a rotary cutter to obtain BHEPF/ISB/DEG=34.8/49.0/16.2[mol %] of polycarbonate resin A composed of copolymerization. The polycarbonate resin had a reduced viscosity of 0.430 dL/g and a glass transition temperature of 128°C.
将所得到的聚碳酸酯树脂在80℃下真空干燥5小时,然后使用具备单螺杆挤出机(五十铃化工机公司制造,螺杆直径为25mm,机筒设定温度:220℃)、T模头(宽度为900mm,设定温度:220℃)、冷却辊(设定温度:125℃)和卷取机的薄膜制膜装置,由此制作厚度为130μm的聚碳酸酯树脂薄膜。The obtained polycarbonate resin was vacuum-dried at 80° C. for 5 hours, and then used with a single-screw extruder (manufactured by Isuzu Chemical Machinery Co., Ltd., screw diameter: 25 mm, barrel set temperature: 220° C.), T-die (Width: 900mm, set temperature: 220°C), cooling roll (set temperature: 125°C), and film forming device of the coiler, thereby producing a polycarbonate resin film with a thickness of 130 μm.
(斜向拉伸)(diagonal stretch)
将以上述方式得到的聚碳酸酯树脂薄膜通过依照日本特开2014-194483号公报的实施例1的方法进行斜向拉伸,得到相位差薄膜。即,使用图2~图5所示的装置,以图6所示的夹具间距的分布供至预热处理、斜向拉伸和MD收缩处理,得到相位差薄膜。此外,就装置的详细构成来说,日本特开2014-194483号公报的记载内容作为参考被援引至本说明书。相位差薄膜的具体制作步骤如下所述:将聚碳酸酯树脂薄膜(厚度为130μm,宽度为765mm)在拉伸装置的预热区域预热至142℃。在预热区域,左右的夹具的夹具间距为125mm。其次,在薄膜进入至第一斜向拉伸区域C1的同时,开始增大右侧夹具的夹具间距,使之在第一斜向拉伸区域C1从125mm增大至177.5mm。夹具间距变化率为1.42。在第一斜向拉伸区域C1,对于左侧夹具的夹具间距开始减少夹具间距,使之在第一斜向拉伸区域C1从125mm减少至90mm。夹具间距变化率为0.72。进而,在薄膜进入第二斜向拉伸区域C2的同时,开始增大左侧夹具的夹具间距,使之在第二斜向拉伸区域C2从90mm增大至177.5mm。另一方面,右侧夹具的夹具间距在第二斜向拉伸区域C2依旧维持177.5mm。另外,在上述斜向拉伸的同时,也在宽度方向上进行1.9倍的拉伸。此外,上述斜向拉伸在135℃下进行。The polycarbonate resin film obtained as described above was obliquely stretched according to the method of Example 1 of JP-A-2014-194483 to obtain a retardation film. That is, using the apparatus shown in FIGS. 2 to 5 , it was subjected to preheating treatment, oblique stretching, and MD shrinking treatment with the distribution of the clip pitch shown in FIG. 6 to obtain a retardation film. In addition, as for the detailed structure of an apparatus, the description content of Unexamined-Japanese-Patent No. 2014-194483 is incorporated in this specification as a reference. The specific manufacturing steps of the retardation film are as follows: preheat the polycarbonate resin film (130 μm in thickness and 765 mm in width) to 142° C. in the preheating zone of the stretching device. In the preheating area, the clamp distance between the left and right clamps is 125mm. Secondly, when the film enters the first oblique stretching zone C1, start to increase the clamp distance of the right clamp, so that it increases from 125mm to 177.5mm in the first oblique stretching zone C1. The rate of change in fixture spacing was 1.42. In the first oblique stretching zone C1, the clamp spacing for the left side clamps starts to decrease from 125mm to 90mm in the first oblique stretching zone C1. The rate of change in fixture spacing was 0.72. Furthermore, when the film enters the second oblique stretching zone C2, start to increase the clamp distance of the left clamp, so that it increases from 90mm to 177.5mm in the second oblique stretching zone C2. On the other hand, the distance between the clamps of the right clamp is still maintained at 177.5mm in the second oblique stretching area C2. In addition, simultaneously with the above-mentioned oblique stretching, 1.9-fold stretching was also performed in the width direction. In addition, the above-mentioned oblique stretching was performed at 135°C.
(MD收缩处理)(MD shrink processing)
接着,在收缩区域进行MD收缩处理。具体来说,使左侧夹具和右侧夹具的夹具间距均从177.5mm减少至165mm。MD收缩处理中的收缩率为7.0%。Next, MD shrinkage treatment is performed on the shrinkage area. Specifically, reducing the clamp spacing from 177.5mm to 165mm for both the left and right clamps. The shrinkage rate in the MD shrinkage treatment was 7.0%.
以上述方式得到相位差薄膜(厚度为50μm)。所得到的相位差薄膜的Re(550)为141nm,双折射Δnxy为0.00282。将所得到的相位差薄膜作为相位差层3。A retardation film (thickness: 50 μm) was obtained in the above-mentioned manner. The Re(550) of the obtained retardation film was 141 nm, and the birefringence Δn xy was 0.00282. The obtained retardation film was used as the retardation layer 3 .
[参考例5:导电性薄膜(带基材导电层)的制作][Reference Example 5: Production of Conductive Film (Conductive Layer with Substrate)]
使用厚度为50μm的长条状聚环烯烃薄膜(日本瑞翁制造,商品名“ZEONOR(注册商标)”)作为基材。在该基材的一个面涂布紫外线固化性树脂组合物(DIC公司制造,商品名“UNIDIC(注册商标)RS29-120”),并以80℃干燥1分钟,然后进行紫外线固化,形成厚度为1.0μm的硬涂层。接着,在基材的另一个面涂布包含与上述相同的紫外线固化性树脂组合物100重量份和众数粒径为1.9μm的丙烯酸系球状颗粒(综研化学公司制造,商品名“MX-180TA”)0.002重量份的加入有球状颗粒的固化性树脂组合物,之后进行紫外线固化,形成厚度为1.0μm的硬涂层。将上述得到的聚环烯烃薄膜投入至溅射装置,在不含颗粒的硬涂层表面形成厚度为27nm的铟锡氧化物的非晶质层。接着,将形成有铟锡氧化物的非晶质层的聚环烯烃薄膜在130℃的加热炉中进行90分钟加热处理,由此制作出表面电阻值为100Ω/sq的透明导电性薄膜。基材的面内相位差Re(550)为4nm,宽度方向的相位差的偏差为20%,宽度方向的取向角(慢轴的方向)的偏差为2°。A long polycycloolefin film having a thickness of 50 μm (manufactured by ZEONOR, trade name “ZEONOR (registered trademark)”) was used as a substrate. One side of the substrate is coated with an ultraviolet curable resin composition (manufactured by DIC Corporation, trade name "UNIDIC (registered trademark) RS29-120"), dried at 80° C. for 1 minute, and then cured by ultraviolet light to form a film having a thickness of 1.0μm hard coat. Next, acrylic spherical particles (manufactured by Soken Chemical Co., Ltd., trade name "MX- 180TA") 0.002 parts by weight of curable resin composition added with spherical particles, followed by UV curing to form a hard coat layer with a thickness of 1.0 μm. The polycycloolefin film obtained above was put into a sputtering apparatus, and an amorphous layer of indium tin oxide having a thickness of 27 nm was formed on the surface of the particle-free hard coat layer. Next, the polycycloolefin film formed with the amorphous layer of indium tin oxide was heat-treated in a furnace at 130° C. for 90 minutes to produce a transparent conductive film having a surface resistance of 100 Ω/sq. The in-plane retardation Re(550) of the substrate was 4 nm, the retardation variation in the width direction was 20%, and the orientation angle (slow axis direction) variation in the width direction was 2°.
