CN108287234A - Nano immune magnetic bead and its preparation method and application - Google Patents
Nano immune magnetic bead and its preparation method and application Download PDFInfo
- Publication number
- CN108287234A CN108287234A CN201710173694.2A CN201710173694A CN108287234A CN 108287234 A CN108287234 A CN 108287234A CN 201710173694 A CN201710173694 A CN 201710173694A CN 108287234 A CN108287234 A CN 108287234A
- Authority
- CN
- China
- Prior art keywords
- nano
- preparation
- magnetic bead
- immune magnetic
- nano immune
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011324 bead Substances 0.000 title claims abstract description 97
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 20
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 19
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 10
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 10
- 229910001447 ferric ion Inorganic materials 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000005119 centrifugation Methods 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 3
- 239000000706 filtrate Substances 0.000 claims description 2
- 229920001503 Glucan Polymers 0.000 claims 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 239000000908 ammonium hydroxide Substances 0.000 claims 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 1
- 229920002307 Dextran Polymers 0.000 abstract description 39
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 238000003786 synthesis reaction Methods 0.000 abstract description 5
- 230000002776 aggregation Effects 0.000 abstract description 3
- 238000004220 aggregation Methods 0.000 abstract description 3
- 238000004062 sedimentation Methods 0.000 abstract description 3
- 238000002955 isolation Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 44
- 239000000243 solution Substances 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 238000000926 separation method Methods 0.000 description 12
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 235000011114 ammonium hydroxide Nutrition 0.000 description 9
- 238000003756 stirring Methods 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- 229910021538 borax Inorganic materials 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 235000010339 sodium tetraborate Nutrition 0.000 description 4
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 4
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 229910001448 ferrous ion Inorganic materials 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 238000000432 density-gradient centrifugation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001926 lymphatic effect Effects 0.000 description 2
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101100005713 Homo sapiens CD4 gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000004405 cytokine-induced killer cell Anatomy 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000008073 immune recognition Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- -1 iron ion Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002102 nanobead Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/531—Production of immunochemical test materials
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种纳米免疫磁珠及其制备方法和应用。本发明的纳米免疫磁珠的制备方法可以制备50nm级别的葡聚糖包被Fe3O4和/或γFe2O3的纳米免疫磁珠,得到的该纳米免疫磁珠的粒径小,并且粒径分布均匀,稳定性好,可以避免磁珠聚集和沉降。此外,通过合成得到的纳米免疫磁珠偶联抗体,可以保证每批磁珠表面抗体的量基本一致,可重复性好,分选出来阳性细胞纯度达到90%以上,杂质含量低,可广泛应用在细胞的特异性分选和分离过程中。该纳米免疫磁珠的制备方法快捷、简便,成本较低,可广泛推广应用。
The invention discloses a nano-immune magnetic bead, a preparation method and application thereof. The preparation method of nano-immunomagnetic beads of the present invention can prepare 50nm - level dextran-coated Fe3O4 and/or γFe2O3 nano-immune-magnetic beads, the obtained nano-immune-magnetic beads have a small particle size, and The particle size distribution is uniform and the stability is good, which can avoid the aggregation and sedimentation of magnetic beads. In addition, the antibody-coupled nano-immunomagnetic beads obtained through synthesis can ensure that the amount of antibodies on the surface of each batch of magnetic beads is basically the same, and the repeatability is good. During the specific sorting and isolation of cells. The preparation method of the nano-immune magnetic beads is quick, simple and low in cost, and can be widely popularized and applied.
Description
技术领域technical field
本发明涉及细胞工程领域,尤其是涉及一种纳米免疫磁珠及其制备方法和应用。The invention relates to the field of cell engineering, in particular to a nano-immune magnetic bead and its preparation method and application.
背景技术Background technique
细胞分选在临床诊断、细胞免疫治疗等方面具有非常重要的作用。临床诊断方面,例如:胎儿细胞分离以判断胎儿是否有遗传缺陷;癌细胞分离以实现癌症的早期诊断和治疗;造血干细胞移植,可作为恶性肿瘤大剂量放疗、化疗后造血支持治疗的主要措施。细胞免疫治疗方面,如从患者外周血单个核细胞中分离出免疫细胞,在体外采用细胞因子将其激活成为细胞因子诱导的杀伤性细胞,如DC-CIK细胞,或是采用基因工程技术给T细胞加入一个能识别肿瘤细胞并且同时激活T细胞的嵌合抗体使其在体外大量扩增后重新输回体内,从而杀死具有相应特异性抗原的肿瘤细胞,如CAR-T细胞等。Cell sorting plays a very important role in clinical diagnosis and cell immunotherapy. In terms of clinical diagnosis, for example: fetal cell separation to determine whether the fetus has genetic defects; cancer cell separation to achieve early diagnosis and treatment of cancer; hematopoietic stem cell transplantation can be used as the main measure of hematopoietic support after high-dose radiotherapy and chemotherapy for malignant tumors. In terms of cellular immunotherapy, such as isolating immune cells from peripheral blood mononuclear cells of patients, using cytokines in vitro to activate them into cytokine-induced killer cells, such as DC-CIK cells, or using genetic engineering technology to T cells The cells add a chimeric antibody that can recognize tumor cells and activate T cells at the same time, so that they can be reinfused into the body after massive expansion in vitro, so as to kill tumor cells with corresponding specific antigens, such as CAR-T cells.
细胞分选方法主要有两大类:一类是基于细胞群之间存在沉降系数的差异而建立起来的密度梯度离心法(Density gradient centrifugation);另一类是基于免疫识别特性的方法,包括荧光激活细胞分选方法(Fluorescence-activated cell sorting,FACS)和磁性激活细胞分选法(亦称为磁珠分选法,Magnetic-activated cell separation,MACS)。密度梯度离心法简单易行,但分离得到的细胞纯度低,且细胞表面的标志不明确,特异性较差,因此,目前己较少使用此种方法。流式细胞分选所得的细胞纯度高、回收率高、不易被污染,但此方法所需的设备昂贵、耗时、对细胞刺激较大,且需要高水平的技术支持以及专业的操作人员。此外,该方法在一段时间内只能分选一个细胞样品。There are two main categories of cell sorting methods: one is density gradient centrifugation based on differences in sedimentation coefficients between cell populations; the other is based on immune recognition characteristics, including fluorescence Activated cell sorting (Fluorescence-activated cell sorting, FACS) and magnetic activated cell sorting (also known as magnetic bead sorting, Magnetic-activated cell separation, MACS). Density gradient centrifugation is simple and easy, but the purity of the isolated cells is low, and the markers on the cell surface are not clear, and the specificity is poor. Therefore, this method has been seldom used at present. The cells obtained by flow cytometry have high purity, high recovery rate, and are not easy to be contaminated, but the equipment required by this method is expensive, time-consuming, stimulates the cells greatly, and requires high-level technical support and professional operators. Additionally, the method can only sort one cell sample at a time.
磁珠分选法是20世纪70年代发展起来的一种优异的细胞分选技术。其涉及的免疫磁珠是一种包被有单克隆抗体的磁性颗粒,可与靶细胞表面的抗原结合。在外加磁场中,通过抗体与磁珠相连的靶细胞被吸附而滞留在分选柱中,无该种表面抗原的细胞由于不能与磁珠连接而没有磁性,不能在磁场中停留,从而达到细胞富集纯化的目的。目前商品化的用于细胞分选的磁珠产品主要包括德国美天旎(Miltenyi)纳米级葡聚糖包覆的超顺磁性磁珠和美国戴诺(Dynal)微米级聚苯乙烯磁珠。而相对于戴诺微米级聚苯乙烯磁珠而言,美天旎的50nm左右的磁珠具有以下优势:1、磁珠与细胞结合后,无需将磁珠解离下来,且对细胞生理和活性无任何影响;2、葡聚糖包裹的纳米磁珠可降解、生物相容性好,对细胞无任何毒性;3、附着有小磁珠的靶细胞可进行流式分析而不受太大影响,对后续实验无影响;4、分选出来的靶细胞纯度高,可避免其他非特异细胞的干扰。Magnetic bead sorting is an excellent cell sorting technique developed in the 1970s. The immunomagnetic beads involved are magnetic particles coated with monoclonal antibodies, which can bind to antigens on the surface of target cells. In the external magnetic field, the target cells connected to the magnetic beads through the antibody are adsorbed and retained in the sorting column. Cells without such surface antigens have no magnetism because they cannot be connected with the magnetic beads and cannot stay in the magnetic field, thus reaching the cells. The purpose of enrichment and purification. The current commercial magnetic bead products for cell sorting mainly include superparamagnetic magnetic beads coated with nano-sized dextran from Miltenyi in Germany and micron-sized polystyrene magnetic beads from Dynal in the United States. Compared with Dyno micron-sized polystyrene magnetic beads, Miltenyi's magnetic beads of about 50nm have the following advantages: 1. After the magnetic beads are combined with cells, there is no need to dissociate the magnetic beads, and it is not necessary for cell physiology and No effect on activity; 2. Dextran-coated nano magnetic beads are degradable, have good biocompatibility, and have no toxicity to cells; 3. Target cells attached to small magnetic beads can be analyzed by flow cytometry without being too large 4. The sorted target cells are of high purity, which can avoid the interference of other non-specific cells.
虽然美天旎的50nm磁珠性能较好,但是价格昂贵,国内的研究机构和企业基本依靠国外进口,这也让中小企业望而却步。虽然国内也陆续开发用于细胞分析、蛋白纯化的磁珠,但是这些磁珠粒径主要分布在微米级,而且包裹层主要集中在有机和无机物质,所得到磁珠的生物相容性和可降解性比较差,很难应用于生物体内。而有些包被的糖类物质是采用两步法包裹,首先是采用共沉淀法合成纳米裸磁珠,再在表面用葡聚糖进行包裹,这样就会使得得到的纳米粒子容易聚集,分散性比较差,如申请号为CN200710176211的专利申请中提到的方法;而采用一步法葡聚糖包裹的纳米粒子,虽得到的稳定性较好,但是在基团修饰过程中用到溴化氰,然而溴化氰有剧毒也限制了其应用(如Clonis YD,Small DAP.High-performance dye-ligand Chromatograph.In Reactive in Protein and EnzymeTechnology(M).London:Macmillan Press,1987.87-100)。Although Miltenyi's 50nm magnetic beads have better performance, they are expensive, and domestic research institutions and enterprises basically rely on foreign imports, which also discourages small and medium-sized enterprises. Although magnetic beads for cell analysis and protein purification have been developed in China, the particle size of these magnetic beads is mainly distributed in microns, and the coating layer is mainly concentrated in organic and inorganic substances. The biocompatibility and stability of the obtained magnetic beads The degradability is relatively poor, and it is difficult to apply in vivo. And some coated carbohydrates are wrapped by a two-step method. First, the nano-bare magnetic beads are synthesized by co-precipitation, and then wrapped with dextran on the surface, which will make the obtained nanoparticles easy to aggregate and disperse. Relatively poor, as the method mentioned in the patent application whose application number is CN200710176211; and the nanoparticles wrapped with one-step dextran, although the stability obtained is better, but in the group modification process, cyanogen bromide is used, However, the high toxicity of cyanogen bromide also limits its application (such as Clonis YD, Small DAP. High-performance dye-ligand Chromatograph. In Reactive in Protein and Enzyme Technology (M). London: Macmillan Press, 1987.87-100).
发明内容Contents of the invention
基于此,有必要提供一种粒径较小、稳定性好且制备方法简便的纳米免疫磁珠及其制备方法和应用。Based on this, it is necessary to provide a nano-immunomagnetic bead with small particle size, good stability and simple preparation method, its preparation method and application.
本发明解决上述技术问题的技术方案如下。The technical solution of the present invention to solve the above-mentioned technical problems is as follows.
一种纳米免疫磁珠的制备方法,其特征在于,包括如下步骤:A preparation method of nano-immunomagnetic beads, characterized in that, comprising the steps of:
步骤一:配制无氧反应溶液,所述无氧反应溶液中加入有葡聚糖、Fe2+和Fe3+,其中,Fe2+和Fe3+的浓度之和为0.03mol/l~1mol/l,Fe3+与Fe2+的摩尔比为0.25:1~4:1,Fe2+和Fe3+的物质的量之和与葡聚糖的物质的量的比例为90:1~15:1,所述葡聚糖为羟基葡聚糖或羧基葡聚糖;Step 1: preparing an anaerobic reaction solution, adding dextran, Fe 2+ and Fe 3+ to the anaerobic reaction solution, wherein the sum of the concentrations of Fe 2+ and Fe 3+ is 0.03mol/l-1mol /l, the molar ratio of Fe 3+ to Fe 2+ is 0.25:1~4:1, the ratio of the sum of the amount of Fe 2+ and Fe 3+ to the amount of dextran is 90:1~ 15:1, the dextran is hydroxyl dextran or carboxy dextran;
步骤二:将所述无氧反应溶液在50℃下以500~1200rpm/min搅拌反应10min,再加入氨水调节酸碱度至pH为9.0~11,在50~100℃下继续搅拌反应30min~2h;Step 2: Stir the anaerobic reaction solution at 50°C at 500-1200rpm/min for 10min, then add ammonia water to adjust the pH to 9.0-11, and continue stirring at 50-100°C for 30min-2h;
步骤三:反应结束后冷却至室温,离心去除溶液中较大的颗粒,收集的溶液用酸调节酸碱度至中性,然后用0.22μm的亲水性滤膜过滤以进一步除杂,得到的滤液纯化后即得葡聚糖包被Fe3O4和/或γFe2O3的所述纳米免疫磁珠。Step 3: Cool to room temperature after the reaction, centrifuge to remove larger particles in the solution, adjust the pH of the collected solution to neutral with acid, and then filter with a 0.22 μm hydrophilic filter membrane to further remove impurities, and purify the obtained filtrate After that, the nano-immunomagnetic beads coated with Fe 3 O 4 and/or γFe 2 O 3 by dextran are obtained.
在步骤一配置溶液时,可先向溶剂中通过氮气除氧,后续制备过程选择在无氧条件下,如氮气或惰性气体氛围中进行反应。When configuring the solution in step 1, oxygen can be removed from the solvent by passing nitrogen gas first, and the subsequent preparation process should be carried out under anaerobic conditions, such as nitrogen or an inert gas atmosphere.
在其中一个实施例中,所述葡聚糖的分子量为20kDa~100kDa。In one of the embodiments, the molecular weight of the dextran is 20kDa-100kDa.
进一步,在其中一个实施例中,所述葡聚糖的分子量为20kDa、40kDa或100kDa。Further, in one of the embodiments, the molecular weight of the dextran is 20kDa, 40kDa or 100kDa.
在其中一个实施例中,Fe2+和Fe3+的浓度之和为0.09mol/l。In one embodiment, the sum of the concentrations of Fe 2+ and Fe 3+ is 0.09 mol/l.
在其中一个实施例中,Fe3+与Fe2+的摩尔比为2:1。In one embodiment, the molar ratio of Fe 3+ to Fe 2+ is 2:1.
在其中一个实施例中,Fe2+和Fe3+的物质的量之和与葡聚糖的物质的量的比例为90:1、45:1、30:1、18:1或15:1。进一步,在其中一个实施例中,Fe2+和Fe3+的物质的量之和与葡聚糖的物质的量的比例为45:1。In one of the embodiments, the ratio of the sum of the amounts of Fe 2+ and Fe 3+ to the amount of dextran is 90:1, 45:1, 30:1, 18:1 or 15:1 . Further, in one of the embodiments, the ratio of the sum of the amounts of Fe2+ and Fe3+ to the amount of dextran is 45:1.
在其中一个实施例中,在所述步骤二中,是将所述无氧反应溶液在50℃下以1000rpm/min搅拌反应10min,再加入氨水调节酸碱度至pH为10,在70℃下继续搅拌反应1h。氨水可选用浓度为5mol/L~15mol/L的浓氨水,浓氨水的加入量可按照每100ml无氧反应溶液加入8ml~50ml,如可以选择加入8ml、12ml、16ml、24ml或50ml,在其中一个实施例中,浓氨水的加入量可按照每100ml无氧反应溶液加入12ml的量加入。In one embodiment, in the second step, the anaerobic reaction solution is stirred and reacted at 50°C at 1000rpm/min for 10min, then ammonia water is added to adjust the pH to 10, and the stirring is continued at 70°C Reaction 1h. Ammonia water can choose concentrated ammonia water with a concentration of 5mol/L~15mol/L. The amount of concentrated ammonia water can be added according to 8ml~50ml per 100ml anaerobic reaction solution, such as 8ml, 12ml, 16ml, 24ml or 50ml can be selected, In one embodiment, the amount of concentrated ammonia water can be added in an amount of 12ml per 100ml of anaerobic reaction solution.
在其中一个实施例中,在所述步骤三中,所述离心的转速是3000rpm,时间是5min。In one embodiment, in the third step, the rotation speed of the centrifugation is 3000 rpm, and the centrifugation time is 5 minutes.
在其中一个实施例中,在所述步骤三中,使用浓度为0.1M~2.0M的HCl或冰醋酸进行酸碱度调节,如可使用浓度为1.0M的HCl调节酸碱度至pH为7.0。In one embodiment, in the third step, the pH is adjusted using HCl or glacial acetic acid with a concentration of 0.1M-2.0M, for example, HCl with a concentration of 1.0M can be used to adjust the pH to 7.0.
在其中一个实施例中,在所述步骤三中,所述纯化是过分选柱(德国美天旎,MS分选柱)纯化,以除去其中游离的葡聚糖。In one of the embodiments, in the third step, the purification is purification with a separation column (Miltenyi, Germany, MS separation column) to remove free dextran therein.
一种纳米免疫磁珠,使用上述任一实施例所述的纳米免疫磁珠的制备方法制备得到。A nano-immunomagnetic bead, which is prepared by using the method for preparing nano-immunomagnetic beads described in any of the above embodiments.
该制备得到的纳米免疫磁珠可调整至浓度为6mg/ml保存在4℃下备用。The prepared nano-immunomagnetic beads can be adjusted to a concentration of 6 mg/ml and stored at 4° C. for future use.
上述纳米免疫磁珠在细胞分选中的应用。Application of the above-mentioned nano-immunomagnetic beads in cell sorting.
如在其中一个实施例中,该应用包括将纳米免疫磁珠与特异性抗体结合以及使用结合有特异性抗体的纳米免疫磁珠与靶细胞通过特异性抗体-靶细胞表面抗原结合,并在磁场中筛选的步骤。对于羧基葡聚糖,可直接将其与特异性抗体相结合;对于羟基葡聚糖,可先将羟基葡聚糖氧化成醛基葡聚糖,在将醛基葡聚糖与特应性抗体相结合。As in one of the embodiments, the application includes combining nano-immunomagnetic beads with specific antibodies and using nano-immuno-magnetic beads bound with specific antibodies to target cells through specific antibody-target cell surface antigen binding, and in a magnetic field in the filtering steps. For carboxy dextran, it can be directly combined with specific antibodies; for hydroxy dextran, the hydroxy dextran can be oxidized to formaldehyde dextran first, and then the formaldehyde dextran can be combined with the specific antibody Combine.
在其中一个实施例中,对于羟基葡聚糖包被的纳米免疫磁珠,可通过如下方法将羟基葡聚糖氧化为醛基葡聚糖:In one of the embodiments, for the nano-immunomagnetic beads coated with hydroxydextran, the hydroxydextran can be oxidized to formyl dextran by the following method:
向羟基葡聚糖包被的纳米免疫磁珠溶液中加入高碘酸钠,其中,高碘酸钠的加入量满足:纳米免疫磁珠:高碘酸钠=0.125~8:1(质量比),常温避光搅拌反应30min~3h,反应结束后过柱分离纯化除去游离葡聚糖,用10mM~100mM、pH为7.0~9.0硼酸钠溶液洗涤后,即得。进一步,还可调整醛基葡聚糖包被的纳米免疫磁珠的浓度为4mg/ml保存备用。Add sodium periodate to the nano-immune magnetic bead solution coated with hydroxydextran, wherein, the addition of sodium periodate meets: nano-immune magnetic bead: sodium periodate=0.125~8:1 (mass ratio) , stirring and reacting at room temperature in the dark for 30 minutes to 3 hours. After the reaction, the free dextran is removed by column separation and purification, and washed with 10mM to 100mM sodium borate solution with a pH of 7.0 to 9.0 to obtain the product. Further, the concentration of the aldehyde dextran-coated nano-immunomagnetic beads can also be adjusted to 4 mg/ml and stored for later use.
进一步,在其中一个实施例中,纳米免疫磁珠与高碘酸钠的质量比可以为8:1、4:1、2:1、1:1、1:2、1:3、1:4或1:8,其中1:1为优选的质量比例。Further, in one of the embodiments, the mass ratio of nano-immunomagnetic beads to sodium periodate can be 8:1, 4:1, 2:1, 1:1, 1:2, 1:3, 1:4 Or 1:8, wherein 1:1 is the preferred mass ratio.
更进一步,在其中一个实施例中,避光搅拌反应时间为1h。Furthermore, in one of the embodiments, the reaction time is 1 h while avoiding light and stirring.
再进一步,在其中一个实施例中,是使用20mM、pH为8.5硼酸钠溶液洗涤3次。Still further, in one of the embodiments, 20 mM sodium borate solution with a pH of 8.5 was used to wash 3 times.
将醛基葡聚糖或羧基葡聚糖包被的纳米免疫磁珠与特异性抗体结合可按照但不限于如下步骤进行,如在其中一个实施例中,对于保存备用的浓度4mg/ml的醛基葡聚糖或羧基葡聚糖包被的纳米免疫磁珠,可取100μl,用20mM、pH为8.5硼酸钠稀释一倍后,按照纳米免疫磁珠:抗体质量比为1~100:1比例加入抗体,常温反应振荡混匀1h~12h,反应结束后,向反应体系中加入过量的NaBH4反应30min~3h,过柱分离纯化,用PBS缓冲液洗涤多次,加入磷酸盐缓冲液于4℃保存备用即可。其他体积可按照比例进行调整。The binding of nano-immune magnetic beads coated with aldehyde dextran or carboxy dextran to specific antibodies can be carried out according to but not limited to the following steps. Nano-immune magnetic beads coated with dextran or carboxy-dextran can be taken as 100μl, diluted with 20mM sodium borate with a pH of 8.5, and then added according to the ratio of nano-immune magnetic beads:antibody mass ratio of 1 to 100:1 Antibody, react at room temperature and shake and mix for 1h~12h. After the reaction is over, add excess NaBH4 to the reaction system for 30min~3h, separate and purify through the column, wash with PBS buffer for several times, add phosphate buffer at 4℃ Save it for later use. Other volumes may be adjusted proportionally.
进一步,在其中一个实施例中,可按照纳米免疫磁珠:抗体质量比为5:1、15:1、30:1或100:1的比例加入浓度5mg/ml的抗体。其中,纳米免疫磁珠:抗体质量比优选是15:1,常温反应振荡混匀的时间优选为6h。Further, in one of the embodiments, the antibody with a concentration of 5 mg/ml can be added according to the ratio of nano-immunomagnetic beads:antibody mass ratio of 5:1, 15:1, 30:1 or 100:1. Wherein, the nano-immune magnetic beads:antibody mass ratio is preferably 15:1, and the time for shaking and mixing at room temperature is preferably 6h.
更进一步,在其中一个实施例中,可按照纳米免疫磁珠:NaBH4质量比为20:1、10:1、1:10或1:20比例加入浓度为0.25M的NaBH4。其中,优选的比例是10:1,优选的反应时间为1h。Furthermore, in one embodiment, NaBH 4 with a concentration of 0.25M can be added according to the mass ratio of nano-immunomagnetic beads:NaBH 4 being 20:1, 10:1, 1:10 or 1:20. Wherein, the preferred ratio is 10:1, and the preferred reaction time is 1 h.
通过上述纳米免疫磁珠的制备方法可以制备50nm级别的葡聚糖包被Fe3O4和/或γFe2O3的纳米免疫磁珠,得到的该纳米免疫磁珠的粒径小,并且粒径分布均匀,稳定性好,可以避免磁珠聚集和沉降。此外,通过合成得到的纳米免疫磁珠偶联抗体,可以保证每批磁珠表面抗体的量基本一致,可重复性好,分选出来阳性细胞纯度达到90%以上,杂质含量低,可广泛应用在细胞的特异性分选和分离过程中。该纳米免疫磁珠的制备方法快捷、简便,成本较低,可广泛推广应用。The nano-immuno-magnetic beads coated with Fe3O4 and/or γFe2O3 by 50nm-level dextran can be prepared by the above-mentioned preparation method of nano-immune-magnetic beads. The obtained nano-immune-magnetic beads have a small particle size and The diameter distribution is uniform and the stability is good, which can avoid the aggregation and sedimentation of magnetic beads. In addition, the antibody-coupled nano-immunomagnetic beads obtained through synthesis can ensure that the amount of antibodies on the surface of each batch of magnetic beads is basically the same, and the repeatability is good. During the specific sorting and isolation of cells. The preparation method of the nano-immune magnetic beads is quick, simple and low in cost, and can be widely popularized and applied.
附图说明Description of drawings
图1为实施例1制备得到的纳米免疫磁珠的粒径分布检测结果图;Fig. 1 is the particle size distribution detection result figure of the nano-immunomagnetic beads prepared in embodiment 1;
图2为实施例4制得的羟基纳米免疫磁珠的SEM图;Fig. 2 is the SEM picture of the hydroxyl nano-immunomagnetic beads that embodiment 4 makes;
图3为实施例5分选出来的CD4T细胞的荧光染色结果图。FIG. 3 is a graph showing the results of fluorescent staining of CD4 T cells sorted in Example 5. FIG.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the present invention will be described more fully below with reference to the associated drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, these embodiments are provided to make the understanding of the disclosure of the present invention more thorough and comprehensive.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
实施例1 50nm羟基葡聚糖包被的纳米免疫磁珠的合成Example 1 Synthesis of nano-immunomagnetic beads coated with 50nm hydroxydextran
首先称取8.0g羟基葡聚糖(分子量40kDa),溶解到100ml去离子水中,通氮除氧10min后,加入1.62g FeCl3.6H2O和0.62g FeCl2.4H2O,1000rpm/min搅拌50℃水浴加热10min后,加入12ml浓度为15mol/L的浓氨水调节酸碱度至pH为10.0;温度升至70℃保温继续反应1h后,停止反应冷却至室温;3000rpm离心5min将溶液中大颗粒离心除去后,用1.0MHCl调节酸碱度至中性,再用0.22μm的亲水性滤膜过滤,将得到的滤液用德国美天旎MS分选柱除去溶液中游离的葡聚糖;取6mg/mL羟基葡聚糖纳米磁珠用超纯水稀释至1mg/ml,DLS对其粒径进行表征,三次求平均值,即可得到50nm羟基葡聚糖包被的纳米磁珠,4℃保存。First weigh 8.0g of hydroxydextran (molecular weight 40kDa), dissolve it in 100ml of deionized water, pass nitrogen and deoxygenate for 10min, then add 1.62g FeCl 3 .6H 2 O and 0.62g FeCl 2 .4H 2 O, 1000rpm/min Stir and heat in a water bath at 50°C for 10 minutes, add 12ml of concentrated ammonia water with a concentration of 15mol/L to adjust the pH to 10.0; raise the temperature to 70°C and keep it warm for 1 hour, then stop the reaction and cool to room temperature; centrifuge at 3000rpm for 5 minutes to remove large particles in the solution After being removed by centrifugation, use 1.0M HCl to adjust the pH to neutral, and then filter with a 0.22 μm hydrophilic filter membrane, and use the German Miltenyi MS separation column to remove the free dextran in the solution; take 6mg/ Dilute 50nm hydroxydextran nano-magnetic beads with ultrapure water to 1mg/ml, characterize the particle size by DLS, calculate the average value three times, and obtain 50nm hydroxy-dextran-coated magnetic nano-beads, store at 4°C.
如图1所示,得到的羟基葡聚糖包被的纳米磁珠的平均粒径为59.50nm,且羟基磁珠呈现球状单颗粒分布,尺寸均匀。As shown in Figure 1, the obtained hydroxydextran-coated nano magnetic beads have an average particle size of 59.50 nm, and the hydroxy magnetic beads present a spherical single particle distribution with uniform size.
下表1是得到的羟基葡聚糖包被的纳米磁珠的稳定性结果。Table 1 below shows the stability results of the obtained hydroxydextran-coated nano-magnetic beads.
表1羟基磁珠不同时间粒径检测Table 1 Detection of particle size of hydroxyl magnetic beads at different times
从表1可以看到羟基磁珠在4℃可以存储半年以上纳米粒子之间不会发生聚集而影响纳米粒子性能,为后续细胞分选应用提供了稳定性保证。It can be seen from Table 1 that the hydroxyl magnetic beads can be stored at 4°C for more than half a year without aggregation between nanoparticles and affecting the performance of nanoparticles, which provides a stability guarantee for subsequent cell sorting applications.
实施例2葡聚糖:铁离子/亚铁离子为1:90合成50nm羟基葡聚糖包被的纳米免疫磁珠Example 2 Dextran: Ferric ion/ferrous ion is 1:90 synthesis of 50nm hydroxyl dextran-coated nano-immune magnetic beads
首先称取4.4g羟基葡聚糖(分子量40kDa),溶解到100ml去离子水中,通氮除氧10min后,加入1.62g FeCl3.6H2O和0.62g FeCl2.4H2O,1000rpm/min搅拌50℃水浴加热10min后,加入12ml浓度为15mol/L的浓氨水调节酸碱度至pH为10.0;温度升至70℃保温继续反应1h后,停止反应冷却至室温;3000rpm离心5min将溶液中大颗粒离心除去后,用1.0MHCl调节酸碱度至中性,再用0.22μm的亲水性滤膜过滤,将得到的滤液用德国美天旎MS分选柱除去溶液中游离的葡聚糖;取6mg/mL羟基葡聚糖纳米磁珠用超纯水稀释至1mg/ml,DLS对其粒径进行表征,三次求平均值,即可得到58nm羟基葡聚糖包被的纳米磁珠,4℃保存。First weigh 4.4g of hydroxydextran (molecular weight 40kDa), dissolve it in 100ml of deionized water, pass nitrogen to remove oxygen for 10min, then add 1.62g FeCl 3 .6H 2 O and 0.62g FeCl 2 .4H 2 O, 1000rpm/min Stir and heat in a water bath at 50°C for 10 minutes, add 12ml of concentrated ammonia water with a concentration of 15mol/L to adjust the pH to 10.0; raise the temperature to 70°C and keep it warm for 1 hour, then stop the reaction and cool to room temperature; centrifuge at 3000rpm for 5 minutes to remove large particles in the solution After being removed by centrifugation, use 1.0M HCl to adjust the pH to neutral, and then filter with a 0.22 μm hydrophilic filter membrane, and use the German Miltenyi MS separation column to remove the free dextran in the solution; take 6mg/ Dilute 1 mL of hydroxydextran nano-magnetic beads with ultrapure water to 1 mg/ml, characterize the particle size by DLS, and calculate the average value of three times to obtain 58nm hydroxy-dextran-coated nano-magnetic beads, which are stored at 4°C.
实施例3葡聚糖:铁离子/亚铁离子为1:15合成50nm羟基葡聚糖包被的纳米免疫磁珠Example 3 Dextran: Synthesis of 50nm hydroxydextran-coated nano-immune magnetic beads with iron ion/ferrous ion ratio of 1:15
首先称取24g羟基葡聚糖(分子量40kDa),溶解到100ml去离子水中,通氮除氧10min后,加入1.62g FeCl3.6H2O和0.62g FeCl2.4H2O,1000rpm/min搅拌50℃水浴加热10min后,加入12ml浓度为15mol/L的浓氨水调节酸碱度至pH为10.0;温度升至70℃保温继续反应1h后,停止反应冷却至室温;3000rpm离心5min将溶液中大颗粒离心除去后,用1.0MHCl调节酸碱度至中性,再用0.22μm的亲水性滤膜过滤,将得到的滤液用德国美天旎MS分选柱除去溶液中游离的葡聚糖;取6mg/mL羟基葡聚糖纳米磁珠用超纯水稀释至1mg/ml,DLS对其粒径进行表征,三次求平均值,即可得到55nm羟基葡聚糖包被的纳米磁珠,4℃保存。First weigh 24g of hydroxydextran (molecular weight: 40kDa), dissolve it in 100ml of deionized water, pass nitrogen to remove oxygen for 10min, add 1.62g FeCl 3 .6H 2 O and 0.62g FeCl 2 .4H 2 O, stir at 1000rpm/min After heating in a water bath at 50°C for 10 minutes, add 12ml of concentrated ammonia water with a concentration of 15mol/L to adjust the pH to 10.0; raise the temperature to 70°C and keep it warm for 1 hour, then stop the reaction and cool to room temperature; centrifuge at 3000rpm for 5 minutes to centrifuge the large particles in the solution After removal, use 1.0M HCl to adjust the pH to neutral, then filter with a 0.22 μm hydrophilic filter membrane, and use the German Miltenyi MS separation column to remove the free dextran in the solution; take 6mg/mL Hydroxydextran nano-magnetic beads were diluted to 1mg/ml with ultrapure water, and the particle size was characterized by DLS, and the average value was calculated three times to obtain 55nm hydroxy-dextran-coated nano-magnetic beads, which were stored at 4°C.
实施例4 50nm羟基葡聚糖包被的纳米磁珠的SEM图Example 4 SEM image of nano-magnetic beads coated with 50nm hydroxydextran
取10μL用水稀释过的0.1mg/mL羟基纳米免疫磁珠(实施例1,葡聚糖:铁离子/亚铁离子为1:45)滴到铜网上,待其自然晾干后,用SEM进行表征,结果如图2所示:从左图可以看到羟基磁珠呈均匀颗粒状分布,右图看到大部分磁珠粒径为60nm左右,与DLS检测结果基本一致。Take 10 μL of 0.1 mg/mL hydroxyl nano-immune magnetic beads (Example 1, dextran: ferric ion/ferrous ion ratio of 1:45) diluted with water and drop it on the copper grid. The characterization results are shown in Figure 2: from the left picture, we can see that the hydroxyl magnetic beads are uniformly distributed in granular form, and from the right picture, we can see that most of the magnetic beads have a particle size of about 60nm, which is basically consistent with the DLS test results.
实施例5纳米免疫磁珠偶联抗体Example 5 Nano-immunomagnetic bead-coupled antibody
取500μl实施例1制得的6mg/ml羟基葡聚糖包被的纳米免疫磁珠于EP管中,按照高碘酸钠:纳米免疫磁珠=1:1的质量比加入高碘酸钠溶液,室温避光振荡反应1h后,采用磁分离过柱法除去纳米粒子所带的杂质,最后用20mM pH为8.5的硼酸钠溶液洗脱下来,调节纳米免疫磁珠浓度为5mg/mL。Get 500 μ l of the 6mg/ml hydroxydextran-coated nano-immune magnetic beads prepared in Example 1 in an EP tube, add sodium periodate solution according to the mass ratio of sodium periodate:nano-immune magnetic beads=1:1 , after shaking and reacting for 1 hour at room temperature in the dark, the impurities carried by the nanoparticles were removed by magnetic separation and column method, and finally eluted with 20mM sodium borate solution with a pH of 8.5, and the concentration of nanoimmunomagnetic beads was adjusted to 5mg/mL.
按照纳米免疫磁珠:特异性抗体=15:1的质量比,将特异性抗体加入到磁珠溶液中,振荡混匀反应6h,然后加入过量的硼氢化钠,如按照特异性抗体:硼氢化钠=1:1的质量比加入,用硼氢化钠还原得到特异性抗体偶联的纳米免疫磁珠,再次用过柱法纯化特异性抗体偶联磁珠,4℃保存。According to the mass ratio of nano-immune magnetic beads: specific antibody = 15:1, the specific antibody is added to the magnetic bead solution, shaken and mixed for 6 hours, and then excessive sodium borohydride is added, such as according to the specific antibody: borohydride Sodium=1:1 mass ratio was added, and the specific antibody-coupled nano-immune magnetic beads were obtained by reduction with sodium borohydride, and the specific antibody-coupled magnetic beads were purified by column method again, and stored at 4°C.
实施例6 CD4抗体偶联磁珠用于人CD4T细胞提取Example 6 CD4 antibody-coupled magnetic beads for extraction of human CD4 T cells
1. 20ml加入抗凝剂的人新鲜血液用PBS(磷酸盐缓冲液)稀释2倍,按照血液:淋巴分离液=1:1的体积比将稀释好的血液平铺到淋巴分离液上;采用离心方法得到外周血单个核细胞,调整细胞浓度为3×107个细胞/ml;1. 20ml of people's fresh blood that adds anticoagulant is diluted 2 times with PBS (phosphate buffered saline), according to blood: the volume ratio of lymphatic separation liquid=1:1 will spread the diluted blood on the lymphatic separation liquid; Peripheral blood mononuclear cells were obtained by centrifugation, and the cell concentration was adjusted to 3×10 7 cells/ml;
2.浆100μl 3×107个细胞/ml的细胞悬液与5μl CD4抗体偶联的纳米免疫磁珠(使用实施例2所使用的方法制备得到,用CD4抗体作为特异性抗体)用移液枪混匀后于4℃静置15min;2. Slurry 100 μl of 3× 107 cells/ml of cell suspension and 5 μl of CD4 antibody-coupled nano-immune magnetic beads (prepared using the method used in Example 2, using CD4 antibody as the specific antibody) with a pipette After mixing with the gun, let it stand at 4°C for 15 minutes;
3. 1200rpm、5min离心弃上清,向细胞沉淀中加入500μl缓冲液重悬;3. Centrifuge at 1200rpm for 5min to discard the supernatant, add 500μl buffer to the cell pellet to resuspend;
4.用美天旎分选柱清洗细胞3次,每次500μl缓冲液洗涤后,加入1ml缓冲液将细胞冲洗下来收集至EP管中;4. Wash the cells with Miltenyi separation column for 3 times, after washing each time with 500 μl of buffer, add 1ml of buffer to wash the cells and collect them into EP tubes;
5.细胞用1200rpm、5min离心弃上清,向细胞沉淀中加入100μl缓冲液重悬,加入10μl PE标记的CD4抗体4℃孵育5min;5. Centrifuge the cells at 1200 rpm for 5 minutes to discard the supernatant, add 100 μl of buffer to the cell pellet to resuspend, add 10 μl of PE-labeled CD4 antibody and incubate at 4°C for 5 minutes;
6. 1200rpm、5min离心弃上清,向细胞沉淀中加入100μlPBS缓冲液重悬,荧光显微镜观察细胞荧光。6. Centrifuge at 1200 rpm for 5 minutes to discard the supernatant, add 100 μl PBS buffer to the cell pellet to resuspend, and observe the cell fluorescence with a fluorescence microscope.
结果如图3所示,由图3可以看出用免疫磁珠分选出来的细胞进行荧光标记后,显微镜下看到带有荧光的细胞达到90%。The results are shown in FIG. 3 . It can be seen from FIG. 3 that after the cells sorted by immunomagnetic beads are fluorescently labeled, 90% of the cells with fluorescence can be seen under the microscope.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710173694.2A CN108287234A (en) | 2017-03-22 | 2017-03-22 | Nano immune magnetic bead and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710173694.2A CN108287234A (en) | 2017-03-22 | 2017-03-22 | Nano immune magnetic bead and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108287234A true CN108287234A (en) | 2018-07-17 |
Family
ID=62831361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710173694.2A Pending CN108287234A (en) | 2017-03-22 | 2017-03-22 | Nano immune magnetic bead and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108287234A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109444401A (en) * | 2018-12-12 | 2019-03-08 | 郑州安图生物工程股份有限公司 | A kind of preparation method of magnetic microparticle chemiluminescence product |
CN114470183A (en) * | 2022-02-17 | 2022-05-13 | 青岛农业大学 | Preparation and application of a kind of dextran magnetic beads mimicking BoHV-1 virus particles |
CN114617982A (en) * | 2022-03-23 | 2022-06-14 | 北京健康启航科技有限公司 | Preparation method of neuroendocrine tumor targeted nanoparticles |
CN118792254A (en) * | 2024-09-13 | 2024-10-18 | 苏州为度生物技术有限公司 | A magnetic microsphere and its application in cell sorting |
WO2025011204A1 (en) * | 2023-07-07 | 2025-01-16 | 苏州欣协生物科技有限公司 | Nano magnetic bead for cell sorting and preparation method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1632582A (en) * | 2004-12-27 | 2005-06-29 | 中国人民解放军军事医学科学院卫生学环境医学研究所 | Nano immune magnetic particle, preparing process and application |
WO2007099289A1 (en) * | 2006-02-28 | 2007-09-07 | Medical Research Council | Targeted iron oxide nanoparticles |
CN101474414A (en) * | 2009-02-06 | 2009-07-08 | 上海师范大学 | Preparation and application of polymer-coated magnetic nanoparticle contrast agent |
US20140234226A1 (en) * | 2014-05-06 | 2014-08-21 | Morteza Mahmoudi | Plasmonic stable fluorescence superparamagnetic iron oxide nanoparticles and a method of synthesizing the same |
CN104914241A (en) * | 2014-03-14 | 2015-09-16 | 中国科学院过程工程研究所 | Immunomagnetic bead, preparation method and application thereof |
-
2017
- 2017-03-22 CN CN201710173694.2A patent/CN108287234A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1632582A (en) * | 2004-12-27 | 2005-06-29 | 中国人民解放军军事医学科学院卫生学环境医学研究所 | Nano immune magnetic particle, preparing process and application |
WO2007099289A1 (en) * | 2006-02-28 | 2007-09-07 | Medical Research Council | Targeted iron oxide nanoparticles |
CN101474414A (en) * | 2009-02-06 | 2009-07-08 | 上海师范大学 | Preparation and application of polymer-coated magnetic nanoparticle contrast agent |
CN104914241A (en) * | 2014-03-14 | 2015-09-16 | 中国科学院过程工程研究所 | Immunomagnetic bead, preparation method and application thereof |
US20140234226A1 (en) * | 2014-05-06 | 2014-08-21 | Morteza Mahmoudi | Plasmonic stable fluorescence superparamagnetic iron oxide nanoparticles and a method of synthesizing the same |
Non-Patent Citations (3)
Title |
---|
ARIAS SL ET AL.: "Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.", 《JOURNAL OF VISUALIZED EXPERIMENTS》 * |
TUDORACHI N ET AL.: "Obtaining of new magnetic nanocomposites based on modified polysaccharide", 《CARBOHYDR POLYM.》 * |
牛婉婷 等: "医用葡聚糖包被超顺磁性纳米氧化铁磁珠的制备和表征", 《科技导报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109444401A (en) * | 2018-12-12 | 2019-03-08 | 郑州安图生物工程股份有限公司 | A kind of preparation method of magnetic microparticle chemiluminescence product |
CN114470183A (en) * | 2022-02-17 | 2022-05-13 | 青岛农业大学 | Preparation and application of a kind of dextran magnetic beads mimicking BoHV-1 virus particles |
CN114470183B (en) * | 2022-02-17 | 2024-07-30 | 青岛农业大学 | Preparation and application of dextran magnetic bead simulated BoHV-1 virus particles |
CN114617982A (en) * | 2022-03-23 | 2022-06-14 | 北京健康启航科技有限公司 | Preparation method of neuroendocrine tumor targeted nanoparticles |
WO2025011204A1 (en) * | 2023-07-07 | 2025-01-16 | 苏州欣协生物科技有限公司 | Nano magnetic bead for cell sorting and preparation method therefor |
CN118792254A (en) * | 2024-09-13 | 2024-10-18 | 苏州为度生物技术有限公司 | A magnetic microsphere and its application in cell sorting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108287234A (en) | Nano immune magnetic bead and its preparation method and application | |
Xu et al. | Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood | |
CN109312293B (en) | Compositions and methods for magnetic levitation separation | |
CN104651315B (en) | It is a kind of to recognize the method that tumour cell is sorted with cell size difference using antigen and antibody specific simultaneously in micro-fluidic chip | |
CN105734043B (en) | Multi-sort cell separation method | |
CN106366196B (en) | EpCAM antibody immunomagnetic beads and preparation method thereof | |
CN106237947A (en) | Magnetic microsphere of high density carboxyl modified and preparation method thereof | |
CN103630440A (en) | Enriching method of circulating tumor cells | |
WO2022156677A1 (en) | Composite magnetic nanomaterial based on dna tetrahedron, preparation therefor and use thereof | |
CN106289927A (en) | A kind of from tumor cell supernatant, separate microcapsule bubble and the method for secreting outward body thereof | |
CN106198963A (en) | A kind of for immunomagnetic beads capturing leukocyte and preparation method thereof | |
CN112011513B (en) | Method for capturing high-purity circulating tumor cells based on bioorthogonal chemical method | |
CN106366197B (en) | HER2, EGFR, EpCAM and MUC1 multiple antibody immunomagnetic beads and preparation method thereof | |
CN106399251A (en) | Antibody-coupled bionic immune magnetic sphere and preparation method thereof | |
CN113933501B (en) | Immunomagnetic beads and preparation method and application thereof | |
CN102067250B (en) | Magnetic particles | |
CN106366195B (en) | PD-L1 antibody immunomagnetic beads and preparation method thereof | |
CN110501208A (en) | Folic acid-functionalized streptavidin-modified magnetic nanoparticles, preparation method and application thereof | |
CN107034191A (en) | A kind of magnetic bead identification and the method for separating circulating tumor cell in micro-fluidic chip using hyaluronic acid functionalization | |
CN105950558A (en) | High-specificity and high-purity tumor cell sorting method based on double-antibody and cell density | |
Seyfoori et al. | Efficient targeted cancer cell detection, isolation and enumeration using immuno-nano/hybrid magnetic microgels | |
CN106279421B (en) | CD133, CD24 and CD44 multiple antibody immunomagnetic beads and preparation method thereof | |
CN107525920A (en) | Poly ion liquid magnetic nanocomposites and its to trace enriching specificity of circulating tumor cell and detection application | |
CN110632295A (en) | A kind of Fe3O4-Au antibody nanometer magnetic beads and its preparation method and application | |
CN106432504B (en) | E-Cadherin, Cadherin-11 and EpCAM multiple antibody immunomagnetic beads and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180717 |