CN108281033B - 一种停车诱导系统及方法 - Google Patents
一种停车诱导系统及方法 Download PDFInfo
- Publication number
- CN108281033B CN108281033B CN201810109692.1A CN201810109692A CN108281033B CN 108281033 B CN108281033 B CN 108281033B CN 201810109692 A CN201810109692 A CN 201810109692A CN 108281033 B CN108281033 B CN 108281033B
- Authority
- CN
- China
- Prior art keywords
- parking
- time
- parking lot
- reliability
- travel time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004364 calculation method Methods 0.000 claims abstract description 34
- 238000012216 screening Methods 0.000 claims abstract description 4
- 230000006698 induction Effects 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 2
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/14—Traffic control systems for road vehicles indicating individual free spaces in parking areas
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
- G06Q10/047—Optimisation of routes or paths, e.g. travelling salesman problem
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
Abstract
本发明公开本发明提供一种停车诱导系统及方法,包括:分类模块、筛选模块、第一计算模块、第二计算模块以及选择模块。本发明提供的一种停车诱导系统及方法,能够预测停车场有空闲车位的数量和可靠度,并为车辆推荐可靠停车场和可靠的行车路线,避免出现车辆到达停车场无停车位的现象,同时提高各个停车场的泊位使用率,使泊位资源与社会需求合理配置,缓解停车难问题。
Description
技术领域
本发明涉及智能停车领域。更具体地,涉及一种停车诱导系统及方法。
背景技术
随着城市停车需求的迅速增加,“停车难”的问题越来越严重,很多城市出现停车位一位难求的情况。作为智能交通系统的重要组成部分,智能化的停车诱导系统是现代城市交通管理中的关键内容,系统成功运转的前提条件之一是准确预测停车场空闲车位数,并为出行者提供可靠的停车位置。当前有关停车技术大多是对空闲车位数的统计,缺少成熟可靠的停车场空闲车位数预测技术,如何预测停车场空闲车位数,为驾驶者推荐可靠的停车位置,成为摆在研究人员面前的一个技术难题。
随着科技发展,目前的停车诱导系统已经发展为通过多种方式向驾驶者提供停车场的位置、剩余泊位数量、路线以及相关道路交通状况等信息,诱导驾驶者最有效地找到停车场的系统,但是由于信息发布滞后,无法提前预知停车场的车位情况,车辆到达停车场时已有的车位已经被其他车辆占用。同时,对于停车场可用车位预测方法,目前多是预测停车场车位的平均值,并没有考虑有停车位数量的可靠度,由于停车位数据的波动,可靠度低的预测结果常常会导致实际应用中目标停车场没有可用车位。
发明内容
有鉴于此,本发明第一方面提供一种停车诱导系统,包括:
分类模块,采集停车场的历史空闲车位数和各路段的历史行驶时间,对停车场历史空闲车位数的数据按照特征日和时间段分类,对各路段的历史行驶时间按照路段单元分类;
筛选模块,根据目标地位置筛选出多个待选停车场;
第一计算模块,根据每个路段单元的历史行驶时间数据计算路段行程时间服从的第一概率分布,并根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间;
第二计算模块,根据分类数据计算每个特征日下各时间段停车场空闲车位数服从的第二概率分布,将所述期望到达时间转化为期望时间段,计算在期望时间段内待选停车场有车位的车位可靠度;
选择模块,选择最高路径可靠度和车位可靠度的停车场,并输出该停车场的位置及到达该停车场的路径。
优选地,所述特征日组包括:
星期一组、星期二组、星期三组、星期四组、星期五组、星期六组、星期日组、节假日前期组、节假日中期组、节假日后期组;
和/或
所述时间段包括:
将每个特征日按照1小时间隔划分的24个时间段,或者按照早高峰、白天平峰、晚高峰、夜间划分的四个时间段。
优选地,所述第一概率分布为:
ti~SLN(μi,σi,γi),
其中,ti的计算公式为:
ti=γi+exp(μi+σizi),
其中,ti表示路段i的单位行程时间,μi表示路段i的额外行程时间的均值,σi表示路段i的额外行程时间的方差,γi表示路段i的自由流行程时间,zi表示标准正态随机变量。
优选地,所述第二概率分布为:
其中,XC,k,h表示特征日c的第k个时间段编号为h停车场的空闲车位数。
本发明第二方面提供一种停车诱导方法,包括:
采集停车场的历史空闲车位数和各路段的历史行驶时间,对停车场历史空闲车位数的数据按照特征日和时间段分类,对各路段的历史行驶时间按照路段单元分类;
根据目标地位置筛选出多个待选停车场;
根据每个路段单元的历史行驶时间数据计算路段行程时间服从的第一概率分布,并根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间;
根据分类数据计算每个特征日下各时间段停车场空闲车位数服从的第二概率分布,将所述期望到达时间转化为期望时间段,计算在期望时间段内待选停车场有车位的车位可靠度;
选择最高路径可靠度和车位可靠度的停车场,并输出该停车场的位置及到达该停车场的路径。
优选地,所述特征日组配置为星期一组、星期二组、星期三组、星期四组、星期五组、星期六组、星期日组、节假日前期组、节假日中期组、节假日后期组;
和/或
所述时间段配置为将每个特征日按照1小时间隔划分为24个时间段,或者按照早高峰、白天平峰、晚高峰、夜间划分为四个时间段。
优选地,根据目标地位置筛选出多个待选停车场包括:
以目标地为圆心、以预设距离为半径构成的圆形覆盖区域为搜索区域,该搜索区域内的停车场作为待选停车场。
优选地,所述根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间包括:
根据第一概率分布计算当前车辆到达每个筛选的停车场的行程时间和期望额外行程时间;
计算当前车辆到达每个筛选的停车场的路段的方差;
计算到达每个筛选的停车场的路径期望行程时间;
计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间;
优选地,所述每个筛选的停车场的行程时间的计算公式为:
式中,Oh表示对应的路径,ti表示路段i的单位行程时间,μi表示路段i的额外行程时间的均值,σi表示路段i的额外行程时间的方差,γi表示路段i的自由流行程时间,li表示路段i的长度,γOh表示路径Oh的自由流行程时间;
所述每个筛选的停车场的期望额外行程时间的计算公式为:
其中,μOh和σOh表示路径Oh的额外行程时间均值和额外行程时间方差,eOh表示路径Oh的额外行程时间;
所述当前车辆到达每个筛选的停车场的路段的方差的计算公式为:
其中,ρi,j表示路段i与路段j之间的相关系数。
优选地,所述期望行程时间计算公式为:
当给定行程时间阈值、路径时,到达对应停车场的可靠度的计算公式为:
其中,Oh表示对应的路径,xij=1表示路段aij属于路径Oh,xij=0表示路段aij不属于路径Oh,A表示参与计算的所有路段集,ROh表示可靠度;
当给定可靠度和出发时间时,路径的行程时间阈值计算公式为
Min T0=γOh+exp(Φ-1(ROh)·σOh+μOh),
其中,T0表示路径可靠度,Φ-1(ROh)表示路径Oh在可靠度为ROh时的累积概率密度函数的反函数;
当给定期望到达时间和可靠度时,出发时间的计算公式为
当给定出发时间和可靠度,对应停车场的到达时间计算公式为
本发明的有益效果如下:
本发明提供的一种停车诱导系统及方法,能够预测停车场有空闲车位的数量和可靠度,并为车辆推荐可靠停车场和可靠的行车路线,避免出现车辆到达停车场无停车位的现象,同时提高各个停车场的泊位使用率,使泊位资源与社会需求合理配置,缓解停车难问题。
在优选的技术方案中,本发明充分利用数学概率分布理论,将各路段的历史行驶时间及历史空闲车位数转化为转换对数正态分布和正态分布,从而从统计学角度根据实时更新的历史数据进行不断迭代更新,提高了该系统及方法的适用性,其可靠度的准确率不会因时间的推移,科技的发展、私家车数量的增多等发展因素的影响导致下降。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出本发明一个实施例提供的一种停车诱导系统的结构示意图。
图2示出本发明一个实施例提供的一种停车诱导方法的步骤示意图。
图3示出图2中S3具体步骤示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
目前的停车诱导系统通过多种方式向驾驶者提供停车场的位置、剩余泊位数量、路线以及相关道路交通状况等信息,诱导驾驶者最有效地找到停车场的系统,但是由于信息发布滞后,无法提前预知停车场的车位情况,车辆到达停车场时已有的车位已经被其他车辆占用。同时,对于停车场可用车位预测方法,目前多是预测停车场车位的平均值,并没有考虑有停车位数量的可靠度,由于停车位数据的波动,可靠度低的预测结果常常会导致实际应用中目标停车场没有可用车位。
为了解决现有技术中信息滞后,车辆到达时已有的车位被其他车辆占用,并且由于未考虑停车数量的可靠度导致的实际应用中目标停车场没有可用车位的问题,本发明提供一种停车诱导系统和方法,通过对历史停车数据的统计与分类,采用概率分布的大数据统计方法,提高了预知停车场的车位情况准确度,同时考虑车位数量的可靠度,使得车位资源合理配置,缓解了停车难的问题。
具体的,如图1所示,本发明第一方面提供一种停车诱导系统,包括:分类模块,采集停车场的历史空闲车位数和各路段的历史行驶时间,对停车场历史空闲车位数的数据按照特征日和时间段分类,对各路段的历史行驶时间按照路段单元分类;筛选模块,根据目标地位置筛选出多个待选停车场;第一计算模块,根据每个路段单元的历史行驶时间数据计算路段行程时间服从的第一概率分布,并根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间;第二计算模块,根据分类数据计算每个特征日下各时间段停车场空闲车位数服从的第二概率分布,将所述期望到达时间转化为期望时间段,计算在期望时间段内待选停车场有车位的车位可靠度;选择模块,选择最高路径可靠度和车位可靠度的停车场,并输出该停车场的位置及到达该停车场的路径。
本方面提供的停车诱导系统,通过分类模块对车位的历史数据进行分类,对历史车位以及历史行程时间拟合出数学概率分布,由于其基于过往历史数据,因此大大提高了其可靠度,并且,随着该系统应用时间的推移,收集的历史数据越来越多,其概率分布可以随着对应的历史数据的变化不断调整,因此能够实时适应不断更新的交通环境。
可选地,所述特征日组包括:
星期一组、星期二组、星期三组、星期四组、星期五组、星期六组、星期日组、节假日前期组、节假日中期组、节假日后期组;
和/或
所述时间段包括:
将每个特征日按照1小时间隔划分的24个时间段,或者按照早高峰、白天平峰、晚高峰、夜间划分的四个时间段。
数据统计,由于国家规定上班时间的因素以及各大城市车辆限号按照星期数分配限号号码,因此,按照星期数和法定节假日分组能够更加适应国内的生活规律,更具有代表性。
例如,准备批量历史停车场空闲车位数据,将历史停车场空闲车位数据分为十个特征日,星期一(Mon)、星期二(Tue)、星期三(Wed)、星期四(Thu)、星期五(Fri)、星期六(Sat)、星期日(Sun)、节假日前期(Hol_E)、节假日中期(Hol_M)、节假日后期(Hol_L)。用C表示特征日集合,则
C={Mon,Tue,Wed,Thu,Fri,Sat,Sun,Hol_E,Hol_M,Hol_L}
将每个特征日的停车场空闲车位数据划分为多个时间段,例如,按照1小时间隔划分为24个时间段;也可以按照早晚高峰划分为早高峰、白天平峰、晚高峰、夜间四个时间段;或者其他的划分方式。用TC表示特征日C的整个时间段,tC,k表示特征日C的第k个时间段,则
TC={tC,1,tC,2,…,tC,k,…}。
优选地,所述第一概率分布为:
ti~SLN(μi,σi,γi),
其中,ti的计算公式为:
ti=γi+exp(μi+σizi),
其中,ti表示路段i的单位行程时间,μi表示路段i的额外行程时间的均值,σi表示路段i的额外行程时间的方差,γi表示路段i的自由流行程时间,zi表示标准正态随机变量。
第一概率分布为转换对数正态分布(SLN),目前转换对数正态分布仍然属于比较前沿的正态分布,已有报道将SLN分布应用于交通领域的行程时间可靠度估计,但是(1)已有SLN分布是基于道路属性对路段行程时间进行分类,没有考虑不同时段(例如早晚高峰)、不同位置(例如市区郊区)对行程时间分布的影响;(2)已有的基于SLN分布的路径行程时间计算公式没有考虑路段长度,不能直接用来估计路径的具体行程时间;(3)目前还没有基于SLN分布的出发时间和到达时间计算方法研究;(4)还没有研究将SLN分布应用到停车诱导中。由于目前研究较少,对SLN分布的应用研究较为局限,其应用场景仍处于待开发状态。实际的数据检验表明转换对数正态分布能够更精确的描述行程时间分布。(参考文献:Srinivasan K.K.,Prakash A.A.,Seshadri R.,2014.Finding most reliable paths onnetworks with correlated and shifted lognormal travel times.TransportationResearch Part B 48(66),110-128.)
优选地,所述第二概率分布为:
其中,XC,k,h表示特征日c的第k个时间段编号为h停车场的空闲车位数。
该优选方案中,服从正态分布的变量,只要知道其均值和方差,就可以根据公式估计任意取值范围内的频数比例。
此外,本发明第二方面提供一种停车诱导方法,包括:
S1:采集停车场的历史空闲车位数和各路段的历史行驶时间,对停车场历史空闲车位数的数据按照特征日和时间段分类,对各路段的历史行驶时间按照路段单元分类;
可选的,所述特征日组配置为星期一组、星期二组、星期三组、星期四组、星期五组、星期六组、星期日组、节假日前期组、节假日中期组、节假日后期组;
和/或
所述时间段配置为将每个特征日按照1小时间隔划分为24个时间段,或者按照早高峰、白天平峰、晚高峰、夜间划分为四个时间段。
例如,准备批量历史停车场空闲车位数据,将历史停车场空闲车位数据分为十个特征日,星期一(Mon)、星期二(Tue)、星期三(Wed)、星期四(Thu)、星期五(Fri)、星期六(Sat)、星期日(Sun)、节假日前期(Hol_E)、节假日中期(Hol_M)、节假日后期(Hol_L)。用C表示特征日集合,则
C={Mon,Tue,Wed,Thu,Fri,Sat,Sun,Hol_E,Hol_M,Hol_L}
将每个特征日的停车场空闲车位数据划分为多个时间段,例如,按照1小时间隔划分为24个时间段;也可以按照早晚高峰划分为早高峰、白天平峰、晚高峰、夜间四个时间段;或者其他的划分方式。用TC表示特征日C的整个时间段,tC,k表示特征日C的第k个时间段,则
TC={tC,1,tC,2,…,tC,k,…}。
S2:根据目标地位置筛选出多个待选停车场。
具体的,以目标地为圆心、以预设距离为半径构成的圆形覆盖区域为搜索区域,该搜索区域内的停车场作为待选停车场。
S3:根据每个路段单元的历史行驶时间数据计算路段行程时间服从的第一概率分布,并根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间。
根据路段的历史行驶时间数据,计算路段行程时间服从的概率分布。用ti表示路段i的单位行程时间,μi表示路段i的额外行程时间的均值,σi表示路段i的额外行程时间的方差,γi表示路段i的自由流行程时间,li表示路段i的长度。通过历史数据分析得到ti服从转换对数正态分布(SLN),ti~SLN(μi,σi,γi)。ti的计算公式为
ti=γi+exp(μi+σizi)
路段i的行程时间tili计算公式为
tili=[γi+exp(μi+σizi)]li=γili+exp(μi+lnli+σizi)
即路段行程时间tili服从参数为μi+lnli,σi,γili的转换对数正态分布,tili~SLN(μi+lnli,σi,γili)。
从车辆所在位置O到第h个停车场的路径用Oh表示,则路径Oh的行程时间tOh计算公式为
用γOh表示路径Oh的自由流行程时间,eOh表示路径Oh的额外行程时间,则
用μOh和σOh表示路径Oh的额外行程时间均值和额外行程时间方差,用MOh表示期望的额外行程时间,则
用VOh表示路径Oh的方差,则
式中,ρi,j表示路段i与路段j之间的相关系数。
μOh和σOh的用VOh和MOh表示的计算公式如下
用TOh表示路径Oh的期望行程时间,计算公式如下
用Ωh表示车辆到达第h个停车场的可靠路径,对于给定的行程时间阈值T0,通过路径Ωh到达第h个停车场的可靠度ROh的计算公式为
其中,xij=1表示路段aij属于路径Oh,xij=0表示路段aij不属于路径Oh,A表示参与计算的所有路段集。
当可靠度ROh和出发时间给定时,路径的行程时间阈值T0计算公式为
Min T0=γOh+exp(Φ-1(ROh)·σOh+μOh)
其中,Φ-1(ROh)表示路径Oh在可靠度为ROh时的累积概率密度函数的反函数。
当给定期望到达时间yh和可靠度ROh,出发时间yO计算公式为
当给定出发时间yO和可靠度ROh,到达第h个停车场的时间yh计算公式为
根据上述计算方法,最终可以确定车辆出发时间yO,车辆通过路径Ωh到达第h个停车场的时间yh,车辆通过路径Ωh到达第h个停车场的可靠度ROh。
S4:根据分类数据计算每个特征日下各时间段停车场空闲车位数服从的第二概率分布,将所述期望到达时间转化为期望时间段,计算在期望时间段内待选停车场有车位的车位可靠度。
具体的,统计每个特征日每个时间段每个停车场空闲车位数服从的概率分布,用XC,k,h表示特征日C的第k个时间段第h个停车场的空闲车位数,则车位数在区间(a,b]的概率P{a<XC,k,h≤b}可以表示为
其中,f(x)为XC,k,h的概率密度函数,根据历史停车场的空闲车位数拟合得到。例如,当历史停车场的空闲车位数服从正态分布,Φ(·)表示累积概率分布函数,则特征日C的第k个时间段第h个停车场的空闲车位数在区间(a,b]的概率计算公式为
S5:选择最高路径可靠度和车位可靠度的停车场,并输出该停车场的位置及到达该停车场的路径。
可选的,输出的停车场的位置及到达该停车场的路径可发送至车辆使用者的手机、导航仪、智能手表及其他可接收信号的智能设备。
本方面提供的停车诱导方法,能够预测停车场有空闲车位的数量和可靠度,并为车辆推荐可靠停车场和可靠的行车路线,避免出现车辆到达停车场无停车位的现象,同时提高各个停车场的泊位使用率,使泊位资源与社会需求合理配置,缓解停车难问题。
在优选的技术方案中,本方法充分利用数学概率分布理论,将各路段的历史行驶时间及历史空闲车位数转化为转换对数正态分布和正态分布,从而从统计学角度根据实时更新的历史数据进行不断迭代更新,提高了该系统及方法的适用性,其可靠度的准确率不会因时间的推移,科技的发展、私家车数量的增多等发展因素的影响导致下降。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。
Claims (9)
1.一种停车诱导系统,其特征在于,包括:
分类模块,采集停车场的历史空闲车位数和各路段的历史行驶时间,对停车场历史空闲车位数的数据按照特征日和时间段分类,对各路段的历史行驶时间按照路段单元分类;
筛选模块,根据目标地位置筛选出多个待选停车场;
第一计算模块,根据每个路段单元的历史行驶时间数据计算路段行程时间服从的第一概率分布,并根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间;
第二计算模块,根据分类数据计算每个特征日下各时间段停车场空闲车位数服从的第二概率分布,将所述期望到达时间转化为期望时间段,计算在期望时间段内待选停车场有车位的车位可靠度;
选择模块,选择最高路径可靠度和车位可靠度的停车场,并输出该停车场的位置及到达该停车场的路径,
其中第一计算模块根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间包括
根据第一概率分布计算当前车辆到达每个筛选的停车场的行程时间和期望额外行程时间;
计算当前车辆到达每个筛选的停车场的路段的方差;
计算到达每个筛选的停车场的路径期望行程时间;
计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间,
其中,
所述期望行程时间的计算公式为:
当给定行程时间阈值、路径时,到达对应停车场的可靠度的计算公式为:
其中,Oh表示对应的路径,xij=1表示路段aij属于路径Oh,xij=0表示路段aij不属于路径Oh,A表示参与计算的所有路段集,ROh表示可靠度;
当给定可靠度和出发时间时,路径的行程时间阈值计算公式为
Min T0=γOh+exp(Φ-1(ROh)·σOh+μOh),
其中,T0表示路径可靠度,Φ-1(ROh)表示路径Oh在可靠度为ROh时的累积概率密度函数的反函数;
当给定期望到达时间和可靠度时,出发时间的计算公式为
当给定出发时间和可靠度,对应停车场的到达时间计算公式为
2.根据权利要求1所述系统,其特征在于,所述特征日分类包括:
星期一组、星期二组、星期三组、星期四组、星期五组、星期六组、星期日组、节假日前期组、节假日中期组、节假日后期组;
和/或
所述时间段包括:
将每个特征日按照1小时间隔划分的24个时间段,或者按照早高峰、白天平峰、晚高峰、夜间划分的四个时间段。
3.根据权利要求1所述系统,其特征在于,所述第一概率分布为:
ti~SLN(μi,σi,γi),
其中,ti的计算公式为:
ti=γi+exp(μi+σizi),
其中,ti表示路段i的单位行程时间,μi表示路段i的额外行程时间的均值,σi表示路段i的额外行程时间的方差,γi表示路段i的自由流行程时间,zi表示标准正态随机变量。
5.一种停车诱导方法,其特征在于,包括:
采集停车场的历史空闲车位数和各路段的历史行驶时间,对停车场历史空闲车位数的数据按照特征日和时间段分类,对各路段的历史行驶时间按照路段单元分类;
根据目标地位置筛选出多个待选停车场;
根据每个路段单元的历史行驶时间数据计算路段行程时间服从的第一概率分布,并根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间;
根据分类数据计算每个特征日下各时间段停车场空闲车位数服从的第二概率分布,将所述期望到达时间转化为期望时间段,计算在期望时间段内待选停车场有车位的车位可靠度;
选择最高路径可靠度和车位可靠度的停车场,并输出该停车场的位置及到达该停车场的路径,
其中,所述根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间包括:
根据第一概率分布计算当前车辆到达每个筛选的停车场的行程时间和期望额外行程时间;
计算当前车辆到达每个筛选的停车场的路段的方差;
计算到达每个筛选的停车场的路径期望行程时间;
计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间,
其中,
所述期望行程时间的计算公式为:
当给定行程时间阈值、路径时,到达对应停车场的可靠度的计算公式为:
其中,Oh表示对应的路径,xij=1表示路段aij属于路径Oh,xij=0表示路段aij不属于路径Oh,A表示参与计算的所有路段集,ROh表示可靠度;
当给定可靠度和出发时间时,路径的行程时间阈值计算公式为
Min T0=γOh+exp(Φ-1(ROh)·σOh+μOh),
其中,T0表示路径可靠度,Φ-1(ROh)表示路径Oh在可靠度为ROh时的累积概率密度函数的反函数;
当给定期望到达时间和可靠度时,出发时间的计算公式为
当给定出发时间和可靠度,对应停车场的到达时间计算公式为
6.根据权利要求5所述的方法,其特征在于,所述特征日分类配置为星期一组、星期二组、星期三组、星期四组、星期五组、星期六组、星期日组、节假日前期组、节假日中期组、节假日后期组;
和/或
所述时间段配置为将每个特征日按照1小时间隔划分为24个时间段,或者按照早高峰、白天平峰、晚高峰、夜间划分为四个时间段。
7.根据权利要求5所述的方法,其特征在于,根据目标地位置筛选出多个待选停车场包括:
以目标地为圆心、以预设距离为半径构成的圆形覆盖区域为搜索区域,该搜索区域内的停车场作为待选停车场。
8.根据权利要求5所述的方法,其特征在于,所述根据第一概率分布计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间包括:
根据第一概率分布计算当前车辆到达每个筛选的停车场的行程时间和期望额外行程时间;
计算当前车辆到达每个筛选的停车场的路段的方差;
计算到达每个筛选的停车场的路径期望行程时间;
计算车辆到达每个所述待选停车场的路径可靠度和期望到达时间。
9.根据权利要求8所述的方法,其特征在于,
所述每个筛选的停车场的行程时间的计算公式为:
式中,Oh表示对应的路径,ti表示路段i的单位行程时间,μi表示路段i的额外行程时间的均值,σi表示路段i的额外行程时间的方差,γi表示路段i的自由流行程时间,li表示路段i的长度,γOh表示路径Oh的自由流行程时间;
所述每个筛选的停车场的期望额外行程时间的计算公式为:
其中,Moh表示期望额外行程时间,μOh和σOh表示路径Oh的额外行程时间均值和额外行程时间方差,eOh表示路径Oh的额外行程时间;
所述当前车辆到达每个筛选的停车场的路段的方差VOh的计算公式为:
其中,ρi,j表示路段i与路段j之间的相关系数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810109692.1A CN108281033B (zh) | 2018-02-05 | 2018-02-05 | 一种停车诱导系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810109692.1A CN108281033B (zh) | 2018-02-05 | 2018-02-05 | 一种停车诱导系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108281033A CN108281033A (zh) | 2018-07-13 |
CN108281033B true CN108281033B (zh) | 2020-10-09 |
Family
ID=62807545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810109692.1A Active CN108281033B (zh) | 2018-02-05 | 2018-02-05 | 一种停车诱导系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108281033B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110111600B (zh) * | 2019-05-08 | 2022-01-11 | 东华大学 | 一种基于VANETs的停车场推荐方法 |
CN110827563B (zh) * | 2019-11-06 | 2021-03-30 | 北京交通大学 | 一种基于最可靠路径的停车诱导系统及方法 |
CN110796885B (zh) * | 2019-11-06 | 2020-11-13 | 北京交通大学 | 一种停车诱导方法及停车场诱导系统 |
CN111081056B (zh) * | 2019-12-16 | 2021-08-24 | 青岛海信网络科技股份有限公司 | 一种基于大数据智能分析的智慧社区临时停车管理系统 |
CN111326015A (zh) * | 2020-03-27 | 2020-06-23 | 北京骑胜科技有限公司 | 一种停车点推荐方法及装置 |
CN111785034A (zh) * | 2020-07-01 | 2020-10-16 | 宁波工程学院 | 一种道路违法抓拍方法、系统、终端设备和储存介质 |
CN114255609B (zh) * | 2020-09-25 | 2023-06-20 | 深圳富桂精密工业有限公司 | 泊车引导方法、电子设备及存储介质 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009162568A (ja) * | 2007-12-28 | 2009-07-23 | Aisin Aw Co Ltd | ナビゲーション装置及びコンピュータプログラム |
-
2018
- 2018-02-05 CN CN201810109692.1A patent/CN108281033B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN108281033A (zh) | 2018-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108281033B (zh) | 一种停车诱导系统及方法 | |
CN106816009B (zh) | 高速公路实时交通拥堵路况检测方法及其系统 | |
Jindal et al. | Optimizing taxi carpool policies via reinforcement learning and spatio-temporal mining | |
CN108681795B (zh) | 城市交通路网和用户出行链约束下的电动汽车充电负荷时空预测方法 | |
US7920960B2 (en) | Method and apparatus for predicting future travel times over a transportation network | |
US6539300B2 (en) | Method for regional system wide optimal signal timing for traffic control based on wireless phone networks | |
CN103295414B (zh) | 一种基于海量历史gps轨迹数据的公交车到站时间预测方法 | |
US20190139405A1 (en) | Traffic signal control using multiple q-learning categories | |
US20060178811A1 (en) | Method and apparatus for end-to-end travel time estimation using dynamic traffic data | |
CN106710216B (zh) | 高速公路实时交通拥堵路况检测方法和系统 | |
CN108769924A (zh) | 一种景区游客链式出行服务系统及方法 | |
CN110516708A (zh) | 一种基于轨迹与路网匹配的路径预测方法 | |
CN108831149A (zh) | 一种基于历史od信息定制公交线路开行方法及系统 | |
JP7625140B2 (ja) | 交通予測のための分散マルチタスク機械学習 | |
CN108806250A (zh) | 一种基于速度采样数据的区域交通拥堵评价方法 | |
CN110491158A (zh) | 一种基于多元数据融合的公交车到站时间预测方法及系统 | |
CN111882867A (zh) | 一种基于物联网的城市智慧交通预警系统 | |
CN109887289A (zh) | 一种城市交通网络模型的网络车流量最大化方法 | |
CN102737504A (zh) | 一种基于驾驶特性的公交车到站时间实时估计方法 | |
CN103366224B (zh) | 一种基于公交网络的乘客需求预测系统和方法 | |
CN109520499B (zh) | 基于车辆gps轨迹数据实现区域实时等时线的方法 | |
Zhang et al. | pCruise: Reducing cruising miles for taxicab networks | |
Zwick et al. | Impact of service design on urban ridepooling systems | |
CN115759660A (zh) | 一种无人驾驶车辆的调度方法、装置、设备和介质 | |
CN110986992A (zh) | 无人售卖车辆的导航方法、装置、电子设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |