CN108270085A - Inhale integrated frequency-selective surfaces structure thoroughly - Google Patents
Inhale integrated frequency-selective surfaces structure thoroughly Download PDFInfo
- Publication number
- CN108270085A CN108270085A CN201810178556.8A CN201810178556A CN108270085A CN 108270085 A CN108270085 A CN 108270085A CN 201810178556 A CN201810178556 A CN 201810178556A CN 108270085 A CN108270085 A CN 108270085A
- Authority
- CN
- China
- Prior art keywords
- square
- dielectric substrate
- absorbing
- metal patch
- patch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/0026—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
- H01Q1/422—Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
本发明公开了一种吸透一体频率选择表面结构,具有两个吸收频带,由弯曲条状金属贴片、第一类型方形介质基板、贴片电阻、空气层、第二类型方形介质基板、方形金属贴片和方环金属贴片构成。本发明的具有吸透一体特性的频率选择表面结构,在保证C波段内宽频带的低插损透波的同时,使得透波频带上下均具有吸波频带,以极小的尺寸实现了宽频带的电磁波传输控制,非常适合与绝大部分厚度的蒙皮、外壳、保护罩等结构进行结合,发挥其特有的电性能;同时入射角度在0‑30度时,电磁波传输特性保持稳定。
The invention discloses an absorption-through-integrated frequency selection surface structure, which has two absorption frequency bands, and is composed of a curved strip-shaped metal patch, a first type of square dielectric substrate, a patch resistor, an air layer, a second type of square dielectric substrate, a square Composed of metal patches and square ring metal patches. The frequency-selective surface structure of the present invention with integrated absorbing and penetrating characteristics not only ensures the low insertion loss wave-transmission of the broadband in the C-band, but also makes the upper and lower parts of the wave-transmitting frequency band have wave-absorbing frequency bands, and realizes a wide frequency band with a very small size. The electromagnetic wave transmission control is very suitable for combining with most of the thickness of the skin, shell, protective cover and other structures to exert its unique electrical performance; at the same time, when the incident angle is 0-30 degrees, the electromagnetic wave transmission characteristics remain stable.
Description
技术领域technical field
本发明属于电磁场与微波技术领域,尤其涉及一种吸透一体频率选择表面结构。The invention belongs to the technical field of electromagnetic fields and microwaves, and in particular relates to an absorbing and penetrating integrated frequency selective surface structure.
背景技术Background technique
现代战争中,飞行器上的雷达天线系统是重要的散射源,在某些频率和视角范围内具有很高的雷达散射截面(RCS),减小天线系统的RCS是飞行器实现隐身的重要课题。频率选择表面(Frequency Selective Surface,FSS)是由大量周期性排列、具有特定形状的金属贴片单元或金属平面间缝隙所组成的二维结构,当入射电磁波频率在单元的谐振频率上时,FSS呈现出全反射(贴片型)或全透射(孔径型),其他频率的电磁波可透过FSS(贴片型)或被全反射(孔径型),因此FSS可有效的控制电磁波的传输特性,被广泛应用在天线罩中。In modern warfare, the radar antenna system on the aircraft is an important source of scattering. It has a high radar cross section (RCS) in certain frequency and viewing angle ranges. Reducing the RCS of the antenna system is an important issue for the aircraft to achieve stealth. Frequency Selective Surface (FSS) is a two-dimensional structure composed of a large number of periodically arranged metal patch units with specific shapes or gaps between metal planes. When the incident electromagnetic wave frequency is at the resonant frequency of the unit, FSS It shows total reflection (patch type) or total transmission (aperture type), and electromagnetic waves of other frequencies can pass through FSS (patch type) or be totally reflected (aperture type), so FSS can effectively control the transmission characteristics of electromagnetic waves. It is widely used in radome.
当敌我双方雷达工作频段不同时,以FSS为基础的混合雷达罩技术可以实现天线系统频域的隐身。在天线罩中加入带通FSS可以制成带内透波、带外全反射的选频透波天线罩,可以使天线系统在透波频带内外表现出不同的RCS特性。带内RCS由天线而非天线罩决定;在工作频带之外,RCS将由天线罩的结构和形状决定;在过渡频带处,RCS则由FSS天线罩和天线两者共同决定。FSS天线罩在天线系统工作频带内有很好的透波性能,不影响天线正常工作;在频带之外,可以借助隐身外形设计,将带外雷达波反射到远离来波的方向,减小带外单站RCS。这种FSS天线罩通过将主要威胁方向的雷达来波反射到其它方向,面对单基站雷达探测能有效实现天线系统的隐身。When the operating frequency bands of the radars of the enemy and the enemy are different, the FSS-based hybrid radome technology can realize the stealth of the antenna system in the frequency domain. Adding band-pass FSS to the radome can make a frequency-selective wave-transparent radome with in-band wave transmission and out-of-band total reflection, which can make the antenna system exhibit different RCS characteristics inside and outside the wave-transmission frequency band. The in-band RCS is determined by the antenna rather than the radome; outside the operating frequency band, the RCS will be determined by the structure and shape of the radome; at the transition frequency band, the RCS will be determined by both the FSS radome and the antenna. The FSS radome has good wave-transmitting performance in the working frequency band of the antenna system, and does not affect the normal operation of the antenna; outside the frequency band, the stealth shape design can be used to reflect the out-of-band radar wave to the direction away from the incoming wave, reducing the band Outer single station RCS. This kind of FSS radome can effectively realize the stealth of the antenna system in the face of single base station radar detection by reflecting incoming radar waves from the main threat direction to other directions.
然而,这种隐身手段不能实现全方位的隐身,从某些视角来看可能产生很大的RCS增加。针对这种隐身技术缺陷的反隐身技术也逐渐发展。其中,利用雷达组网技术的双(多)基站雷达或者空基雷达系统可以利用收发分置的系统,接收隐身目标散射到其他方向的雷达波信号,对其进行探测与识别,具有很强的反隐身潜力。FSS隐身天线罩面对这些反隐身技术有失去隐身能力危险。针对这种新要求,一种具有带内透波/带外吸波特性的频率选择表面(Frequency Selective Radome,FSR)被提出。However, this means of stealth cannot achieve omnidirectional stealth and may yield a large RCS increase from certain viewing angles. The anti-stealth technology aimed at the defects of this stealth technology is also gradually developed. Among them, the dual (multi) base station radar or space-based radar system using radar networking technology can use the system with separate transceivers to receive radar wave signals scattered from stealth targets to other directions, and detect and identify them. Anti-stealth potential. In the face of these anti-stealth technologies, the FSS stealth radome has the danger of losing its stealth ability. To meet this new requirement, a frequency selective surface (Frequency Selective Radome, FSR) with in-band wave-transmitting/out-of-band wave-absorbing characteristics is proposed.
目前绝大多数的吸透一体频率选择表面研究成果都是低频透波/高频吸波与高频透波/低频吸波FSR,而针对透波频带上下均具有吸波特性的FSR研究非常少。这是由于FSR如果要具有透波频带上下均有吸波频带的特性,首先吸波频带不能影响到透波频带的透波性能,因此需要足够宽的匹配频带。同时又要保证恒定的较小的单元尺寸能够满足宽频带内的透波/吸波特性,具有很大的难度。由于频率选择表面本质上是一种空间的滤波器,为了它能够提供更好的带外抑制特性,其应当具备通带两端均能够吸波的性能,以便获得更好的隐身性能,这种吸透一体频率选择表面在飞行器隐身设计、电磁屏蔽等实际应用中有着极大的应用前景。At present, the vast majority of research results on the frequency selection surface of the integrated absorber are low-frequency wave-transparent/high-frequency wave-absorbing and high-frequency wave-transparent/low-frequency wave-absorbing FSR, and the research on FSR with wave-absorbing characteristics both above and below the wave-transmitting frequency band is very important. few. This is because if the FSR wants to have the characteristics of absorbing bands above and below the wave-transmitting frequency band, the absorbing frequency band cannot affect the wave-transmitting performance of the wave-transmitting frequency band, so a sufficiently wide matching frequency band is required. At the same time, it is very difficult to ensure that the constant smaller unit size can satisfy the wave transmission/absorption characteristics in a wide frequency band. Since the frequency selective surface is essentially a spatial filter, in order to provide better out-of-band suppression characteristics, it should have the performance of absorbing waves at both ends of the passband in order to obtain better stealth performance. Absorbing and penetrating integrated frequency selective surfaces have great application prospects in practical applications such as aircraft stealth design and electromagnetic shielding.
发明内容Contents of the invention
发明目的:针对以上问题,本发明提出一种吸透一体频率选择表面结构,频率选择表面的透波频带上下均有吸波频段。Purpose of the invention: In view of the above problems, the present invention proposes a frequency-selective surface structure with integrated absorption and penetration.
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种吸透一体频率选择表面结构,包含上层有耗层、中间空气层和下层无耗层;Technical solution: In order to achieve the purpose of the present invention, the technical solution adopted in the present invention is: a frequency-selective surface structure with absorption and penetration integrated, including an upper lossy layer, an intermediate air layer and a lower lossless layer;
其中,所述上层有耗层包括四片呈中心对称的弯曲条状金属贴片、四个贴片电阻和一块第一类型方形介质基板;每个金属贴片可以看作一条平直的条状金属贴片经过多次弯曲形成,相邻两个弯曲条状金属贴片由一个贴片电阻相连接,四个贴片电阻完全相同,四个弯曲条状金属贴片对称的中心与方形介质基板的中心对齐;Wherein, the upper lossy layer includes four centrally symmetrical curved strip-shaped metal patches, four chip resistors and a first-type square dielectric substrate; each metal patch can be regarded as a straight strip-shaped The metal patch is formed by bending multiple times. Two adjacent curved strip metal patches are connected by a chip resistor. The four chip resistors are identical. The symmetrical centers of the four curved strip metal patches are connected to the square dielectric substrate. center alignment of
所述下层无耗层包括两块相同的方形金属贴片、两块相同的第二类型方形介质基板和一块方环金属贴片构成,按照方形金属贴片、介质基板、方环金属贴片、介质基板、方形金属贴片的顺序依次排列;方环金属贴片由一个边长与介质基板的单元长度相同的方形贴片剪去另一个中心与之重合的边长较小的方形贴片构成,方形金属贴片和方环金属贴片的中心均与介质基板的中心对齐;The lower lossless layer consists of two identical square metal patches, two identical second-type square dielectric substrates and a square ring metal patch, according to the square metal patch, dielectric substrate, square ring metal patch, The order of the dielectric substrate and the square metal patch is arranged in sequence; the square ring metal patch is composed of a square patch whose side length is the same as the unit length of the dielectric substrate and cut out another square patch whose center coincides with it and has a smaller side length. , the centers of the square metal patch and the square ring metal patch are aligned with the center of the dielectric substrate;
所述上层有耗层与下层无耗层的中间是具有一定厚度的空气层,且上层有耗层与下层无耗层的对称中心对齐。Between the upper lossy layer and the lower lossless layer is an air layer with a certain thickness, and the symmetry centers of the upper lossy layer and the lower lossless layer are aligned.
