CN108267407A - Device and method for measuring transverse spin relaxation time of alkali metal atoms - Google Patents
Device and method for measuring transverse spin relaxation time of alkali metal atoms Download PDFInfo
- Publication number
- CN108267407A CN108267407A CN201810083268.4A CN201810083268A CN108267407A CN 108267407 A CN108267407 A CN 108267407A CN 201810083268 A CN201810083268 A CN 201810083268A CN 108267407 A CN108267407 A CN 108267407A
- Authority
- CN
- China
- Prior art keywords
- alkali metal
- magnetic field
- light
- metal atoms
- relaxation time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N2021/216—Polarisation-affecting properties using circular polarised light
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Lasers (AREA)
Abstract
本发明提供一种碱金属原子的横向自旋弛豫时间测量装置,包括抽运光路器件、探测光路器件、原子气室、三维亥姆霍兹线圈、偏振面检测装置和信号处理系统;原子气室内充有碱金属原子与缓冲气体;抽运光路器件包括依次串联设置的第一激光器、第一扩束准直装置和圆偏振光转换装置;探测光路器件包括第二激光器、第二扩束准直装置以及第一线偏振片。本发明还公开一种碱金属原子的横向自旋弛豫时间测量方法。应用本发明的技术方案,效果是:整体结构精简;利用不同方向的旋转磁场,实现对基态不同超精细能级的碱金属原子的横向自旋弛豫时间的精确测量;能够应用于研究光抽运与自旋弛豫以及评估原子磁力仪和原子自旋陀螺等的性能。
The invention provides a device for measuring the transverse spin relaxation time of alkali metal atoms, which includes a pumping optical path device, a detection optical path device, an atomic gas chamber, a three-dimensional Helmholtz coil, a polarization plane detection device and a signal processing system; the atomic gas The chamber is filled with alkali metal atoms and buffer gas; the pumping optical path device includes a first laser, a first beam expander collimator and a circular polarization conversion device arranged in series; the detection optical path device includes a second laser, a second beam expander collimator straight device as well as the first linear polarizer. The invention also discloses a method for measuring the transverse spin relaxation time of the alkali metal atom. Applying the technical solution of the present invention, the effect is: the overall structure is simplified; the rotating magnetic field in different directions is used to realize the accurate measurement of the transverse spin relaxation time of alkali metal atoms with different hyperfine energy levels in the ground state; it can be applied to the study of optical pumping This is related to spin relaxation and evaluation of the performance of atomic magnetometers and atomic spin gyroscopes, among others.
Description
技术领域technical field
本发明涉及测量技术领域,特别地,涉及一种碱金属原子的横向自旋弛豫时间测量装置及测量方法。The invention relates to the field of measurement technology, in particular to a device and method for measuring the transverse spin relaxation time of alkali metal atoms.
背景技术Background technique
碱金属原子最外层只有一个电子,这使得碱金属原子呈现出许多独特的性质,并吸引了人们广泛的研究兴趣。目前,碱金属原子普遍地应用于原子钟、法拉第滤波器、原子干涉仪、原子自旋陀螺以及原子磁力仪等领域。对于碱金属原子的一些应用领域,如原子自旋陀螺和原子磁力仪,碱金属原子的横向自旋驰豫时间是一个极其重要的参量。碱金属原子的横向自旋弛豫时间直接决定着原子磁力仪的极限灵敏度和响应线宽,原子自旋陀螺的精度也与碱金属原子的横向自旋弛豫时间直接相关。因而,对碱金属原子横向自旋弛豫时间的精确测量有助于有效地评估原子磁力仪与原子自旋陀螺的性能。另外,对于碱金属原子的应用领域,普遍需要用光抽运的方法改变原子的布居。由于碱金属原子的横向自旋弛豫时间与光抽运有关,因而对碱金属原子的横向自旋弛豫时间的精确测量有助于光抽运的研究。The outermost shell of an alkali metal atom has only one electron, which makes the alkali metal atom exhibit many unique properties and attracts extensive research interest. At present, alkali metal atoms are widely used in atomic clocks, Faraday filters, atomic interferometers, atomic spin gyroscopes, and atomic magnetometers. For some application fields of alkali metal atoms, such as atomic spin gyroscopes and atomic magnetometers, the transverse spin relaxation time of alkali metal atoms is an extremely important parameter. The transverse spin relaxation time of alkali metal atoms directly determines the limit sensitivity and response linewidth of the atomic magnetometer, and the accuracy of the atomic spin gyroscope is also directly related to the transverse spin relaxation time of alkali metal atoms. Therefore, the precise measurement of the transverse spin relaxation time of alkali metal atoms is helpful to effectively evaluate the performance of atomic magnetometers and atomic spin gyroscopes. In addition, for the application field of alkali metal atoms, it is generally necessary to change the population of atoms by optical pumping. Because the transverse spin relaxation time of alkali metal atoms is related to optical pumping, the accurate measurement of the transverse spin relaxation time of alkali metal atoms is helpful to the study of optical pumping.
随着人们对碱金属原子研究的深入,人们找到了多种提高碱金属原子横向自旋弛豫时间的有效途径,如向碱金属原子气室充入缓冲气体,以及对碱金属原子气室内壁镀抗弛豫膜。这些途径使得人们可以实现较长的碱金属原子横向自旋弛豫时间。当碱金属原子横向自旋弛豫时间延长时,碱金属原子的磁响应线宽变窄,碱金属原子的超精细结构变得可以分辨而需要考虑。在这种情况下,为了研究光抽运与自旋弛豫以及评估原子磁力仪和原子自旋陀螺等的性能,需要单独测量处于基态不同超精细能级的碱金属原子的横向自旋弛豫时间。With the in-depth research on alkali metal atoms, people have found a variety of effective ways to increase the transverse spin relaxation time of alkali metal atoms, such as filling the alkali metal atom gas cell with buffer gas, and improving the inner wall of the alkali metal atom gas chamber. Anti-relaxation coating. These pathways allow one to achieve longer relaxation times for the lateral spin of alkali metal atoms. When the transverse spin relaxation time of alkali metal atoms is extended, the magnetic response line width of alkali metal atoms becomes narrow, and the hyperfine structure of alkali metal atoms becomes resolvable and needs to be considered. In this case, in order to study optical pumping and spin relaxation and to evaluate the performance of atomic magnetometers and atomic spin gyroscopes, it is necessary to measure the transverse spin relaxation of alkali metal atoms in different hyperfine energy levels in the ground state separately. time.
目前,对于碱金属原子横向自旋弛豫时间的测量,普遍采用传统的自由感应衰减法。这种方法实验操作简单、实验结果精确,因而长期作为一种标准的横向自旋弛豫时间测量方法。其需要施加频率等于磁共振频率的线偏振荡磁场,用于激励创生碱金属原子的横向自旋分量。当考虑超精细结构时,在振荡磁场的激励下,处于基态不同超精细能级的碱金属原子的横向自旋分量都将创生。因而,若采用传统的自由感应衰减法测量处于基态某一超精细能级的碱金属原子的横向自旋弛豫时间,测量将会受到处于基态另一超精细能级的碱金属原子的影响。为了精确测量处于基态不同超精细能级的碱金属原子的横向自旋弛豫时间,需要单独激励处于基态不同超精细能级的碱金属原子。为了达到这一目的,需要考虑新的激励方式。At present, the traditional free induction decay method is commonly used to measure the transverse spin relaxation time of alkali metal atoms. This method is simple in experimental operation and accurate in experimental results, so it has been used as a standard method for measuring transverse spin relaxation time for a long time. It requires the application of a linearly biased oscillating magnetic field with a frequency equal to the magnetic resonance frequency, which is used to excite and create the transverse spin component of the alkali metal atoms. When the hyperfine structure is considered, under the excitation of the oscillating magnetic field, the transverse spin components of the alkali metal atoms in different hyperfine energy levels of the ground state will be created. Therefore, if the traditional free induction decay method is used to measure the transverse spin relaxation time of an alkali metal atom in a certain hyperfine energy level of the ground state, the measurement will be affected by the alkali metal atom in another hyperfine energy level of the ground state. In order to accurately measure the transverse spin relaxation time of alkali metal atoms in different hyperfine energy levels of the ground state, it is necessary to separately excite the alkali metal atoms in different hyperfine energy levels of the ground state. To achieve this, new incentives need to be considered.
发明内容Contents of the invention
本发明利用不同方向的旋转磁场,单独激励处于基态不同超精细能级的碱金属原子,实现对基态不同超精细能级的碱金属原子的横向自旋弛豫时间的精确测量,具体技术方案如下:The invention utilizes rotating magnetic fields in different directions to separately excite alkali metal atoms in different hyperfine energy levels of the ground state, and realize accurate measurement of the transverse spin relaxation time of alkali metal atoms of different hyperfine energy levels in the ground state. The specific technical scheme is as follows :
一种碱金属原子的横向自旋弛豫时间测量装置,包括抽运光路器件、探测光路器件、原子气室、三维亥姆霍兹线圈、偏振面检测装置以及信号处理系统;A device for measuring the transverse spin relaxation time of an alkali metal atom, including a pumping optical path device, a detection optical path device, an atomic gas chamber, a three-dimensional Helmholtz coil, a polarization plane detection device, and a signal processing system;
所述原子气室内充有碱金属原子与缓冲气体;The atomic gas chamber is filled with alkali metal atoms and buffer gas;
所述抽运光路器件包括依次串联设置的第一激光器、第一扩束准直装置和圆偏振光转换装置,所述第一激光器用于输出抽运光,所述第一扩束准直装置用于将所述第一激光器输出的抽运光进行扩束准直处理,所述圆偏振光转换装置用于将所述第一扩束准直装置扩束准直处理后的抽运光转变为圆偏振光,圆偏振光用于极化原子气室中的碱金属原子;The pumping optical path device includes a first laser, a first beam expander collimator and a circularly polarized light conversion device arranged in series in sequence, the first laser is used to output pumping light, and the first beam expander collimator It is used to perform beam expansion and collimation processing on the pumping light output by the first laser, and the circularly polarized light conversion device is used to transform the pumping light after beam expansion and collimation processing by the first beam expansion and collimation device For circularly polarized light, circularly polarized light is used to polarize the alkali metal atoms in the atomic gas cell;
所述探测光路器件包括第二激光器、第二扩束准直装置以及第一线偏振片,所述第二激光器用于输出探测光,所述第二扩束准直装置用于将所述第二激光器输出的探测光进行扩束准直处理,所述第一线偏振片用于提高经过所述第二扩束准直装置扩束准直处理后的探测光的线偏振度,高线偏振度的探测光与原子气室中碱金属原子相互作用后,其偏振面会受到碱金属原子在探测光传播方向上的自旋极化的调制;The detection optical path device includes a second laser, a second beam expander and collimator, and a first linear polarizer, the second laser is used to output detection light, and the second beam expander and collimator is used to combine the first The probe light output by the second laser is subjected to beam expansion and collimation processing, and the first linear polarizer is used to increase the degree of linear polarization of the probe light after beam expansion and collimation processing by the second beam expander and collimation device, and the high linear polarization After the probing light with a high degree interacts with the alkali metal atoms in the atomic gas cell, its polarization plane will be modulated by the spin polarization of the alkali metal atoms in the propagation direction of the probing light;
所述三维亥姆霍兹线圈用于在所述原子气室处产生静磁场和旋转磁场;The three-dimensional Helmholtz coil is used to generate a static magnetic field and a rotating magnetic field at the atomic gas chamber;
所述偏振面检测装置用于检测探测光偏振面的变化;The polarization plane detection device is used to detect the change of the polarization plane of the probe light;
所述信号处理系统同时与所述三维亥姆霍兹线圈和所述偏振面检测装置连接,用于采集所述偏振面检测装置所检测的探测光偏振面的变化信息和调节输入到所述三维亥姆霍兹线圈中的电流以控制其产生的静磁场和旋转磁场。The signal processing system is connected to the three-dimensional Helmholtz coil and the polarization plane detection device at the same time, and is used to collect the change information of the polarization plane of the probe light detected by the polarization plane detection device and adjust the input to the three-dimensional The current in the Helmholtz coil controls the static and rotating magnetic fields it generates.
以上技术方案中优选的,所述第一激光器为DFB半导体激光器,能被调节到碱金属原子D1线跃迁共振频率,输出抽运光;所述第二激光器为DFB半导体激光器,能被调节到碱金属原子D2线跃迁共振频率,输出探测光。Preferably in the above technical solutions, the first laser is a DFB semiconductor laser, which can be adjusted to the resonance frequency of the alkali metal atom D1 line transition, and outputs pumping light; the second laser is a DFB semiconductor laser, which can be adjusted to the alkaline The metal atom D2 line jumps the resonant frequency, and outputs the detection light.
以上技术方案中优选的,所述第一扩束准直装置和所述第一扩束准直装置均包括沿光路传播方向串联设置的两组凸透镜。In the above technical solution, preferably, the first beam expander and collimator and the first beam expander and collimator both include two sets of convex lenses arranged in series along the propagation direction of the optical path.
以上技术方案中优选的,所述圆偏振光转换装置包括沿光路传播方向串联设置的第二线偏振片和λ/4玻片。In the above technical solutions, preferably, the circularly polarized light converting device includes a second linear polarizing plate and a λ/4 glass plate arranged in series along the propagation direction of the optical path.
以上技术方案中优选的,所述三维亥姆霍兹线圈由铜线绕制。Preferably in the above technical solution, the three-dimensional Helmholtz coil is wound by copper wire.
以上技术方案中优选的,所述偏振面检测装置包括沿光路传播方向串联设置的λ/2玻片、沃拉斯特棱镜和平衡探测器,所述λ/2玻片用于调节经过所述原子气室的探测光的偏振面的方向,所述沃拉斯特棱镜用于将线偏振光分为沿不同轴向偏振的两束光,平衡探测器用于对两束光的光强进行差分放大以输出反映探测光偏振面变化的信号。Preferably in the above technical solutions, the polarization plane detection device includes a λ/2 glass slide, a Wollaste prism and a balance detector arranged in series along the propagation direction of the optical path, and the λ/2 glass slide is used to adjust the The direction of the polarization plane of the detection light of the atomic gas cell, the Wollaste prism is used to divide the linearly polarized light into two beams of light polarized along different axes, and the balance detector is used to differentiate the light intensity of the two beams of light Amplify to output a signal reflecting the change in the polarization plane of the probe light.
以上技术方案中优选的,所述信号处理系统包含数据采集卡和计算机,所述数据采集卡同时与所述三维亥姆霍兹线圈、平衡探测器和所述计算机连接。In the above technical solutions, preferably, the signal processing system includes a data acquisition card and a computer, and the data acquisition card is connected to the three-dimensional Helmholtz coil, the balance detector and the computer at the same time.
以上技术方案中优选的,所述抽运光沿z轴方向传播;所述探测光沿x轴方向传播,用于探测处于基态F=I+1/2超精细能级的碱金属原子在x轴方向上的自旋极化P+x或处于基态F=I-1/2超精细能级的碱金属原子在x轴方向上的自旋极化P-x,其中:F表示碱金属原子的总角动量的量子数,I表示碱金属原子的核自旋的量子数;所述沃拉斯特棱镜将线偏振光分为沿y轴与z轴偏振的两束光;信号处理系统驱动所述三维亥姆霍兹线圈产生旋转磁场与z轴方向的静磁场,旋转磁场为相对于静磁场进行逆时针旋转或顺时针旋转的磁场。Preferably in the above technical solutions, the pumping light propagates along the z-axis direction; the probe light propagates along the x-axis direction, and is used to detect the alkali metal atoms in the ground state F=I+1/2 hyperfine energy level at x The spin polarization P +x in the axial direction or the spin polarization P -x of the alkali metal atom in the ground state F=I-1/2 hyperfine energy level in the x-axis direction, wherein: F represents an alkali metal atom The quantum number of the total angular momentum, I represents the quantum number of the nuclear spin of the alkali metal atom; the Wollaste prism divides the linearly polarized light into two beams of light polarized along the y-axis and the z-axis; the signal processing system drives The three-dimensional Helmholtz coil generates a rotating magnetic field and a static magnetic field in the z-axis direction, and the rotating magnetic field is a magnetic field that rotates counterclockwise or clockwise relative to the static magnetic field.
本发明具体原理如下:Concrete principle of the present invention is as follows:
选取三维直角坐标系,坐标系的三个轴分别为x轴、y轴与z轴。沿z轴方向施加抽运光和静磁场其中:B0表示静磁场的强度,且B0>0,表示z轴方向上的单位矢量。Select a three-dimensional Cartesian coordinate system, and the three axes of the coordinate system are x-axis, y-axis and z-axis respectively. Apply pump light and static magnetic field along the z-axis Where: B 0 represents the strength of the static magnetic field, and B 0 >0, represents a unit vector in the z-axis direction.
在抽运光的作用下,大量碱金属原子将被极化,宏观上可用极化矢量来表征极化了的碱金属原子系综。对于处于基态F=I+1/2与F=I-1/2超精细能级的碱金属原子,其宏观极化矢量分别表示为P+与P-。Under the action of pumping light, a large number of alkali metal atoms will be polarized, and the polarization vector can be used to characterize the polarized alkali metal atom ensemble macroscopically. For alkali metal atoms in the ground state F=I+1/2 and F=I-1/2 hyperfine levels, their macroscopic polarization vectors are denoted as P + and P − respectively.
当施加旋转磁场时,宏观极化矢量P+与P-随时间t的演化满足如下Bloch方程:When a rotating magnetic field is applied When , the evolution of the macroscopic polarization vectors P + and P - with time t satisfies the following Bloch equation:
其中:B1与ω分别表示旋转磁场的强度与频率;与分别表示x轴与y轴方向上的单位矢量;γ+与γ-分别表示处于基态F=I+1/2与F=I-1/2超精细能级的碱金属原子的旋磁比,γ+<0,γ->0;P+x、P+y与P+z分别是P+沿x轴、y轴与z轴方向的分量;P-x、P-y与P-z分别是P-沿x轴、y轴与z轴方向的分量;P+0与P-0分别为不施加激励磁场且热平衡时的P+z与P-z;T2+与T2-分别表示处于基态F=I+1/2与F=I-1/2超精细能级的碱金属原子的横向自旋弛豫时间;T1+与T1-分别表示处于基态F=I+1/2与F=I-1/2超精细能级的碱金属原子的纵向自旋弛豫时间。Where: B 1 and ω represent the strength and frequency of the rotating magnetic field, respectively; and represent the unit vectors on the x-axis and the y-axis direction respectively; γ + and γ - represent the gyromagnetic ratios of the alkali metal atoms in the ground state F=I+1/2 and F=I-1/2 hyperfine energy levels respectively, γ + <0, γ - >0; P +x , P +y and P +z are the components of P + along the x-axis, y-axis and z-axis respectively; P -x , P -y and P -z are respectively is the component of P - along the x-axis, y-axis and z-axis; P +0 and P -0 are respectively P +z and P -z when the excitation magnetic field is not applied and thermal equilibrium; T 2+ and T 2- represent Transverse spin relaxation times of alkali metal atoms in the ground state F=I+1/2 and F=I-1/2 hyperfine levels; T 1+ and T 1- represent the ground state F=I+1/ 2 and F=I-1/2 the longitudinal spin relaxation time of the alkali metal atom in the hyperfine energy level.
当时,旋转磁场相对于静磁场是顺时针的,由方程(1)可得P+x≈0,P+y≈0,而P-x与P-y可以为较大的值;when When , the rotating magnetic field is clockwise relative to the static magnetic field. From equation (1), it can be obtained that P +x ≈ 0, P + y ≈ 0, and P -x and P -y can be larger values;
同理,当时,旋转磁场相对于静磁场是逆时针的,由方程(1)可得P-x≈0,P-y=0,而P+x与P+y可以为较大的值。因此,我们可以用顺时针旋转磁场单独激励处于基态F=I-1/2超精细能级的碱金属原子,用逆时针旋转磁场单独激励处于基态F=I+1/2超精细能级的碱金属原子。Similarly, when When , the rotating magnetic field is counterclockwise relative to the static magnetic field. According to equation (1), P -x ≈ 0, P -y = 0, and P +x and P +y can be larger values. Therefore, we can separately excite the alkali metal atoms in the ground state F=I-1/2 hyperfine energy level with a clockwise rotating magnetic field, and separately excite the alkali metal atoms in the ground state F=I+1/2 hyperfine energy level with a counterclockwise rotating magnetic field. alkali metal atoms.
当施加顺时针旋转磁场数秒后撤除,由方程(1)可得,P-x将以T2-为特征时间指数衰减,因此,探测自由衰减的P-x信号即可拟合得到T2-;同理,当施加逆时针旋转磁场数秒后撤除,探测自由衰减的P+x信号即可拟合得到T2+。When the clockwise rotating magnetic field is applied for a few seconds and then removed, it can be obtained from equation (1) that P -x will decay exponentially with T 2- as the characteristic time. Therefore, the detection of the freely decaying P -x signal can be fitted to obtain T 2- ; Similarly, when the counterclockwise rotating magnetic field is applied for a few seconds and then removed, the P +x signal that is freely attenuated can be fitted to obtain T 2+ .
本发明还公开一种采用上述碱金属原子的横向自旋弛豫时间测量装置进行测量的方法,具体包括如下步骤:The present invention also discloses a method for measuring using the above-mentioned transverse spin relaxation time measuring device of alkali metal atoms, which specifically includes the following steps:
步骤一、信号处理系统驱动三维亥姆霍兹线圈产生z轴方向的静磁场打开第一激光器,将其调节到碱金属原子D1线跃迁共振频率,输出抽运光,抽运光沿着z轴方向的抽运光路传播,先后依次经过所述第一扩束准直装置和圆偏振光转换装置处理得到圆偏振光,圆偏振光开始极化原子气室中的碱金属原子;同时,打开第二激光器,将其调节到碱金属原子D2线跃迁共振频率,输出探测光,探测光沿着x轴方向的探测光路传播,先后经过第二扩束准直装置以及第一线偏振片处理得到高线偏振度的探测光,探测光与原子气室中碱金属原子相互作用,探测P+x或P-x;Step 1. The signal processing system drives the three-dimensional Helmholtz coil to generate a static magnetic field in the z-axis direction Turn on the first laser, adjust it to the resonance frequency of the alkali metal atom D1 line transition, output the pumping light, and the pumping light propagates along the pumping optical path in the z-axis direction, and successively passes through the first beam expanding collimation device and the Circularly polarized light is processed by the circularly polarized light conversion device, and the circularly polarized light begins to polarize the alkali metal atoms in the atomic gas cell; at the same time, turn on the second laser, adjust it to the resonance frequency of the D2 line transition of the alkali metal atoms, and output the probe light. The probe light propagates along the detection optical path in the x-axis direction, and is processed by the second beam expander collimator and the first linear polarizer successively to obtain the probe light with a high degree of linear polarization. The probe light interacts with the alkali metal atoms in the atomic gas cell, Probe P +x or P -x ;
步骤二、施加旋转磁场,具体包括施加顺时针旋转磁场和施加逆时针旋转磁场,具体是:Step 2, applying a rotating magnetic field, specifically including applying a clockwise rotating magnetic field and applying a counterclockwise rotating magnetic field, specifically:
施加顺时针旋转磁场过程:信号处理系统驱动三维亥姆霍兹线圈产生相对于静磁场顺时针旋转的磁场其中:Bc表示顺时针旋转磁场;B0表示静磁场的强度,且B0>0;B1表示旋转场的强度;与分别表示x轴、y轴与z轴方向上的单位矢量;γ-表示处于基态F=I-1/2超精细能级的碱金属原子的旋磁比,且γ->0;5-10秒后,撤除顺时针旋转磁场Bc,信号处理系统探测平衡放大器输出的自由衰减的P-x信号;The process of applying a clockwise rotating magnetic field: the signal processing system drives the three-dimensional Helmholtz coil to generate a relative static magnetic field magnetic field rotating clockwise Among them: B c represents the clockwise rotating magnetic field; B 0 represents the strength of the static magnetic field, and B 0 >0; B 1 represents the strength of the rotating field; and Respectively represent the unit vectors in the x-axis, y-axis and z-axis directions; γ - represents the gyromagnetic ratio of the alkali metal atom in the ground state F=I-1/2 hyperfine energy level, and γ->0; 5-10 Seconds later, the clockwise rotating magnetic field B c is removed, and the signal processing system detects the freely attenuated P -x signal output by the balanced amplifier;
施加逆时针旋转磁场过程:信号处理系统驱动三维亥姆霍兹线圈产生相对于静磁场逆时针旋转的磁场其中:Bcc表示逆时针旋转磁场;γ+表示处于基态F=I+1/2超精细能级的碱金属原子的旋磁比,且γ+<0;5-10秒后,撤除逆时针旋转磁场Bcc,信号处理系统探测平衡放大器输出的自由衰减的P+x信号;The process of applying a counterclockwise rotating magnetic field: the signal processing system drives the three-dimensional Helmholtz coil to generate a relative static magnetic field Magnetic field rotating counterclockwise Among them: B cc represents the counterclockwise rotating magnetic field; γ + represents the gyromagnetic ratio of the alkali metal atom in the ground state F=I+1/2 hyperfine energy level, and γ + <0; after 5-10 seconds, remove the counterclockwise The rotating magnetic field B cc , the signal processing system detects the freely decaying P +x signal output by the balanced amplifier;
步骤三、用指数函数拟合探测到的自由衰减的P+x信号,得到处于基态F=I+1/2超精细能级的碱金属原子的横向自旋弛豫时间T2+;用指数函数拟合探测到的自由衰减的P-x信号,得到处于基态F=I-1/2超精细能级的碱金属原子的横向自旋弛豫时间T2-。Step 3, fitting the detected free-decaying P +x signal with an exponential function to obtain the transverse spin relaxation time T 2+ of the alkali metal atom in the ground state F=I+1/2 hyperfine energy level; The function fits the detected free-decaying P -x signal to obtain the transverse spin relaxation time T 2- of the alkali metal atom in the ground state F=I-1/2 hyperfine energy level.
以上技术方案中优选的,所述步骤三中的指数函数具体是:表示未知量y关于未知量x的函数,其中:a与T2为待拟合的参量,T2的拟合结果作为T2+或T2-。Preferably in the above technical scheme, the exponential function in the step 3 is specifically: Indicates the function of the unknown quantity y on the unknown quantity x, where: a and T 2 are the parameters to be fitted, and the fitting result of T 2 is taken as T 2+ or T 2- .
应用本发明的测量方法,效果是:测量步骤精简;利用不同方向的旋转磁场,单独激励处于基态不同超精细能级的碱金属原子,实现对基态不同超精细能级的碱金属原子的横向自旋弛豫时间的精确测量;本发明能够应用于研究光抽运与自旋弛豫以及评估原子磁力仪和原子自旋陀螺等的性能,实用性强。Applying the measurement method of the present invention, the effect is: the measurement steps are simplified; the alkali metal atoms in the different hyperfine energy levels of the ground state are separately excited by using the rotating magnetic fields in different directions, so as to realize the lateral self-mobility of the alkali metal atoms in the different hyperfine energy levels of the ground state. Accurate measurement of spin relaxation time; the invention can be applied to the study of optical pumping and spin relaxation, as well as evaluating the performance of atomic magnetometers and atomic spin gyroscopes, etc., and has strong practicability.
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照附图,对本发明作进一步详细的说明。In addition to the objects, features and advantages described above, the present invention has other objects, features and advantages. The present invention will be described in further detail below with reference to the accompanying drawings.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of this application are used to provide further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1是实施例1中碱金属原子的横向自旋弛豫时间测量装置的结构示意图;Fig. 1 is the structural representation of the transverse spin relaxation time measuring device of alkali metal atom in embodiment 1;
图2是实验探测到的自由衰减的P-x信号及其拟合结果;Fig. 2 is the P -x signal of free decay detected by experiment and its fitting result;
图3是实验探测到的自由衰减的P+x信号及其拟合结果;Fig. 3 is the P +x signal of free decay detected by the experiment and its fitting result;
图4是在x轴方向施加线偏振荡磁场且振荡磁场的频率等于γ-B0时平衡探测器探测到的信号示意图;Fig. 4 is a schematic diagram of the signal detected by the balance detector when a linearly deflected oscillating magnetic field is applied in the x-axis direction and the frequency of the oscillating magnetic field is equal to γ - B 0 ;
其中:1、抽运光路器件,1.1、第一激光器,1.2、第一扩束准直装置,1.3、圆偏振光转换装置,1.31、第二线偏振片,1.32、λ/4玻片,2、探测光路器件,2.1、第二激光器,2.2、第二扩束准直装置,2.3、第一线偏振片,3、原子气室,4、三维亥姆霍兹线圈,5、偏振面检测装置,5.1、λ/2玻片,5.2、沃拉斯特棱镜,5.3、平衡探测器,6、信号处理系统,T、凸透镜。Among them: 1. Pumping optical path device, 1.1, the first laser, 1.2, the first beam expander collimator, 1.3, circular polarization conversion device, 1.31, the second linear polarizer, 1.32, λ/4 glass plate, 2, Detection optical path device, 2.1, second laser, 2.2, second beam expander collimator, 2.3, first linear polarizer, 3, atomic gas chamber, 4, three-dimensional Helmholtz coil, 5, polarization plane detection device, 5.1, λ/2 glass slide, 5.2, Wollaste prism, 5.3, balanced detector, 6, signal processing system, T, convex lens.
具体实施方式Detailed ways
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention can be implemented in various ways defined and covered by the claims.
实施例1:Example 1:
一种碱金属原子的横向自旋弛豫时间测量装置,详见图1,包括抽运光路器件1、探测光路器件2、原子气室3、三维亥姆霍兹线圈4、偏振面检测装置5以及信号处理系统6,详情如下:A device for measuring the transverse spin relaxation time of an alkali metal atom, see Figure 1 for details, including a pumping optical path device 1, a detection optical path device 2, an atomic gas chamber 3, a three-dimensional Helmholtz coil 4, and a polarization plane detection device 5 and the signal processing system 6, details are as follows:
所述原子气室3内充有碱金属原子与缓冲气体,缓冲气体优选氮气。The atomic gas chamber 3 is filled with alkali metal atoms and buffer gas, and the buffer gas is preferably nitrogen.
所述抽运光路器件1形成抽运光路,其包括依次串联设置的第一激光器1.1、第一扩束准直装置1.2和圆偏振光转换装置1.3,第一激光器1.1为DFB半导体激光器,能被调节到碱金属原子D1线跃迁共振频率,输出抽运光;所述第一扩束准直装置1.2用于将所述第一激光器1.1输出的抽运光进行扩束准直处理;所述圆偏振光转换装置1.3用于将所述第一扩束准直装置1.2扩束准直处理后的抽运光转变为圆偏振光,圆偏振光用于极化原子气室3中的碱金属原子,所述圆偏振光转换装置1.3包括沿光路传播方向串联设置的第二线偏振片1.31和λ/4玻片1.32。The pumping optical path device 1 forms a pumping optical path, which includes a first laser 1.1, a first beam expander collimator 1.2, and a circularly polarized light conversion device 1.3 arranged in series in sequence. The first laser 1.1 is a DFB semiconductor laser, which can be Adjust to the resonant frequency of the alkali metal atom D1 line transition, and output the pumping light; the first beam expanding and collimating device 1.2 is used for beam expanding and collimating the pumping light output by the first laser 1.1; the circle The polarized light conversion device 1.3 is used to convert the pumping light processed by the first beam expanding and collimating device 1.2 into circularly polarized light, and the circularly polarized light is used to polarize the alkali metal atoms in the atomic gas cell 3 , the circularly polarized light conversion device 1.3 includes a second linear polarizing plate 1.31 and a λ/4 glass plate 1.32 arranged in series along the propagation direction of the optical path.
所述探测光路器件2形成探测光路,其包括第二激光器2.1、第二扩束准直装置2.2以及第一线偏振片2.3,所述第二激光器2.1为DFB半导体激光器,能被调节到碱金属原子D2线跃迁共振频率,输出探测光;所述第二扩束准直装置2.2用于将所述第二激光器2.1输出的探测光进行扩束准直处理,所述第一线偏振片2.3用于提高经过所述第二扩束准直装置2.2扩束准直处理后的探测光的线偏振度,高线偏振度的探测光与原子气室3中碱金属原子相互作用后,其偏振面会受到碱金属原子在探测光传播方向上的自旋极化的调制。The detection optical path device 2 forms a detection optical path, which includes a second laser 2.1, a second beam expander collimator 2.2 and a first linear polarizer 2.3, and the second laser 2.1 is a DFB semiconductor laser, which can be adjusted to alkali metal The atomic D2 line transitions the resonant frequency to output the probe light; the second beam expander and collimator device 2.2 is used to expand and collimate the probe light output by the second laser 2.1, and the first linear polarizer 2.3 uses In order to increase the degree of linear polarization of the probe light after beam expansion and collimation treatment by the second beam expander and collimator device 2.2, after the probe light with a high degree of linear polarization interacts with the alkali metal atoms in the atomic gas chamber 3, its polarization plane will be modulated by the spin polarization of the alkali metal atoms in the direction of probe light propagation.
所述三维亥姆霍兹线圈4用于在所述原子气室3处产生静磁场和旋转磁场,所述三维亥姆霍兹线圈4由铜线绕制。The three-dimensional Helmholtz coil 4 is used to generate a static magnetic field and a rotating magnetic field at the atomic gas chamber 3 , and the three-dimensional Helmholtz coil 4 is wound by copper wire.
所述偏振面检测装置5用于检测探测光偏振面的变化,其包括沿光路传播方向串联设置的λ/2玻片5.1、沃拉斯特棱镜5.2和平衡探测器5.3,所述λ/2玻片5.1用于调节经过所述原子气室3的探测光的偏振面的方向,所述沃拉斯特棱镜5.2用于将线偏振光分为沿y轴与z轴偏振的两束光,所述平衡探测器5.3用于对两束光的光强进行差分放大以输出反映探测光偏振面变化的信号。The polarization plane detection device 5 is used to detect the change of the probe light polarization plane, and it includes a λ/2 glass slide 5.1, a Wollaste prism 5.2 and a balance detector 5.3 arranged in series along the propagation direction of the optical path, the λ/2 The glass slide 5.1 is used to adjust the direction of the polarization plane of the probe light passing through the atomic gas cell 3, and the Wolast prism 5.2 is used to divide the linearly polarized light into two beams of light polarized along the y-axis and the z-axis, The balance detector 5.3 is used to differentially amplify the light intensity of the two beams to output a signal reflecting the change of the polarization plane of the detected light.
所述信号处理系统6包含数据采集卡和计算机,所述数据采集卡同时与所述三维亥姆霍兹线圈4、平衡探测器5.3和所述计算机连接,所述信号处理系统6用于采集所述偏振面检测装置5所检测探测光偏振面的变化信息和调节输入到所述三维亥姆霍兹线圈4中的电流以控制其产生的z轴方向的静磁场和相对于静磁场顺时针旋转或逆时针旋转的旋转磁场。The signal processing system 6 includes a data acquisition card and a computer, and the data acquisition card is connected with the three-dimensional Helmholtz coil 4, the balance detector 5.3 and the computer at the same time, and the signal processing system 6 is used for collecting all The change information of the polarization plane of the probe light detected by the polarization plane detection device 5 and the current input to the three-dimensional Helmholtz coil 4 are adjusted to control the static magnetic field in the z-axis direction generated by it and rotate clockwise or relative to the static magnetic field. A rotating magnetic field that rotates counterclockwise.
上述第一扩束准直装置1.2和所述第二扩束准直装置2.2均包括沿光路传播方向串联设置的两组凸透镜T。Both the first beam expander and collimator 1.2 and the second beam expander and collimator 2.2 include two sets of convex lenses T arranged in series along the propagation direction of the optical path.
应用本实施例的技术方案,具体是:Apply the technical scheme of this embodiment, specifically:
第一激光器1.1(DFB半导体激光器)输出的抽运光(抽运光沿z轴方向传播)经过第一扩束准直装置1.2(依次经过两组凸透镜T)扩束准直,再由圆偏振光转换装置1.3(依次经过第二线偏振片1.31和λ/4玻片1.32)将其转变为圆偏振光;随后,圆偏振光照射原子气室3,实现对原子气室3中碱金属原子的极化。The pumping light output by the first laser 1.1 (DFB semiconductor laser) (the pumping light propagates along the z-axis direction) passes through the first beam expander and collimator device 1.2 (passes through two sets of convex lenses T in turn) and then is circularly polarized The light conversion device 1.3 (through the second linear polarizer 1.31 and the λ/4 glass plate 1.32 in turn) converts it into circularly polarized light; subsequently, the circularly polarized light irradiates the atomic gas chamber 3, realizing the alkali metal atoms in the atomic gas chamber 3 polarization.
第二激光器2.1(DFB半导体激光器)输出的探测光(探测光沿x轴方向传播)经过第二扩束准直装置2.2(依次经过两组凸透镜T)扩束准直,再经过第一线偏振片2.3后照射原子气室3,探测光与原子气室3中碱金属原子相互作用后,探测光的偏振面会受到P+x或P-x的调制。The probe light output by the second laser 2.1 (DFB semiconductor laser) (the probe light propagates along the x-axis direction) is expanded and collimated by the second beam expander and collimator device 2.2 (through two sets of convex lenses T in sequence), and then passed through the first linear polarization The atomic gas cell 3 is irradiated after the sheet 2.3, and after the probe light interacts with the alkali metal atoms in the atomic gas cell 3, the polarization plane of the probe light will be modulated by P +x or P -x .
穿过原子气室3的探测光经偏振面检测装置5(依次经过λ/2玻片5.1、沃拉斯特棱镜5.2和平衡探测器5.3),平衡探测器5.3的输出信号反映探测光偏振面的变化;平衡探测器5.3的输出信号被信号处理系统6采集,同时,信号处理系统6驱动与控制三维亥姆霍兹线圈4,提供静磁场与旋转磁场。The probe light passing through the atomic gas chamber 3 passes through the polarization plane detection device 5 (through the λ/2 glass slide 5.1, the Wollaste prism 5.2 and the balance detector 5.3 in turn), and the output signal of the balance detector 5.3 reflects the probe light polarization plane change; the output signal of the balance detector 5.3 is collected by the signal processing system 6, and at the same time, the signal processing system 6 drives and controls the three-dimensional Helmholtz coil 4 to provide a static magnetic field and a rotating magnetic field.
应用本实施例的装置进行碱金属原子的横向自旋弛豫时间的测量方法,包括以下步骤:The method for measuring the transverse spin relaxation time of an alkali metal atom using the device of this embodiment may further comprise the steps:
步骤一、信号处理系统6驱动三维亥姆霍兹线圈4产生z轴方向的静磁场打开第一激光器1.1,将其调节到碱金属原子D1线跃迁共振频率,输出抽运光,抽运光沿着z轴方向的抽运光路传播,先后依次经过所述第一扩束准直装置1.2和圆偏振光转换装置1.3处理得到圆偏振光,圆偏振光开始极化原子气室3中的碱金属原子;同时,打开第二激光器2.1,将其调节到碱金属原子D2线跃迁共振频率,输出探测光,探测光沿着x轴方向的探测光路传播,先后经过第二扩束准直装置2.2以及第一线偏振片2.3处理得到高线偏振度的探测光,探测光与原子气室3中碱金属原子相互作用,探测P+x或P-x;Step 1: The signal processing system 6 drives the three-dimensional Helmholtz coil 4 to generate a static magnetic field in the z-axis direction Turn on the first laser 1.1, adjust it to the resonance frequency of the alkali metal atom D1 line transition, output the pumping light, the pumping light propagates along the pumping optical path in the z-axis direction, and successively passes through the first beam expander collimation device 1.2 and the circularly polarized light conversion device 1.3 process to obtain circularly polarized light, and the circularly polarized light starts to polarize the alkali metal atoms in the atomic gas cell 3; at the same time, turn on the second laser 2.1 and adjust it to the D2 line transition resonance frequency of the alkali metal atoms , output the detection light, the detection light propagates along the detection light path in the x-axis direction, and is successively processed by the second beam expander collimation device 2.2 and the first linear polarizer 2.3 to obtain the detection light with a high degree of linear polarization, the detection light and the atomic gas chamber 3. Alkali metal atom interaction, detecting P +x or P -x ;
步骤二、施加旋转磁场,具体是:Step 2, applying a rotating magnetic field, specifically:
施加顺时针旋转磁场:信号处理系统6驱动三维亥姆霍兹线圈4产生相对于静磁场顺时针旋转的磁场5-10秒后,撤除顺时针旋转磁场Bc,信号处理系统6探测平衡放大器5.3输出的自由衰减的P-x信号;Apply a clockwise rotating magnetic field: the signal processing system 6 drives the three-dimensional Helmholtz coil 4 to generate a relative static magnetic field magnetic field rotating clockwise After 5-10 seconds, the clockwise rotating magnetic field B c is removed, and the signal processing system 6 detects the freely decaying P -x signal output by the balanced amplifier 5.3;
施加逆时针旋转磁场:信号处理系统6驱动三维亥姆霍兹线圈4产生相对于静磁场逆时针旋转的磁场5-10秒后,撤除逆时针旋转磁场Bcc,信号处理系统6探测平衡放大器5.3输出的自由衰减的P+x信号;Apply a counterclockwise rotating magnetic field: the signal processing system 6 drives the three-dimensional Helmholtz coil 4 to generate a relative static magnetic field Magnetic field rotating counterclockwise After 5-10 seconds, the counterclockwise rotating magnetic field B cc is removed, and the signal processing system 6 detects the freely decaying P +x signal output by the balance amplifier 5.3;
步骤三、用指数函数拟合探测到的自由衰减的P+x信号,得到处于基态F=I+1/2超精细能级的碱金属原子的横向自旋弛豫时间T2+;用指数函数拟合探测到的自由衰减的P-x信号,得到处于基态F=I-1/2超精细能级的碱金属原子的横向自旋弛豫时间T2-。Step 3, fitting the detected free-decaying P +x signal with an exponential function to obtain the transverse spin relaxation time T 2+ of the alkali metal atom in the ground state F=I+1/2 hyperfine energy level; The function fits the detected free-decaying P -x signal to obtain the transverse spin relaxation time T 2- of the alkali metal atom in the ground state F=I-1/2 hyperfine energy level.
以上技术方案中优选的,所述步骤三中的指数函数具体是:表示未知量y关于未知量x的函数,其中:a与T2为待拟合的参量,T2的拟合结果作为T2+或T2-。Preferably in the above technical scheme, the exponential function in the step 3 is specifically: Indicates the function of the unknown quantity y on the unknown quantity x, where: a and T 2 are the parameters to be fitted, and the fitting result of T 2 is taken as T 2+ or T 2- .
图2是实验探测到的自由衰减的P-x信号及其拟合结果。从图中可以看出,我们可以通过指数拟合函数得到处于基态F=I-1/2超精细能级的碱金属原子的横向自旋弛豫时间T2-。Figure 2 is the experimentally detected P -x signal of free decay and its fitting results. It can be seen from the figure that we can obtain the transverse spin relaxation time T 2- of the alkali metal atom in the ground state F=I-1/2 hyperfine energy level through the exponential fitting function.
图3是实验探测到的自由衰减的P+x信号及其拟合结果。从图中可以看出,我们可以通过指数拟合函数得到处于基态F=I+1/2超精细能级的碱金属原子的横向自旋弛豫时间T2+。Figure 3 is the experimentally detected P +x signal of free decay and its fitting results. It can be seen from the figure that we can obtain the transverse spin relaxation time T 2+ of the alkali metal atom in the ground state F=I+1/2 hyperfine energy level through the exponential fitting function.
图4是在x轴方向施加线偏振荡磁场且振荡磁场的频率等于γ-B0时平衡探测器探测到的信号。从图中可以看出,我们难以拟合得到处于基态F=I-1/2或F=I+1/2超精细能级的碱金属原子的横向自旋弛豫时间T2-或T2+。Figure 4 is the signal detected by the balance detector when a linearly deflected oscillating magnetic field is applied in the x-axis direction and the frequency of the oscillating magnetic field is equal to γ - B 0 . It can be seen from the figure that it is difficult for us to fit the transverse spin relaxation time T 2- or T 2 of the alkali metal atom in the ground state F=I-1/2 or F=I+1/2 hyperfine energy level + .
比较图2、图3与图4的实验结果可得,利用不同方向的旋转磁场,可以单独激励处于基态不同超精细能级的碱金属原子,实现对基态不同超精细能级的碱金属原子的横向自旋弛豫时间的精确测量。Comparing the experimental results in Fig. 2, Fig. 3 and Fig. 4, it can be obtained that by using rotating magnetic fields in different directions, the alkali metal atoms in different hyperfine energy levels in the ground state can be separately excited, and the alkali metal atoms in different hyperfine energy levels in the ground state can be excited. Precise measurement of transverse spin relaxation times.
应用本实施例的技术方案,效果是:整体结构精简;利用不同方向的旋转磁场,单独激励处于基态不同超精细能级的碱金属原子,实现对基态不同超精细能级的碱金属原子的横向自旋弛豫时间的精确测量;能够应用于研究光抽运与自旋弛豫以及评估原子磁力仪和原子自旋陀螺等的性能。Applying the technical solution of this embodiment, the effect is: the overall structure is simplified; using rotating magnetic fields in different directions to separately excite the alkali metal atoms at different hyperfine energy levels in the ground state, and realize the lateral movement of the alkali metal atoms at different hyperfine energy levels in the ground state. Accurate measurement of spin relaxation time; can be applied to the study of optical pumping and spin relaxation, and to evaluate the performance of atomic magnetometers and atomic spin gyroscopes.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810083268.4A CN108267407A (en) | 2018-01-29 | 2018-01-29 | Device and method for measuring transverse spin relaxation time of alkali metal atoms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810083268.4A CN108267407A (en) | 2018-01-29 | 2018-01-29 | Device and method for measuring transverse spin relaxation time of alkali metal atoms |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108267407A true CN108267407A (en) | 2018-07-10 |
Family
ID=62776943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810083268.4A Pending CN108267407A (en) | 2018-01-29 | 2018-01-29 | Device and method for measuring transverse spin relaxation time of alkali metal atoms |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108267407A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110068320A (en) * | 2019-05-05 | 2019-07-30 | 中国工程物理研究院总体工程研究所 | A kind of zero bias self calibration atomic gyroscope |
CN110673069A (en) * | 2019-11-07 | 2020-01-10 | 之江实验室 | Three-dimensional vector weak magnetic field detection device and detection method |
CN111044947A (en) * | 2019-12-24 | 2020-04-21 | 北京航天控制仪器研究所 | Multichannel SERF atomic magnetometer device for magnetoencephalography and application method |
CN111337868A (en) * | 2020-03-23 | 2020-06-26 | 北京自动化控制设备研究所 | Nuclear spin longitudinal relaxation time measuring method |
CN111398873A (en) * | 2020-03-20 | 2020-07-10 | 中国电子科技集团公司第四十九研究所 | Atomic magnetometer probe capable of being used for vector detection |
CN111964658A (en) * | 2020-07-24 | 2020-11-20 | 中国人民解放军国防科技大学 | Rotating field driven nuclear magnetic resonance gyroscope closed-loop magnetic resonance method |
CN112485822A (en) * | 2020-11-12 | 2021-03-12 | 中国科学院精密测量科学与技术创新研究院 | Method and device for measuring atomic group track in atomic interferometer |
CN112946541A (en) * | 2021-02-02 | 2021-06-11 | 中国人民解放军军事科学院国防科技创新研究院 | Alkali metal atomic spin all-optical control system and detection method |
CN113009388A (en) * | 2021-03-19 | 2021-06-22 | 北京科技大学 | Magnetic liquid magnetization relaxation time measuring device and method |
CN113639883A (en) * | 2021-08-18 | 2021-11-12 | 之江实验室 | In-situ measurement system and method for spatial distribution of spin polarizability of alkali metal atom magnetometer |
CN114018290A (en) * | 2021-11-08 | 2022-02-08 | 北京航空航天大学 | A laser orthogonal alignment method for pump detection of an atomic spin inertial measurement device |
WO2024149040A1 (en) * | 2023-01-11 | 2024-07-18 | 重庆理工大学 | Quantum measurement method and apparatus |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120112749A1 (en) * | 2010-11-01 | 2012-05-10 | The Regents Of The University Of California | Apparatus and method for increasing spin relaxation times for alkali atoms in alkali vapor cells |
CN102830381A (en) * | 2012-08-15 | 2012-12-19 | 中国科学院武汉物理与数学研究所 | Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer |
CN104094105A (en) * | 2011-12-21 | 2014-10-08 | 独立行政法人科学技术振兴机构 | Nuclear magnetic resonance imaging device and nuclear magnetic resonance imaging method |
US20150054504A1 (en) * | 2012-03-29 | 2015-02-26 | Canon Kabushiki Kaisha | Optically pumped magnetometer and method of measuring magnetic force |
CN105929458A (en) * | 2016-03-21 | 2016-09-07 | 吉林大学 | Aeromagnetic field vector detecting device and detecting method |
CN106291409A (en) * | 2016-08-04 | 2017-01-04 | 北京航天控制仪器研究所 | A kind of atomic sensor device based on hyperfine energy level frequency stabilization |
CN106443520A (en) * | 2016-11-09 | 2017-02-22 | 北京航空航天大学 | Biaxial atomic spinning magnetometer |
CN106597338A (en) * | 2016-12-28 | 2017-04-26 | 北京航空航天大学 | Method for measuring atomic transverse relaxation time based on electron resonance phase frequency analysis |
CN106842074A (en) * | 2017-03-03 | 2017-06-13 | 中国人民解放军国防科学技术大学 | Three axial vector atom magnetometers and application method based on longitudinal magnetic field modulation |
-
2018
- 2018-01-29 CN CN201810083268.4A patent/CN108267407A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120112749A1 (en) * | 2010-11-01 | 2012-05-10 | The Regents Of The University Of California | Apparatus and method for increasing spin relaxation times for alkali atoms in alkali vapor cells |
CN104094105A (en) * | 2011-12-21 | 2014-10-08 | 独立行政法人科学技术振兴机构 | Nuclear magnetic resonance imaging device and nuclear magnetic resonance imaging method |
US20150054504A1 (en) * | 2012-03-29 | 2015-02-26 | Canon Kabushiki Kaisha | Optically pumped magnetometer and method of measuring magnetic force |
CN102830381A (en) * | 2012-08-15 | 2012-12-19 | 中国科学院武汉物理与数学研究所 | Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer |
CN105929458A (en) * | 2016-03-21 | 2016-09-07 | 吉林大学 | Aeromagnetic field vector detecting device and detecting method |
CN106291409A (en) * | 2016-08-04 | 2017-01-04 | 北京航天控制仪器研究所 | A kind of atomic sensor device based on hyperfine energy level frequency stabilization |
CN106443520A (en) * | 2016-11-09 | 2017-02-22 | 北京航空航天大学 | Biaxial atomic spinning magnetometer |
CN106597338A (en) * | 2016-12-28 | 2017-04-26 | 北京航空航天大学 | Method for measuring atomic transverse relaxation time based on electron resonance phase frequency analysis |
CN106842074A (en) * | 2017-03-03 | 2017-06-13 | 中国人民解放军国防科学技术大学 | Three axial vector atom magnetometers and application method based on longitudinal magnetic field modulation |
Non-Patent Citations (5)
Title |
---|
ZHICHAO DING, JIE YUAN, YANGYING FU, HUI LUO & XINGWU LONG: "Selective excitation of spinpolarized alkali atoms in different ground-state hyperfine levels", 《SCIENTIFIC REPORTS》 * |
丁志超,李莹颖,汪之国,杨开勇,袁杰: "基于法拉第旋转检测的铷原子磁力仪研究", 《中国激光》 * |
丁志超,袁杰,李莹颖,冯伟,汪之国: "铷原子横向弛豫时间的测量方法比较研究", 《光学学报》 * |
刘强, 卓艳男, 孙宇丹,付天舒: "抽运光频率对全光Cs原子磁力仪灵敏度的影响", 《激光与光电子学进展》 * |
田晓倩,孙晓光,田海峰: "基于磁共振线宽的Xe核自旋横向弛豫时间测量方法", 《导航定位与授时》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110068320A (en) * | 2019-05-05 | 2019-07-30 | 中国工程物理研究院总体工程研究所 | A kind of zero bias self calibration atomic gyroscope |
CN110068320B (en) * | 2019-05-05 | 2024-02-06 | 中国工程物理研究院总体工程研究所 | Zero-bias self-calibration atomic gyroscope |
CN110673069A (en) * | 2019-11-07 | 2020-01-10 | 之江实验室 | Three-dimensional vector weak magnetic field detection device and detection method |
CN111044947B (en) * | 2019-12-24 | 2022-05-24 | 北京航天控制仪器研究所 | Multichannel SERF atomic magnetometer device for magnetoencephalography and application method |
CN111044947A (en) * | 2019-12-24 | 2020-04-21 | 北京航天控制仪器研究所 | Multichannel SERF atomic magnetometer device for magnetoencephalography and application method |
CN111398873A (en) * | 2020-03-20 | 2020-07-10 | 中国电子科技集团公司第四十九研究所 | Atomic magnetometer probe capable of being used for vector detection |
CN111337868A (en) * | 2020-03-23 | 2020-06-26 | 北京自动化控制设备研究所 | Nuclear spin longitudinal relaxation time measuring method |
CN111337868B (en) * | 2020-03-23 | 2022-07-08 | 北京自动化控制设备研究所 | A method for measuring nuclear spin longitudinal relaxation time |
CN111964658A (en) * | 2020-07-24 | 2020-11-20 | 中国人民解放军国防科技大学 | Rotating field driven nuclear magnetic resonance gyroscope closed-loop magnetic resonance method |
CN111964658B (en) * | 2020-07-24 | 2023-09-19 | 中国人民解放军国防科技大学 | A rotating field-driven NMR gyro closed-loop magnetic resonance method |
CN112485822B (en) * | 2020-11-12 | 2021-07-20 | 中国科学院精密测量科学与技术创新研究院 | Method and device for measuring atomic group track in atomic interferometer |
CN112485822A (en) * | 2020-11-12 | 2021-03-12 | 中国科学院精密测量科学与技术创新研究院 | Method and device for measuring atomic group track in atomic interferometer |
CN112946541B (en) * | 2021-02-02 | 2021-12-28 | 中国人民解放军军事科学院国防科技创新研究院 | Alkali metal atomic spin all-optical control system and detection method |
CN112946541A (en) * | 2021-02-02 | 2021-06-11 | 中国人民解放军军事科学院国防科技创新研究院 | Alkali metal atomic spin all-optical control system and detection method |
CN113009388B (en) * | 2021-03-19 | 2022-02-22 | 北京科技大学 | Magnetic liquid magnetization relaxation time measuring device and method |
CN113009388A (en) * | 2021-03-19 | 2021-06-22 | 北京科技大学 | Magnetic liquid magnetization relaxation time measuring device and method |
CN113639883A (en) * | 2021-08-18 | 2021-11-12 | 之江实验室 | In-situ measurement system and method for spatial distribution of spin polarizability of alkali metal atom magnetometer |
CN114018290A (en) * | 2021-11-08 | 2022-02-08 | 北京航空航天大学 | A laser orthogonal alignment method for pump detection of an atomic spin inertial measurement device |
CN114018290B (en) * | 2021-11-08 | 2023-08-08 | 北京航空航天大学 | Orthogonal alignment method for pumping detection laser of atomic spin inertia measuring device |
WO2024149040A1 (en) * | 2023-01-11 | 2024-07-18 | 重庆理工大学 | Quantum measurement method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108267407A (en) | Device and method for measuring transverse spin relaxation time of alkali metal atoms | |
JP5264242B2 (en) | Atomic magnetometer and magnetic force measurement method | |
JP5539099B2 (en) | Magnetic gradient meter and magnetic sensing method | |
CN108287322B (en) | Atomic magnetometer without response blind zone and method for measuring external magnetic field by atomic magnetometer | |
US8941377B2 (en) | Optically pumped magnetometer and magnetic sensing method | |
JP6171355B2 (en) | Magnetic field measuring device | |
Vershovskii et al. | Nuclear magnetic resonance gyro: Ultimate parameters | |
CN106872911A (en) | Atom magnetometer and application method under a kind of excitation field high | |
CN110568381B (en) | Magneto-optical non-orthogonal angle in-situ measurement method based on double-beam triaxial vector atomic magnetometer | |
Xiao et al. | Femtotesla atomic magnetometer employing diffusion optical pumping to search for exotic spin-dependent interactions | |
CN110673069A (en) | Three-dimensional vector weak magnetic field detection device and detection method | |
CN110514193B (en) | Nuclear magnetic resonance gyroscope and detection method | |
Xing et al. | A measurement method of transverse light-shift in atomic spin co-magnetometer | |
Wu et al. | Enhanced transverse nuclear magnetization of an atomic co-magnetometer at the optimal oscillating magnetic field | |
US11391796B2 (en) | Optically pumped magnetometer and magnetic sensing method that expand a measurable frequency band of magnetism | |
CN115727829A (en) | Control method and system for inhibiting influence of alkali metal polarization magnetic field | |
RU2654967C1 (en) | Method of measuring the characteristics of the magnetic field | |
JP5682344B2 (en) | Magnetic measuring device and biological state measuring device | |
CN114234951B (en) | A Test Method for Magnetic Field Fluctuation of SERF Inertial Device Based on Nuclear Spin Polarization Suppression | |
CN114236435A (en) | A magnetic field compensation device and method for SERF atomic magnetometer in space environment | |
JP5907234B2 (en) | Magnetic measuring device and biological state measuring device | |
US12174020B2 (en) | System and method for heading error correction in a pulsed Rb-87 magnetometer at geomagnetic fields | |
Qiang et al. | Investigation of spatial spin polarization of 87Rb and 129Xe atomic ensemble pumped by Gaussian beam in a miniature nuclear magnetic resonance gyroscope | |
CN118897235B (en) | In-situ calibration method of coil constant and non-orthogonal angle based on electron paramagnetic resonance | |
Jie et al. | The Xe isotope nuclear resonance frequency shift of NMR angular velocity sensors due to transverse gradient magnetic fields |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180710 |
|
RJ01 | Rejection of invention patent application after publication |