[参考例6:导电性薄膜(带基材导电层)的制作][Reference Example 6: Production of Conductive Film (Conductive Layer with Substrate)]
除了使用了厚度为50μm的PET薄膜(东丽制造,商品名“Lumirror#50”)作为基材以外,以与参考例5相同的方式制作表面电阻值为100Ω/sq的透明导电性薄膜。A transparent conductive film having a surface resistance of 100 Ω/sq was produced in the same manner as in Reference Example 5, except that a 50 μm-thick PET film (manufactured by Toray, trade name “Lumirror #50”) was used as the substrate.
[参考例7:粘合剂层的制作][Reference Example 7: Production of Adhesive Layer]
在具备冷凝管、氮导入管、温度计和搅拌装置的反应容器中,一并添加丙烯酸丁酯99份、丙烯酸4-羟基丁酯1.0份和2,2'-偶氮二异丁腈0.3份与乙酸乙酯。使反应容器中的混合物在氮气流下以60℃反应4小时,然后向该反应液添加乙酸乙酯,由此得到含有重均分子量为165万的丙烯酸系聚合物的溶液(固体成分浓度为30%)。相对于上述丙烯酸系聚合物溶液的固体成分每100份混配0.15份的过氧化二苯甲酰(日本油脂株式会社制造:NyperBO-Y)、0.1份的三羟甲基丙烷二甲苯二异氰酸酯(三井武田化学株式会社:TakenateD110N)和0.2份的硅烷偶联剂(综研化学株式会社制造:A-100,含有乙酰乙酰基的硅烷偶联剂),由此得到粘合剂层形成用溶液。将上述粘合剂层形成用溶液涂布至由利用硅酮系剥离剂进行了表面处理的聚酯薄膜形成的间隔件上,并以155℃进行3分钟加热处理,由此得到厚度为15μm的粘合剂层A。In a reaction vessel equipped with a condenser tube, a nitrogen introduction tube, a thermometer and a stirring device, 99 parts of butyl acrylate, 1.0 part of 4-hydroxybutyl acrylate and 0.3 parts of 2,2'-azobisisobutyronitrile were added together with ethyl acetate. The mixture in the reaction container was reacted at 60° C. for 4 hours under nitrogen flow, and ethyl acetate was added to the reaction liquid to obtain a solution containing an acrylic polymer having a weight average molecular weight of 1.65 million (solid content concentration: 30% ). 0.15 parts of dibenzoyl peroxide (manufactured by NOF Corporation: NyperBO-Y), 0.1 parts of trimethylolpropane xylene diisocyanate ( Mitsui Takeda Chemical Co., Ltd.: Takenate D110N) and 0.2 parts of a silane coupling agent (manufactured by Soken Chemical Co., Ltd.: A-100, acetoacetyl group-containing silane coupling agent) to obtain a solution for forming an adhesive layer. The above solution for forming an adhesive layer was applied to a spacer formed of a polyester film surface-treated with a silicone-based release agent, and heat-treated at 155° C. for 3 minutes to obtain a 15-μm-thick spacer. Adhesive layer A.