进一步地,所述第一类型方形介质基板的材质为Isola FR408。Further, the material of the first type square dielectric substrate is Isola FR408.
进一步地,所述第二类型方形介质基板的材质为F4BM220。Further, the material of the second type square dielectric substrate is F4BM220.
进一步地,所述中间空气层的厚度为5mm。Further, the thickness of the intermediate air layer is 5 mm.
进一步地,所述方形金属贴片的边长为9.8mm。Further, the side length of the square metal patch is 9.8 mm.
进一步地,所述贴片电阻的型号为0603,阻值为62欧姆。Further, the model of the chip resistor is 0603, and the resistance value is 62 ohms.
有益效果:本发明的具有吸透一体特性的频率选择表面结构,在保证C波段内宽频带的低插损透波的同时,使得透波频带上下均具有吸波频带,以极小的尺寸实现了宽频带的电磁波传输控制,非常适合与绝大部分厚度的蒙皮、外壳、保护罩等结构进行结合,发挥其特有的电性能;同时入射角度在0-30度时,电磁波传输特性保持稳定。Beneficial effects: the frequency-selective surface structure with integrated absorbing and penetrating characteristics of the present invention ensures low insertion loss wave-transmission in a wide frequency band in the C-band, and at the same time makes the upper and lower wave-transmitting frequency bands have wave-absorbing frequency bands, which are realized in a very small size Broadband electromagnetic wave transmission control is very suitable for combining with skins, shells, protective covers and other structures of most thicknesses to give full play to its unique electrical properties; at the same time, when the incident angle is 0-30 degrees, the electromagnetic wave transmission characteristics remain stable .
附图说明Description of drawings
图1是本发明吸透一体频率选择表面结构的单元结构图;Fig. 1 is a unit structure diagram of the frequency selective surface structure of the present invention;
图2是本发明吸透一体频率选择表面结构的整体图,(a)为主视图,(b)为侧视图;Figure 2 is an overall view of the frequency selective surface structure of the present invention, (a) is the main view, (b) is the side view;
图3是本发明吸透一体频率选择表面结构的下层无耗层的单元结构图,(a)为整体拆分图,(b)为方形贴片示意图,(c)为方环贴片示意图;Fig. 3 is a unit structure diagram of the lower lossless layer of the absorbing and penetrating integrated frequency selective surface structure of the present invention, (a) is an overall split diagram, (b) is a schematic diagram of a square patch, and (c) is a schematic diagram of a square ring patch;
图4是本发明吸透一体频率选择表面在垂直入射条件下的反射曲线、传输曲线及吸收曲线图;Fig. 4 is a reflection curve, a transmission curve and an absorption curve diagram of the frequency selective surface of the present invention under the condition of normal incidence;
图5是本发明吸透一体频率选择表面在一定角度入射条件下的反射曲线、传输曲线图,(a)为TE模式,(b)为TM模式;Fig. 5 is a reflection curve and a transmission curve diagram of the absorbing and penetrating integrated frequency selective surface of the present invention under the condition of a certain angle of incidence, (a) is the TE mode, (b) is the TM mode;
图6是本发明吸透一体频率选择表面在一定角度入射条件下的吸收曲线图。Fig. 6 is an absorption curve diagram of the frequency selective surface of the present invention under the condition of a certain angle of incidence.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1、图2和图3所示,本发明的具有两个吸收频带的吸透一体频率选择表面结构由弯曲条状金属贴片1、Isola FR408方形介质基板2、型号0603阻值为62欧姆的贴片电阻3、空气层4、F4B方形介质基板5、方形金属贴片6和方环金属贴片7构成。本发明的具有两个吸收频带的吸透一体频率选择表面结构包含上层有耗层、中间空气层和下层无耗层,且上层有耗层与下层无耗层的对称中心对齐。As shown in Figure 1, Figure 2 and Figure 3, the absorbing and permeable integrated frequency selective surface structure with two absorption frequency bands of the present invention consists of a curved strip metal patch 1, an Isola FR408 square dielectric substrate 2, and a model 0603 resistance value of 62 Ohmic chip resistor 3, air layer 4, F4B square dielectric substrate 5, square metal patch 6 and square ring metal patch 7. The absorbing and permeable integrated frequency selective surface structure with two absorption frequency bands of the present invention comprises an upper lossy layer, an intermediate air layer and a lower lossless layer, and the upper layer lossy layer is aligned with the center of symmetry of the lower lossless layer.
如图2(a)所示,上层有耗层的单元结构中,四片弯曲条状金属贴片1紧贴第一类型方形介质基板2,四个相同的贴片电阻3依次连接弯曲条状金属贴片1,弯曲条状金属贴片1之间依次所留的间距c需要保证贴片电阻3的焊接,四个弯曲条状金属贴片1对称的中心与方形介质基板2的中心对齐。贴片电阻3的选择除了考虑型号大小适用于c,阻值也应该选择使得吸波时FSR的阻抗与自由空间阻抗匹配程度最佳。弯曲条状金属贴片1的长度影响有耗FSS的谐振频段,仿真结果验证了图2(a)中的l1若增大,则有耗FSS的谐振频段相应会左移;弯曲条状金属贴片1的宽度w增大时,有耗FSS的等效电感相应减小,因此谐振频段会产生右移,通过仿真发现,透波峰值也会逐渐降低。如图2(b)所示,上层有耗FSS与下层无耗FSS之间为具有一定厚度的空气层4,其作用为吸波时使FSR避免上层有耗FSS与下层无耗FSS耦合,同时更好地与自由空间阻抗匹配,因此应当选定最为合适的空气层4的厚度h2。As shown in Figure 2(a), in the unit structure of the upper lossy layer, four curved strip-shaped metal patches 1 are attached to the first type of square dielectric substrate 2, and four identical chip resistors 3 are sequentially connected to the curved strip-shaped The spacing c between the metal patch 1 and the curved strip-shaped metal patch 1 needs to ensure the welding of the chip resistor 3 , and the symmetrical centers of the four curved strip-shaped metal patches 1 are aligned with the center of the square dielectric substrate 2 . The choice of chip resistor 3 is not only considering the model size is suitable for c, but also the resistance value should be selected so that the impedance of the FSR and the free space impedance match best when absorbing waves. The length of the curved strip metal patch 1 affects the resonant frequency band of the lossy FSS. The simulation results verify that if l1 in Figure 2(a) increases, the resonant frequency band of the lossy FSS will shift to the left accordingly; When the width w of sheet 1 increases, the equivalent inductance of the lossy FSS decreases accordingly, so the resonant frequency band will shift to the right, and it is found through simulation that the peak value of the transmitted wave will also gradually decrease. As shown in Figure 2(b), there is an air layer 4 with a certain thickness between the upper lossy FSS and the lower lossless FSS. To better match the free space impedance, the most suitable thickness h2 of the air layer 4 should be selected.
如图3所示,下层无耗层由方形金属贴片6、第二类型方形介质基板5、方环金属贴片7、第二类型方形介质基板5和方形金属贴片6依次紧密贴合构成。方环金属贴片7由一个边长与介质板的单元长度相同的方形贴片剪去另一个中心与之重合的边长较小的方形贴片构成,方形金属贴片6和方环金属贴片7的中心均与方形介质基板5的中心对齐。方形金属贴片6的边长s越大,等效电容越大,下层无耗FSS的谐振频段往低频移动。方环金属贴片7的环宽w增大,等效电感减小,等效电容增大,因此谐振带宽变窄,经过仿真发现,谐振频段的右边频点几乎不受影响,其左边频点向右移。方形介质基板5的厚度h很大程度上影响着下层无耗FSS的带宽,h越大,带宽越窄。As shown in Figure 3, the lower lossless layer is composed of a square metal patch 6, a second type of square dielectric substrate 5, a square ring metal patch 7, a second type of square dielectric substrate 5, and a square metal patch 6 that are closely bonded in sequence. . The square ring metal patch 7 is composed of a square patch whose side length is the same as the unit length of the dielectric board and cut out another square patch with a smaller side length that coincides with it in the center. The square metal patch 6 and the square ring metal patch The centers of the sheets 7 are all aligned with the center of the square dielectric substrate 5 . The larger the side length s of the square metal patch 6 is, the larger the equivalent capacitance is, and the resonant frequency band of the lower lossless FSS moves to a lower frequency. The ring width w of the square ring metal patch 7 increases, the equivalent inductance decreases, and the equivalent capacitance increases, so the resonance bandwidth narrows. After simulation, it is found that the right frequency point of the resonance frequency band is hardly affected, and the left frequency point Move right. The thickness h of the square dielectric substrate 5 greatly affects the bandwidth of the lower lossless FSS, the larger h is, the narrower the bandwidth is.
需要注意,频率选择表面实际加工时一般选择n*n(n为正整数且大于等于3)个单元组成完整结构以体现其周期特性,即为(n*a)毫米*(n*a)毫米,其中a为频率选择表面的单元长度。It should be noted that n*n (n is a positive integer and greater than or equal to 3) units are generally selected to form a complete structure in the actual processing of the frequency selective surface to reflect its periodic characteristics, which is (n*a)mm*(n*a)mm , where a is the unit length of the frequency selective surface.
本实施例中,通过商用软件CST STUDIO SUITE 2016辅助完成对频率选择表面的具体参数优化及透波/吸波特性微调,最终的参数如下表1。In this embodiment, the commercial software CST STUDIO SUITE 2016 is used to assist in the optimization of the specific parameters of the frequency selective surface and the fine-tuning of the wave-transmitting/absorbing characteristics. The final parameters are shown in Table 1 below.
表1Table 1
采用覆铜箔层压板技术生产所设计的吸透一体频率选择表面成品;其中,频率选择表面的加工样件至少包含3*3个单元阵子,金属贴片层选用导电性能极佳的金属,最佳材料为银(电阻率为15.86ρ/nΩ·m),一般选用铜(电阻率为16.78ρ/nΩ·m)即可有较好的效果,贴片厚度控制在35um-70um内,对结构电性能无明显影响,贴片的图案形状使用印刷电路板国家规范(QJ3103-99)标准工艺蚀刻制成。空气层可以选用相应厚度的硬质泡沫板支撑,用于上层有耗FSS与下层无耗FSS位置的固定。Copper-clad laminate technology is used to produce the designed absorbing and permeable integrated frequency-selective surface product; among them, the processed sample of the frequency-selective surface contains at least 3*3 unit arrays, and the metal patch layer is made of metal with excellent electrical conductivity. The best material is silver (resistivity 15.86ρ/nΩ·m), and copper (resistivity 16.78ρ/nΩ·m) is generally used to have a better effect. The electrical performance is not significantly affected, and the pattern shape of the patch is etched using the standard process of the national specification for printed circuit boards (QJ3103-99). The air layer can be supported by a rigid foam board of corresponding thickness, which is used to fix the positions of the upper lossy FSS and the lower lossless FSS.
最后作为本领域的技术人员应该知道,介质基板材料的选择非必须采用IsolaFR408与F4B,只要相对介电常数和厚度满足谐振要求即可。根据所要求的频段、带宽等要求,可以调整FSR单元的相应尺寸参数,满足谐振要求即可。根据所要求的透波率、吸波率等要求,可以调整贴片电阻的阻值等参数,满足谐振要求即可。Finally, those skilled in the art should know that IsolaFR408 and F4B are not necessary for the selection of dielectric substrate materials, as long as the relative permittivity and thickness meet the resonance requirements. According to the required frequency band, bandwidth and other requirements, the corresponding size parameters of the FSR unit can be adjusted to meet the resonance requirements. According to the required wave transmission rate, wave absorption rate and other requirements, parameters such as the resistance value of the chip resistor can be adjusted to meet the resonance requirements.
如图4所示,是本发明吸透一体频率选择表面在垂直入射条件下的反射曲线、传输曲线及吸收曲线图,可以看出该FSR结构在4.54-6.36GHz之间均满足-3dB以下插损的带通特性,-3dB带宽为1.82GHz,其中,5.86GHz处插损仅为-0.71dB;在2.65-2.95GHz、7.58-7.94GHz范围内吸波率均在90%以上,其中,2.78GHz处吸波率为96%,7.75GHz处吸波率高达98%。As shown in Figure 4, it is the reflection curve, transmission curve and absorption curve diagram of the frequency selective surface of the present invention under the condition of normal incidence, and it can be seen that the FSR structure satisfies the insertion below -3dB between 4.54-6.36GHz Lossy bandpass characteristics, the -3dB bandwidth is 1.82GHz, and the insertion loss at 5.86GHz is only -0.71dB; the absorption rate is above 90% in the range of 2.65-2.95GHz and 7.58-7.94GHz, of which, 2.78 The absorption rate at GHz is 96%, and the absorption rate at 7.75GHz is as high as 98%.
如图5所示,是本发明吸透一体频率选择表面在0-30度的入射条件下的反射曲线、传输曲线图,其中,(a)为TE模式,(b)为TM模式。As shown in FIG. 5 , it is a reflection curve and a transmission curve diagram of the frequency selective surface of the present invention under the incident condition of 0-30 degrees, wherein (a) is the TE mode, and (b) is the TM mode.
如图6所示,是本发明吸透一体频率选择表面在0-30度入射条件下的吸收曲线图。可见,该吸透一体频率选择表面不仅极化不敏感,且在30度以内具有较好的角度稳定性,工作中心频段高度稳定。As shown in FIG. 6 , it is the absorption curve of the frequency selective surface of the present invention under the incident condition of 0-30 degrees. It can be seen that the absorbing and penetrating integrated frequency selective surface is not only insensitive to polarization, but also has good angular stability within 30 degrees, and the working center frequency band is highly stable.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810178556.8A CN108270085B (en) | 2018-03-05 | 2018-03-05 | Suction-through integrated frequency selective surface structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810178556.8A CN108270085B (en) | 2018-03-05 | 2018-03-05 | Suction-through integrated frequency selective surface structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108270085A true CN108270085A (en) | 2018-07-10 |
CN108270085B CN108270085B (en) | 2023-12-01 |
Family
ID=62774534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810178556.8A Active CN108270085B (en) | 2018-03-05 | 2018-03-05 | Suction-through integrated frequency selective surface structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108270085B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109390692A (en) * | 2018-11-28 | 2019-02-26 | 航天科工武汉磁电有限责任公司 | A kind of single-pass band bilateral absorbing meta-material antenna house and its application, aircraft |
CN109524789A (en) * | 2018-09-28 | 2019-03-26 | 西安电子科技大学 | A kind of modified FSS structure applied to S-band |
CN110048240A (en) * | 2019-04-23 | 2019-07-23 | 电子科技大学 | A kind of high stop band degree of suppression low radar scattering cross section product transmissive arrays antenna |
CN110247196A (en) * | 2019-06-20 | 2019-09-17 | 南京航空航天大学 | The frequency that a kind of intermediate frequency broadband wave transparent, high and low frequency inhale wave selects wave-absorber |
CN110265780A (en) * | 2019-06-20 | 2019-09-20 | 南京航空航天大学 | A Stealth Radome with Mid-Frequency Broadband Wave-Permeability and High-Frequency and Low-Frequency Polarization Conversion |
WO2020019675A1 (en) * | 2018-07-27 | 2020-01-30 | 深圳光启尖端技术有限责任公司 | Wave absorption and transmission integrated device, and radome |
CN111224242A (en) * | 2020-01-12 | 2020-06-02 | 中国人民解放军国防科技大学 | Integrated frequency selective surface with anisotropic wave-transmitting band |
CN111293441A (en) * | 2020-02-17 | 2020-06-16 | 南京航空航天大学 | An integrated wave absorber for absorbing and transmitting waves |
CN111725626A (en) * | 2020-07-08 | 2020-09-29 | 南京航空航天大学 | A radome that absorbs and can be reconfigured to achieve asymmetric transmission of electromagnetic waves and energy isolation |
CN111769368A (en) * | 2020-07-26 | 2020-10-13 | 中国人民解放军国防科技大学 | Integrated frequency selective surface of wave absorption and wave transmission based on slot resonator |
CN111817016A (en) * | 2020-08-13 | 2020-10-23 | 金陵科技学院 | A miniaturized low-profile frequency selective surface |
CN112072220A (en) * | 2020-07-13 | 2020-12-11 | 宁波大学 | An Absorptive Broadband Bandpass Spatial Filter |
CN112186312A (en) * | 2019-07-05 | 2021-01-05 | 深圳市环波科技有限责任公司 | Multi-spectrum band-pass filtering structure and communication equipment |
CN112243340A (en) * | 2019-07-19 | 2021-01-19 | 深圳市环波科技有限责任公司 | A kind of absorbing structure and communication equipment for UHF frequency band |
CN112259970A (en) * | 2020-09-28 | 2021-01-22 | 东莞同济大学研究院 | Broadband wave-transmitting absorption-transmission integrated electromagnetic superstructure |
CN113314850A (en) * | 2021-05-08 | 2021-08-27 | 南京邮电大学 | 2.5D multilayer frequency selective surface |
CN113904121A (en) * | 2021-10-13 | 2022-01-07 | 南京大学 | An ultra-broadband low-scattering wave-transmitting structure |
CN114039212A (en) * | 2021-11-19 | 2022-02-11 | 北京环境特性研究所 | A low-pass and wide-resistance wave-transmitting structure |
CN114094344A (en) * | 2021-11-05 | 2022-02-25 | 中国航空工业集团公司雷华电子技术研究所 | A miniaturized absorption and penetration integrated frequency selection structure |
CN114361806A (en) * | 2022-01-11 | 2022-04-15 | 西安电子科技大学 | Miniaturized suction-penetration integrated frequency selective surface |
CN114498065A (en) * | 2021-12-30 | 2022-05-13 | 南京航空航天大学 | A miniaturized wide-angle absorber with in-band wide passband based on pinwheel structure |
CN114498052A (en) * | 2022-02-09 | 2022-05-13 | 西安电子科技大学 | A Low-Profile Broadband Metasurface with Amplitude Controlling Properties of Absorbing and Transmitting Waves |
CN114498050A (en) * | 2022-02-07 | 2022-05-13 | 浙大城市学院 | Frequency selection surface unit structure and surface structure of C-waveband transmission |
CN114597672A (en) * | 2022-03-22 | 2022-06-07 | 电子科技大学 | Ultra-broadband absorbing structure and preparation method based on multilayer resistive FSS |
CN114883806A (en) * | 2022-05-17 | 2022-08-09 | 深圳市远望谷信息技术股份有限公司 | Metamaterial electromagnetic absorption device and tunnel machine equipment |
CN117042425A (en) * | 2023-07-03 | 2023-11-10 | 成都飞机工业(集团)有限责任公司 | Electromagnetic shielding structure of wave-absorbing frequency selective surface |
CN117769236A (en) * | 2023-12-29 | 2024-03-26 | 江苏赛博空间科学技术有限公司 | Metal pattern functional layer structure for increasing electromagnetic wave transmission performance |
CN118738869A (en) * | 2024-06-25 | 2024-10-01 | 电子科技大学 | Broadband wave-selective surface with absorbing bands |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103165986A (en) * | 2013-03-05 | 2013-06-19 | 电子科技大学 | A kind of metadielectric absorbing material and preparation method thereof |
CN105304978A (en) * | 2015-11-13 | 2016-02-03 | 中国人民解放军空军工程大学 | Low-pass and high-absorption electromagnetic functional layer |
CN106058483A (en) * | 2016-07-08 | 2016-10-26 | 西安电子科技大学 | Broadband wave absorbing material with stable polarization |
CN106911007A (en) * | 2017-03-16 | 2017-06-30 | 西安电子科技大学 | The multi-layer metamaterial surface texture of wave transparent angle is selected for multi-band frequency |
CN107317108A (en) * | 2017-06-23 | 2017-11-03 | 南京理工大学 | Radome absorber based on helical structure |
CN107404009A (en) * | 2017-08-31 | 2017-11-28 | 中国人民解放军国防科技大学 | A Passband Embedded Frequency Selective Absorber |
US20180007784A1 (en) * | 2016-06-30 | 2018-01-04 | Kyocera Corporation | Electromagnetic blocking structure, dielectric substrate, and unit cell |
CN208093763U (en) * | 2018-03-05 | 2018-11-13 | 南京航空航天大学 | Inhale integrated frequency-selective surfaces structure thoroughly |
-
2018
- 2018-03-05 CN CN201810178556.8A patent/CN108270085B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103165986A (en) * | 2013-03-05 | 2013-06-19 | 电子科技大学 | A kind of metadielectric absorbing material and preparation method thereof |
CN105304978A (en) * | 2015-11-13 | 2016-02-03 | 中国人民解放军空军工程大学 | Low-pass and high-absorption electromagnetic functional layer |
US20180007784A1 (en) * | 2016-06-30 | 2018-01-04 | Kyocera Corporation | Electromagnetic blocking structure, dielectric substrate, and unit cell |
CN106058483A (en) * | 2016-07-08 | 2016-10-26 | 西安电子科技大学 | Broadband wave absorbing material with stable polarization |
CN106911007A (en) * | 2017-03-16 | 2017-06-30 | 西安电子科技大学 | The multi-layer metamaterial surface texture of wave transparent angle is selected for multi-band frequency |
CN107317108A (en) * | 2017-06-23 | 2017-11-03 | 南京理工大学 | Radome absorber based on helical structure |
CN107404009A (en) * | 2017-08-31 | 2017-11-28 | 中国人民解放军国防科技大学 | A Passband Embedded Frequency Selective Absorber |
CN208093763U (en) * | 2018-03-05 | 2018-11-13 | 南京航空航天大学 | Inhale integrated frequency-selective surfaces structure thoroughly |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020019675A1 (en) * | 2018-07-27 | 2020-01-30 | 深圳光启尖端技术有限责任公司 | Wave absorption and transmission integrated device, and radome |
EP3813194A4 (en) * | 2018-07-27 | 2022-04-06 | Kuang-chi Cutting Edge Technology Ltd. | INTEGRATED WAVE ABSORPTION AND TRANSMISSION DEVICE AND RADOME |
US11417950B2 (en) | 2018-07-27 | 2022-08-16 | Kuang-Chi Cutting Edge Technology Ltd. | Integrated wave-absorbing and wave-transparent apparatus and radome |
CN109524789A (en) * | 2018-09-28 | 2019-03-26 | 西安电子科技大学 | A kind of modified FSS structure applied to S-band |
CN109390692A (en) * | 2018-11-28 | 2019-02-26 | 航天科工武汉磁电有限责任公司 | A kind of single-pass band bilateral absorbing meta-material antenna house and its application, aircraft |
CN109390692B (en) * | 2018-11-28 | 2021-01-12 | 航天科工武汉磁电有限责任公司 | Single-passband bilateral wave-absorbing metamaterial antenna housing and application thereof and aircraft |
CN110048240A (en) * | 2019-04-23 | 2019-07-23 | 电子科技大学 | A kind of high stop band degree of suppression low radar scattering cross section product transmissive arrays antenna |
CN110247196A (en) * | 2019-06-20 | 2019-09-17 | 南京航空航天大学 | The frequency that a kind of intermediate frequency broadband wave transparent, high and low frequency inhale wave selects wave-absorber |
CN110265780A (en) * | 2019-06-20 | 2019-09-20 | 南京航空航天大学 | A Stealth Radome with Mid-Frequency Broadband Wave-Permeability and High-Frequency and Low-Frequency Polarization Conversion |
CN110247196B (en) * | 2019-06-20 | 2021-02-12 | 南京航空航天大学 | Frequency selective wave absorber for medium-frequency broadband wave transmission, high-frequency wave absorption and low-frequency wave absorption |
CN112186312A (en) * | 2019-07-05 | 2021-01-05 | 深圳市环波科技有限责任公司 | Multi-spectrum band-pass filtering structure and communication equipment |
CN112186312B (en) * | 2019-07-05 | 2025-05-09 | 深圳市环波科技有限责任公司 | A multi-spectrum bandpass filter structure and communication equipment |
CN112243340A (en) * | 2019-07-19 | 2021-01-19 | 深圳市环波科技有限责任公司 | A kind of absorbing structure and communication equipment for UHF frequency band |
CN111224242B (en) * | 2020-01-12 | 2020-12-15 | 中国人民解放军国防科技大学 | Integrated frequency selective surface with anisotropic wave-transmitting band |
CN111224242A (en) * | 2020-01-12 | 2020-06-02 | 中国人民解放军国防科技大学 | Integrated frequency selective surface with anisotropic wave-transmitting band |
CN111293441A (en) * | 2020-02-17 | 2020-06-16 | 南京航空航天大学 | An integrated wave absorber for absorbing and transmitting waves |
CN111725626A (en) * | 2020-07-08 | 2020-09-29 | 南京航空航天大学 | A radome that absorbs and can be reconfigured to achieve asymmetric transmission of electromagnetic waves and energy isolation |
CN112072220A (en) * | 2020-07-13 | 2020-12-11 | 宁波大学 | An Absorptive Broadband Bandpass Spatial Filter |
CN112072220B (en) * | 2020-07-13 | 2021-10-19 | 宁波大学 | Absorptive broadband band-pass spatial filter |
CN111769368A (en) * | 2020-07-26 | 2020-10-13 | 中国人民解放军国防科技大学 | Integrated frequency selective surface of wave absorption and wave transmission based on slot resonator |
CN111817016B (en) * | 2020-08-13 | 2022-03-25 | 金陵科技学院 | Miniaturized low-profile frequency selective surface |
CN111817016A (en) * | 2020-08-13 | 2020-10-23 | 金陵科技学院 | A miniaturized low-profile frequency selective surface |
CN112259970B (en) * | 2020-09-28 | 2022-08-09 | 东莞同济大学研究院 | Broadband wave-transmitting absorption-transmission integrated electromagnetic superstructure |
CN112259970A (en) * | 2020-09-28 | 2021-01-22 | 东莞同济大学研究院 | Broadband wave-transmitting absorption-transmission integrated electromagnetic superstructure |
CN113314850A (en) * | 2021-05-08 | 2021-08-27 | 南京邮电大学 | 2.5D multilayer frequency selective surface |
CN113904121B (en) * | 2021-10-13 | 2022-09-23 | 南京大学 | Ultra-wideband low-scattering wave-transparent structure |
CN113904121A (en) * | 2021-10-13 | 2022-01-07 | 南京大学 | An ultra-broadband low-scattering wave-transmitting structure |
CN114094344A (en) * | 2021-11-05 | 2022-02-25 | 中国航空工业集团公司雷华电子技术研究所 | A miniaturized absorption and penetration integrated frequency selection structure |
CN114039212A (en) * | 2021-11-19 | 2022-02-11 | 北京环境特性研究所 | A low-pass and wide-resistance wave-transmitting structure |
CN114498065A (en) * | 2021-12-30 | 2022-05-13 | 南京航空航天大学 | A miniaturized wide-angle absorber with in-band wide passband based on pinwheel structure |
CN114361806A (en) * | 2022-01-11 | 2022-04-15 | 西安电子科技大学 | Miniaturized suction-penetration integrated frequency selective surface |
CN114361806B (en) * | 2022-01-11 | 2023-05-02 | 西安电子科技大学 | Miniaturized integrated frequency selective surface that absorbs thoroughly |
CN114498050A (en) * | 2022-02-07 | 2022-05-13 | 浙大城市学院 | Frequency selection surface unit structure and surface structure of C-waveband transmission |
CN114498052A (en) * | 2022-02-09 | 2022-05-13 | 西安电子科技大学 | A Low-Profile Broadband Metasurface with Amplitude Controlling Properties of Absorbing and Transmitting Waves |
CN114498052B (en) * | 2022-02-09 | 2023-04-18 | 西安电子科技大学 | Low-profile broadband super-surface structure with wave-absorbing and wave-transmitting amplitude regulation and control characteristics |
CN114597672B (en) * | 2022-03-22 | 2024-03-19 | 电子科技大学 | Ultra-wideband wave absorbing structure based on multilayer resistance type FSS and preparation method |
CN114597672A (en) * | 2022-03-22 | 2022-06-07 | 电子科技大学 | Ultra-broadband absorbing structure and preparation method based on multilayer resistive FSS |
CN114883806A (en) * | 2022-05-17 | 2022-08-09 | 深圳市远望谷信息技术股份有限公司 | Metamaterial electromagnetic absorption device and tunnel machine equipment |
CN117042425A (en) * | 2023-07-03 | 2023-11-10 | 成都飞机工业(集团)有限责任公司 | Electromagnetic shielding structure of wave-absorbing frequency selective surface |
CN117769236A (en) * | 2023-12-29 | 2024-03-26 | 江苏赛博空间科学技术有限公司 | Metal pattern functional layer structure for increasing electromagnetic wave transmission performance |
CN118738869A (en) * | 2024-06-25 | 2024-10-01 | 电子科技大学 | Broadband wave-selective surface with absorbing bands |
Also Published As
Publication number | Publication date |
---|---|
CN108270085B (en) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108270085B (en) | Suction-through integrated frequency selective surface structure | |
CN110247196B (en) | Frequency selective wave absorber for medium-frequency broadband wave transmission, high-frequency wave absorption and low-frequency wave absorption | |
CN208093763U (en) | Inhale integrated frequency-selective surfaces structure thoroughly | |
CN107394410B (en) | A 2.5-dimensional closed loop frequency selective surface structure and its design method | |
CN104993249B (en) | Single-pass band bilateral inhales ripple and is combined Meta Materials and its antenna house and antenna system | |
CN104201468B (en) | X/K-band composite metamaterial and radome-array integrated structure | |
CN108899656B (en) | A Salisbury absorbing screen loaded with FSS | |
WO2020019675A1 (en) | Wave absorption and transmission integrated device, and radome | |
CN107508017B (en) | A Suction Broadband Frequency Selective Structure and Its Application | |
CN112821081A (en) | Absorption and transmission integrated frequency selective surface with high-frequency broadband wave absorption and low-frequency wave transmission | |
CN110416735A (en) | Flexible multilayer frequency selective surface with transmission nulls | |
CN107086374B (en) | Miniaturized low-profile ultra-wide passband frequency selective surface and design method thereof | |
CN108365306B (en) | A Novel Dual-Polarized Low-pass Band Suction Frequency Selective Structure | |
CN103490171A (en) | Composite wave-absorbing material with wide frequency bands | |
CN107565223A (en) | A kind of stealthy random surface of ultra wide band complete polarization and its design method | |
CN107317108A (en) | Radome absorber based on helical structure | |
CN111769368A (en) | Integrated frequency selective surface of wave absorption and wave transmission based on slot resonator | |
CN107946761A (en) | A kind of iron-based wave-absorber based on bandpass-type frequency-selective surfaces | |
CN207765615U (en) | A three-dimensional frequency-selective surface with double-pass bands in SC frequency band | |
CN114361806B (en) | Miniaturized integrated frequency selective surface that absorbs thoroughly | |
CN105576383A (en) | Ultrathin frequency-selective metamaterial capable of wave absorption from two sides, antenna cover and antenna system | |
CN114267958A (en) | A low-pass absorbing frequency selective structure with narrow transition band | |
CN114122743B (en) | A wave absorbing/transmitting device with miniaturized unit | |
CN110768009B (en) | Wave absorbing and transmitting integrated device and antenna cover | |
CN207052765U (en) | The dimension of one kind 2.5 closes ring-like frequency-selective surfaces structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |