CN108283564A - A kind of intelligent ankle-joint exoskeleton system of light-type rope driving - Google Patents
A kind of intelligent ankle-joint exoskeleton system of light-type rope driving Download PDFInfo
- Publication number
- CN108283564A CN108283564A CN201810168619.1A CN201810168619A CN108283564A CN 108283564 A CN108283564 A CN 108283564A CN 201810168619 A CN201810168619 A CN 201810168619A CN 108283564 A CN108283564 A CN 108283564A
- Authority
- CN
- China
- Prior art keywords
- exoskeleton
- control box
- foot
- motor
- calf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0237—Stretching or bending or torsioning apparatus for exercising for the lower limbs
- A61H1/0255—Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
- A61H1/0262—Walking movement; Appliances for aiding disabled persons to walk
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0006—Exoskeletons, i.e. resembling a human figure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H2003/007—Appliances for aiding patients or disabled persons to walk about secured to the patient, e.g. with belts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/12—Driving means
- A61H2201/1207—Driving means with electric or magnetic drive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/165—Wearable interfaces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/10—Leg
- A61H2205/106—Leg for the lower legs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/12—Feet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2230/00—Measuring physical parameters of the user
- A61H2230/62—Posture
- A61H2230/625—Posture used as a control parameter for the apparatus
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Manipulator (AREA)
- Rehabilitation Tools (AREA)
Abstract
Description
技术领域technical field
本发明属于机器人技术领域,具体涉及一种轻量型绳驱动智能踝关节外骨骼系统,可应用于下肢康复训练与下肢助力行走。The invention belongs to the technical field of robots, and in particular relates to a lightweight rope-driven intelligent ankle joint exoskeleton system, which can be applied to lower limb rehabilitation training and lower limb assisted walking.
背景技术Background technique
脑卒中是一种高发病率的世界范围疾病,它的存在严重影响了人类的生命与健康。据统计,我国现有脑卒中患者700多万,并以每年200万的速度持续增长。脑卒中对行走功能有着严重的影响,有分析表明,接近2/3的脑卒中幸存者将失去行走能力。其中,患者踝关节的主要表现有小腿胫骨前肌和外侧肌群麻痹无力,后侧肌肉痉挛等症状,进而导致步态不稳、步速减小,甚至会使患者在行走过程中摔倒,这严重影响了患者的正常行走和安全。因此,开展关于踝关节康复训练与助力器械的研究意义重大。Stroke is a worldwide disease with high morbidity, and its existence has seriously affected human life and health. According to statistics, there are more than 7 million stroke patients in my country, and the number continues to grow at a rate of 2 million per year. Stroke has a serious impact on walking function. According to analysis, nearly 2/3 of stroke survivors will lose their walking ability. Among them, the main manifestations of the patient's ankle joint are paralysis and weakness of the tibialis anterior muscle and lateral muscle group of the calf, and muscle spasms in the rear side, which will lead to unstable gait, reduced pace, and even cause the patient to fall during walking. This seriously affects the normal walking and safety of the patient. Therefore, it is of great significance to carry out research on ankle joint rehabilitation training and assisting devices.
外骨骼设备是一种可穿戴装置,主要应用于瘫痪病人的康复训练及正常人的助力行走。目前,国内外研究人员对下肢外骨骼设备的研究主要集中于含金属骨架的刚性外骨骼,且主要考虑对髋关节与膝关节的驱动,忽略了踝关节的重要作用。此外,由于其机械本体主要由金属构件组成,所以此类外骨骼大多较重,且耗能较大,严重影响了其使用效果。Exoskeleton equipment is a wearable device, which is mainly used for rehabilitation training of paralyzed patients and assisting walking of normal people. At present, researchers at home and abroad are mainly focusing on the rigid exoskeleton with metal skeleton, and mainly consider the drive of the hip joint and knee joint, ignoring the important role of the ankle joint. In addition, since the mechanical body is mainly composed of metal components, most of these exoskeletons are heavy and consume a lot of energy, which seriously affects their use effect.
发明内容Contents of the invention
本发明的目的在于克服现有技术不足,提供一种集成智能手机技术与步态识别技术的轻量化的绳驱动智能踝关节外骨骼系统。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a lightweight rope-driven intelligent ankle exoskeleton system that integrates smart phone technology and gait recognition technology.
本发明的一种轻量型绳驱动智能踝关节外骨骼系统,它包括智能手机、外骨骼本体部分和控制盒部分,三者协调统一,共同组成所述智能踝关节外骨骼系统。其中,所述智能手机通过无线信号,向所述外骨骼本体传输命令信号,进而产生相应的运动模式或动作。所述外骨骼本体包含有安装于人体足底的压力传感器和安装于小腿的惯性测量单元等传感设备,用于测量人在行走过程中的运动学和动力学信号。在使用智能踝关节外骨骼系统进行康复训练或助力行走之前,首先通过所述压力传感器和所述惯性测量单元测得人体运动数据,并使用BP神经网络进行训练学习,得到从运动数据到关节驱动角度之间的映射模型。所述外骨骼本体部分包括通过绑带绑缚在小腿上的小腿外骨骼、通过绑带绑缚于足部的足部外骨骼、安装于所述小腿外骨骼,并牵动足部外骨骼运动的鲍登线,所述小腿外骨骼和所述足部外骨骼通过铆钉和扭簧形成弹性铰接。所述小腿外骨骼上留有小腿绑带安装孔和扭簧固定孔,所述足部外骨骼上加工有足部绑带安装孔和扭簧固定孔。所述控制盒部分包括控制盒体、通过所述控制盒体上的控制盒盖安装孔安装在其上的控制盒盖、安装固定在控制盒体内部的无线信号模块、单片机模块、锂电池、电机驱动器模块、电机上固定件和电机下固定件,以及夹紧在所述电机上固定件和所述电机下固定件之间的电机、安装于电机一端并用于测量电机位置和速度的编码器、以及安装在电机输出轴上的绕线轮。所述电机含有减速器,所述鲍登线的钢丝缠绕并固定在所述绕线轮上。所述小腿外骨骼、所述足部外骨骼使用3D打印加工。A lightweight rope-driven intelligent ankle-joint exoskeleton system of the present invention includes a smart phone, an exoskeleton body part and a control box part, and the three are coordinated and unified to form the intelligent ankle-joint exoskeleton system. Wherein, the smart phone transmits command signals to the exoskeleton body through wireless signals, and then generates corresponding motion patterns or actions. The exoskeleton body includes sensing devices such as pressure sensors installed on the soles of the human body and inertial measurement units installed on the lower legs for measuring kinematic and dynamic signals of people during walking. Before using the intelligent ankle joint exoskeleton system for rehabilitation training or assisted walking, the human body motion data is first measured through the pressure sensor and the inertial measurement unit, and the BP neural network is used for training and learning, and the motion data to the joint drive are obtained. Mapping model between angles. The body part of the exoskeleton includes a calf exoskeleton bound to the calf by straps, a foot exoskeleton bound to the foot by straps, and a device mounted on the calf exoskeleton to drive the movement of the foot exoskeleton. Bowden wires, the calf exoskeleton and the foot exoskeleton form an elastic hinge through rivets and torsion springs. There are calf strap installation holes and torsion spring fixing holes on the calf exoskeleton, and foot strap installation holes and torsion spring fixing holes are processed on the foot exoskeleton. The control box part includes a control box body, a control box cover installed on it through a control box cover mounting hole on the control box body, a wireless signal module installed and fixed inside the control box body, a single-chip microcomputer module, a lithium battery, A motor driver module, an upper motor fixing part and a lower motor fixing part, and a motor clamped between the upper motor fixing part and the lower motor fixing part, an encoder installed at one end of the motor and used to measure the position and speed of the motor , and the winding wheel installed on the output shaft of the motor. The motor contains a reducer, and the steel wire of the Bowden cable is wound and fixed on the reel. The calf exoskeleton and the foot exoskeleton are processed by 3D printing.
所述绳驱动智能踝关节外骨骼系统的工作过程为:The working process of the rope-driven intelligent ankle exoskeleton system is:
使用智能踝关节外骨骼系统进行康复训练或助力行走之前,首先通过所述压力传感器和所述惯性测量单元测得人体运动数据,并使用BP神经网络进行训练学习,得到从运动数据到关节驱动角度之间的映射模型,并将该映射模型参数输入所述单片机模块中。在康复训练或助力行走过程中,所述单片机模块采集所述压力传感器和所述惯性测量单元测得的运动数据,并通过上述建立的映射模型得到关节驱动信号,进而驱动所述电机、依次带动所述绕线轮、所述鲍登线和所述足部外骨骼,从而使所述足部外骨骼产生绕铰接点的旋转运动,最终带动足部屈曲。所述扭簧在工作过程中起到复位、保持足部姿态的作用。所述智能手机一方面通过无线信号模块获取人体运动数据,并对人体运动进行监控;另一方面可以发送运动模式选择信号,如慢速模式、快速模式等。Before using the intelligent ankle joint exoskeleton system for rehabilitation training or assisted walking, first measure the human body motion data through the pressure sensor and the inertial measurement unit, and use the BP neural network for training and learning to obtain the motion data to the joint drive angle between the mapping models, and input the mapping model parameters into the single-chip microcomputer module. In the process of rehabilitation training or assisted walking, the single-chip microcomputer module collects the motion data measured by the pressure sensor and the inertial measurement unit, and obtains the joint drive signal through the mapping model established above, and then drives the motor, which in turn drives The winding wheel, the Bowden wire and the exoskeleton of the foot make the exoskeleton of the foot rotate around the hinge point, and finally drive the flexion of the foot. The torsion spring plays the role of resetting and maintaining the posture of the foot during the working process. On the one hand, the smart phone acquires human body movement data through the wireless signal module, and monitors the human body movement; on the other hand, it can send a movement mode selection signal, such as slow mode, fast mode, etc.
本发明的优点在于:The advantages of the present invention are:
(1)本发明一种轻量型绳驱动智能膝关节外骨骼,其小腿外骨骼和足部外骨骼由3D打印加工而成,选用尼龙、树脂等材料,较传统金属骨架的外骨骼具有重量轻、惯性小的优点;(1) A light-weight rope-driven intelligent knee exoskeleton of the present invention, its calf exoskeleton and foot exoskeleton are processed by 3D printing, and materials such as nylon and resin are selected, which are heavier than traditional metal skeleton exoskeletons The advantages of lightness and small inertia;
(2)本发明一种轻量型绳驱动智能膝关节外骨骼,选用鲍登线驱动,可将电机、减速器等置于控制盒内,并绑缚于腰间,进一步减轻了腿部外骨骼的重量;(2) A light-weight rope-driven intelligent knee exoskeleton of the present invention is driven by a Bowden wire, and the motor, reducer, etc. can be placed in the control box and tied around the waist, further reducing the leg exoskeleton. the weight of the bones;
(3)本发明一种轻量型绳驱动智能膝关节外骨骼,集成了智能手机、传感器、外骨骼与机器学习等技术,构成了一个带反馈与学习功能的智能机器人系统;(3) A lightweight rope-driven intelligent knee exoskeleton of the present invention integrates technologies such as smart phones, sensors, exoskeletons and machine learning to form an intelligent robot system with feedback and learning functions;
(4)本发明一种轻量型绳驱动智能膝关节外骨骼,关节通过扭簧复位和保持姿态,同时具有一定的柔性,具有缓冲和保证安全的作用。(4) A lightweight rope-driven intelligent knee joint exoskeleton of the present invention, the joint is reset and maintained by a torsion spring, and at the same time has a certain degree of flexibility, and has the functions of buffering and ensuring safety.
附图说明Description of drawings
图1是本发明所述一种轻量型绳驱动智能踝关节外骨骼的系统框架结构示意图。Fig. 1 is a schematic diagram of a system frame structure of a lightweight rope-driven smart ankle exoskeleton according to the present invention.
图2是本发明所述一种轻量型绳驱动智能踝关节外骨骼的穿戴结构示意图。Fig. 2 is a schematic diagram of the wearing structure of a lightweight rope-driven smart ankle exoskeleton according to the present invention.
图3是本发明所述一种轻量型绳驱动智能踝关节外骨骼的外骨骼本体结构爆炸图。Fig. 3 is an exploded view of the exoskeleton body structure of a lightweight rope-driven smart ankle exoskeleton according to the present invention.
图4是本发明所述一种轻量型绳驱动智能踝关节外骨骼的控制盒组成结构示意图。Fig. 4 is a schematic diagram of the composition and structure of a control box of a lightweight rope-driven smart ankle exoskeleton according to the present invention.
图5是本发明所述一种轻量型绳驱动智能踝关节外骨骼得信号传递路线图。Fig. 5 is a signal transmission route diagram of a lightweight rope-driven smart ankle exoskeleton according to the present invention.
图中:In the picture:
1-1.控制盒体 1-2.无线信号模块 1-3.单片机模块 1-4.锂电池1-1. Control box body 1-2. Wireless signal module 1-3. Single-chip microcomputer module 1-4. Lithium battery
1-5.电机驱动器模块 1-6.绕线轮 1-7.电机 1-8.编码器1-5. Motor Driver Module 1-6. Winding Wheel 1-7. Motor 1-8. Encoder
1-9-1.电机上固定件 1-9-2.电机下固定件 C.控制盒盖安装孔 2-1.小腿外骨骼1-9-1. Motor upper fixing part 1-9-2. Motor lower fixing part C. Control box cover mounting hole 2-1. Calf exoskeleton
2-2.足部外骨骼 2-3.压力传感器 2-4.惯性测量单元 2-5.铆钉2-2. Foot Exoskeleton 2-3. Pressure Sensor 2-4. Inertial Measurement Unit 2-5. Rivets
2-6.扭簧 2-7.鲍登线 B1.小腿绑带安装孔 B2.足部绑带安装孔2-6. Torsion spring 2-7. Bowden wire B1. Calf strap mounting hole B2. Foot strap mounting hole
H1,H2.扭簧固定孔H1, H2. Torsion spring fixing hole
具体实施方式Detailed ways
下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.
如图1所示为本发明一种轻量型绳驱动智能踝关节外骨骼的系统框架结构示意图,该智能踝关节外骨骼系统包括智能手机、外骨骼系统硬件,以及用于信号检测的传感器部分。智能手机可进行外骨骼系统模式选择等操作,并对采集的信号进行储存分析,外骨骼接收智能手机和传感器信号,并进行处理,辅助人体踝关节运动,进而形成一个闭环系统。As shown in Figure 1, it is a schematic structural diagram of a system frame structure of a lightweight rope-driven intelligent ankle exoskeleton of the present invention. The intelligent ankle exoskeleton system includes a smart phone, an exoskeleton system hardware, and a sensor part for signal detection . The smartphone can perform operations such as mode selection of the exoskeleton system, and store and analyze the collected signals. The exoskeleton receives and processes the signals of the smartphone and sensors to assist the movement of the human ankle joint, thereby forming a closed-loop system.
如图2、3所示为本发明所述一种轻量型绳驱动智能踝关节外骨骼的穿戴结构示意图和外骨骼本体结构爆炸图,外骨骼本体包含有安装于人体足底的压力传感器2-3和安装于小腿的惯性测量单元2-4传感设备(足底压力传感器用于测量足底压力、惯性测量单元测量小腿姿态),用于测量人在行走过程中的运动学和动力学信号。在使用智能踝关节外骨骼系统进行康复训练或助力行走之前,首先通过所述压力传感器2-3和所述惯性测量单元2-4测得人体运动数据,并使用BP神经网络进行训练学习,得到从运动数据到关节驱动角度之间的映射模型。外骨骼本体部分还包括通过绑带绑缚在小腿上的小腿外骨骼2-1、通过绑带绑缚于足部的足部外骨骼2-2、安装于所述小腿外骨骼2-1,并牵动足部外骨骼2-2运动的鲍登线2-7,所述小腿外骨骼2-2和所述足部外骨骼2-1通过铆钉2-5和扭簧2-6形成弹性铰接。所述小腿外骨骼2-2上留有小腿绑带安装孔B1和扭簧固定孔H1,所述足部外骨骼上加工有足部绑带安装孔B2和扭簧固定孔H2。所述小腿外骨骼2-1、所述足部外骨骼2-2使用3D打印加工。As shown in Figures 2 and 3, a schematic diagram of the wearable structure of a lightweight rope-driven smart ankle exoskeleton according to the present invention and an exploded view of the exoskeleton body structure, the exoskeleton body includes a pressure sensor 2 installed on the sole of the human body -3 and inertial measurement unit 2-4 sensing devices installed on the calf (plantar pressure sensor is used to measure the plantar pressure, and the inertial measurement unit is used to measure the posture of the calf), used to measure the kinematics and dynamics of people during walking Signal. Before using the intelligent ankle joint exoskeleton system for rehabilitation training or assisted walking, first measure the human body motion data through the pressure sensor 2-3 and the inertial measurement unit 2-4, and use the BP neural network for training and learning to obtain Mapping model from motion data to joint actuation angles. The exoskeleton body part also includes a calf exoskeleton 2-1 bound to the calf by straps, a foot exoskeleton 2-2 bound to the foot by straps, and installed on the calf exoskeleton 2-1, And affect the Bowden line 2-7 of the movement of the foot exoskeleton 2-2, the calf exoskeleton 2-2 and the foot exoskeleton 2-1 form elastic hinges through rivets 2-5 and torsion springs 2-6 . The leg exoskeleton 2-2 has calf strap installation holes B1 and torsion spring fixing holes H1, and the foot exoskeleton has foot strap installation holes B2 and torsion spring fixing holes H2. The calf exoskeleton 2-1 and the foot exoskeleton 2-2 are processed by 3D printing.
如图4所示为本发明所述一种轻量型绳驱动智能踝关节外骨骼的控制盒组成结构示意图。控制盒部分包括控制盒体1-1、通过所述控制盒体1-1上的控制盒盖安装孔C安装在其上的控制盒盖、安装固定在控制盒体内部的无线信号模块1-2、单片机模块1-3、锂电池1-4、电机驱动器模块1-5、电机上固定件1-9-1和电机下固定件1-9-2,以及夹紧在所述电机上固定件1-9-1和所述电机下固定件1-9-2之间的电机1-7、安装于电机1-7一端并用于测量电机位置和速度的编码器1-8、以及安装在电机1-7输出轴上的绕线轮1-6。所述电机1-7含有减速器,所述鲍登线2-7的钢丝缠绕并固定在所述绕线轮1-6上。FIG. 4 is a schematic diagram showing the composition and structure of a control box of a lightweight rope-driven smart ankle exoskeleton according to the present invention. The control box part includes a control box body 1-1, a control box cover installed on it through the control box cover installation hole C on the control box body 1-1, and a wireless signal module 1- 2. Single-chip microcomputer module 1-3, lithium battery 1-4, motor driver module 1-5, motor upper fixing part 1-9-1 and motor lower fixing part 1-9-2, and clamping and fixing on the motor The motor 1-7 between the part 1-9-1 and the lower fixing part 1-9-2 of the motor, the encoder 1-8 installed at one end of the motor 1-7 and used to measure the position and speed of the motor, and the encoder 1-8 installed on the Winding wheel 1-6 on the motor 1-7 output shaft. The motor 1-7 contains a reducer, and the steel wire of the Bowden cable 2-7 is wound and fixed on the reel 1-6.
由如图5所示为本发明所述一种轻量型绳驱动智能踝关节外骨骼得信号传递路线图可见,所述绳驱动智能踝关节外骨骼系统的工作过程为:It can be seen from the signal transmission route diagram of a lightweight rope-driven intelligent ankle exoskeleton of the present invention as shown in Figure 5, the working process of the rope-driven intelligent ankle exoskeleton system is:
使用智能踝关节外骨骼系统进行康复训练或助力行走之前,首先通过所述压力传感器2-3和所述惯性测量单元2-4测得人体运动数据,并使用BP神经网络进行训练学习,得到从运动数据到关节驱动角度之间的映射模型,并将该映射模型参数输入所述单片机模块1-3中。在康复训练或助力行走过程中,所述单片机模块1-3采集所述压力传感器2-3和所述惯性测量单元2-4测得的运动数据,并通过上述建立的映射模型得到关节驱动信号,进而驱动所述电机1-7、依次带动所述绕线轮1-6、所述鲍登线2-7和所述足部外骨骼2-2,从而使所述足部外骨骼2-2产生绕铰接点的旋转运动,最终带动足部屈曲。所述扭簧2-6在工作过程中起到复位、保持足部姿态的作用。所述智能手机一方面通过无线信号模块1-2获取人体运动数据,并对人体运动进行监控;另一方面可以发送运动模式选择信号,如慢速模式、快速模式等。Before using the intelligent ankle joint exoskeleton system for rehabilitation training or power-assisted walking, the human body motion data is first measured by the pressure sensor 2-3 and the inertial measurement unit 2-4, and the BP neural network is used for training and learning, and obtained from A mapping model between motion data and joint drive angle, and input the mapping model parameters into the single-chip microcomputer module 1-3. During rehabilitation training or assisted walking, the single-chip microcomputer module 1-3 collects the motion data measured by the pressure sensor 2-3 and the inertial measurement unit 2-4, and obtains joint drive signals through the mapping model established above , and then drive the motor 1-7, sequentially drive the winding wheel 1-6, the Bowden wire 2-7 and the foot exoskeleton 2-2, so that the foot exoskeleton 2- 2 produces a rotational movement about the hinge point, which ultimately drives the foot into flexion. The torsion spring 2-6 plays the role of resetting and maintaining the posture of the foot during the working process. On the one hand, the smart phone acquires human body motion data through the wireless signal module 1-2, and monitors the human body motion; on the other hand, it can send a motion mode selection signal, such as slow mode, fast mode, etc.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810168619.1A CN108283564A (en) | 2018-02-28 | 2018-02-28 | A kind of intelligent ankle-joint exoskeleton system of light-type rope driving |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810168619.1A CN108283564A (en) | 2018-02-28 | 2018-02-28 | A kind of intelligent ankle-joint exoskeleton system of light-type rope driving |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108283564A true CN108283564A (en) | 2018-07-17 |
Family
ID=62833305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810168619.1A Pending CN108283564A (en) | 2018-02-28 | 2018-02-28 | A kind of intelligent ankle-joint exoskeleton system of light-type rope driving |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108283564A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109106558A (en) * | 2018-09-07 | 2019-01-01 | 南京伟思医疗科技股份有限公司 | A kind of flexible joint exoskeleton robot and its control method |
CN110370253A (en) * | 2019-08-23 | 2019-10-25 | 西安魔晶五维家居有限公司 | A kind of wearable type leg joint assistance mechanism |
CN110842893A (en) * | 2019-11-10 | 2020-02-28 | 北京机械设备研究所 | Exoskeleton carrying gait judging method, device and system |
CN111150605A (en) * | 2020-01-14 | 2020-05-15 | 北京航空航天大学 | Wearable flexible ankle joint assist drive device based on rope transmission |
CN111803329A (en) * | 2020-07-17 | 2020-10-23 | 哈尔滨工业大学 | An Elbow Exoskeleton for Rehabilitation Robots |
CN111898487A (en) * | 2020-07-15 | 2020-11-06 | 贵州航天控制技术有限公司 | A real-time recognition method of human motion pattern for flexible exoskeleton system |
CN111906753A (en) * | 2020-07-10 | 2020-11-10 | 西北机电工程研究所 | Electric rope wheel driving exoskeleton power-assisted robot |
CN112025680A (en) * | 2020-08-28 | 2020-12-04 | 华中科技大学 | Single-motor flexible power-assisted knee joint exoskeleton |
CN112741757A (en) * | 2020-12-30 | 2021-05-04 | 华南理工大学 | Ankle joint line drives ectoskeleton control system based on biped pressure sensor |
CN113057769A (en) * | 2021-03-16 | 2021-07-02 | 吉林大学 | Active-driving ankle joint artificial limb |
US11148279B1 (en) | 2020-06-04 | 2021-10-19 | Dephy, Inc. | Customized configuration for an exoskeleton controller |
US11173093B1 (en) | 2020-09-16 | 2021-11-16 | Dephy, Inc. | Systems and methods for an active exoskeleton with local battery |
CN113779715A (en) * | 2021-08-24 | 2021-12-10 | 汕头大学 | Design method of lightweight mechanical exoskeleton |
US11298287B2 (en) | 2020-06-02 | 2022-04-12 | Dephy, Inc. | Systems and methods for a compressed controller for an active exoskeleton |
US11389367B2 (en) | 2020-06-05 | 2022-07-19 | Dephy, Inc. | Real-time feedback-based optimization of an exoskeleton |
US11944581B2 (en) | 2020-06-04 | 2024-04-02 | Dephy, Inc. | Systems and methods for bilateral wireless communication |
WO2024097040A1 (en) * | 2022-11-02 | 2024-05-10 | University Of Florida Research Foundation, Incorporated | Apparatus and method using a spring-powered knee exoskeleton for gait assistance |
US12090069B2 (en) | 2020-08-25 | 2024-09-17 | Dephy, Inc. | Systems and methods for a water resistant active exoskeleton |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004322283A (en) * | 2003-04-28 | 2004-11-18 | Toyota Motor Corp | Wire type robot that can control attitude and rigidity independently |
CN202288736U (en) * | 2011-10-19 | 2012-07-04 | 汕头大学医学院第一附属医院 | Rehabilitation training device for preventing foot drop |
US20130296741A1 (en) * | 2012-05-02 | 2013-11-07 | North Carolina State University | Ankle-foot orthotic devices with integrated vibrotactile biofeedback and related methods |
CN105411816A (en) * | 2015-12-16 | 2016-03-23 | 哈尔滨工业大学深圳研究生院 | Control system and control method of walking assisting device |
CN105476817A (en) * | 2016-01-13 | 2016-04-13 | 何平 | Mechanical leg controlled through thoughts of user and rehabilitation walking method |
CN106029039A (en) * | 2013-12-16 | 2016-10-12 | 麻省理工学院 | Optimal Design of Lower Extremity Exoskeletons or Orthotics |
CN106264988A (en) * | 2015-05-11 | 2017-01-04 | 香港理工大学 | exoskeleton ankle machine |
CN106667728A (en) * | 2015-11-06 | 2017-05-17 | 三星电子株式会社 | Power transmission module and motion assistance device comprising the same |
CN106887115A (en) * | 2017-01-20 | 2017-06-23 | 安徽大学 | Old people falling monitoring device and falling risk assessment method |
CN106956243A (en) * | 2017-03-06 | 2017-07-18 | 武汉大学 | A kind of bionical lower limb exoskeleton robot driven based on rope |
CN107259661A (en) * | 2017-07-16 | 2017-10-20 | 北京工业大学 | A kind of flexible power-assisted coat of wearable lower limb |
-
2018
- 2018-02-28 CN CN201810168619.1A patent/CN108283564A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004322283A (en) * | 2003-04-28 | 2004-11-18 | Toyota Motor Corp | Wire type robot that can control attitude and rigidity independently |
CN202288736U (en) * | 2011-10-19 | 2012-07-04 | 汕头大学医学院第一附属医院 | Rehabilitation training device for preventing foot drop |
US20130296741A1 (en) * | 2012-05-02 | 2013-11-07 | North Carolina State University | Ankle-foot orthotic devices with integrated vibrotactile biofeedback and related methods |
CN106029039A (en) * | 2013-12-16 | 2016-10-12 | 麻省理工学院 | Optimal Design of Lower Extremity Exoskeletons or Orthotics |
CN106264988A (en) * | 2015-05-11 | 2017-01-04 | 香港理工大学 | exoskeleton ankle machine |
CN106667728A (en) * | 2015-11-06 | 2017-05-17 | 三星电子株式会社 | Power transmission module and motion assistance device comprising the same |
CN105411816A (en) * | 2015-12-16 | 2016-03-23 | 哈尔滨工业大学深圳研究生院 | Control system and control method of walking assisting device |
CN105476817A (en) * | 2016-01-13 | 2016-04-13 | 何平 | Mechanical leg controlled through thoughts of user and rehabilitation walking method |
CN106887115A (en) * | 2017-01-20 | 2017-06-23 | 安徽大学 | Old people falling monitoring device and falling risk assessment method |
CN106956243A (en) * | 2017-03-06 | 2017-07-18 | 武汉大学 | A kind of bionical lower limb exoskeleton robot driven based on rope |
CN107259661A (en) * | 2017-07-16 | 2017-10-20 | 北京工业大学 | A kind of flexible power-assisted coat of wearable lower limb |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109106558A (en) * | 2018-09-07 | 2019-01-01 | 南京伟思医疗科技股份有限公司 | A kind of flexible joint exoskeleton robot and its control method |
CN110370253A (en) * | 2019-08-23 | 2019-10-25 | 西安魔晶五维家居有限公司 | A kind of wearable type leg joint assistance mechanism |
CN110842893A (en) * | 2019-11-10 | 2020-02-28 | 北京机械设备研究所 | Exoskeleton carrying gait judging method, device and system |
CN111150605A (en) * | 2020-01-14 | 2020-05-15 | 北京航空航天大学 | Wearable flexible ankle joint assist drive device based on rope transmission |
US11298287B2 (en) | 2020-06-02 | 2022-04-12 | Dephy, Inc. | Systems and methods for a compressed controller for an active exoskeleton |
US11148279B1 (en) | 2020-06-04 | 2021-10-19 | Dephy, Inc. | Customized configuration for an exoskeleton controller |
US11738450B2 (en) | 2020-06-04 | 2023-08-29 | Dephy, Inc. | Customized configuration for an exoskeleton controller |
US11944581B2 (en) | 2020-06-04 | 2024-04-02 | Dephy, Inc. | Systems and methods for bilateral wireless communication |
US12208515B2 (en) | 2020-06-04 | 2025-01-28 | Dephy, Inc. | Customized configuration for an exoskeleton controller |
US11918536B2 (en) | 2020-06-05 | 2024-03-05 | Dephy, Inc. | Real-time feedback-based optimization of an exoskeleton |
US11389367B2 (en) | 2020-06-05 | 2022-07-19 | Dephy, Inc. | Real-time feedback-based optimization of an exoskeleton |
CN111906753A (en) * | 2020-07-10 | 2020-11-10 | 西北机电工程研究所 | Electric rope wheel driving exoskeleton power-assisted robot |
CN111906753B (en) * | 2020-07-10 | 2023-08-18 | 西北机电工程研究所 | Electric rope wheel driven exoskeleton power-assisted robot |
CN111898487A (en) * | 2020-07-15 | 2020-11-06 | 贵州航天控制技术有限公司 | A real-time recognition method of human motion pattern for flexible exoskeleton system |
CN111803329A (en) * | 2020-07-17 | 2020-10-23 | 哈尔滨工业大学 | An Elbow Exoskeleton for Rehabilitation Robots |
US12090069B2 (en) | 2020-08-25 | 2024-09-17 | Dephy, Inc. | Systems and methods for a water resistant active exoskeleton |
CN112025680A (en) * | 2020-08-28 | 2020-12-04 | 华中科技大学 | Single-motor flexible power-assisted knee joint exoskeleton |
US11752061B2 (en) | 2020-09-16 | 2023-09-12 | Dephy, Inc. | Systems and methods for an active exoskeleton with local battery |
US11173093B1 (en) | 2020-09-16 | 2021-11-16 | Dephy, Inc. | Systems and methods for an active exoskeleton with local battery |
CN112741757A (en) * | 2020-12-30 | 2021-05-04 | 华南理工大学 | Ankle joint line drives ectoskeleton control system based on biped pressure sensor |
CN113057769A (en) * | 2021-03-16 | 2021-07-02 | 吉林大学 | Active-driving ankle joint artificial limb |
CN113779715B (en) * | 2021-08-24 | 2023-06-27 | 汕头大学 | Design method of light mechanical exoskeleton |
CN113779715A (en) * | 2021-08-24 | 2021-12-10 | 汕头大学 | Design method of lightweight mechanical exoskeleton |
WO2024097040A1 (en) * | 2022-11-02 | 2024-05-10 | University Of Florida Research Foundation, Incorporated | Apparatus and method using a spring-powered knee exoskeleton for gait assistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108283564A (en) | A kind of intelligent ankle-joint exoskeleton system of light-type rope driving | |
CN105213155B (en) | A kind of artificial intelligence motion's auxiliary equipment | |
CN104027218B (en) | A kind of healing robot control system and method | |
Siviy et al. | Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking | |
CN107126344B (en) | Exoskeleton rehabilitation robot for rehabilitation of lower limb walking function and control system and method | |
CN107296718B (en) | Pneumatic muscle-driven exoskeleton device with functions of upper limb assistance and rehabilitation training | |
Kim et al. | Mechanical design of the Hanyang exoskeleton assistive robot (HEXAR) | |
US20190240103A1 (en) | Exoskeletal gait rehabilitation device | |
Lim et al. | Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage | |
Li et al. | Review on lower extremity exoskeleton robot | |
CN109662869A (en) | A kind of wearable flexible lower limb power-assisting robot | |
CN106325273A (en) | Multi-phase gait switching control system and control method for power-assisted exoskeleton robot | |
CN106264988A (en) | exoskeleton ankle machine | |
US11945107B2 (en) | Open-loop control for exoskeleton motor | |
CN104490563A (en) | Pneumatic muscle based intelligent wearable lower limb | |
Chaichaowarat et al. | Passive knee exoskeleton using torsion spring for cycling assistance | |
Zhao et al. | Template model inspired leg force feedback based control can assist human walking | |
Camardella et al. | Gait phases blended control for enhancing transparency on lower-limb exoskeletons | |
Wang et al. | An underwater lower-extremity soft exoskeleton for breaststroke assistance | |
Naruse et al. | Development of wearable exoskeleton power assist system for lower back support | |
CN106863273A (en) | A kind of wearable knee joint booster of intelligence | |
US20230381947A1 (en) | Appendage work sharing apparatus | |
CN116766197A (en) | Hip joint exoskeleton power-assisted control method | |
US20220218551A1 (en) | Ankle-Assisted Exoskeleton Device | |
Félix et al. | Powered knee orthosis for human gait rehabilitation: First advances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180717 |