[参考例8:粘合剂层的制作][Reference Example 8: Production of Adhesive Layer]
在具备冷凝管、氮导入管、温度计和搅拌装置的反应容器中,一并添加丙烯酸丁酯94.9份、丙烯酸5份和丙烯酸2-羟基乙酯0.1份和相对于这些单体(固体成分)100份为0.3份的过氧化苯甲酰与乙酸乙酯。使反应容器中的混合物在氮气流下以60℃反应7小时,然后向该反应液添加乙酸乙酯,由此得到含有重均分子量为220万的丙烯酸系聚合物的溶液(固体成分浓度为30重量%)。相对于上述丙烯酸系聚合物溶液的固体成分每100份混配0.6份的三羟甲基丙烷甲苯二异氰酸酯(日本聚氨酯株式会社制造:Coronate L)和0.075份的γ-环氧丙氧基丙基甲氧基硅烷(信越化学工业株式会社制造:KBM-403),由此得到粘合剂层形成用溶液。将上述粘合剂层形成用溶液涂布至由利用硅酮系剥离剂进行了表面处理的聚酯薄膜形成的间隔件上,并以155℃进行3分钟加热处理,由此得到厚度为15μm的粘合剂层B。In a reaction vessel equipped with a condenser, a nitrogen introduction pipe, a thermometer, and a stirring device, 94.9 parts of butyl acrylate, 5 parts of acrylic acid, and 0.1 part of 2-hydroxyethyl acrylate were added together with 100 parts of these monomers (solid content). 0.3 parts of benzoyl peroxide with ethyl acetate. The mixture in the reaction container was reacted at 60° C. for 7 hours under nitrogen flow, and then ethyl acetate was added to the reaction liquid to obtain a solution containing an acrylic polymer with a weight average molecular weight of 2.2 million (solid content concentration: 30 wt. %). 0.6 parts of trimethylolpropane toluene diisocyanate (manufactured by Nippon Polyurethane Co., Ltd.: Coronate L) and 0.075 parts of γ-glycidoxypropyl Methoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-403) was used to obtain a solution for forming an adhesive layer. The above solution for forming an adhesive layer was applied to a spacer formed of a polyester film surface-treated with a silicone-based release agent, and heat-treated at 155° C. for 3 minutes to obtain a 15-μm-thick spacer. Adhesive layer B.
[实施例1][Example 1]
将偏振片1的第二保护层面与相位差层1隔着厚度为5μm的丙烯酸系粘接剂通过辊对辊贴合。其结果是,偏振器的吸收轴与相位差层1的慢轴所成的角度为15°。接着,将形成有相位差层1的PET薄膜剥离,在该剥离面隔着厚度为5μm的丙烯酸系粘接剂通过辊对辊贴合相位差层2。其结果是,偏振器的吸收轴与相位差层2的慢轴所成的角度为75°。进而,将形成有相位差层2的PET薄膜剥离,得到具有偏振片/第一相位差层/第二相位差层的构成的圆偏振片1。将圆偏振片1的第二相位差层与由参考例5得到的带基材导电层的导电层隔着粘合剂层A通过辊对辊贴合,得到长条状(宽度为500mm的卷状)的光学层叠体1。将所得到的光学层叠体1供至上述(4)的评价。将结果示于表2。The second protective layer of the polarizing plate 1 and the retardation layer 1 were bonded by roll-to-roll through an acrylic adhesive having a thickness of 5 μm. As a result, the angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer 1 was 15°. Next, the PET film on which the retardation layer 1 was formed was peeled off, and the retardation layer 2 was bonded to the peeled surface by roll-to-roll via an acrylic adhesive having a thickness of 5 μm. As a result, the angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer 2 was 75°. Furthermore, the PET film in which the retardation layer 2 was formed was peeled off, and the circular polarizing plate 1 which has the structure of a polarizing plate/1st retardation layer/2nd retardation layer was obtained. The second retardation layer of the circular polarizing plate 1 and the conductive layer with the conductive layer of the base material obtained in Reference Example 5 are laminated by roll-to-roll through the adhesive layer A to obtain a strip shape (a roll with a width of 500 mm) shape) optical laminated body 1. The obtained optical layered body 1 was subjected to the evaluation of (4) above. The results are shown in Table 2.
[比较例1][Comparative example 1]
将偏振片1的第二保护层面与相位差层3隔着厚度为12μm的丙烯酸系粘接剂通过辊对辊贴合,得到具有偏振片/相位差层的构成的圆偏振片2。其结果是,偏振器的吸收轴与相位差层3的慢轴所成的角度为45°。该构成与实施例1中的将两个相位差层组合而成的构成在光学上实质上等效。将圆偏振片2的相位差层与由参考例5得到的带基材导电层的导电层隔着粘合剂层A贴合,得到长条状(宽度为500mm的卷状)的光学层叠体2。将所得到的光学层叠体2供至上述(4)的评价。将结果示于表2。The second protective layer of the polarizer 1 and the retardation layer 3 were laminated by roll-to-roll via an acrylic adhesive with a thickness of 12 μm to obtain a circular polarizing plate 2 having a polarizer/retardation layer configuration. As a result, the angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer 3 was 45°. This configuration is optically substantially equivalent to the configuration in which two retardation layers are combined in Example 1. The retardation layer of the circular polarizing plate 2 was bonded to the conductive layer with the base conductive layer obtained in Reference Example 5 through the adhesive layer A to obtain a long (500 mm wide) optical laminate. 2. The obtained optical layered body 2 was subjected to the evaluation of (4) above. The results are shown in Table 2.
表2Table 2
﹡PC为聚碳酸酯系树脂薄膜﹡PC is polycarbonate resin film
<评价><Evaluation>
由表2中的实施例与比较例的比较可知:尽管形成有导电层的基材的相位差和慢轴方向的宽度方向的偏差相同,并且相位差层的补偿功能在光学上等效,但通过使特定的两个相位差层组合作为相位差层来进行光学补偿,在将宽卷状的光学层叠体裁断为规定尺寸而应用于图像显示装置的情况下能够减小各产品的显示特性的偏差。From the comparison of the examples and comparative examples in Table 2, it can be seen that although the retardation of the base material formed with the conductive layer and the deviation in the width direction of the slow axis direction are the same, and the compensation function of the retardation layer is optically equivalent, but By performing optical compensation by combining two specific retardation layers as a retardation layer, it is possible to reduce the difference in the display characteristics of each product when cutting a wide roll-shaped optical laminated body into a predetermined size and applying it to an image display device. deviation.
产业上的可利用性Industrial availability
本发明的光学层叠体可适合用于如液晶显示装置和有机EL显示装置那样的图像显示装置,尤其可适合用作有机EL显示装置的抗反射薄膜。进而,本发明的光学层叠体可适合用于内置触控面板型输入显示装置。The optical laminate of the present invention can be suitably used for image display devices such as liquid crystal display devices and organic EL display devices, and can be used particularly suitably as an antireflection film for organic EL display devices. Furthermore, the optical laminated body of this invention can be used suitably for a built-in touch panel type input display device.
符号说明Symbol Description
10 偏振片10 polarizers
11 偏振器11 Polarizers
12 第一保护层12 First layer of protection
13 第二保护层13 Second protective layer
20 第一相位差层20 The first retardation layer
30 第二相位差层30 Second retardation layer
41 导电层41 conductive layer
42 基材42 Substrate
100 光学层叠体100 optical stacks
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-235576 | 2015-12-02 | ||
JP2015235576A JP6453746B2 (en) | 2015-12-02 | 2015-12-02 | Elongated optical laminate and image display device |
PCT/JP2016/084385 WO2017094539A1 (en) | 2015-12-02 | 2016-11-21 | Long optical layered body and image display device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108292004A CN108292004A (en) | 2018-07-17 |
CN108292004B true CN108292004B (en) | 2019-11-08 |
Family
ID=58797261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680070747.1A Active CN108292004B (en) | 2015-12-02 | 2016-11-21 | Elongated optical laminated body and image display device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6453746B2 (en) |
KR (1) | KR102014924B1 (en) |
CN (1) | CN108292004B (en) |
TW (1) | TWI673524B (en) |
WO (1) | WO2017094539A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019191282A (en) * | 2018-04-20 | 2019-10-31 | 日東電工株式会社 | Polarizing plate with retardation layer and organic EL display device |
WO2019208512A1 (en) * | 2018-04-27 | 2019-10-31 | 日本ゼオン株式会社 | Broadband wavelength film, production method for same, and production method for circularly polarizing film |
JP6890161B2 (en) * | 2018-10-15 | 2021-06-18 | 日東電工株式会社 | Polarizing plate with retardation layer and image display device using it |
KR102521527B1 (en) * | 2018-10-15 | 2023-04-14 | 닛토덴코 가부시키가이샤 | Polarizing plate with retardation layer and image display using the same |
JP6890160B2 (en) * | 2018-10-15 | 2021-06-18 | 日東電工株式会社 | Polarizing plate with retardation layer and image display device using it |
KR102536728B1 (en) * | 2018-10-15 | 2023-05-26 | 닛토덴코 가부시키가이샤 | Polarizing plate with phase difference layer, and image display device using this |
JP6890162B2 (en) * | 2018-10-15 | 2021-06-18 | 日東電工株式会社 | Polarizing plate with retardation layer and image display device using it |
CN111045135B (en) * | 2018-10-15 | 2023-08-22 | 日东电工株式会社 | Polarizing plate with retardation layer and image display device using same |
KR102476698B1 (en) * | 2018-10-15 | 2022-12-14 | 닛토덴코 가부시키가이샤 | Polarizing plate with retardation layer and image display using the same |
JP7543250B2 (en) * | 2019-03-27 | 2024-09-02 | 日東電工株式会社 | Polarizing plate with retardation layer |
CN113874765B (en) * | 2019-05-28 | 2024-04-30 | 东洋纺株式会社 | Circular polarization element transfer laminate and method for producing optical article using the same |
JP7382801B2 (en) * | 2019-11-12 | 2023-11-17 | 日東電工株式会社 | Polarizing plate with retardation layer and image display device |
JP6986616B2 (en) | 2019-12-10 | 2021-12-22 | 住友化学株式会社 | Laminates and optical laminates |
CN111308603A (en) * | 2020-04-09 | 2020-06-19 | 四川龙华光电薄膜股份有限公司 | Oblique optical axis phase difference film |
KR102705601B1 (en) * | 2020-05-06 | 2024-09-10 | 삼성에스디아이 주식회사 | Polarizing plate and optical display apparatus comprising the same |
JP7046127B6 (en) * | 2020-07-28 | 2023-12-18 | 日東電工株式会社 | Image display device including an optical laminate and a polarizing plate with a retardation layer of the optical laminate |
CN114495721B (en) * | 2022-02-07 | 2023-09-01 | 武汉华星光电半导体显示技术有限公司 | Display panel and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102455545A (en) * | 2010-10-25 | 2012-05-16 | 奥博特瑞克斯株式会社 | Liquid crystal display device |
CN202795286U (en) * | 2010-02-24 | 2013-03-13 | 阿尔卑斯电气株式会社 | Operating device |
CN104866157A (en) * | 2010-07-07 | 2015-08-26 | 阿尔卑斯电气株式会社 | Input device |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111896A (en) * | 1998-08-04 | 2000-04-21 | Kanegafuchi Chem Ind Co Ltd | Liquid crystal display with touch panel and touch panel |
JP3325560B2 (en) | 1998-10-30 | 2002-09-17 | 帝人株式会社 | Retardation film and optical device using the same |
JP2002311239A (en) * | 2001-04-16 | 2002-10-23 | Nitto Denko Corp | Quarter wave plate, circularly polarizing plate and display device |
JP2002372622A (en) | 2001-06-14 | 2002-12-26 | Nitto Denko Corp | Composite optical retardation plate, circularly polarizing plate and liquid crystal display, organic el display device |
JP2003036143A (en) | 2001-07-25 | 2003-02-07 | Sumitomo Chem Co Ltd | Inner touch panel |
JP2003311239A (en) | 2002-04-23 | 2003-11-05 | Matsushita Electric Works Ltd | Apparatus for treating garbage |
JP2004020701A (en) * | 2002-06-13 | 2004-01-22 | Nippon Zeon Co Ltd | Optical laminate |
TWI308659B (en) * | 2004-09-27 | 2009-04-11 | Far Eastern Textile Ltd | Process for orienting rod-like liquid crystal molecules, and optical elements produced by using the same |
TW201425814A (en) * | 2012-12-26 | 2014-07-01 | 鴻海精密工業股份有限公司 | LED module and method of manufacturing the same |
JP2014170221A (en) * | 2013-02-07 | 2014-09-18 | Nitto Denko Corp | Circular polarizing plate and bendable display device |
US20160070382A1 (en) * | 2013-04-10 | 2016-03-10 | Zeon Corporation | Display device with capacitive touch panel |
JP6424816B2 (en) * | 2013-05-16 | 2018-11-21 | 日本ゼオン株式会社 | Display with capacitive touch panel |
JP2015069158A (en) * | 2013-09-30 | 2015-04-13 | 大日本印刷株式会社 | Optical film, image display device, and method for manufacturing the optical film |
JP2015232647A (en) * | 2014-06-10 | 2015-12-24 | 日東電工株式会社 | Laminate and image display device |
-
2015
- 2015-12-02 JP JP2015235576A patent/JP6453746B2/en active Active
-
2016
- 2016-11-21 CN CN201680070747.1A patent/CN108292004B/en active Active
- 2016-11-21 WO PCT/JP2016/084385 patent/WO2017094539A1/en active Application Filing
- 2016-11-21 KR KR1020187015396A patent/KR102014924B1/en active Active
- 2016-11-28 TW TW105139127A patent/TWI673524B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202795286U (en) * | 2010-02-24 | 2013-03-13 | 阿尔卑斯电气株式会社 | Operating device |
CN104866157A (en) * | 2010-07-07 | 2015-08-26 | 阿尔卑斯电气株式会社 | Input device |
CN102455545A (en) * | 2010-10-25 | 2012-05-16 | 奥博特瑞克斯株式会社 | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
TW201728928A (en) | 2017-08-16 |
CN108292004A (en) | 2018-07-17 |
KR102014924B1 (en) | 2019-08-28 |
TWI673524B (en) | 2019-10-01 |
JP6453746B2 (en) | 2019-01-16 |
KR20180088405A (en) | 2018-08-03 |
WO2017094539A1 (en) | 2017-06-08 |
JP2017102286A (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108292004B (en) | Elongated optical laminated body and image display device | |
CN107924010A (en) | Polarizer with optical compensating layer and the organic EL panel for having used it | |
CN109791246B (en) | Optical laminate and image display device | |
JP6301885B2 (en) | Polarizing plate with optical compensation layer and organic EL panel using the same | |
CN107924012B (en) | Long polarizing plate with optical compensation layer and organic EL panel using same | |
JP6712335B2 (en) | Polarizing plate with optical compensation layer and organic EL panel using the same | |
KR20200100068A (en) | Retardation plate, polarizing plate with optical compensation layer, image display device, and touch panel image display device | |
JP6797499B2 (en) | Polarizing plate with retardation layer and image display device using it | |
WO2017154447A1 (en) | Polarizing plate with optical compensation layer, and organic el panel using said polarizing plate | |
CN108292002A (en) | Optical laminate and image display device | |
CN113785228B (en) | Method for producing polarizing plate with phase difference layer and hard coating layer | |
JP6804168B2 (en) | Polarizing plate with retardation layer and image display device using it | |
CN116324604B (en) | Polarizing plate with phase difference layer and image display device | |
JP2018109778A (en) | Polarizing plate with optical compensation layers, and organic el panel having the same | |
TW202419933A (en) | Optical laminate | |
KR20200042395A (en) | Polarizing plate with retardation layer and image display using the same | |
JP2019091069A (en) | Long Polarizing Plate with Optical Compensation Layer and Organic EL Panel Using the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |