[go: up one dir, main page]

CN108264559B - Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof - Google Patents

Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof Download PDF

Info

Publication number
CN108264559B
CN108264559B CN201611258691.0A CN201611258691A CN108264559B CN 108264559 B CN108264559 B CN 108264559B CN 201611258691 A CN201611258691 A CN 201611258691A CN 108264559 B CN108264559 B CN 108264559B
Authority
CN
China
Prior art keywords
seq
amino acid
acid sequence
tsab
variable region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611258691.0A
Other languages
Chinese (zh)
Other versions
CN108264559A (en
Inventor
陈帅
廖远平
朱化星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huihe Biotechnology Shanghai Co ltd
Original Assignee
Huihe Biotechnology Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huihe Biotechnology Shanghai Co ltd filed Critical Huihe Biotechnology Shanghai Co ltd
Priority to CN201611258691.0A priority Critical patent/CN108264559B/en
Priority to EP17888652.9A priority patent/EP3564265A4/en
Priority to PCT/CN2017/096594 priority patent/WO2018120843A1/en
Priority to US16/474,555 priority patent/US11535666B2/en
Publication of CN108264559A publication Critical patent/CN108264559A/en
Application granted granted Critical
Publication of CN108264559B publication Critical patent/CN108264559B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention belongs to the technical field of biological medicines, and particularly relates to a tri-functional molecule combined with CD19, CD3 and a T cell positive co-stimulatory molecule and application thereof. The trifunctional molecule comprises a first domain capable of binding to CD19, a second domain capable of binding to and activating CD3, and a third domain capable of binding to and activating a T cell positive costimulatory molecule in its structure. The molecule has obvious advantages in the aspects of preparation process and practical application: the efficacy of activating T cells is further improved while the T cells are endowed with targeting to CD19 positive cells, the mediated killing effect of the T cells to CD19 positive target cells is better than that of an anti-CD 19/anti-CD 3 BiTE bispecific antibody when the T cells are added independently, and the application convenience is better than that of a CD19 targeted CAR-T technology.

Description

Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof
Technical Field
The invention belongs to the technical field of biological medicines, and particularly relates to a tri-functional molecule combined with CD19, CD3 and a T cell positive co-stimulatory molecule and application thereof.
Background
The human CD19 antigen is a transmembrane glycoprotein of 95kDa in size, belonging to the immunoglobulin superfamily, and CD19 is highly expressed in B cell malignancies in addition to being expressed on the surface of normal B lymphocytes, so an anti-CD 19 monoclonal full-length antibody has been developed for use in the treatment of acute/chronic lymphocytic leukemia and B cell lymphoma (Wang K et al, Experimental Hematology & Oncology, 1:36-42, 2012). Given that anti-CD 19 monoclonal antibodies are unable to effectively recruit Cytotoxic T lymphocytes (CTLs, such CD3/CD8 double positive T cells specifically recognize antigen peptide/MHC class I molecule complexes on the surface of target cells, release perforin (Peforin) upon self-activation, cause lytic death of target cells, and also secrete DNA damage to target cell nuclei due to cytotoxins and granzymes (Granzyme), etc., causing apoptosis of target cells), bispecific antibodies (Bi-specific antibodies, BsAb) that can engage T cells and lymphoma B cells, as well as genetically engineered Chimeric antigen receptor T-cell immunotherapy (CAR-T) (Zhukovsky et al, Current Opinion in Immunology, 40: 24-35, 2016) were further designed and developed.
One current relatively mature type of bispecific antibody targeting CD19 is the Bi-specific T cell engager (BiTE) against CD 19/CD 3, whose structure is two Single-chain variable fragments (scFv) domains covalently linked in series by a linking peptide fragment (Linker) with flexibility (Goebeler ME et al, leukamia & Lymphoma, 57: 1021-. In the cellular immune process of an organism, specific recognition is carried out on a TCR/CD3 complex on the surface of a CD8 positive T cell and an endogenous Antigen peptide/MHC I molecule complex on the surface of an Antigen Presenting Cell (APC), so that CD3 interacts with a cytoplasmic segment of a co-receptor CD8, protein tyrosine kinase connected with a cytoplasmic segment tail is activated, tyrosine phosphorylation in an Immunoreceptor tyrosine kinase activation motif (ITAM) of a CD3 cytoplasmic region is enabled, a signal transduction molecular cascade reaction is started, and a transcription factor is activated, so that the T cell is initially activated. The anti-CD 19/anti-CD 3 BiTE bispecific antibody has the binding activity of two antigens of human CD3 and CD19, can form cell engagement between T cells and tumor B cells, and simultaneously gives a primary activation signal to the T cells, so that the killing targeting of the bispecific antibody to the tumor cells is improved. However, the BiTE bispecific antibody does not have an Fc fragment of a full-length antibody, has a small protein molecular weight (54 kDa), can cross the urinary and cerebral blood barriers during tumor therapy, has low bioavailability, needs to be administered by intravenous injection, and has certain neurotoxicity.
Furthermore, dual signaling pathways are required for T cell activation in humans (Baxter AG et al, Nature Reviews Immunology, 2: 439-446, 2002). First, the interaction of the antigenic peptide-MHC molecule complex on the surface of APC with the TCR/CD3 complex on the surface of T cell generates a first signal, which leads to the primary activation of T cell, and then the interaction of Co-stimulatory molecule ligands (e.g., CD80, CD86, 4-1BBL, B7RP-1, OX40L, GITRL, CD40, CD70, PD-L1, PD-L2, etc.) on the surface of APC with the corresponding Co-stimulatory molecules (Co-stimulatory molecules, e.g., CD28, 4-1BB, ICOS, OX40, GITR, CD40L, CD27, CTLA-4, PD-1, LAG-3, TIM-3, tig, and BTLA, etc.) on the surface of T cell generate a second signal (Co-stimulatory signal): wherein CD28, 4-1BB, ICOS, OX40, GITR, CD40L, CD27 and the like belong to the positive costimulatory molecules, which produce a second signal (positive costimulatory signal) that leads to complete activation of T cells; CTLA-4, PD-1, LAG-3, TIM-3, TIGIT and BTLA belong to negative costimulatory molecules, and their actions are mainly to down-regulate and terminate activation of T cells (negative costimulatory signal). It has been shown that the first signaling pathway alone does not sufficiently activate T cells, but rather leads to their incapacitation and even Activation-induced T cell death (AICD). To address this problem, bispecific antibodies against tumor antigen/anti-T cell positive (negative) costimulatory molecules can be used in combination with bispecific antibodies against tumor antigen/anti-CD 3 to increase the T cell activation and tumor cell killing efficiency (Jung G et al, Int J Cancer, 91: 225-. However, this method has many inconveniences in practical operation, such as increased workload for expression and purification of the recombinant bispecific antibody and production cost, and optimization of the relative ratio of the two bispecific antibodies during activation and expansion of T cells. In contrast, CAR-T technology better addresses the problem of T cell activation. The construction of a CAR typically includes: a tumor-associated antigen binding region (e.g., a CD19 antigen binding region, typically derived from a scFv fragment of a monoclonal full-length antibody against CD 19), an extracellular hinge region, a transmembrane region, and an intracellular signaling region. Wherein the intracellular signaling region is responsible for mediating the activation of T cells, on one hand, the first stimulation signal is completed through a tyrosine activation motif on a zeta chain of CD3, on the other hand, the expansion of the first stimulation signal is realized through a positive costimulatory signal of CD28, the proliferation and the activation of the T cells are promoted, and the secretion of cytokines is increased, the secretion of anti-apoptotic proteins is increased, the death of the cells is delayed, and the like. However, the CAR-T technology itself has some disadvantages: firstly, the technology relies on virus transfection to carry out gene modification on T cells, the steps are complex, and the requirements on experimental conditions are high; secondly, when in specific use, the CAR-T cells after in-vitro amplification and activation need to be infused back into a patient body, and the control of the dosage is more difficult than that of antibody drugs; in addition, a dramatic increase in the number of CAR-T cells after entry into a patient can lead to Cytokine storms (cytokines storms) that produce excessive amounts of cytokines within a short period of time, causing side effects such as high fever, low pressure, shock, and even death.
Disclosure of Invention
In order to overcome the problems in the prior art, the invention aims to provide a trifunctional molecule capable of simultaneously binding CD19, CD3 and a T cell positive costimulatory molecule and application thereof.
In order to achieve the above objects and other related objects, the present invention adopts the following technical solutions:
in a first aspect of the invention, there is provided a trifunctional molecule comprising a first domain capable of binding to CD19, a second domain capable of binding to and activating a T-cell surface CD3 molecule, and a third domain capable of binding to and activating a T-cell positive costimulatory molecule.
Preferably, the trifunctional molecule is capable of binding to and activating the T cell surface CD3 molecule and the T cell positive costimulatory molecule while recognizing CD19, thereby generating the first and second signals required for T cell activation.
Preferably, the first domain is an antibody against CD19, the second domain is an antibody against CD3, and the third domain is an antibody against a T cell positive co-stimulatory molecule.
Preferably, the antibody is a small molecule antibody.
Preferably, the antibody is selected from a Fab antibody, a Fv antibody or a single chain antibody (scFv).
Preferably, the first domain and the second domain are linked by a linker1, and the second domain and the third domain are linked by a linker 2.
Preferably, the connecting segment 1 and the connecting segment 2 are selected from the group consisting of connecting segments with the unit of G4S or hinge region segments of immunoglobulin IgD.
The G4S is specifically GGGGS. The G4S-unit ligated fragment includes one or more G4S units. For example, one, two, three, or more than four G4S units may be included. In some embodiments of the present invention, a single bifunctional molecule is illustrated, wherein the first domain and the second domain are linked by a linker1 in G4S, and the second domain and the third domain are linked by a linker2 in G4S. The connecting fragment 1 contains a G4S unit, and the amino acid sequence of the connecting fragment is shown as SEQ ID NO. 1. The connecting fragment 2 contains three G4S units, and the amino acid sequence of the connecting fragment is shown as SEQ ID NO. 3.
The hinge region fragment of an immunoglobulin IgD may be the hinge Ala90-Val170 of an immunoglobulin IgD. In some embodiments of the invention, a dimer form of the bifunctional molecule is illustrated, wherein the first domain is linked to the second domain by a linker1 in G4S, and the second domain is linked to the third domain by a hinge region fragment of an immunoglobulin IgD, which is the hinge Ala90-Val170 of the immunoglobulin IgD. The connecting fragment 1 contains a G4S unit, and the amino acid sequence of the connecting fragment is shown as SEQ ID NO. 5. The amino acid sequence of the connecting segment 2 is shown as SEQ ID NO. 7. The connecting segments 2 may be linked to each other by disulfide bonds to form a dimer.
Preferably, the C-terminus of the first domain is linked to the N-terminus of the second domain; the C-terminus of the second domain is linked to the N-terminus of the third domain.
Preferably, the first domain is a single chain antibody against CD19, the second domain is a single chain antibody against CD3, and the third domain is a single chain antibody against a T cell positive co-stimulatory molecule, the single chain antibody comprising a heavy chain variable region and a light chain variable region.
Preferably, the amino acid sequence of the heavy chain variable region of the anti-CD 19 single-chain antibody is shown in SEQ ID NO. 41. The amino acid sequence of the light chain variable region of the anti-CD 19 single-chain antibody is shown in SEQ ID NO. 42. The amino acid sequence of the heavy chain variable region of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 44. The amino acid sequence of the light chain variable region of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 45.
Preferably, the single chain antibody against the T cell positive co-stimulatory molecule may be any one of a single chain antibody against 4-1BB, a single chain antibody against ICOS, a single chain antibody against OX40, a single chain antibody against GITR, a single chain antibody against CD40L, or a single chain antibody against CD 27.
Preferably, the amino acid sequence of the heavy chain variable region of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 47. The amino acid sequence of the light chain variable region of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 48.
The amino acid sequence of the heavy chain variable region of the single-chain antibody for resisting ICOS is shown as SEQ ID NO. 50. The amino acid sequence of the light chain variable region of the anti-ICOS single-chain antibody is shown in SEQ ID NO. 51.
The amino acid sequence of the heavy chain variable region of the anti-OX 40 single-chain antibody is shown in SEQ ID No. 53. The amino acid sequence of the variable region of the light chain of the anti-OX 40 single-chain antibody is shown in SEQ ID No. 54.
The amino acid sequence of the heavy chain variable region of the anti-GITR single-chain antibody is shown as SEQ ID NO. 56. The amino acid sequence of the light chain variable region of the anti-GITR single-chain antibody is shown as SEQ ID NO. 57.
The amino acid sequence of the heavy chain variable region of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 59. The amino acid sequence of the light chain variable region of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 60.
The amino acid sequence of the heavy chain variable region of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 62. The amino acid sequence of the light chain variable region of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 63.
In some embodiments of the invention, the amino acid sequence of the anti-CD 19 single chain antibody is shown in SEQ ID NO. 40. The amino acid sequence of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 43. The amino acid sequence of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 46. The amino acid sequence of the single-chain antibody for resisting ICOS is shown in SEQ ID NO. 49. The amino acid sequence of the anti-OX 40 single-chain antibody is shown in SEQ ID NO. 52. The amino acid sequence of the anti-GITR single-chain antibody is shown as SEQ ID NO. 55. The amino acid sequence of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 58. The amino acid sequence of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 61.
In a preferred embodiment, the amino acid sequence of the trifunctional molecule in monomeric form is as shown in any one of SEQ ID NO.16, SEQ ID NO.20, SEQ ID NO.24, SEQ ID NO.28, SEQ ID NO.32 or SEQ ID NO. 36.
In a preferred embodiment, the amino acid sequence of the trifunctional molecule in the form of a dimer is as shown in any one of SEQ ID NO.18, SEQ ID NO.22, SEQ ID NO.26, SEQ ID NO.30, SEQ ID NO.34 or SEQ ID NO. 38.
In a second aspect of the invention, there is provided a polynucleotide encoding the aforementioned trifunctional molecule.
In a third aspect of the present invention, there is provided an expression vector comprising the aforementioned polynucleotide.
In a fourth aspect of the present invention, there is provided a host cell transformed with the aforementioned expression vector.
In a fifth aspect of the present invention, there is provided a method for preparing the aforementioned trifunctional molecule, comprising: constructing an expression vector containing a gene sequence of the trifunctional molecules, then transforming the expression vector containing the gene sequence of the trifunctional molecules into host cells for induction expression, and separating the expression product to obtain the trifunctional molecules.
In a preferred embodiment of the invention, pcDNA3.1 is used as the expression vector. The host cell was Chinese hamster ovary (Chinese hamster ovary ce1l, CHO).
In a sixth aspect of the invention, the use of the aforementioned trifunctional molecules for preparing a medicament for treating tumors is provided.
In the seventh aspect of the present invention, a pharmaceutical composition for treating tumor is provided, which contains the above three functional molecules and at least one pharmaceutically acceptable carrier or excipient. The tumor is a tumor with a cell surface positive for CD 19.
In the eighth aspect of the invention, a method for treating tumors in vitro is disclosed, which comprises the step of administering the three-functional molecule or the tumor treatment pharmaceutical composition to a tumor patient. The method may be for non-therapeutic purposes. The tumor is a tumor with a cell surface positive for CD 19.
Compared with the prior art, the invention has the following beneficial effects:
(1) the three-functional molecule fuses a first functional domain capable of being combined with CD19, a second functional domain capable of being combined with and activating a CD3 molecule on the surface of a T cell and a third functional domain capable of being combined with and activating a positive co-stimulatory molecule of the T cell into the same protein peptide chain, is produced by adopting a eukaryotic cell expression system, has a single structure of an expression product, is simple and convenient in purification process, has high protein yield, and is stable in preparation process and product and convenient to use; and if the anti-CD 19/anti-CD 3 bispecific antibody and the anti-CD 19/anti-T cell positive co-stimulatory molecule bispecific antibody are used in combination, the two bispecific antibodies need to be expressed and purified respectively, the preparation process is more complicated, the workload and the production cost are obviously increased, and the relative proportion of the two antibodies needs to be optimized when the antibodies are used.
(2) The tri-functional molecule can generate a second (positive) stimulation signal for activating the T cell, further improves the activation effect on the T cell while endowing the T cell with targeting property, increases the secretion of cytokines and anti-apoptosis protein, effectively avoids the phenomenon of incapability and death of the T cell, and can achieve the effect even better than that of an anti-CD 19/anti-CD 3 BiTE bispecific antibody on the mediated killing of the T cell on a CD19 positive target cell, and the using amount of the protein is less.
(3) Compared with CAR-T technology of targeting CD19, the three-functional molecule of the invention does not relate to operation steps such as virus-mediated transgene, in-vitro T cell culture and reinfusion, is more convenient to use, has controllable dosage, has small risk of causing excessive release of cytokines after entering a patient organism, and avoids toxic and side effects when CAR-T is used.
Drawings
FIG. 1: A. a structural diagram of a monomeric anti-CD 19/anti-CD 3/anti-T cell positive co-stimulatory molecule trispecific antibody; B. a structural diagram of a dimeric form of anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody.
FIG. 2: A. purified CD19-CD3-4-1BB TsAb _ M SDS-PAGE analysis, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-4-1BB TsAb _ M; lane 3: non-reducing CD19-CD3-4-1BB TsAb _ M; B. purified CD19-CD3-4-1BB TsAb _ D SDS-PAGE analysis, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-4-1BB TsAb _ D; lane 3: non-reducing CD19-CD3-4-1BB TsAb _ D.
FIG. 3A: the ELISA identification results of CD19-CD3-4-1BB TsAb _ M are shown in the graph, and the curves represent 4 detection results respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000061
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating 1 microgram/ml recombinant antigen 4-1 BB-hFc;
Figure BDA0001199277720000062
assay results without any antigen coating.
FIG. 3B: the ELISA identification results of CD19-CD3-4-1BB TsAb _ D are shown in the graph as representing the results of 4 detections: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000065
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating 1 microgram/ml recombinant antigen 4-1 BB-hFc;
Figure BDA0001199277720000064
assay results without any antigen coating.
FIG. 4: CD19-CD3-4-1BB trispecific antibody mediated cell killing experiment, Raji lymphoma cells are used as CD19 positive target cells, CIK (cytokine induced killers) cells are used as CD3 positive killing effector cells, and the killing efficiency of the CIK cells on the Raji cells mediated by CD19-CD3-4-1BB TsAb _ M, CD19-CD3-4-1BB TsAb _ D and CD19-CD3BsAb at different concentrations is respectively detected; effector cells: target cells (E: T ratio) 1: 1, killing time: and 3 h.
FIG. 5: A. SDS-PAGE analysis of purified CD19-CD3-ICOS TsAb _ M, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-ICOS TsAb _ M; lane 3: non-reducing CD19-CD3-ICOS TsAb _ M; B. purified CD19-CD3-ICOS TsAb _ D SDS-PAGE analysis, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-ICOS TsAb _ D; lane 3: non-reducing CD19-CD3-ICOS TsAb _ D.
FIG. 6A: the ELISA identification results of CD19-CD3-ICOS TsAb _ M are shown in the graph as representing the results of 4 detections: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000071
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating the tangle-solidup with 1 mu g/ml recombinant antigen ICOS-hFc;
Figure BDA0001199277720000072
assay results without any antigen coating.
FIG. 6B: the ELISA identification results of CD19-CD3-ICOS TsAb _ D are shown in the graph as representing the results of 4 detections: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000073
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating the tangle-solidup with 1 mu g/ml recombinant antigen ICOS-hFc;
Figure BDA0001199277720000074
assay results without any antigen coating.
FIG. 7: CD19-CD3-ICOS trispecific antibody mediated cell killing experiment, Raji lymphoma cells are used as CD19 positive target cells, CIK cells are used as CD3 positive killing effector cells, and the killing efficiency of the CIK cells mediated by CD19-CD3-ICOS TsAb _ M, CD19-CD3-ICOS TsAb _ D and CD19-CD3BsAb on the Raji cells at different concentrations is respectively detected; effector cells: target cells (E: T ratio) 1: 1, killing time: and 3 h.
FIG. 8: A. purified CD19-CD3-OX40TsAb _ M SDS-PAGE analysis map, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-OX40TsAb _ M; lane 3: non-reducing CD19-CD3-OX40TsAb _ M; B. purified CD19-CD3-OX40TsAb _ D SDS-PAGE analysis map, lane 1: a molecular weight protein Marker; lane 2: non-reducing CD19-CD3-OX40TsAb _ D; lane 3: reducing CD19-CD3-OX40TsAb _ D.
FIG. 9A: the ELISA identification results of CD19-CD3-OX40TsAb _ M are shown in the graph, and the curves in the graph represent 4 detection results respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000075
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating 1 mug/ml recombinant antigen OX40-hFc with tangle solidup;
Figure BDA0001199277720000076
assay results without any antigen coating.
FIG. 9B: the ELISA identification results of CD19-CD3-OX40TsAb _ D are shown in the graph, and the curves in the graph represent 4 detection results respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000077
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating 1 mug/ml recombinant antigen OX40-hFc with tangle solidup;
Figure BDA0001199277720000078
assay results without any antigen coating.
FIG. 10: CD19-CD3-OX40 trispecific antibody mediated cell killing experiments. Raji lymphoma cells are used as CD19 positive target cells, CIK cells are used as CD3 positive killing effector cells, and the killing efficiency of the CIK cells on the Raji cells mediated by CD19-CD3-OX40TsAb _ M, CD19-CD3-OX40TsAb _ D and CD19-CD3BsAb at different concentrations is detected; effector cells: target cells (E: T ratio) 1: 1, killing time: and 3 h.
FIG. 11: A. purified CD19-CD3-GITR TsAb _ M SDS-PAGE analysis, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-GITR TsAb _ M; lane 3: non-reducing CD19-CD3-GITR TsAb _ M; B. purified CD19-CD3-GITR TsAb _ D SDS-PAGE analysis, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-GITR TsAb _ D; lane 3: non-reducing CD19-CD3-GITR TsAb _ D.
FIG. 12A: ELISA identification result of CD19-CD3-GITR TsAb _ M, figureThe curves in (a) represent the results of 4 assays, respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000081
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating the tangle-solidup with 1 mu g/ml recombinant antigen GITR-hFc;
Figure BDA0001199277720000082
assay results without any antigen coating.
FIG. 12B: the ELISA identification results of CD19-CD3-GITR TsAb _ D are shown in the graph as representing the results of 4 detections: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000083
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating the tangle-solidup with 1 mu g/ml recombinant antigen GITR-hFc;
Figure BDA0001199277720000084
assay results without any antigen coating.
FIG. 13: in the CD19-CD3-GITR trispecific antibody mediated cell killing experiment, Raji lymphoma cells are used as CD19 positive target cells, CIK cells are used as CD3 positive killing effector cells, and the killing efficiency of the CIK cells on the Raji cells mediated by CD19-CD3-GITR TsAb _ M, CD19-CD3-GITR TsAb _ D and CD19-CD3BsAb at different concentrations is respectively detected; effector cells: target cells (E: T ratio) 1: 1, killing time: and 3 h.
FIG. 14: A. purified CD19-CD3-CD40L TsAb _ M SDS-PAGE analysis, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-CD40L TsAb _ M; lane 3: non-reducing CD19-CD3-CD40L TsAb _ M; B. purified CD19-CD3-CD40L TsAb _ D SDS-PAGE analysis, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-CD40L TsAb _ D; lane 3: non-reducing CD19-CD3-CD40L TsAb _ D.
FIG. 15A: the ELISA identification results of CD19-CD3-CD40L TsAb _ M are shown in the graph as follows, wherein the curves represent 4 detection results respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000085
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating 1 mug/ml recombinant antigen CD 40L-hFc;
Figure BDA0001199277720000086
assay results without any antigen coating.
FIG. 15B: the ELISA identification results of CD19-CD3-CD40L TsAb _ D are shown in the graph, and the curves in the graph represent 4 detection results respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000087
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating 1 mug/ml recombinant antigen CD 40L-hFc;
Figure BDA0001199277720000088
assay results without any antigen coating.
FIG. 16: CD19-CD3-CD40L trispecific antibody mediated cell killing experiment, Raji lymphoma cells are used as CD19 positive target cells, CIK cells are used as CD3 positive killing effector cells, and the killing efficiency of CIK cells on Raji cells mediated by CD19-CD3-CD40L TsAb _ M, CD19-CD3-CD40L TsAb _ D and CD19-CD3BsAb at different concentrations is respectively detected; effector cells: target cells (E: T ratio) 1: 1, killing time: and 3 h.
FIG. 17: A. purified CD19-CD3-CD27TsAb _ M SDS-PAGE analysis map, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-CD27TsAb _ M; lane 3: non-reducing CD19-CD3-CD27TsAb _ M; B. purified CD19-CD3-CD27TsAb _ D SDS-PAGE analysis map, lane 1: a molecular weight protein Marker; lane 2: reducing CD19-CD3-CD27TsAb _ D; lane 3: non-reducing CD19-CD3-CD27TsAb _ D.
FIG. 18A: the ELISA identification results of CD19-CD3-CD27TsAb _ M are shown in the graph, and the curves in the graph represent 4 detection results respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000091
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating the tangle-solidup with 1 microgram/ml recombinant antigen CD 27-hFc;
Figure BDA0001199277720000092
assay results without any antigen coating.
FIG. 18B: the ELISA identification results of CD19-CD3-CD27TsAb _ D are shown in the graph, and the curves in the graph represent 4 detection results respectively: ■ coating 1 ug/ml recombinant antigen CD 19-hFc;
Figure BDA0001199277720000093
coating 1 mu g/ml of recombinant antigen CD 3-hFc; coating the tangle-solidup with 1 microgram/ml recombinant antigen CD 27-hFc;
Figure BDA0001199277720000094
assay results without any antigen coating.
FIG. 19: CD19-CD3-CD27 trispecific antibody mediated cell killing experiment, Raji lymphoma cells are used as CD19 positive target cells, CIK cells are used as CD3 positive killing effector cells, and the killing efficiency of CIK cells mediated by different concentrations of CD19-CD3-CD27TsAb _ M, CD19-CD3-CD27TsAb _ D and CD19-CD3BsAb to the Raji cells is detected respectively; effector cells: target cells (E: T ratio) 1: 1, killing time: and 3 h.
Detailed Description
First, terms and abbreviations:
CTL: cytotoxic T lymphocytes (cytoxic T lymphocytes)
BsAb: bispecific Antibody (Bi-specific Antibody)
TsAb: trispecific Antibody (Tri-specific Antibody)
BiTE: bi-specific T cell engager (Bi-specific T cell engage)
And (3) TiTE: trispecific T cell adaptor (Tri-specific T cell engage)
Fab: antigen binding Fragment (Fragment of antigen binding)
Fv: variable region fragments (Variable fragment)
scFv: single-chain variable region fragment (also known as Single-chain antibody)
VH: heavy chain variable region (Heavy chain variable region)e region)
VL: light chain variable region (Light chain variable region)
Linker 1: connecting fragment 1
Linker 2: connecting fragment 2
Excellar domain: extracellular region
CD19-CD3-4-1BB TsAb _ M: monomeric anti-CD 19/anti-CD 3/anti-4-1 BB trispecific antibody
CD19-CD3-4-1BB TsAb _ D: dimeric form of anti-CD 19/anti-CD 3/anti-4-1 BB trispecific antibody
CD19-CD3-ICOS TsAb _ M: monomeric anti-CD 19/anti-CD 3/anti-ICOS trispecific antibody
CD19-CD3-ICOS TsAb _ D: dimeric form of anti-CD 19/anti-CD 3/anti-ICOS trispecific antibody
CD19-CD3-OX40TsAb _ M: monomeric anti-CD 19/anti-CD 3/anti-OX 40 trispecific antibody
CD19-CD3-OX40TsAb _ D: dimeric form of anti-CD 19/anti-CD 3/anti-OX 40 trispecific antibody
CD19-CD3-GITR TsAb _ M: monomeric anti-CD 19/anti-CD 3/anti-GITR trispecific antibody
CD19-CD3-GITR TsAb _ D: dimeric form of anti-CD 19/anti-CD 3/anti-GITR trispecific antibody
CD19-CD3-CD40L TsAb _ M: monomeric anti-CD 19/anti-CD 3/anti-CD 40L trispecific antibody
CD19-CD3-CD40L TsAb _ D: dimeric form of anti-CD 19/anti-CD 3/anti-CD 40L trispecific antibody
CD19-CD3-CD27TsAb _ M: monomeric anti-CD 19/anti-CD 3/anti-CD 27 trispecific antibody
CD19-CD3-CD27TsAb _ D: dimeric form of anti-CD 19/anti-CD 3/anti-CD 27 trispecific antibody
Di-and tri-functional molecules
The trifunctional molecules of the invention comprise a first domain capable of binding to CD19, a second domain capable of binding to and activating a T cell surface CD3 molecule, and a third domain capable of binding to and activating a T cell positive costimulatory molecule.
Further, the trifunctional molecules are capable of binding and activating the T cell surface CD3 molecule and the T cell positive costimulatory molecule while recognizing CD19, thereby generating a first signal and a second signal required for T cell activation.
The T cell positive co-stimulatory molecule includes, but is not limited to, human CD28, 4-1BB, ICOS, OX40, GITR, CD40L, or CD 27.
The first domain, the second domain and the third domain of the present invention are not particularly limited as long as they can bind to and activate the T cell surface CD3 molecule and the T cell costimulatory molecule while recognizing CD19, thereby generating the first signal and the second signal required for T cell activation. For example, the first domain may be an antibody against CD19, the second domain may be an antibody against CD3, and the third domain may be an antibody against a T cell positive co-stimulatory molecule. The antibody may be in any form. However, in any form of antibody, the antigen-binding site thereof contains a heavy chain variable region and a light chain variable region. The antibody may preferably be a small molecule antibody. The small molecule antibody is an antibody fragment with smaller molecular weight, and the antigen combining part of the small molecule antibody comprises a heavy chain variable region and a light chain variable region. The small molecular antibody has small molecular weight, but maintains the affinity of the parent monoclonal antibody, and has the same specificity as the parent monoclonal antibody. The types of the small molecule antibodies mainly comprise Fab antibodies, Fv antibodies, single chain antibodies (scFv) and the like. Fab antibodies consist of an intact light chain (variable region V)LAnd constant region CL) And heavy chain Fd segment (variable region V)HAnd a first constant region CH1) Formed by disulfide bonding. Fv antibodies are the smallest functional fragment of an antibody molecule that retains an intact antigen-binding site, linked by non-covalent bonds only from the variable regions of the light and heavy chains. Single chain antibodies (scFv) are single protein peptide chain molecules in which a heavy chain variable region and a light chain variable region are connected by a linker.
The first functional domain and the second functional domain are connected through a linker1, and the second functional domain and the third functional domain are connected through a linker 2. The present invention has no particular requirement on the order of connection as long as the object of the present invention is not limited. For example, the C-terminus of the first domain may be linked to the N-terminus of the second domain; the C-terminus of the second domain is linked to the N-terminus of the third domain. The present invention is not particularly limited to the linker1 and the linker2, either, as long as the object of the present invention is not limited.
Further, the connecting segment 1 and the connecting segment 2 are selected from the group consisting of a connecting segment with a G4S unit or a hinge region segment of immunoglobulin IgD.
The G4S is specifically GGGGS. The G4S-unit ligated fragment includes one or more G4S units. For example, one, two, three, or more than four G4S units may be included. In some embodiments of the present invention, a single bifunctional molecule is illustrated, wherein the first domain and the second domain are linked by a linker1 in G4S, and the second domain and the third domain are linked by a linker2 in G4S. The connecting fragment 1 contains a G4S unit, and the amino acid sequence of the connecting fragment is shown as SEQ ID NO. 1. The connecting fragment 2 contains three G4S units, and the amino acid sequence of the connecting fragment is shown as SEQ ID NO. 3.
The hinge region fragment of an immunoglobulin IgD may be the hinge Ala90-Val170 of an immunoglobulin IgD. In some embodiments of the invention, a dimer form of the bifunctional molecule is illustrated, wherein the first domain is linked to the second domain by a linker1 in G4S, and the second domain is linked to the third domain by a hinge region fragment of an immunoglobulin IgD, which is the hinge Ala90-Val170 of the immunoglobulin IgD. The connecting fragment 1 contains a G4S unit, and the amino acid sequence of the connecting fragment is shown as SEQ ID NO. 5. The amino acid sequence of the connecting segment 2 is shown as SEQ ID NO. 7. The connecting segments 2 may be linked to each other by disulfide bonds to form a dimer.
In a preferred embodiment of the present invention, the structure of the trifunctional molecule is schematically shown in FIG. 1. The trifunctional molecules may be in monomeric or dimeric form. The structure of the trifunctional molecule of the invention in a monomeric form is schematically shown in fig. 1A, and the trifunctional molecule has a structure comprising a first domain capable of binding to CD19 antigen, a second domain capable of binding to CD3 antigen, and a third domain capable of binding to T cell costimulatory molecule antigen, wherein the first domain is a single-chain antibody (scFv) capable of binding to CD19 antigen, the second domain is a single-chain antibody (scFv) capable of binding to CD3 antigen, and the third domain is a single-chain antibody (scFv) capable of binding to T cell costimulatory molecule antigen. The structure of the trifunctional molecule in a dimeric form according to the present invention is schematically shown in fig. 1B, and the trifunctional molecule has a structure comprising two first domains binding to CD19 antigen, two second domains binding to CD3 antigen, and two third domains binding to T cell costimulatory molecule antigen, wherein the first domains are single-chain antibodies (scFv) binding to CD19 antigen, the second domains are single-chain antibodies (scFv) binding to CD3 antigen, and the third domains are single-chain antibodies (scFv) binding to T cell costimulatory molecule antigen. The antigen binding potency of the dimeric form of the trifunctional molecules of the invention is twice that of the monomeric form. The first signal (CD3) and the second signal (T cell positive co-stimulatory molecule) of T cell activation are doubled, so that the T cell activation is more complete, and the killing effect on target cells is stronger; the doubling of the CD19 single-chain antibody domain makes the recognition of target cells more accurate, so that the dimer has better use effect than the monomer.
The T cell positive co-stimulatory molecule may be CD28, 4-1BB, ICOS, OX40, GITR, CD40L, CD27 or the like.
The amino acid sequence of the extracellular region of the T cell positive co-stimulatory molecule human CD28 is shown as SEQ ID NO.9, and specifically comprises the following steps:
NKILVKQSPMLVAYDNAVNLSCKYSYNLFSREFRASLHKGLDSAVEVCVVYGNYSQQLQVYSKTGFNCDGKLGNESVTFYLQNLYVNQTDIYFCKIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKP。
the amino acid sequence of the T cell positive co-stimulatory molecule human 4-1BB extracellular region is shown in SEQ ID NO.10, and specifically comprises the following steps:
LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGCKDCCFGTFNDQKRGICRPWTNCSLDGKSVLVNGTKERDVVCGPSPADLSPGASSVTPPAPAREPGHSPQ。
the amino acid sequence of the T cell positive co-stimulatory molecule human ICOS extracellular region is shown as SEQ ID NO.11, and specifically comprises the following steps:
EINGSANYEMFIFHNGGVQILCKYPDIVQQFKMQLLKGGQILCDLTKTKGSGNTVSIKSLKFCHSQLSNNSVSFFLYNLDHSHANYYFCNLSIFDPPPFKVTLTGGYLHIYESQLCCQLK。
the amino acid sequence of the T cell positive co-stimulatory molecule human OX40 extracellular region is shown as SEQ ID NO.12, and specifically comprises the following steps:
LHCVGDTYPSNDRCCHECRPGNGMVSRCSRSQNTVCRPCGPGFYNDVVSSKPCKPCTWCNLRSGSERKQLCTATQDTVCRCRAGTQPLDSYKPGVDCAPCPPGHFSPGDNQACKPWTNCTLAGKHTLQPASNSSDAICEDRDPPATQPQETQGPPARPITVQPTEAWPRTSQGPSTRPVEVPGGRA。
the amino acid sequence of the T cell positive co-stimulatory molecule human GITR extracellular region is shown as SEQ ID NO.13, and specifically comprises the following steps:
QRPTGGPGCGPGRLLLGTGTDARCCRVHTTRCCRDYPGEECCSEWDCMCVQPEFHCGDPCCTTCRHHPCPPGQGVQSQGKFSFGFQCIDCASGTFSGGHEGHCKPWTDCTQFGFLTVFPGNKTHNAVCVPGSPPAEP。
the amino acid sequence of the extracellular region of the T cell costimulatory molecule human CD40L is shown in SEQ ID NO.14, and specifically comprises the following steps:
HRRLDKIEDERNLHEDFVFMKTIQRCNTGERSLSLLNCEEIKSQFEGFVKDIMLNKEETKKENSFEMQKGDQNPQIAAHVISEASSKTTSVLQWAEKGYYTMSNNLVTLENGKQLTVKRQGLYYIYAQVTFCSNREASSQAPFIASLCLKSPGRFERILLRAANTHSSAKPCGQQSIHLGGVFELQPGASVFVNVTDPSQVSHGTGFTSFGLLKL。
the amino acid sequence of the extracellular region of the T cell positive co-stimulatory molecule human CD27 is shown in SEQ ID NO.15, and specifically comprises the following steps:
ATPAPKSCPERHYWAQGKLCCQMCEPGTFLVKDCDQHRKAAQCDPCIPGVSFSPDHHTRPHCESCRHCNSGLLVRNCTITANAECACRNGWQCRDKECTECDPLPNPSLTARSSQALSPHPQPTHLPYVSEMLEARTAGHMQTLADFRQLPARTLSTHWPPQRSLCSSDFIR。
in particular, the first domain is a single chain antibody against CD 19. The anti-CD 19 single chain antibody comprises a heavy chain variable region and a light chain variable region. The amino acid sequence of the heavy chain variable region of the anti-CD 19 single-chain antibody is shown in SEQ ID NO. 41. The amino acid sequence of the light chain variable region of the anti-CD 19 single-chain antibody is shown in SEQ ID NO. 42. Further, the amino acid sequence of the anti-CD 19 single-chain antibody is shown in SEQ ID NO. 40.
The second functional domain is a single chain antibody against CD 3. The anti-CD3 single chain antibody comprises a heavy chain variable region and a light chain variable region. The amino acid sequence of the heavy chain variable region of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 44. The amino acid sequence of the light chain variable region of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 45. Further, the amino acid sequence of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 43.
The third functional domain is a single chain antibody of an anti-T cell positive co-stimulatory molecule. The single chain antibody of the anti-T cell positive co-stimulatory molecule comprises a heavy chain variable region and a light chain variable region.
The single chain antibody against the T cell positive co-stimulatory molecule may be any one of a single chain antibody against 4-1BB, a single chain antibody against ICOS, a single chain antibody against OX40, a single chain antibody against GITR, a single chain antibody against CD40L, or a single chain antibody against CD 27.
The amino acid sequence of the heavy chain variable region of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 47. The amino acid sequence of the light chain variable region of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 48. The amino acid sequence of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 46.
The amino acid sequence of the heavy chain variable region of the single-chain antibody for resisting ICOS is shown as SEQ ID NO. 50. The amino acid sequence of the light chain variable region of the anti-ICOS single-chain antibody is shown in SEQ ID NO. 51. The amino acid sequence of the single-chain antibody for resisting ICOS is shown in SEQ ID NO. 49.
The amino acid sequence of the heavy chain variable region of the anti-OX 40 single-chain antibody is shown in SEQ ID No. 53. The amino acid sequence of the variable region of the light chain of the anti-OX 40 single-chain antibody is shown in SEQ ID No. 54. The amino acid sequence of the anti-OX 40 single-chain antibody is shown in SEQ ID NO. 52.
The amino acid sequence of the heavy chain variable region of the anti-GITR single-chain antibody is shown as SEQ ID NO. 56. The amino acid sequence of the light chain variable region of the anti-GITR single-chain antibody is shown as SEQ ID NO. 57. The amino acid sequence of the anti-GITR single-chain antibody is shown as SEQ ID NO. 55.
The amino acid sequence of the heavy chain variable region of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 59. The amino acid sequence of the light chain variable region of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 60. The amino acid sequence of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 58.
The amino acid sequence of the heavy chain variable region of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 62. The amino acid sequence of the light chain variable region of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 63. The amino acid sequence of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 61.
In a preferred embodiment, the amino acid sequence of the trifunctional molecule in monomeric form is as shown in any one of SEQ ID NO.16, SEQ ID NO.20, SEQ ID NO.24, SEQ ID NO.28, SEQ ID NO.32 or SEQ ID NO. 36. The amino acid sequence of the three-functional molecule in a dimer form is shown in any one of SEQ ID NO.18, SEQ ID NO.22, SEQ ID NO.26, SEQ ID NO.30, SEQ ID NO.34 or SEQ ID NO. 38. But are not limited to, the specific forms set forth in the preferred embodiment of the invention.
Polynucleotides encoding trifunctional molecules
The polynucleotide of the present invention encoding the trifunctional molecule may be in the form of DNA or RNA. The form of DNA includes cDNA, genomic DNA or artificially synthesized DNA. The DNA may be single-stranded or double-stranded.
The polynucleotides encoding the trifunctional molecules of the invention may be prepared by any suitable technique known to those skilled in the art. Such techniques are described generally in the art, e.g., in the molecular cloning guidelines (J. SammBruk et al, scientific Press, 1995). Including but not limited to recombinant DNA techniques, chemical synthesis, and the like; for example, overlap extension PCR is used.
In a preferred embodiment of the present invention, the nucleotide sequence of the heavy chain variable region of the single chain antibody encoding anti-CD 19 is shown in SEQ ID NO. 65. The nucleotide sequence of the variable region of the light chain of the single-chain antibody for encoding the anti-CD 19 is shown in SEQ ID NO. 66. The nucleotide sequence of the single-chain antibody for encoding the anti-CD 19 is shown in SEQ ID NO. 64.
The nucleotide sequence of the heavy chain variable region of the single-chain antibody for encoding the anti-CD3 is shown in SEQ ID NO. 68. The nucleotide sequence of the variable region of the light chain of the single-chain antibody for encoding the anti-CD3 is shown as SEQ ID NO. 69. The nucleotide sequence of the single-chain antibody for encoding the anti-CD3 is shown as SEQ ID NO. 67.
The nucleotide sequence of the heavy chain variable region of the single-chain antibody for encoding the anti-4-1 BB is shown as SEQ ID NO. 71. The nucleotide sequence of the light chain variable region of the single-chain antibody for encoding the anti-4-1 BB is shown as SEQ ID NO. 72. The nucleotide sequence of the single-chain antibody for coding the anti-4-1 BB is shown as SEQ ID NO. 70.
The nucleotide sequence of the heavy chain variable region of the single-chain antibody for encoding the anti-ICOS is shown as SEQ ID NO. 74. The nucleotide sequence of the light chain variable region of the single-chain antibody for encoding the anti-ICOS is shown as SEQ ID NO. 75. The nucleotide sequence of the single-chain antibody for coding the ICOS is shown as SEQ ID NO. 73.
The nucleotide sequence of the heavy chain variable region of the single-chain antibody for encoding the anti-OX 40 is shown as SEQ ID NO. 77. The nucleotide sequence of the variable region of the light chain of the single-chain antibody for encoding the anti-OX 40 is shown as SEQ ID NO. 78. The nucleotide sequence for coding the anti-OX 40 single-chain antibody is shown as SEQ ID NO. 76.
The nucleotide sequence of the heavy chain variable region of the single-chain antibody for encoding the anti-GITR is shown as SEQ ID NO. 80. The nucleotide sequence of the variable region of the light chain of the single-chain antibody for encoding the anti-GITR is shown as SEQ ID NO. 81. The nucleotide sequence for coding the anti-GITR single-chain antibody is shown as SEQ ID NO. 79.
The nucleotide sequence of the heavy chain variable region of the single-chain antibody for encoding the anti-CD 40L is shown as SEQ ID NO. 83. The nucleotide sequence of the variable region of the light chain of the single-chain antibody for encoding the anti-CD 40L is shown as SEQ ID NO. 84. The nucleotide sequence of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 82.
The nucleotide sequence of the heavy chain variable region of the single-chain antibody for encoding the anti-CD 27 is shown in SEQ ID NO. 86. The nucleotide sequence of the variable region of the light chain of the single-chain antibody for encoding the anti-CD 27 is shown as SEQ ID NO. 87. The nucleotide sequence for coding the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 85.
The nucleotide sequence of the connecting segment 1 with the coding amino acid sequence shown as SEQ ID NO.1 is shown as SEQ ID NO. 2.
The nucleotide sequence of the connecting segment 2 with the coding amino acid sequence shown as SEQ ID NO.3 is shown as SEQ ID NO. 4.
The nucleotide sequence of the connecting segment 1 with the coding amino acid sequence shown as SEQ ID NO.5 is shown as SEQ ID NO. 6.
The nucleotide sequence of the connecting segment 2 with the coding amino acid sequence shown as SEQ ID NO.7 is shown as SEQ ID NO. 8.
Further, the nucleotide sequence encoding the trifunctional molecule in monomeric form is shown in any one of SEQ ID NO.17, SEQ ID NO.21, SEQ ID NO.25, SEQ ID NO.29, SEQ ID NO.33 or SEQ ID NO. 37. The nucleotide sequence of the three-functional molecule in a form of encoding dimer is shown in any one of SEQ ID NO.19, SEQ ID NO.23, SEQ ID NO.27, SEQ ID NO.31, SEQ ID NO.35 or SEQ ID NO. 39.
Fourth, expression vector
The expression vectors of the invention contain polynucleotides encoding the trifunctional molecules. Methods well known to those skilled in the art can be used to construct the expression vector. These methods include recombinant DNA techniques, DNA synthesis techniques and the like. The DNA encoding the fusion protein may be operably linked to a multiple cloning site in a vector to direct mRNA synthesis for protein expression, or for homologous recombination. In a preferred embodiment of the invention, pcDNA3.1 is used as the expression vector. The host cell was Chinese hamster ovary (Chinese hamster ovary ce1l, CHO).
Method for preparing tri-functional molecule
The method for preparing the three-functional molecule comprises the following steps: constructing an expression vector containing a gene sequence of the trifunctional molecules, then transforming the expression vector containing the gene sequence of the trifunctional molecules into host cells for induction expression, and separating the expression product to obtain the trifunctional molecules. In a preferred embodiment of the invention, pcDNA3.1 is used as the expression vector. The host cell was Chinese hamster ovary (Chinese hamster ovary ce1l, CHO).
Use of hexa-and trifunctional molecules
The tri-functional molecule of the invention can be used for tumor treatment drugs. The tumor is a tumor with a cell surface positive for CD 19.
In the preferred embodiment of the invention, experiments show that the tri-functional molecules of the invention have the in vitro binding activity with the recombinant antigens of CD19, CD3 and corresponding T cell positive co-stimulatory molecules, can promote the targeted killing of the T cells on CD19 positive target cells, and the dimer has better effect than the monomer.
Seven, tumor treating medicine composition
The tumor treatment medicine composition contains the three functional molecules and at least one pharmaceutically acceptable carrier or excipient. The tumor is a tumor with a cell surface positive for CD 19.
The pharmaceutical composition provided by the invention can exist in various dosage forms, such as injections for intravenous injection and the like, percutaneous absorbents for subcutaneous injection, external application of epidermis and the like, sprays for nose, throat, oral cavity, epidermis, mucous membrane and the like, drops for nose, eye, ear and the like, suppositories, tablets, powders, granules, capsules, oral liquid, ointment, cream and the like for anorectal and the like, pulmonary administration preparations and other compositions for parenteral administration. The medicaments in various dosage forms can be prepared according to the conventional method in the pharmaceutical field.
The carrier includes diluent, excipient, filler, binder, wetting agent, disintegrating agent, absorption enhancer, surfactant, adsorption carrier, lubricant, etc. which are conventional in the pharmaceutical field. Flavoring agent, sweetener, etc. can also be added into the medicinal composition.
The pharmaceutical preparation can be clinically used for mammals including human and animals, and can be administered by intravenous injection or oral, nasal, skin, lung inhalation and the like. The preferable weekly dosage of the above drugs is 0.1-5mg/kg body weight, and the preferable course of treatment is 10-30 days. The administration is carried out once or in several times. Regardless of the method of administration, the optimal dosage for an individual human will depend on the particular treatment.
Method for treating tumor in vitro
The method for treating tumors in vitro comprises the step of administering the trifunctional molecules or the tumor treatment pharmaceutical composition to a tumor patient. The tumor is a tumor with a cell surface positive for CD 19. The method may be for non-therapeutic purposes. In the preferred embodiment of the invention, experiments show that the tri-functional molecules of the invention have the in vitro binding activity with the recombinant antigens of CD19, CD3 and corresponding T cell positive co-stimulatory molecules, can promote the targeted killing of the T cells on CD19 positive target cells, and the dimer has better effect than the monomer.
Aiming at the defects of an anti-CD 19/anti-CD 3 BiTE bispecific antibody and a CAR-T technology of targeting CD19, the invention constructs a tri-functional molecule capable of simultaneously recognizing CD19, CD3 and any T cell costimulatory molecule by genetic engineering and antibody engineering methods. The molecule has obvious advantages in the aspects of preparation process and practical application: the efficacy of activating T cells is further improved while the T cells are endowed with targeting to CD19 positive cells, the mediated killing effect of the T cells to CD19 positive target cells is better than that of an anti-CD 19/anti-CD 3 BiTE bispecific antibody when the T cells are added independently, and the application convenience is better than that of a CD19 targeted CAR-T technology.
Before the present embodiments are further described, it is to be understood that the scope of the invention is not limited to the particular embodiments described below; it is also to be understood that the terminology used in the examples is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. Test methods in which specific conditions are not specified in the following examples are generally carried out under conventional conditions or under conditions recommended by the respective manufacturers.
When numerical ranges are given in the examples, it is understood that both endpoints of each of the numerical ranges and any value therebetween can be selected unless the invention otherwise indicated. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In addition to the specific methods, devices, and materials used in the examples, any methods, devices, and materials similar or equivalent to those described in the examples may be used in the practice of the invention in addition to the specific methods, devices, and materials used in the examples, in keeping with the knowledge of one skilled in the art and with the description of the invention.
Unless otherwise indicated, the experimental methods, detection methods, and preparation methods disclosed herein all employ techniques conventional in the art of molecular biology, biochemistry, chromatin structure and analysis, analytical chemistry, cell culture, recombinant DNA technology, and related arts. These techniques are well described in the literature, and may be found in particular in the study of the MOLECULAR CLONING, Sambrook et al: a LABORATORY MANUAL, Second edition, Cold Spring Harbor LABORATORY Press, 1989and Third edition, 2001; ausubel et al, Current PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, 1987and periodic updates; the series METHODS IN ENZYMOLOGY, Academic Press, San Diego; wolffe, CHROMATIN STRUCTURE AND FUNCTION, Third edition, Academic Press, San Diego, 1998; (iii) METHODS IN ENZYMOLOGY, Vol.304, Chromatin (P.M.Wassarman and A.P.Wolffe, eds.), Academic Press, San Diego, 1999; and METHODS IN MOLECULAR BIOLOGY, Vol.119, chromatography Protocols (P.B.Becker, ed.) Humana Press, Totowa, 1999, etc.
Example 1: construction of eukaryotic expression vectors for CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D
In the present invention, the TITE trispecific antibody targeting the human CD19 protein on the surface of lymphoma B cells, the human CD3 on the surface of T cells and the 4-1BB protein, which is a T cell costimulatory molecule, was named CD19-CD3-4-1BB TsAb.
First, CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D construction scheme design
The specific construction scheme of the monomer form of CD19-CD3-4-1BB TsAb _ M is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-4-1 BB scFv are linked by a Linker (Linker), specifically, the sequences of the anti-CD 19 scFv and the anti-CD3 scFv are linked by a Linker 1(Linker 1), and the sequences of the anti-CD3 scFv and the anti-4-1 BB scFv are linked by a Linker 2(Linker 2).
The specific construction scheme of the dimer form of CD19-CD3-4-1BB TsAb _ D is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-4-1 BB scFv are connected by a Linker (Linker), specifically, the sequences of the anti-CD 19 scFv and the anti-CD3 scFv are connected by a Linker 1(Linker 1), and the sequences of the anti-CD3 scFv and the anti-4-1 BB scFv are connected by an IgD hinge region (Ala 90-Val 170) as a Linker 2(Linker 2).
For expression of the trispecific antibody in mammalian cells, the sequence of anti-CD 19 scFv, anti-CD3 scFv, and anti-4-1 BB scFv were codon optimized for mammalian system expression.
Specifically, the nucleotide sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID No.65, specifically:
CAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGC。
the nucleotide sequence of the variable region of the light chain of the anti-CD 19 scFv is shown in SEQ ID NO.66, and specifically comprises the following steps:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAG。
the nucleotide sequence of the anti-CD 19 scFv is shown as SEQ ID NO.64, and specifically comprises the following steps:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGC。
the nucleotide sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO.68, and specifically comprises the following steps:
GACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGC。
the nucleotide sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO.69, and specifically comprises the following steps:
GACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAG。
the nucleotide sequence of the anti-CD3 scFv is shown as SEQ ID NO.67, and specifically comprises the following steps:
GACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAG。
the nucleotide sequence of the heavy chain variable region of the anti-4-1 BB scFv is shown in SEQ ID NO.71, and specifically comprises the following steps:
CAGGTGCAGCTGCAGCAGTGGGGCGCCGGCCTGCTGAAGCCCAGCGAGACCCTGAGCCTGACCTGCGCCGTGTACGGCGGCAGCTTCAGCGGCTACTACTGGAGCTGGATCCGCCAGAGCCCCGAGAAGGGCCTGGAGTGGATCGGCGAGATCAACCACGGCGGCTACGTGACCTACAACCCCAGCCTGGAGAGCCGCGTGACCATCAGCGTGGACACCAGCAAGAACCAGTTCAGCCTGAAGCTGAGCAGCGTGACCGCCGCCGACACCGCCGTGTACTACTGCGCCCGCGACTACGGCCCCGGCAACTACGACTGGTACTTCGACCTGTGGGGCCGCGGCACCCTGGTGACCGTGAGCAGC。
the nucleotide sequence of the light chain variable region of the anti-4-1 BB scFv is shown in SEQ ID NO.72, and specifically comprises the following steps:
GAGATCGTGCTGACCCAGAGCCCCGCCACCCTGAGCCTGAGCCCCGGCGAGCGCGCCACCCTGAGCTGCCGCGCCAGCCAGAGCGTGAGCAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCCAGGCCCCCCGCCTGCTGATCTACGACGCCAGCAACCGCGCCACCGGCATCCCCGCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGGAGCCCGAGGACTTCGCCGTGTACTACTGCCAGCAGCGCAGCAACTGGCCCCCCGCCCTGACCTTCTGCGGCGGCACCAAGGTGGAGATCAAGCGC。
the nucleotide sequence of the anti-4-1 BB scFv is shown as SEQ ID NO.70, and specifically comprises the following steps:
CAGGTGCAGCTGCAGCAGTGGGGCGCCGGCCTGCTGAAGCCCAGCGAGACCCTGAGCCTGACCTGCGCCGTGTACGGCGGCAGCTTCAGCGGCTACTACTGGAGCTGGATCCGCCAGAGCCCCGAGAAGGGCCTGGAGTGGATCGGCGAGATCAACCACGGCGGCTACGTGACCTACAACCCCAGCCTGGAGAGCCGCGTGACCATCAGCGTGGACACCAGCAAGAACCAGTTCAGCCTGAAGCTGAGCAGCGTGACCGCCGCCGACACCGCCGTGTACTACTGCGCCCGCGACTACGGCCCCGGCAACTACGACTGGTACTTCGACCTGTGGGGCCGCGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGAGATCGTGCTGACCCAGAGCCCCGCCACCCTGAGCCTGAGCCCCGGCGAGCGCGCCACCCTGAGCTGCCGCGCCAGCCAGAGCGTGAGCAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCCAGGCCCCCCGCCTGCTGATCTACGACGCCAGCAACCGCGCCACCGGCATCCCCGCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGGAGCCCGAGGACTTCGCCGTGTACTACTGCCAGCAGCGCAGCAACTGGCCCCCCGCCCTGACCTTCTGCGGCGGCACCAAGGTGGAGATCAAGCGC。
the nucleotide sequence of the monomeric CD19-CD3-4-1BB TsAb _ M connecting segment 1(Linker 1) is shown as SEQ ID NO.2, and specifically comprises the following steps: GGTGGCGGAGGGTCC are provided.
The nucleotide sequence of the monomeric CD19-CD3-4-1BB TsAb _ M connecting fragment 2(Linker 2) is shown as SEQ ID NO.4, and specifically comprises the following steps:
GGAGGCGGAGGTTCCGGCGGTGGGGGATCGGGGGGTGGAGGGAGT。
the nucleotide sequence of the dimer-form CD19-CD3-4-1BB TsAb _ D connecting fragment 1(Linker 1) is shown as SEQ ID NO.6, and specifically comprises the following steps: GGTGGCGGAGGGTCC are provided.
The nucleotide sequence of the dimer form of CD19-CD3-4-1BB TsAb _ D junction fragment 2(Linker 2) is shown as SEQ ID NO.8, and specifically comprises the following steps:
GCCAGCAAGAGCAAGAAGGAGATCTTCCGCTGGCCCGAGAGCCCCAAGGCCCAGGCCAGCAGCGTGCCCACCGCCCAGCCCCAGGCCGAGGGCAGCCTGGCCAAGGCCACCACCGCCCCCGCCACCACCCGCAACACCGGCCGCGGCGGCGAGGAGAAGAAGAAGGAGAAGGAGAAGGAGGAGCAGGAGGAGCGCGAGACCAAGACCCCCGAGTGCCCCAGCCACACCCAGCCCCTGGGCGTG。
for expression and successful secretion of the trispecific antibody into the culture medium in CHO-S cells, a signal peptide expressed by the antibody secretory type was selected for this example.
The amino acid sequence of the secretory expression signal peptide is shown as SEQ ID NO.88, and specifically comprises the following steps:
MTRLTVLALLAGLLASSRA。
the nucleotide sequence of the secretory expression signal peptide is shown as SEQ ID NO.89, and specifically comprises the following components:
ATGACCCGGCTGACCGTGCTGGCCCTGCTGGCCGGCCTGCTGGCCTCCTCCAGGGCC。
secondly, construction of eukaryotic expression vectors of CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D
The construction and expression of the tri-specific antibody of the invention select a transient expression vector pcDNA3.1 (purchased from Shanghai Ying Jun Biotech Co., Ltd.) of mammalian cell protein. To construct monospecific and dimeric forms of trispecific antibodies, primers as shown in table 1 were designed, all of which were synthesized by sumizia jingzhi biotechnology limited and gene templates for amplification were synthesized by sumizia hong kong technology limited, respectively.
Cloning construction for CD19-CD3-4-1BB TsAb _ M, signal peptide fragments were first amplified using primers pcDNA3.1-Sig-F and Sig-R, and then primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3- (GGGGS) were used respectively3Amplifying anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, (GGGGS) from-4-1 BB-F and pcDNA3.1-4-1BB-R3The gene sequence of Linker 2+ anti-4-1 BB scFv; cloning of CD19-CD3-4-1BB TsAb _ D was carried out by first amplifying signal peptide fragments using primers pcDNA3.1-Sig-F and Sig-R, and then amplifying gene sequences of anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, IgD hinge region Linker2 and anti-4-1 BB scFv using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3-IgD-F and IgD-R, IgD-4-1BB-F and pcDNA3.1-4-1BB-R, respectively. After amplification, the amplified DNA is used
Figure BDA0001199277720000221
The PCR one-step directional cloning kit (purchased from Wujiang near-shore protein science and technology Co., Ltd.) respectively splices full-length gene sequences of the monomer and dimer three-specificity antibodies, seamlessly clones the full-length gene sequences to a pcDNA3.1 expression vector which is subjected to EcoRI and HindIII linearization treatment, transforms Escherichia coli DH5 alpha, performs positive cloning identification by colony PCR, and performs sequencing identification on recombinants (recombinant plasmids) which are identified to be positive. The correctly sequenced recombinants (recombinant plasmids) were then mapped into plasmids and used for transfection of CHO-S cells.
Sequencing revealed that the full-length gene sequences of the monomeric form of CD19-CD3-4-1BB TsAb _ M and the dimeric form of CD19-CD3-4-1BB TsAb _ D were correct and consistent with the expectations.
Specifically, the nucleotide sequence of the monomeric CD19-CD3-4-1BB TsAb _ M is shown as SEQ ID NO.17, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGGAGGCGGAGGTTCCGGCGGTGGGGGATCGGGGGGTGGAGGGAGTCAGGTGCAGCTGCAGCAGTGGGGCGCCGGCCTGCTGAAGCCCAGCGAGACCCTGAGCCTGACCTGCGCCGTGTACGGCGGCAGCTTCAGCGGCTACTACTGGAGCTGGATCCGCCAGAGCCCCGAGAAGGGCCTGGAGTGGATCGGCGAGATCAACCACGGCGGCTACGTGACCTACAACCCCAGCCTGGAGAGCCGCGTGACCATCAGCGTGGACACCAGCAAGAACCAGTTCAGCCTGAAGCTGAGCAGCGTGACCGCCGCCGACACCGCCGTGTACTACTGCGCCCGCGACTACGGCCCCGGCAACTACGACTGGTACTTCGACCTGTGGGGCCGCGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGAGATCGTGCTGACCCAGAGCCCCGCCACCCTGAGCCTGAGCCCCGGCGAGCGCGCCACCCTGAGCTGCCGCGCCAGCCAGAGCGTGAGCAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCCAGGCCCCCCGCCTGCTGATCTACGACGCCAGCAACCGCGCCACCGGCATCCCCGCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGGAGCCCGAGGACTTCGCCGTGTACTACTGCCAGCAGCGCAGCAACTGGCCCCCCGCCCTGACCTTCTGCGGCGGCACCAAGGTGGAGATCAAGCGC。
the nucleotide sequence of the dimeric form of CD19-CD3-4-1BB TsAb _ D is shown in SEQ ID NO.19, and specifically comprises the following components:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGCCAGCAAGAGCAAGAAGGAGATCTTCCGCTGGCCCGAGAGCCCCAAGGCCCAGGCCAGCAGCGTGCCCACCGCCCAGCCCCAGGCCGAGGGCAGCCTGGCCAAGGCCACCACCGCCCCCGCCACCACCCGCAACACCGGCCGCGGCGGCGAGGAGAAGAAGAAGGAGAAGGAGAAGGAGGAGCAGGAGGAGCGCGAGACCAAGACCCCCGAGTGCCCCAGCCACACCCAGCCCCTGGGCGTGCAGGTGCAGCTGCAGCAGTGGGGCGCCGGCCTGCTGAAGCCCAGCGAGACCCTGAGCCTGACCTGCGCCGTGTACGGCGGCAGCTTCAGCGGCTACTACTGGAGCTGGATCCGCCAGAGCCCCGAGAAGGGCCTGGAGTGGATCGGCGAGATCAACCACGGCGGCTACGTGACCTACAACCCCAGCCTGGAGAGCCGCGTGACCATCAGCGTGGACACCAGCAAGAACCAGTTCAGCCTGAAGCTGAGCAGCGTGACCGCCGCCGACACCGCCGTGTACTACTGCGCCCGCGACTACGGCCCCGGCAACTACGACTGGTACTTCGACCTGTGGGGCCGCGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGAGATCGTGCTGACCCAGAGCCCCGCCACCCTGAGCCTGAGCCCCGGCGAGCGCGCCACCCTGAGCTGCCGCGCCAGCCAGAGCGTGAGCAGCTACCTGGCCTGGTACCAGCAGAAGCCCGGCCAGGCCCCCCGCCTGCTGATCTACGACGCCAGCAACCGCGCCACCGGCATCCCCGCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGGAGCCCGAGGACTTCGCCGTGTACTACTGCCAGCAGCGCAGCAACTGGCCCCCCGCCCTGACCTTCTGCGGCGGCACCAAGGTGGAGATCAAGCGC。
TABLE 1 primers used in the cloning of CD19-CD3-4-1BB trispecific antibody genes
Figure BDA0001199277720000251
Figure BDA0001199277720000261
Example 2: expression and purification of CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D
Expression of CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D
1.1 the passage density of CHO-S cells (purchased from Thermo Fisher Scientific Co.) 1 day before transfection was 0.5-0.6X 106/ml;
1.2. Cell density statistics is carried out on the day of transfection, and when the density is 1-1.4 multiplied by 106Activity/ml>90%, can be used for plasmid transfection;
1.3. preparation of transfection complex: for each project (CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D), two centrifuge tubes/culture flasks were prepared, each containing 20ml of the recombinant plasmid prepared in example 1:
adding 600 mu l of PBS and 20 mu g of recombinant plasmid into the tube, and uniformly mixing;
tu Ji plusInto 600. mu.l PBS, 20ul FreeStyleTMMAX Transfection Reagent (available from Thermo Fisher Scientific Co.) and blending;
1.4. adding the diluted transfection reagent into the diluted recombinant plasmid, and uniformly mixing to prepare a transfection compound;
1.5. standing the transfection complex for 15-20 min, and adding a single drop of the transfection complex into the cell culture at a constant speed;
1.6. at 37 ℃ CO2The concentration is 8%, the cell culture after transfection is carried out under the condition of 130rpm of the shaking table, and the culture supernatant is collected for carrying out the expression detection of the target protein after 5 days.
Purification of CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D
2.1 sample pretreatment
Taking 20ml of the transfected cell culture supernatant, adding a buffer solution of 20mM PB and 200mM NaCl to adjust the pH value to 7.5;
2.2Protein L affinity column purification
Protein purification chromatography column: protein L affinity chromatography column (available from GE Healthcare, column volume 1.0ml)
Buffer a (buffer a): PBS, pH7.4
Buffer b (buffer b): 0.1M Glycine, pH3.0
Buffer c (buffer c): 0.1M Glycine, pH2.7
And (3) purification process: the Protein L affinity chromatography column was pretreated with Buffer A using AKTA explorer 100 type Protein purification system (purchased from GE Healthcare), and the culture supernatant was sampled and the effluent was collected. After the sample loading is finished, balancing the chromatographic column by using at least 1.5ml of Buffer A, eluting by using Buffer B and Buffer C respectively after balancing, collecting target protein eluent (1% of 1M Tris needs to be added in advance into a collecting pipe of the eluent, the pH value of the eluent is neutralized by pH8.0, and the final concentration of Tris is about 10mM), and finally concentrating and dialyzing into Buffer PBS.
The final purified recombinant proteins CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D were analyzed by SDS-PAGE, and the electrophoretograms under reducing and non-reducing conditions are shown in FIG. 2. As can be seen from the figure, the CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D recombinant proteins were all > 95% pure following Protein L affinity column purification: wherein the theoretical molecular weight of the recombinant CD19-CD3-4-1BB TsAb _ M protein is 80.6kDa, and the protein presents a single electrophoretic band under reducing and non-reducing conditions, and the molecular weight is consistent with that of a monomer, so that the trispecific antibody is in a monomer form (FIG. 2A); the theoretical molecular weight of the recombinant CD19-CD3-4-1BB TsAb _ D protein is 88.4kDa, the electrophoretic band of the protein exhibits a molecular weight consistent with that of a monomer under reducing conditions, and the electrophoretic band exhibits a molecular weight consistent with that of a dimer (about 180kDa) under non-reducing conditions (FIG. 2B), indicating that the two protein molecules can form a disulfide bond via the IgD hinge region to each other, so that the trispecific antibody is in a dimer form.
In addition, the purified recombinant protein samples are subjected to N/C terminal sequence analysis, and the results show that the expressed recombinant protein samples have no reading frame and are consistent with the theoretical N/C terminal amino acid sequence, and mass spectrometry further confirms that the CD19-CD3-4-1BB TsAb _ M is in a monomer form, and the CD19-CD3-4-1BB TsAb _ D is in a dimer form.
Therefore, it can be known that the amino acid sequence of the monomeric form of CD19-CD3-4-1BB TsAb _ M is shown in SEQ ID NO.16, and specifically:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKGGGGSGGGGSGGGGSQVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQSPEKGLEWIGEINHGGYVTYNPSLESRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDYGPGNYDWYFDLWGRGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPALTFCGGTKVEIKR。
the amino acid sequence of the dimeric form of CD19-CD3-4-1BB TsAb _ D is shown in SEQ ID NO.18, and specifically comprises the following components:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVQVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQSPEKGLEWIGEINHGGYVTYNPSLESRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDYGPGNYDWYFDLWGRGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPALTFCGGTKVEIKR。
the amino acid sequence of the anti-CD 19 scFv is shown as SEQ ID NO.40, and specifically comprises the following steps:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSS。
the amino acid sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO.41, and specifically comprises the following steps:
QVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSS。
the amino acid sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO.42, and specifically comprises the following steps:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIK。
the amino acid sequence of the anti-CD3 scFv is shown in SEQ ID NO.43, and specifically comprises the following steps:
DIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELK。
the amino acid sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO.44, and specifically comprises the following steps:
DIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSS。
the amino acid sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO.45, and specifically comprises the following steps:
DIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELK。
the amino acid sequence of the anti-4-1 BB scFv is shown as SEQ ID NO.46, and specifically comprises the following steps:
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQSPEKGLEWIGEINHGGYVTYNPSLESRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDYGPGNYDWYFDLWGRGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPALTFCGGTKVEIKR。
the amino acid sequence of the heavy chain variable region of the anti-4-1 BB scFv is shown in SEQ ID NO.47, and specifically comprises the following steps:
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQSPEKGLEWIGEINHGGYVTYNPSLESRVTISVDTSKNQFSLKLSSVTAADTAVYYCARDYGPGNYDWYFDLWGRGTLVTVSS。
the amino acid sequence of the light chain variable region of the anti-4-1 BB scFv is shown in SEQ ID NO.48, and specifically comprises the following steps:
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPALTFCGGTKVEIKR。
the amino acid sequence of the monomeric CD19-CD3-4-1BB TsAb _ M connecting segment 1(Linker 1) is shown as SEQ ID NO.1, and specifically comprises the following steps: GGGGS.
The amino acid sequence of the monomeric CD19-CD3-4-1BB TsAb _ M connecting segment 2(Linker 2) is shown as SEQ ID NO.3, and specifically comprises the following steps: GGGGSGGGGSGGGGS.
The amino acid sequence of the dimer-form CD19-CD3-4-1BB TsAb _ D connecting fragment 1(Linker 1) is shown as SEQ ID NO.5, and specifically comprises the following components: GGGGS.
The amino acid sequence of the dimer-form CD19-CD3-4-1BB TsAb _ D connecting fragment 2(Linker 2) is shown as SEQ ID NO.7, and specifically comprises the following components:
ASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGV。
example 3: ELISA for detection of antigen binding Activity of CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D
ELISA operation steps:
1. recombinant antigen coating: human CD19-hFc, human CD3-hFc and human 4-1BB-hFc fusion protein (purchased from Wujiang nearshore protein technologies, Ltd.) were coated on 96-well plates, respectively, with an antigen concentration of 1. mu.g/ml and a coating volume of 100. mu.l/well, under the conditions of 1 hour at 37 ℃ or overnight at 4 ℃, and the formulation of coating buffer (PBS) was: 3.58g Na2HPO4,0.24g NaH2PO4,0.2g KCl,8.2g NaCl,950ml H2O, adjusting the pH value to 7.4 by using 1mol/L HCl or 1mol/L NaOH, and supplementing water to 1L;
2. and (3) sealing: after washing the plate 4 times with PBS, blocking solution PBSA (PBS + 2% BSA (V/W)) was added at 200. mu.l/well. Blocking at 37 ℃ for 1 hour;
3. sample adding: after 4 times of PBS plate washing, purified trispecific antibody samples were added, 100. mu.l/well, incubated at 37 ℃ for 1 hour, sample gradient preparation method: taking 10 μ g/ml purified CD19-CD3-4-1BB TsAb _ M or CD19-CD3-4-1BB TsAb _ D as the initial concentration, carrying out a double dilution of 6 gradients, each gradient being provided with 2 multiple wells;
4. color development: after washing the plate 4 times with PBST (PBS + 0.05% Tween-20(V/V)), the HRP-labeled chromogenic antibody (purchased from Abcam) was diluted 1/5000 with blocking solution PBSA, added at 100. mu.l/well, and incubated at 37 ℃ for 1 hour. After washing the plate for 4 times with PBS, adding a color developing solution TMB (purchased from KPL company) with 100 mul/hole, and developing for 5-10 minutes at room temperature in a dark place;
5. termination reaction and result determination: add stop solution (1M HCl), 100. mu.l/well, read the absorbance (OD) at 450nm wavelength on a microplate reader450)。
The ELISA results are shown in fig. 3A and 3B: FIG. 3A illustrates that CD19-CD3-4-1BB TsAb _ M has in vitro binding activity to the recombinant antigens CD19-hFc, CD3-hFc, and 4-1BB-hFc, wherein 4-1BB binding activity is highest, CD19 binding activity is second lowest, and CD3 binding activity is weaker; FIG. 3B illustrates that CD19-CD3-4-1BB TsAb _ D also has in vitro binding activity with recombinant antigens CD19-hFc, CD3-hFc, and 4-1BB-hFc, with the highest 4-1BB binding activity and the second lowest CD19 binding activity, and the weaker CD3 binding activity.
Example 4: CD19-CD3-4-1BB trispecific antibody mediated cell killing experiment
Using human Peripheral Blood Mononuclear Cells (PBMC) as an experimental material, CIK cells (CD3) prepared by respectively acting on human PBMC of the same donor origin with the monomeric form of the TiTE trispecific antibody (CD19-CD3-4-1BB TsAb _ M), the dimeric form of the TiTE trispecific antibody (CD19-CD3-4-1BB TsAb _ D) and the anti-CD 19/anti-CD 3 BiTE bispecific antibody (CD19-CD 3BsAb, available from WUJIANG Yonghai protein technology Co., Ltd.) prepared according to the present invention+CD56+) And CCL-86Raji lymphoma cells (CD 19)+Purchased from ATCC), cell death was detected, and the difference in the killing efficiency of CCL-86Raji target cells by three antibody-mediated CIK effector cells was compared.
Cell killing experiment step:
isolation of PBMC: adding anticoagulant blood of a newly extracted volunteer, adding medical normal saline with the same volume, slowly adding lymphocyte separation liquid (purchased from GE Healthcare) with the same volume with the blood along the wall of a centrifugal tube, keeping the liquid level obviously layered, centrifuging at 2000rpm for 20min, sucking a middle white fog-shaped cell layer into the new centrifugal tube, adding PBS buffer solution with more than 2 times of volume for washing, centrifuging at 1100rpm for 10min, repeatedly washing once, re-suspending with a small amount of pre-cooled X-vivo15 serum-free culture medium (purchased from Lonza), and counting cells for later use;
CIK cell culture and expansion: PBMC were resuspended in CIK basal medium (90% X-vivo15+ 10% FBS) (available from Gbico Co.) to a cell density of 1X 106Perml, added to full-length antibody Anti-CD3(5ug/ml), full-length antibody Anti-CD28(5ug/ml) and NovoNectin (25ug/ml) coated T25 flasks (both full-length antibody and NovoNectin are available from Youjiang Korea protein technology Co., Ltd.) and added simultaneouslyThe cytokines IFN-. gamma.200 ng/ml from Wujiang Yuan-Shi protein technology Co., Ltd and IL-1. beta.2 ng/ml from Wujiang Yuan-Shi protein technology Co., Ltd were placed in an incubator at a saturated humidity of 37 ℃ and 5.0% CO2Culturing under the conditions of (1). After overnight culture, adding 500U/ml IL-2 (purchased from Wujiang near-shore protein technology Co., Ltd.) to continue culture, counting every 2-3 days and adding 500U/ml IL-2 into CIK basal medium according to the ratio of 1 × 106Cell passage is carried out at a density of/ml;
killing efficiency of CIK cells against Raji cells: performing cell killing experiment in 96-well plate with reaction volume of 100uL, collecting the above cultured CIK cells at 1 × 105Adding Raji cells at 1X 105Adding CD19-CD3BsAb, CD19-CD3-4-1BB TsAb _ M and CD19-CD3-4-1BB TsAb _ D antibody samples with different final concentrations (25, 12.5, 6.25 and 3.125ng/ml) respectively (CIK effector cells: Raji target cells (E: T ratio) are 1: 1), uniformly mixing at room temperature for 3-5 min, co-culturing at 37 ℃ for 3h, adding 10 mu l of CCK-8 into each hole, continuously reacting at 37 ℃ for 2-3 h, and then measuring OD (optical density) by using an enzyme reader450The cell killing efficiency was calculated according to the following formula, and each set of experiments was tested 3 times repeatedly; the cell killing efficiency without any added antibody was also used as a blank.
Figure BDA0001199277720000321
The results are shown in FIG. 4: when CIK effector cells: raji target cells (E: T ratio) 1: 1, under the condition of not adding any antibody, the killing efficiency of the CIK cells to Raji cells for 3h is about 23 percent; under the condition of adding higher concentration of antibody (25, 12.5 and 6.25ng/ml), the killing efficiency of the CIK cells on Raji cells is remarkably improved, wherein the cell killing effect mediated by CD19-CD3-4-1BB TsAb _ D is the best, the killing efficiency is about 96 percent, 96 percent and 92 percent respectively, the killing efficiency is the second best of the CD19-CD3-4-1BB TsAb _ M, the killing efficiency is about 92 percent, 90 percent and 86 percent, the killing efficiency of CD19-CD3BsAb is the weakest, and the killing efficiency is about 80 percent, 54 percent and 54 percent respectively; under the condition of adding lower concentration antibody (3.125ng/ml), the killing efficiency of CIK cells on Raji cells mediated by CD19-CD3-4-1BB TsAb _ D and CD19-CD3-4-1BB TsAb _ M is still obviously improved, the killing efficiency is respectively about 87% and 80%, and CD19-CD3BsAb has no effect basically compared with a blank control. The results show that the target killing activity of T cells on CD19 positive tumor cells mediated by two forms of CD19-CD3-4-1BB TiTE trispecific antibodies is better than that of CD19-CD3 BiTE bispecific antibodies, wherein the dimeric form has better effect than the monomeric form.
Example 5: construction of CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D eukaryotic expression vectors
In the present invention, the TiTE trispecific antibody targeting the human CD19 protein on the surface of lymphoma B cells, the human CD3 on the surface of T cells and the ICOS protein, the T cell costimulatory molecule, was named CD19-CD3-ICOS TsAb.
First, CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D construction scheme design
The specific construction scheme of the monomer form of CD19-CD3-ICOS TsAb _ M is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-ICOS scFv are connected by a Linker (Linker), specifically, the sequences of the anti-CD 19 scFv and the anti-CD3 scFv are connected by a Linker 1(Linker 1), and the sequences of the anti-CD3 scFv and the anti-ICOS scFv are connected by a Linker 2(Linker 2).
The specific construction scheme of the dimer form of CD19-CD3-ICOS TsAb _ D is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-ICOS scFv were linked by a Linker (Linker), specifically, the anti-CD 19 scFv and the anti-CD3 scFv were linked by a Linker 1(Linker 1), and the anti-CD3 scFv and the anti-ICOS scFv were linked by an IgD hinge region (Ala 90-Val 170) as a Linker 2(Linker 2).
For expression of the trispecific antibody in mammalian cells, the mammalian system expression was codon optimized for each of the anti-CD 19 scFv, anti-CD3 scFv, and anti-ICOS scFv sequences.
Specifically, the nucleotide sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 65.
The nucleotide sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 66.
The nucleotide sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 64.
The nucleotide sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 68.
The nucleotide sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 69.
The nucleotide sequence of the anti-CD3 scFv is shown in SEQ ID NO. 67.
The nucleotide sequence of the heavy chain variable region of the anti-ICOS scFv is shown as SEQ ID NO.74, and specifically comprises the following steps:
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAGCCCGGCGCCAGCGTGAAGGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGGCTACTACATGCACTGGGTGCGCCAGGCCCCCGGCCAGGGCCTGGAGTGGATGGGCTGGATCAACCCCCACAGCGGCGGCACCAACTACGCCCAGAAGTTCCAGGGCCGCGTGACCATGACCCGCGACACCAGCATCAGCACCGCCTACATGGAGCTGAGCCGCCTGCGCAGCGACGACACCGCCGTGTACTACTGCGCCCGCACCTACTACTACGACAGCAGCGGCTACTACCACGACGCCTTCGACATCTGGGGCCAGGGCACCATGGTGACCGTGAGCAGC。
the nucleotide sequence of the variable region of the light chain of the anti-ICOS scFv is shown as SEQ ID NO.75, and specifically comprises the following steps:
GACATCCAGATGACCCAGAGCCCCAGCAGCGTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCCTGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGTGGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGGCCAACAGCTTCCCCTGGACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
the nucleotide sequence of the ICOS scFv is shown as SEQ ID NO.73, and specifically comprises the following steps:
CAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAGCCCGGCGCCAGCGTGAAGGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGGCTACTACATGCACTGGGTGCGCCAGGCCCCCGGCCAGGGCCTGGAGTGGATGGGCTGGATCAACCCCCACAGCGGCGGCACCAACTACGCCCAGAAGTTCCAGGGCCGCGTGACCATGACCCGCGACACCAGCATCAGCACCGCCTACATGGAGCTGAGCCGCCTGCGCAGCGACGACACCGCCGTGTACTACTGCGCCCGCACCTACTACTACGACAGCAGCGGCTACTACCACGACGCCTTCGACATCTGGGGCCAGGGCACCATGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCGTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCCTGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGTGGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGGCCAACAGCTTCCCCTGGACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
the nucleotide sequence of the monomeric CD19-CD3-ICOS TsAb _ M junction fragment 1(Linker 1) is shown as SEQ ID NO. 2.
The nucleotide sequence of the monomeric form of CD19-CD3-ICOS TsAb _ M junction fragment 2(Linker 2) is shown as SEQ ID NO. 4.
The nucleotide sequence of the dimeric form of CD19-CD3-ICOS TsAb _ D junction fragment 1(Linker 1) is shown in SEQ ID NO. 6.
The nucleotide sequence of the dimeric form of CD19-CD3-ICOS TsAb _ D junction fragment 2(Linker 2) is shown in SEQ ID NO. 8.
For expression and successful secretion of the trispecific antibody into the culture medium in CHO-S cells, a signal peptide expressed by the antibody secretory type was selected for this example.
The amino acid sequence of the secretory expression signal peptide is shown as SEQ ID NO. 88.
The nucleotide sequence of the secretory expression signal peptide is shown as SEQ ID NO. 89.
II, construction of eukaryotic expression vectors of CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D
The construction and expression of the tri-specific antibody of the invention select a transient expression vector pcDNA3.1 (purchased from Shanghai Ying Jun Biotech Co., Ltd.) of mammalian cell protein. To construct monospecific and dimeric forms of trispecific antibodies, primers as shown in table 2 were designed, all of which were synthesized by sumizia jingzhi biotechnology limited and gene templates for amplification were synthesized by sumizia hong kong technology limited, respectively.
Cloning construction for CD19-CD3-ICOS TsAb _ M Signal peptide fragments were first amplified using primers pcDNA3.1-Sig-F and Sig-R, and then using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3- (GGGGS)3ICOS-F and pcDNA3.1-ICOS-R amplified anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, (GGGGS)3 Linker 2+ gene sequence against ICOS scFv; clonotypes for CD19-CD3-ICOS TsAb _ DSimilarly, signal peptide fragments were amplified first using primers pcDNA3.1-Sig-F and Sig-R, and then gene sequences for anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, IgD hinge region Linker2, anti-ICOS scFv were amplified using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3-IgD-F and IgD-R, IgD-ICOS-F and pcDNA3.1-ICOS-R, respectively. After amplification, the amplified DNA is used
Figure BDA0001199277720000351
The PCR one-step directional cloning kit (purchased from Wujiang near-shore protein science and technology Co., Ltd.) respectively splices full-length gene sequences of the monomer and dimer three-specificity antibodies, seamlessly clones the full-length gene sequences to a pcDNA3.1 expression vector which is subjected to EcoRI and HindIII linearization treatment, transforms Escherichia coli DH5 alpha, performs positive cloning identification by colony PCR, and performs sequencing identification on recombinants (recombinant plasmids) which are identified to be positive. The correctly sequenced recombinants (recombinant plasmids) were then mapped into plasmids and used for transfection of CHO-S cells.
Sequencing revealed that the full-length gene sequences of the monomeric form of CD19-CD3-ICOS TsAb _ M and the dimeric form of CD19-CD3-ICOS TsAb _ D were correct and consistent with expectations.
Specifically, the nucleotide sequence of the monomeric form of CD19-CD3-ICOS TsAb _ M is shown as SEQ ID NO.21, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGGAGGCGGAGGTTCCGGCGGTGGGGGATCGGGGGGTGGAGGGAGTCAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAGCCCGGCGCCAGCGTGAAGGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGGCTACTACATGCACTGGGTGCGCCAGGCCCCCGGCCAGGGCCTGGAGTGGATGGGCTGGATCAACCCCCACAGCGGCGGCACCAACTACGCCCAGAAGTTCCAGGGCCGCGTGACCATGACCCGCGACACCAGCATCAGCACCGCCTACATGGAGCTGAGCCGCCTGCGCAGCGACGACACCGCCGTGTACTACTGCGCCCGCACCTACTACTACGACAGCAGCGGCTACTACCACGACGCCTTCGACATCTGGGGCCAGGGCACCATGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCGTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCCTGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGTGGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGGCCAACAGCTTCCCCTGGACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
the nucleotide sequence of the dimeric form of CD19-CD3-ICOS TsAb _ D is shown in SEQ ID NO.23, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGCCAGCAAGAGCAAGAAGGAGATCTTCCGCTGGCCCGAGAGCCCCAAGGCCCAGGCCAGCAGCGTGCCCACCGCCCAGCCCCAGGCCGAGGGCAGCCTGGCCAAGGCCACCACCGCCCCCGCCACCACCCGCAACACCGGCCGCGGCGGCGAGGAGAAGAAGAAGGAGAAGGAGAAGGAGGAGCAGGAGGAGCGCGAGACCAAGACCCCCGAGTGCCCCAGCCACACCCAGCCCCTGGGCGTGCAGGTGCAGCTGGTGCAGAGCGGCGCCGAGGTGAAGAAGCCCGGCGCCAGCGTGAAGGTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGGCTACTACATGCACTGGGTGCGCCAGGCCCCCGGCCAGGGCCTGGAGTGGATGGGCTGGATCAACCCCCACAGCGGCGGCACCAACTACGCCCAGAAGTTCCAGGGCCGCGTGACCATGACCCGCGACACCAGCATCAGCACCGCCTACATGGAGCTGAGCCGCCTGCGCAGCGACGACACCGCCGTGTACTACTGCGCCCGCACCTACTACTACGACAGCAGCGGCTACTACCACGACGCCTTCGACATCTGGGGCCAGGGCACCATGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCGTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCCTGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGTGGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGGCCAACAGCTTCCCCTGGACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
TABLE 2 primers used in the cloning of CD19-CD3-ICOS trispecific antibody genes
Figure BDA0001199277720000381
Example 6: expression and purification of CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D
Expression of CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D
1.1 the passage density of CHO-S cells (purchased from Thermo Fisher Scientific Co.) 1 day before transfection was 0.5-0.6X 106/ml;
1.2. Cell density statistics is carried out on the day of transfection, and when the density is 1-1.4 multiplied by 106Activity/ml>90%, can be used for plasmid transfection;
1.3. preparation of transfection complex: for each project (CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D), two centrifuge tubes/culture flasks were prepared, each containing 20ml of the recombinant plasmid prepared in example 5:
adding 600 mu l of PBS and 20 mu g of recombinant plasmid into the tube, and uniformly mixing;
add 600. mu.l PBS, 20ul FreeStyleTMMAX Transfection Reagent (available from Thermo Fisher Scientific Co.) and blending;
1.4. adding the diluted transfection reagent into the diluted recombinant plasmid, and uniformly mixing to prepare a transfection compound;
1.5. standing the transfection complex for 15-20 min, and adding a single drop of the transfection complex into the cell culture at a constant speed;
1.6. at 37 ℃ CO2The concentration is 8%, the cell culture after transfection is carried out under the condition of 130rpm of the shaking table, and the culture supernatant is collected for carrying out the expression detection of the target protein after 5 days.
Purification of CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D
2.1 sample pretreatment
Taking 20ml of the transfected cell culture supernatant, adding a buffer solution of 20mM PB and 200mM NaCl to adjust the pH value to 7.5;
2.2Protein L affinity column purification
Protein purification chromatography column: protein L affinity chromatography column (available from GE Healthcare, column volume 1.0ml)
Buffer a (buffer a): PBS, pH7.4
Buffer b (buffer b): 0.1M Glycine, pH3.0
Buffer c (buffer c): 0.1M Glycine, pH2.7
And (3) purification process: the Protein L affinity chromatography column was pretreated with Buffer A using AKTA explorer 100 type Protein purification system (purchased from GE Healthcare), and the culture supernatant was sampled and the effluent was collected. After the sample loading is finished, balancing the chromatographic column by using at least 1.5ml of Buffer A, eluting by using Buffer B and Buffer C respectively after balancing, collecting target protein eluent (1% of 1M Tris needs to be added in advance into a collecting pipe of the eluent, the pH value of the eluent is neutralized by pH8.0, and the final concentration of Tris is about 10mM), and finally concentrating and dialyzing into Buffer PBS.
The final purified recombinant proteins CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D were analyzed by SDS-PAGE and the electrophoretograms under reducing and non-reducing conditions are shown in FIG. 5. As can be seen from the figure, the recombinant proteins, CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D, were all > 95% pure following Protein L affinity column purification: wherein the theoretical molecular weight of the recombinant CD19-CD3-ICOS TsAb _ M protein is 80.7kDa, and the protein presents a single electrophoretic band under reducing and non-reducing conditions, and the molecular weight is consistent with that of a monomer, so that the trispecific antibody is in a monomer form (FIG. 5A); the theoretical molecular weight of the recombinant CD19-CD3-ICOS TsAb _ D protein was 88.6kDa, the electrophoretic band of the protein exhibited a molecular weight consistent with that of the monomer under reducing conditions, and the electrophoretic band exhibited a molecular weight consistent with that of the dimer (about 180kDa) under non-reducing conditions (FIG. 5B), indicating that the two protein molecules can form disulfide bonds through the IgD hinge region to each other, and thus the trispecific antibody was in a dimeric form.
In addition, the purified recombinant protein samples were subjected to N/C terminal sequence analysis, and the results showed that the expressed recombinant protein samples were all in frame and consistent with the theoretical N/C terminal amino acid sequence, and mass spectrometry further confirmed that CD19-CD3-ICOS TsAb _ M was in a monomeric form and CD19-CD3-ICOS TsAb _ D was in a dimeric form.
Therefore, it can be seen that the amino acid sequence of the monomeric form of CD19-CD3-ICOS TsAb _ M is shown in SEQ ID NO.20, specifically:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKGGGGSGGGGSGGGGSQVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPHSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARTYYYDSSGYYHDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSVSASVGDRVTITCRASQGISRLLAWYQQKPGKAPKLLIYVASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPWTFGQGTKVEIK。
the amino acid sequence of the dimeric form of CD19-CD3-ICOS TsAb _ D is shown in SEQ ID NO.22, and specifically comprises the following components:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVQVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPHSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARTYYYDSSGYYHDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSVSASVGDRVTITCRASQGISRLLAWYQQKPGKAPKLLIYVASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPWTFGQGTKVEIK。
the amino acid sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 40.
The amino acid sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 41.
The amino acid sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 42.
The amino acid sequence of the anti-CD3 scFv is shown in SEQ ID NO. 43.
The amino acid sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 44.
The amino acid sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 45.
The amino acid sequence of the ICOS scFv is shown as SEQ ID NO.49, and specifically comprises the following steps:
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPHSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARTYYYDSSGYYHDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSVSASVGDRVTITCRASQGISRLLAWYQQKPGKAPKLLIYVASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPWTFGQGTKVEIK。
the amino acid sequence of the heavy chain variable region of the anti-ICOS scFv is shown as SEQ ID NO.50, and specifically comprises the following steps:
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPHSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARTYYYDSSGYYHDAFDIWGQGTMVTVSS。
the amino acid sequence of the light chain variable region of the anti-ICOS scFv is shown as SEQ ID NO.51, and specifically comprises the following steps:
DIQMTQSPSSVSASVGDRVTITCRASQGISRLLAWYQQKPGKAPKLLIYVASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPWTFGQGTKVEIK。
the amino acid sequence of the monomeric CD19-CD3-ICOS TsAb _ M connecting fragment 1(Linker 1) is shown as SEQ ID NO. 1.
The amino acid sequence of the monomeric CD19-CD3-ICOS TsAb _ M junction fragment 2(Linker 2) is shown as SEQ ID NO. 3.
The amino acid sequence of the dimeric form of CD19-CD3-ICOS TsAb _ D junction fragment 1(Linker 1) is shown in SEQ ID NO. 5.
The amino acid sequence of the dimeric form of CD19-CD3-ICOS TsAb _ D junction fragment 2(Linker 2) is shown in SEQ ID NO. 7.
Example 7: ELISA detection of antigen binding Activity of CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D
ELISA operation steps:
1. recombinant antigen coating: human CD19-hFc, human CD3-hFc and human ICOS-hFc fusion protein (purchased from Wujiang near-shore protein technologies Co., Ltd.) were coated on 96-well plates, respectively, with an antigen concentration of 1. mu.g/ml and a coating volume of 100. mu.l/well, under the conditions of 1 hour at 37 ℃ or overnight at 4 ℃, and the formulation of coating buffer (PBS) was: 3.58g Na2HPO4,0.24g NaH2PO4,0.2g KCl,8.2g NaCl,950ml H2O, adjusting the pH value to 7.4 by using 1mol/L HCl or 1mol/L NaOH, and supplementing water to 1L;
2. and (3) sealing: after washing the plate 4 times with PBS, blocking solution PBSA (PBS + 2% BSA (V/W)) was added at 200. mu.l/well. Blocking at 37 ℃ for 1 hour;
3. sample adding: after 4 times of PBS plate washing, purified trispecific antibody samples were added, 100. mu.l/well, incubated at 37 ℃ for 1 hour, sample gradient preparation method: using 10 ug/ml purified CD19-CD3-ICOS TsAb _ M or CD19-CD3-ICOS TsAb _ D as initial concentration, performing double dilution of 6 gradients, each gradient having 2 duplicate wells;
4. color development: after washing the plate 4 times with PBST (PBS + 0.05% Tween-20(V/V)), the HRP-labeled chromogenic antibody (purchased from Abcam) was diluted 1/5000 with blocking solution PBSA, added at 100. mu.l/well, and incubated at 37 ℃ for 1 hour. After washing the plate for 4 times with PBS, adding a color developing solution TMB (purchased from KPL company) with 100 mul/hole, and developing for 5-10 minutes at room temperature in a dark place;
5. termination reaction and result determination: add stop solution (1M HCl), 100. mu.l/well, read the absorbance (OD) at 450nm wavelength on a microplate reader450)。
The ELISA results are shown in fig. 6A and 6B: FIG. 6A illustrates that CD19-CD3-ICOS TsAb _ M has in vitro binding activity to the recombinant antigens CD19-hFc, CD3-hFc, and ICOS-hFc, with the highest ICOS binding activity and the second lowest CD19 binding activity, and the weaker CD3 binding activity; FIG. 6B illustrates that CD19-CD3-ICOS TsAb _ D also has in vitro binding activity with the recombinant antigens CD19-hFc, CD3-hFc and ICOS-hFc, with the highest ICOS binding activity and the second lowest CD19 binding activity, and the weaker CD3 binding activity.
Example 8: CD19-CD3-ICOS trispecific antibody mediated cell killing experiments
Using human Peripheral Blood Mononuclear Cells (PBMC) as experimental material, the monomeric form of the TiTE trispecific antibody (CD19-CD3-ICOS TsAb _ M), the dimeric form of the TiTE trispecific antibody (CD19-CD3-ICOS TsAb _ D) and the anti-CD 19/anti-CD 3 BiTE bispecific antibody (CD19-CD 3BsAb, available from WUJIANG Yonghai protein technology Co., Ltd.) prepared by the present invention were allowed to act on human PBMC (CD3) prepared from the same donor source+CD56+) And CCL-86Raji lymphoma cells (CD 19)+Purchased from ATCC), cell death was detected, and the difference in the killing efficiency of CCL-86Raji target cells by three antibody-mediated CIK effector cells was compared.
Cell killing experiment step:
isolation of PBMC: adding anticoagulant blood of a newly extracted volunteer, adding medical normal saline with the same volume, slowly adding lymphocyte separation liquid (purchased from GE Healthcare) with the same volume with the blood along the wall of a centrifugal tube, keeping the liquid level obviously layered, centrifuging at 2000rpm for 20min, sucking a middle white fog-shaped cell layer into the new centrifugal tube, adding PBS buffer solution with more than 2 times of volume for washing, centrifuging at 1100rpm for 10min, repeatedly washing once, re-suspending with a small amount of pre-cooled X-vivo15 serum-free culture medium (purchased from Lonza), and counting cells for later use;
CIK cell culture and expansion: PBMC were resuspended in CIK basal medium (90% X-vivo15+ 10% FBS) (available from Gbico Co.) to a cell density of 1X 106Adding to full-length antibody Anti-CD3(5ug/ml), full-length antibody Anti-CD28(5ug/ml) and NovoNectin (25ug/ml) coated T25 flasks (both full-length antibody and NovoNectin are from Youjiang Yoshiki protein technology Co., Ltd.), adding cytokine IFN-gamma (200 ng/ml) and IL-1 beta (2 ng/ml) to the flasks, placing in an incubator, and culturing at saturation humidity, 37 deg.C and 5.0% CO2Culturing under the conditions of (1). After overnight incubation, addCulturing 500U/ml IL-2 (purchased from Wujiang near-shore protein science and technology Co., Ltd.), counting every 2-3 days and adding 500U/ml IL-2 into CIK basal medium according to the ratio of 1 × 106Cell passage is carried out at a density of/ml;
killing efficiency of CIK cells against Raji cells: performing cell killing experiment in 96-well plate with reaction volume of 100uL, collecting the above cultured CIK cells at 1 × 105Adding Raji cells at 1X 105Respectively adding CD19-CD3BsAb, CD19-CD3-ICOS TsAb _ M and CD19-CD3-ICOS TsAb _ D antibody samples with different final concentrations (25, 12.5, 6.25 and 3.125ng/ml) (the ratio of CIK effector cells to Raji target cells (E: T is 1: 1), uniformly mixing at room temperature for 3-5 min, co-culturing at 37 ℃ for 3h, adding 10 mu l of CCK-8 into each well, continuously reacting at 37 ℃ for 2-3 h, and measuring OD (optical density) by using an enzyme reader450The cell killing efficiency was calculated according to the following formula, and each set of experiments was tested 3 times repeatedly; the cell killing efficiency without any added antibody was also used as a blank.
Figure BDA0001199277720000431
The results are shown in FIG. 7: when CIK effector cells: raji target cells (E: T ratio) 1: 1, under the condition of not adding any antibody, the killing efficiency of the CIK cells to Raji cells for 3h is about 23 percent; under the condition of adding higher concentration of antibody (25, 12.5 and 6.25ng/ml), the killing efficiency of the CIK cells on Raji cells is remarkably improved, wherein the cell killing effect mediated by CD19-CD3-ICOS TsAb _ D is the best, the killing efficiency is about 94 percent, 94 percent and 82 percent respectively, the killing efficiency is the second best of the killing efficiency of CD19-CD3-ICOS TsAb _ M, the killing efficiency is about 92 percent, 86 percent and 84 percent, the killing efficiency of CD19-CD3BsAb is the weakest, and the killing efficiency is about 80 percent, 54 percent and 54 percent respectively; with the addition of lower concentrations of antibody (3.125ng/ml), the killing efficiency of the CIK cells on Raji cells mediated by CD19-CD3-ICOS TsAb _ D and CD19-CD3-ICOS TsAb _ M is still significantly improved, and the killing efficiency is about 76% and 71%, respectively, while the killing efficiency of CD19-CD3BsAb is basically not effective compared with the blank control. The results show that the target killing activity of T cells on CD19 positive tumor cells mediated by two forms of CD19-CD3-ICOS TiTE trispecific antibodies is better than that of CD19-CD3 BiTE bispecific antibodies, wherein the dimeric form has better effect than the monomeric form.
Example 9: construction of eukaryotic expression vectors for CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D
In the present invention, the TiTE trispecific antibody targeting the human CD19 protein on the surface of lymphoma B cells, the human CD3 on the surface of T cells and the positive co-stimulatory molecule of T cells OX40 protein was named CD19-CD3-OX40 TsAb.
First, CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D construction scheme design
The specific construction scheme of the monomer form of CD19-CD3-OX40TsAb _ M is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-OX 40scFv are linked by a Linker (Linker), specifically, the sequences of the anti-CD 19 scFv and the anti-CD3 scFv are linked by a Linker 1(Linker 1), and the sequences of the anti-CD3 scFv and the anti-OX 40scFv are linked by a Linker 2(Linker 2).
The specific construction scheme of the dimer form of CD19-CD3-OX40TsAb _ D is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-OX 40scFv were linked by a Linker (Linker), specifically, the anti-CD 19 scFv and the anti-CD3 scFv were linked by a Linker 1(Linker 1), and the anti-CD3 scFv and the anti-OX 40scFv sequences were linked by an IgD hinge region (Ala 90-Val 170) as a Linker 2(Linker 2).
For expression of the trispecific antibody in mammalian cells, the mammalian system expression was codon optimized for each of the anti-CD 19 scFv, anti-CD3 scFv, and anti-OX 40scFv sequences.
Specifically, the nucleotide sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 65.
The nucleotide sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 66.
The nucleotide sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 64.
The nucleotide sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 68.
The nucleotide sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 69.
The nucleotide sequence of the anti-CD3 scFv is shown in SEQ ID NO. 67.
The nucleotide sequence of the heavy chain variable region of the anti-OX 40scFv is shown as SEQ ID NO.77, and specifically comprises the following steps:
CAGCTGGTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACAGCATGAACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCTACATCAGCAGCAGCAGCAGCACCATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACGCCAAGAACAGCCTGTACCTGCAGATGAACAGCCTGCGCGACGAGGACACCGCCGTGTACTACTGCGCCCGCGGCGTGTACCACAACGGCTGGAGCTTCTTCGACTACTGGGGCCAGGGCACCCTGCTGACCGTGAGCAGC。
the nucleotide sequence of the light chain variable region of the anti-OX 40scFv is shown as SEQ ID NO.78, and specifically comprises the following steps:
GACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCAACCGCGTGACCATCACCTGCCGCGCCAGCCAGGACATCAGCAGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCCTGACCTTCGGCCAGGGCACCCGCCTGGAGATCAAGCGC。
the nucleotide sequence of the anti-OX 40scFv is shown as SEQ ID NO.76, and specifically comprises the following steps:
CAGCTGGTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACAGCATGAACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCTACATCAGCAGCAGCAGCAGCACCATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACGCCAAGAACAGCCTGTACCTGCAGATGAACAGCCTGCGCGACGAGGACACCGCCGTGTACTACTGCGCCCGCGGCGTGTACCACAACGGCTGGAGCTTCTTCGACTACTGGGGCCAGGGCACCCTGCTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCAACCGCGTGACCATCACCTGCCGCGCCAGCCAGGACATCAGCAGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCCTGACCTTCGGCCAGGGCACCCGCCTGGAGATCAAGCGC。
the nucleotide sequence of the monomeric CD19-CD3-OX40TsAb _ M connecting fragment 1(Linker 1) is shown as SEQ ID NO. 2.
The nucleotide sequence of the monomeric CD19-CD3-OX40TsAb _ M connecting fragment 2(Linker 2) is shown as SEQ ID NO. 4.
The nucleotide sequence of the dimeric form of CD19-CD3-OX40TsAb _ D connecting fragment 1(Linker 1) is shown in SEQ ID NO. 6.
The nucleotide sequence of the dimeric form of CD19-CD3-OX40TsAb _ D connecting fragment 2(Linker 2) is shown in SEQ ID NO. 8.
For expression and successful secretion of the trispecific antibody into the culture medium in CHO-S cells, a signal peptide expressed by the antibody secretory type was selected for this example.
The amino acid sequence of the secretory expression signal peptide is shown as SEQ ID NO. 88.
The nucleotide sequence of the secretory expression signal peptide is shown as SEQ ID NO. 89.
II, construction of CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D eukaryotic expression vectors
The construction and expression of the tri-specific antibody of the invention select a transient expression vector pcDNA3.1 (purchased from Shanghai Ying Jun Biotech Co., Ltd.) of mammalian cell protein. To construct monospecific and dimeric forms of trispecific antibodies, primers as shown in Table 3 were designed, all of which were synthesized by Suzhou Jinzhi Biotech, Inc., and gene templates for amplification were synthesized by Suzhou Hongxin Tech, Inc., respectively.
Cloning construction for CD19-CD3-OX40TsAb _ M Signal peptide fragments were first amplified using primers pcDNA3.1-Sig-F and Sig-R, and then primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3- (GGGGS) were used respectively3OX40-F and pcDNA3.1-OX40-R amplified anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, (GGGGS)3 Linker 2+ anti-OX 40 scFv; cloning construction of the cDNA for CD19-CD3-OX40TsAb _ D was carried out by first amplifying signal peptide fragments using primers pcDNA3.1-Sig-F and Sig-R, and then amplifying anti-CD 19 s cFv, GGGGS Linker 1+ anti-CD3 scFv, IgD hinge region Linker2 and anti-OX 40scFv using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3-IgD-F and IgD-R, IgD-OX40-F and pcDNA3.1-OX40-R, respectivelyAnd (4) columns. After amplification, the amplified DNA is used
Figure BDA0001199277720000461
The PCR one-step directional cloning kit (purchased from Wujiang near-shore protein science and technology Co., Ltd.) respectively splices full-length gene sequences of the monomer and dimer three-specificity antibodies, seamlessly clones the full-length gene sequences to a pcDNA3.1 expression vector which is subjected to EcoRI and HindIII linearization treatment, transforms Escherichia coli DH5 alpha, performs positive cloning identification by colony PCR, and performs sequencing identification on recombinants (recombinant plasmids) which are identified to be positive. The correctly sequenced recombinants (recombinant plasmids) were then mapped into plasmids and used for transfection of CHO-S cells.
Sequencing revealed that the full-length gene sequences of the monomeric form of CD19-CD3-OX40TsAb _ M and the dimeric form of CD19-CD3-OX40TsAb _ D were correct and consistent with the expectations.
Specifically, the nucleotide sequence of the monomeric form of CD19-CD3-OX40TsAb _ M is shown in SEQ ID NO.25, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGGAGGCGGAGGTTCCGGCGGTGGGGGATCGGGGGGTGGAGGGAGTCAGCTGGTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACAGCATGAACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCTACATCAGCAGCAGCAGCAGCACCATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACGCCAAGAACAGCCTGTACCTGCAGATGAACAGCCTGCGCGACGAGGACACCGCCGTGTACTACTGCGCCCGCGGCGTGTACCACAACGGCTGGAGCTTCTTCGACTACTGGGGCCAGGGCACCCTGCTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCAACCGCGTGACCATCACCTGCCGCGCCAGCCAGGACATCAGCAGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCCTGACCTTCGGCCAGGGCACCCGCCTGGAGATCAAGCGC。
the nucleotide sequence of the dimeric form of CD19-CD3-OX40TsAb _ D is shown in SEQ ID NO.27, and specifically comprises the following components:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGCCAGCAAGAGCAAGAAGGAGATCTTCCGCTGGCCCGAGAGCCCCAAGGCCCAGGCCAGCAGCGTGCCCACCGCCCAGCCCCAGGCCGAGGGCAGCCTGGCCAAGGCCACCACCGCCCCCGCCACCACCCGCAACACCGGCCGCGGCGGCGAGGAGAAGAAGAAGGAGAAGGAGAAGGAGGAGCAGGAGGAGCGCGAGACCAAGACCCCCGAGTGCCCCAGCCACACCCAGCCCCTGGGCGTGCAGCTGGTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACAGCATGAACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCTACATCAGCAGCAGCAGCAGCACCATCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACGCCAAGAACAGCCTGTACCTGCAGATGAACAGCCTGCGCGACGAGGACACCGCCGTGTACTACTGCGCCCGCGGCGTGTACCACAACGGCTGGAGCTTCTTCGACTACTGGGGCCAGGGCACCCTGCTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCAACCGCGTGACCATCACCTGCCGCGCCAGCCAGGACATCAGCAGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACAGCTACCCCCTGACCTTCGGCCAGGGCACCCGCCTGGAGATCAAGCGC。
TABLE 3 primers used in the cloning of CD19-CD3-OX40 trispecific antibody genes
Figure BDA0001199277720000491
Figure BDA0001199277720000501
Example 10: expression and purification of CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D
Expression of CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D
1.1 the passage density of CHO-S cells (purchased from Thermo Fisher Scientific Co.) 1 day before transfection was 0.5-0.6X 106/ml;
1.2. Cell density statistics is carried out on the day of transfection, and when the density is 1-1.4 multiplied by 106Activity/ml>90%, can be used for plasmid transfection;
1.3. preparation of transfection complex: for each project (CD19-CD3-OX40 TsAb _ M and CD19-CD3-OX40TsAb _ D), two centrifuge tubes/culture flasks were prepared, each placed at 20ml, and the recombinant plasmids prepared in example 9 were:
adding 600 mu l of PBS and 20 mu g of recombinant plasmid into the tube, and uniformly mixing;
add 600. mu.l PBS, 20ul FreeStyleTMMAX Transfection Reagent (available from Thermo Fisher Scientific Co.) and blending;
1.4. adding the diluted transfection reagent into the diluted recombinant plasmid, and uniformly mixing to prepare a transfection compound;
1.5. standing the transfection complex for 15-20 min, and adding a single drop of the transfection complex into the cell culture at a constant speed;
1.6. at 37 ℃ CO2The concentration is 8%, the cell culture after transfection is carried out under the condition of 130rpm of the shaking table, and the culture supernatant is collected for carrying out the expression detection of the target protein after 5 days.
Purification of CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D
2.1 sample pretreatment
Taking 20ml of the transfected cell culture supernatant, adding a buffer solution of 20mM PB and 200mM NaCl to adjust the pH value to 7.5;
2.2Protein L affinity column purification
Protein purification chromatography column: protein L affinity chromatography column (available from GE Healthcare, column volume 1.0ml)
Buffer a (buffer a): PBS, pH7.4
Buffer b (buffer b): 0.1M Glycine, pH3.0
Buffer c (buffer c): 0.1M Glycine, pH2.7
And (3) purification process: the Protein L affinity chromatography column was pretreated with Buffer A using AKTA explorer 100 type Protein purification system (purchased from GE Healthcare), and the culture supernatant was sampled and the effluent was collected. After the sample loading is finished, balancing the chromatographic column by using at least 1.5ml of Buffer A, eluting by using Buffer B and Buffer C respectively after balancing, collecting target protein eluent (1% of 1M Tris needs to be added in advance into a collecting pipe of the eluent, the pH value of the eluent is neutralized by pH8.0, and the final concentration of Tris is about 10mM), and finally concentrating and dialyzing into Buffer PBS.
The final purified recombinant proteins CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D were analyzed by SDS-PAGE, and the electrophoretograms under reducing and non-reducing conditions are shown in FIG. 8. As can be seen from the figure, the purity of both CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D recombinant proteins was > 95% after purification on Protein L affinity chromatography columns: wherein the theoretical molecular weight of the recombinant CD19-CD3-OX40TsAb _ M protein is 80.1kDa, and the protein presents a single electrophoretic band under reducing and non-reducing conditions, and the molecular weight is consistent with that of a monomer, so that the trispecific antibody is in a monomeric form (FIG. 8A); the theoretical molecular weight of the recombinant CD19-CD3-OX40TsAb _ D protein was 88.0kDa, the electrophoretic band of the protein exhibited a molecular weight consistent with that of the monomer under reducing conditions, and the electrophoretic band exhibited a molecular weight consistent with that of the dimer (about 180kDa) under non-reducing conditions (FIG. 8B), indicating that the two protein molecules can form disulfide bonds through the IgD hinge region to each other, and thus the trispecific antibody was in a dimeric form.
In addition, the purified recombinant protein samples are subjected to N/C terminal sequence analysis, and the results show that the expressed recombinant protein samples have no reading frame and are consistent with the theoretical N/C terminal amino acid sequence, and mass spectrometry further confirms that CD19-CD3-OX40TsAb _ M is in a monomer form, and CD19-CD3-OX40TsAb _ D is in a dimer form.
Therefore, it can be known that the amino acid sequence of the monomeric form of CD19-CD3-OX40TsAb _ M is shown in SEQ ID NO.24, and specifically:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKGGGGSGGGGSGGGGSQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARGVYHNGWSFFDYWGQGTLLTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGNRVTITCRASQDISSWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPLTFGQGTRLEIKR。
the amino acid sequence of the dimeric form of CD19-CD3-OX40TsAb _ D is shown in SEQ ID NO.26, and specifically comprises the following components: DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARGVYHNGWSFFDYWGQGTLLTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGNRVTITCRASQDISSWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPLTFGQGTRLEIKR are provided.
The amino acid sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 40.
The amino acid sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 41.
The amino acid sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 42.
The amino acid sequence of the anti-CD3 scFv is shown in SEQ ID NO. 43.
The amino acid sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 44.
The amino acid sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 45.
The amino acid sequence of the anti-OX 40scFv is shown as SEQ ID NO.52, and specifically comprises the following steps:
QLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARGVYHNGWSFFDYWGQGTLLTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGNRVTITCRASQDISSWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPLTFGQGTRLEIKR。
the amino acid sequence of the heavy chain variable region of the anti-OX 40scFv is shown in SEQ ID NO.53, and specifically comprises the following steps:
QLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARGVYHNGWSFFDYWGQGTLLTVSS。
the amino acid sequence of the light chain variable region of the anti-OX 40scFv is shown as SEQ ID NO.54, and specifically comprises the following steps:
DIQMTQSPSSLSASVGNRVTITCRASQDISSWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNSYPLTFGQGTRLEIKR。
the amino acid sequence of the monomeric CD19-CD3-OX40TsAb _ M connecting fragment 1(Linker 1) is shown as SEQ ID NO. 1.
The amino acid sequence of the monomeric CD19-CD3-OX40TsAb _ M connecting fragment 2(Linker 2) is shown as SEQ ID NO. 3.
The amino acid sequence of the dimeric form of CD19-CD3-OX40TsAb _ D connecting fragment 1(Linker 1) is shown in SEQ ID NO. 5.
The amino acid sequence of the dimeric form of CD19-CD3-OX40TsAb _ D Linker 2(Linker 2) is shown in SEQ ID NO. 7.
Example 11: ELISA for detecting the antigen binding activity of CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D
ELISA operation steps:
1. recombinant antigen coating: human CD19-hFc, human CD3-hFc and human OX40-hFc fusion proteins (purchased from Wujiang near-shore protein technologies, Ltd.) were coated on 96-well plates, respectively, at an antigen concentration of 1. mu.g/ml and a coating volume of 100. mu.l/well, under conditions of 1 hour at 37 ℃ or overnight at 4 ℃, with a coating buffer (PBS) formulation: 3.58g Na2HPO4,0.24g NaH2PO4,0.2g KCl,8.2g NaCl,950ml H2O, adjusting the pH value to 7.4 by using 1mol/L HCl or 1mol/L NaOH, and supplementing water to 1L;
2. and (3) sealing: after washing the plate 4 times with PBS, blocking solution PBSA (PBS + 2% BSA (V/W)) was added at 200. mu.l/well. Blocking at 37 ℃ for 1 hour;
3. sample adding: after 4 times of PBS plate washing, purified trispecific antibody samples were added, 100. mu.l/well, incubated at 37 ℃ for 1 hour, sample gradient preparation method: taking 10 μ g/ml purified CD19-CD3-OX40TsAb _ M or CD19-CD3-OX40TsAb _ D as initial concentration, performing double dilution on 6 gradients, and setting 2 duplicate wells in each gradient;
4. color development: after washing the plate 4 times with PBST (PBS + 0.05% Tween-20(V/V)), the HRP-labeled chromogenic antibody (purchased from Abcam) was diluted 1/5000 with blocking solution PBSA, added at 100. mu.l/well, and incubated at 37 ℃ for 1 hour. After washing the plate for 4 times with PBS, adding a color developing solution TMB (purchased from KPL company) with 100 mul/hole, and developing for 5-10 minutes at room temperature in a dark place;
5. termination reaction and result determination: add stop solution (1M HCl), 100. mu.l/well, read the absorbance (OD) at 450nm wavelength on a microplate reader450)。
The ELISA results are shown in fig. 9A and 9B: FIG. 9A illustrates that CD19-CD3-OX40TsAb _ M has in vitro binding activity to recombinant antigens CD19-hFc, CD3-hFc, and OX40-hFc, with the highest CD19 binding activity, the next lowest OX40 binding activity, and the weaker CD3 binding activity; FIG. 9B illustrates that CD19-CD3-OX40TsAb _ D also has in vitro binding activity with recombinant antigens CD19-hFc, CD3-hFc and OX40-hFc, with the highest CD19 binding activity and the next lowest OX40 binding activity and the weaker CD3 binding activity.
Example 12: CD19-CD3-OX40 trispecific antibody mediated cell killing experiments
Using human Peripheral Blood Mononuclear Cells (PBMC) as experimental material, the monomeric form of the TiTE trispecific antibody (CD19-CD3-OX40 TsAb _ M), the dimeric form of the TiTE trispecific antibody (CD19-CD3-OX40 TsAb _ D) and the anti-CD 19/anti-CD 3 BiTE bispecific antibody (CD19-CD 3BsAb, available from Wujiang Korea protein technology Co., Ltd.) prepared according to the present invention were allowed to act on human PBMC (CD3 PBMC) of the same donor source+CD56+) And CCL-86Raji lymphoma cells (CD 19)+Purchased from ATCC), cell death was detected, and the difference in the killing efficiency of CCL-86Raji target cells by three antibody-mediated CIK effector cells was compared.
Cell killing experiment step:
isolation of PBMC: adding anticoagulant blood of a newly extracted volunteer, adding medical normal saline with the same volume, slowly adding lymphocyte separation liquid (purchased from GE Healthcare) with the same volume with the blood along the wall of a centrifugal tube, keeping the liquid level obviously layered, centrifuging at 2000rpm for 20min, sucking a middle white fog-shaped cell layer into the new centrifugal tube, adding PBS buffer solution with more than 2 times of volume for washing, centrifuging at 1100rpm for 10min, repeatedly washing once, re-suspending with a small amount of pre-cooled X-vivo15 serum-free culture medium (purchased from Lonza), and counting cells for later use;
CIK cell culture and expansion: PBMC were resuspended in CIK basal medium (90% X-vivo15+ 10% FBS) (available from Gbico Co.) to a cell density of 1X 106Adding to full-length antibody Anti-CD3(5ug/ml), full-length antibody Anti-CD28(5ug/ml) and NovoNectin (25ug/ml) coated T25 flasks (both full-length antibody and NovoNectin are from Youjiang Yoshiki protein technology Co., Ltd.), adding cytokine IFN-gamma (200 ng/ml) and IL-1 beta (2 ng/ml) to the flasks, placing in an incubator, and culturing at saturation humidity, 37 deg.C and 5.0% CO2Culturing under the conditions of (1). After overnight culture, adding 500U/ml IL-2 (purchased from Wujiang near-shore protein technology Co., Ltd.) to continue culture, counting every 2-3 days and adding 500U/ml IL-2 into CIK basal medium according to the ratio of 1 × 106Cell passage is carried out at a density of/ml;
killing efficiency of CIK cells against Raji cells: performing cell killing experiment in 96-well plate with reaction volume of 100uL, collecting the above cultured CIK cells at 1 × 105Adding Raji cells at 1X 105Separately (CIK effector cells: Raji target cells (E: T ratio) 1: 1), CD19-CD3BsAb, CD19-CD3-OX40TsAb _ M and CD19-CD3-OX40TsAb _ D antibody samples with different final concentrations (25, 12.5, 6.25 and 3.125ng/ml) are added, the mixture is mixed for 3-5 min at room temperature, 10 mu l of CCK-8 is added to each well after 3h of co-culture at 37 ℃, the reaction is continued for 2-3 h at 37 ℃, and then OD (cell density) is measured by an ELISA reader450The cell killing efficiency was calculated according to the following formula, and each set of experiments was tested 3 times repeatedly; the cell killing efficiency without any added antibody was also used as a blank.
Figure BDA0001199277720000551
The results are shown in FIG. 10: when CIK effector cells: raji target cells (E: T ratio) 1: 1, under the condition of not adding any antibody, the killing efficiency of the CIK cells to Raji cells for 3h is about 23 percent; under the condition of adding higher concentration of antibody (25, 12.5 and 6.25ng/ml), the killing efficiency of the CIK cells on Raji cells is remarkably improved, wherein the cell killing effect mediated by CD19-CD3-OX40TsAb _ D is the best, the killing efficiency is about 96 percent, 92 percent and 86 percent respectively, the killing efficiency is the second best of the killing efficiency of CD19-CD3-OX40TsAb _ M, the killing efficiency is about 89 percent, 82 percent and 80 percent, the killing efficiency of CD19-CD3BsAb is the weakest, and the killing efficiency is about 80 percent, 54 percent and 54 percent respectively; under the condition of adding lower concentration antibody (3.125ng/ml), the killing efficiency of CIK cells on Raji cells mediated by CD19-CD3-OX40TsAb _ D and CD19-CD3-OX40TsAb _ M is still obviously improved, the killing efficiency is about 72 percent and 68 percent respectively, and CD19-CD3BsAb has no effect basically compared with a blank control. The results show that the target killing activity of T cells on CD19 positive tumor cells mediated by two forms of CD19-CD3-OX40 TiTE trispecific antibodies is better than that of CD19-CD3 BiTE bispecific antibodies, wherein the dimeric form has better effect than the monomeric form.
Example 13: construction of eukaryotic expression vectors for CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D
In the present invention, the TiTE trispecific antibody targeting the human CD19 protein on the surface of lymphoma B cells, the human CD3 on the surface of T cells and the GITR protein, the T cell positive costimulatory molecule, was named CD19-CD3-GITR TsAb.
First, CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D construction scheme design
The specific construction scheme of the monomer form of CD19-CD3-GITR TsAb _ M is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-GITR scFv were linked by a Linker (Linker), specifically, the anti-CD 19 scFv and the anti-CD3 scFv were linked by a Linker 1(Linker 1), and the anti-CD3 scFv and the anti-GITR scFv were linked by a Linker 2(Linker 2).
The specific construction scheme of the dimer form of CD19-CD3-GITR TsAb _ D is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-GITR scFv were linked by a Linker (Linker), specifically, the anti-CD 19 scFv and the anti-CD3 scFv were linked by a Linker 1(Linker 1), and the anti-CD3 scFv and the anti-GITR scFv were linked by an IgD hinge region (Ala 90-Val 170) as a Linker 2(Linker 2).
For expression of the trispecific antibody in mammalian cells, the mammalian system expression was codon optimized for each of the anti-CD 19 scFv, anti-CD3 scFv, and anti-GITR scFv sequences.
Specifically, the nucleotide sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 65.
The nucleotide sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 66.
The nucleotide sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 64.
The nucleotide sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 68.
The nucleotide sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 69.
The nucleotide sequence of the anti-CD3 scFv is shown in SEQ ID NO. 67.
The nucleotide sequence of the heavy chain variable region of the anti-GITR scFv is shown as SEQ ID NO.80, and specifically comprises the following steps:
CAGGTGACCCTGAAGGAGAGCGGCCCCGGCATCCTGAAGCCCAGCCAGACCCTGAGCCTGACCTGCAGCTTCAGCGGCTTCAGCCTGAGCACCAGCGGCATGGGCGTGGGCTGGATCCGCCAGCCCAGCGGCAAGGGCCTGGAGTGGCTGGCCCACATCTGGTGGGACGACGACAAGTACTACAACCCCAGCCTGAAGAGCCAGCTGACCATCAGCAAGGACACCAGCCGCAACCAGGTGTTCCTGAAGATCACCAGCGTGGACACCGCCGACGCCGCCACCTACTACTGCGCCCGCACCCGCCGCTACTTCCCCTTCGCCTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC。
the nucleotide sequence of the variable region of the light chain of the anti-GITR scFv is shown as SEQ ID NO.81, and specifically comprises the following steps:
GACATCGTGATGACCCAGAGCCAGAAGTTCATGAGCACCAGCGTGGGCGACCGCGTGAGCGTGACCTGCAAGGCCAGCCAGAACGTGGGCACCAACGTGGCCTGGTACCAGCAGAAGCCCGGCCAGAGCCCCAAGGCCCTGATCTACAGCGCCAGCTACCGCTACAGCGGCGTGCCCGACCGCTTCACCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAACAACGTGCACAGCGAGGACCTGGCCGAGTACTTCTGCCAGCAGTACAACACCGACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGATCAAG。
the nucleotide sequence of the anti-GITR scFv is shown as SEQ ID NO.79, and specifically comprises the following steps:
CAGGTGACCCTGAAGGAGAGCGGCCCCGGCATCCTGAAGCCCAGCCAGACCCTGAGCCTGACCTGCAGCTTCAGCGGCTTCAGCCTGAGCACCAGCGGCATGGGCGTGGGCTGGATCCGCCAGCCCAGCGGCAAGGGCCTGGAGTGGCTGGCCCACATCTGGTGGGACGACGACAAGTACTACAACCCCAGCCTGAAGAGCCAGCTGACCATCAGCAAGGACACCAGCCGCAACCAGGTGTTCCTGAAGATCACCAGCGTGGACACCGCCGACGCCGCCACCTACTACTGCGCCCGCACCCGCCGCTACTTCCCCTTCGCCTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCGTGATGACCCAGAGCCAGAAGTTCATGAGCACCAGCGTGGGCGACCGCGTGAGCGTGACCTGCAAGGCCAGCCAGAACGTGGGCACCAACGTGGCCTGGTACCAGCAGAAGCCCGGCCAGAGCCCCAAGGCCCTGATCTACAGCGCCAGCTACCGCTACAGCGGCGTGCCCGACCGCTTCACCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAACAACGTGCACAGCGAGGACCTGGCCGAGTACTTCTGCCAGCAGTACAACACCGACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGATCAAG。
the nucleotide sequence of the monomeric CD19-CD3-GITR TsAb _ M junction fragment 1(Linker 1) is shown as SEQ ID NO. 2.
The nucleotide sequence of the monomeric CD19-CD3-GITR TsAb _ M junction fragment 2(Linker 2) is shown as SEQ ID NO. 4.
The nucleotide sequence of the dimeric form of CD19-CD3-GITR TsAb _ D junction fragment 1(Linker 1) is shown in SEQ ID NO. 6.
The nucleotide sequence of the dimeric form of CD19-CD3-GITR TsAb _ D junction fragment 2(Linker 2) is shown in SEQ ID NO. 8.
For expression and successful secretion of the trispecific antibody into the culture medium in CHO-S cells, a signal peptide expressed by the antibody secretory type was selected for this example.
The amino acid sequence of the secretory expression signal peptide is shown as SEQ ID NO. 88.
The nucleotide sequence of the secretory expression signal peptide is shown as SEQ ID NO. 89.
II, construction of CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D eukaryotic expression vectors
The construction and expression of the tri-specific antibody of the invention select a transient expression vector pcDNA3.1 (purchased from Shanghai Ying Jun Biotech Co., Ltd.) of mammalian cell protein. To construct monospecific and dimeric forms of trispecific antibodies, primers as shown in Table 4 were designed, all of which were synthesized by Suzhou Jinzhi Biotech, Inc., and gene templates for amplification were synthesized by Suzhou Hongxin Tech, Inc., respectively.
Cloning construction for CD19-CD3-GITR TsAb _ M, signal peptide fragments were first amplified using primers pcDNA3.1-Sig-F and Sig-R, and then primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3- (GGGGS) were used respectively3Amplification of anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, (GGGGS) by-GITR-F and pcDNA3.1-GITR-R3Linker 2+ gene sequence of anti-GITR scFv; cloning construction for CD19-CD3-GITR TsAb _ D, signal peptide fragments were also first amplified using primers pcDNA3.1-Sig-F and Sig-R, and then anti-CD 19 scFv, GGGGGGS Linker 1+ anti-CD3 scFv, IgD hinge region Linker2, anti-GITR scFv were amplified using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3-IgD-F and IgD-R, IgD-GITR-F and pcDNA3.1-GITR-R, respectively. After amplification, the amplified DNA is used
Figure BDA0001199277720000581
PCR one-step directional cloning kit(purchased from Wujiang near-shore protein science and technology Co., Ltd.) were spliced to full-length gene sequences of the monospecific antibody and the dimeric form respectively and cloned seamlessly into the expression vector pcDNA3.1 which was linearized with EcoRI and HindIII, and transformed into Escherichia coli DH5 alpha, and colony PCR was used to perform positive cloning identification, and the recombinants (recombinant plasmids) identified as positive were subjected to sequencing identification. The correctly sequenced recombinants (recombinant plasmids) were then mapped into plasmids and used for transfection of CHO-S cells.
Sequencing revealed that the full-length gene sequences of the monomeric form of CD19-CD3-GITR TsAb _ M and the dimeric form of CD19-CD3-GITR TsAb _ D were correct and consistent with expectations.
Specifically, the nucleotide sequence of the monomeric form of CD19-CD3-GITR TsAb _ M is shown as SEQ ID NO.29, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGGAGGCGGAGGTTCCGGCGGTGGGGGATCGGGGGGTGGAGGGAGTCAGGTGACCCTGAAGGAGAGCGGCCCCGGCATCCTGAAGCCCAGCCAGACCCTGAGCCTGACCTGCAGCTTCAGCGGCTTCAGCCTGAGCACCAGCGGCATGGGCGTGGGCTGGATCCGCCAGCCCAGCGGCAAGGGCCTGGAGTGGCTGGCCCACATCTGGTGGGACGACGACAAGTACTACAACCCCAGCCTGAAGAGCCAGCTGACCATCAGCAAGGACACCAGCCGCAACCAGGTGTTCCTGAAGATCACCAGCGTGGACACCGCCGACGCCGCCACCTACTACTGCGCCCGCACCCGCCGCTACTTCCCCTTCGCCTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCGTGATGACCCAGAGCCAGAAGTTCATGAGCACCAGCGTGGGCGACCGCGTGAGCGTGACCTGCAAGGCCAGCCAGAACGTGGGCACCAACGTGGCCTGGTACCAGCAGAAGCCCGGCCAGAGCCCCAAGGCCCTGATCTACAGCGCCAGCTACCGCTACAGCGGCGTGCCCGACCGCTTCACCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAACAACGTGCACAGCGAGGACCTGGCCGAGTACTTCTGCCAGCAGTACAACACCGACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGATCAAG。
the nucleotide sequence of the dimeric form of CD19-CD3-GITR TsAb _ D is shown as SEQ ID NO.31, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGCCAGCAAGAGCAAGAAGGAGATCTTCCGCTGGCCCGAGAGCCCCAAGGCCCAGGCCAGCAGCGTGCCCACCGCCCAGCCCCAGGCCGAGGGCAGCCTGGCCAAGGCCACCACCGCCCCCGCCACCACCCGCAACACCGGCCGCGGCGGCGAGGAGAAGAAGAAGGAGAAGGAGAAGGAGGAGCAGGAGGAGCGCGAGACCAAGACCCCCGAGTGCCCCAGCCACACCCAGCCCCTGGGCGTGCAGGTGACCCTGAAGGAGAGCGGCCCCGGCATCCTGAAGCCCAGCCAGACCCTGAGCCTGACCTGCAGCTTCAGCGGCTTCAGCCTGAGCACCAGCGGCATGGGCGTGGGCTGGATCCGCCAGCCCAGCGGCAAGGGCCTGGAGTGGCTGGCCCACATCTGGTGGGACGACGACAAGTACTACAACCCCAGCCTGAAGAGCCAGCTGACCATCAGCAAGGACACCAGCCGCAACCAGGTGTTCCTGAAGATCACCAGCGTGGACACCGCCGACGCCGCCACCTACTACTGCGCCCGCACCCGCCGCTACTTCCCCTTCGCCTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCGTGATGACCCAGAGCCAGAAGTTCATGAGCACCAGCGTGGGCGACCGCGTGAGCGTGACCTGCAAGGCCAGCCAGAACGTGGGCACCAACGTGGCCTGGTACCAGCAGAAGCCCGGCCAGAGCCCCAAGGCCCTGATCTACAGCGCCAGCTACCGCTACAGCGGCGTGCCCGACCGCTTCACCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAACAACGTGCACAGCGAGGACCTGGCCGAGTACTTCTGCCAGCAGTACAACACCGACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGATCAAG。
TABLE 4 primers used in the cloning of CD19-CD3-GITR trispecific antibody genes
Figure BDA0001199277720000611
Example 14: expression and purification of CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D
Expression of CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D
1.1 the passage density of CHO-S cells (purchased from Thermo Fisher Scientific Co.) 1 day before transfection was 0.5-0.6X 106/ml;
1.2. Cell density statistics is carried out on the day of transfection, and when the density is 1-1.4 multiplied by 106Activity/ml>90%, can be used for plasmid transfection;
1.3. preparation of transfection complex: for each project (CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D), two centrifuge tubes/culture flasks were prepared, each placed in 20ml, and the recombinant plasmids prepared in example 13 were taken:
adding 600 mu l of PBS and 20 mu g of recombinant plasmid into the tube, and uniformly mixing;
add 600. mu.l PBS, 20ul FreeStyleTMMAX Transfection Reagent (available from Thermo Fisher Scientific Co.) and blending;
1.4. adding the diluted transfection reagent into the diluted recombinant plasmid, and uniformly mixing to prepare a transfection compound;
1.5. standing the transfection complex for 15-20 min, and adding a single drop of the transfection complex into the cell culture at a constant speed;
1.6. at 37 ℃ CO2Culturing transfected cells at 8% concentration and 130rpm of shaking table, and collecting after 5 days
Culture supernatant for target protein expression detection
Purification of CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D
2.1 sample pretreatment
Taking 20ml of the transfected cell culture supernatant, adding a buffer solution of 20mM PB and 200mM NaCl to adjust the pH value to 7.5;
2.2Protein L affinity column purification
Protein purification chromatography column: protein L affinity chromatography column (available from GE Healthcare, column volume 1.0ml)
Buffer a (buffer a): PBS, pH7.4
Buffer b (buffer b): 0.1M Glycine, pH3.0
Buffer c (buffer c): 0.1M Glycine, pH2.7
And (3) purification process: the Protein L affinity chromatography column was pretreated with Buffer A using AKTA explorer 100 type Protein purification system (purchased from GE Healthcare), and the culture supernatant was sampled and the effluent was collected. After the sample loading is finished, balancing the chromatographic column by using at least 1.5ml of Buffer A, eluting by using Buffer B and Buffer C respectively after balancing, collecting target protein eluent (1% of 1M Tris needs to be added in advance into a collecting pipe of the eluent, the pH value of the eluent is neutralized by pH8.0, and the final concentration of Tris is about 10mM), and finally concentrating and dialyzing into Buffer PBS.
The final purified CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D recombinant proteins were analyzed by SDS-PAGE and the electrophoretograms under reducing and non-reducing conditions are shown in FIG. 11. As can be seen from the figure, the recombinant proteins, CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D, were all > 95% pure following Protein L affinity column purification: wherein the theoretical molecular weight of the recombinant protein CD19-CD3-GITR TsAb _ M is 80.1kDa, and the protein presents a single electrophoretic band under both reducing and non-reducing conditions, and the molecular weight is consistent with that of a monomer, so that the trispecific antibody is in a monomeric form (FIG. 11A); the theoretical molecular weight of the recombinant CD19-CD3-GITR TsAb _ D protein was 88.0kDa, the electrophoretic band of the protein exhibited a molecular weight consistent with that of the monomer under reducing conditions, and the electrophoretic band exhibited a molecular weight consistent with that of the dimer (about 180kDa) under non-reducing conditions (FIG. 11B), indicating that the two protein molecules can form disulfide bonds through the IgD hinge region to each other, and thus the trispecific antibody was in a dimeric form.
In addition, the purified recombinant protein samples are subjected to N/C terminal sequence analysis, and the results show that the expressed recombinant protein samples have correct reading frames and are consistent with the theoretical N/C terminal amino acid sequence, and the mass spectrum analysis further confirms that the CD19-CD3-GITR TsAb _ M is in a monomer form, and the CD19-CD3-GITR TsAb _ D is in a dimer form.
Therefore, it can be seen that the amino acid sequence of the monomeric form of CD19-CD3-GITR TsAb _ M is shown in SEQ ID NO.28, specifically:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKGGGGSGGGGSGGGGSQVTLKESGPGILKPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKGLEWLAHIWWDDDKYYNPSLKSQLTISKDTSRNQVFLKITSVDTADAATYYCARTRRYFPFAYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSQKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTINNVHSEDLAEYFCQQYNTDPLTFGAGTKLEIK。
the amino acid sequence of the dimeric form of CD19-CD3-GITR TsAb _ D is shown in SEQ ID NO.30, and specifically comprises: DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVQVTLKESGPGILKPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKGLEWLAHIWWDDDKYYNPSLKSQLTISKDTSRNQVFLKITSVDTADAATYYCARTRRYFPFAYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSQKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTINNVHSEDLAEYFCQQYNTDPLTFGAGTKLEIK are provided.
The amino acid sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 40.
The amino acid sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 41.
The amino acid sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 42.
The amino acid sequence of the anti-CD3 scFv is shown in SEQ ID NO. 43.
The amino acid sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 44.
The amino acid sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 45.
The amino acid sequence of the anti-GITR scFv is shown as SEQ ID NO.55, and specifically comprises the following steps:
QVTLKESGPGILKPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKGLEWLAHIWWDDDKYYNPSLKSQLTISKDTSRNQVFLKITSVDTADAATYYCARTRRYFPFAYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSQKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTINNVHSEDLAEYFCQQYNTDPLTFGAGTKLEIK。
the amino acid sequence of the heavy chain variable region of the anti-GITR scFv is shown as SEQ ID NO.56, and specifically comprises the following steps:
QVTLKESGPGILKPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKGLEWLAHIWWDDDKYYNPSLKSQLTISKDTSRNQVFLKITSVDTADAATYYCARTRRYFPFAYWGQGTLVTVSS。
the amino acid sequence of the variable region of the light chain of the anti-GITR scFv is shown as SEQ ID NO.57, and specifically comprises the following steps:
DIVMTQSQKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTINNVHSEDLAEYFCQQYNTDPLTFGAGTKLEIK。
the amino acid sequence of the monomeric CD19-CD3-GITR TsAb _ M connecting segment 1(Linker 1) is shown as SEQ ID NO. 1.
The amino acid sequence of the monomeric CD19-CD3-GITR TsAb _ M junction fragment 2(Linker 2) is shown as SEQ ID NO. 3.
The amino acid sequence of the dimeric form of CD19-CD3-GITR TsAb _ D junction fragment 1(Linker 1) is shown in SEQ ID NO. 5.
The amino acid sequence of the dimeric form of CD19-CD3-GITR TsAb _ D junction fragment 2(Linker 2) is shown in SEQ ID NO. 7.
Example 15: ELISA detection of antigen binding Activity of CD19-CD3-GITR TsAb _ M and CD19-CD3-GITR TsAb _ D
ELISA operation steps:
1. recombinant antigen coating: human CD19-hFc, human CD3-hFc and human GITR-hFc fusion protein (purchased from Wujiang near-shore protein technologies Co., Ltd.) were coated on 96-well plates, respectively, with an antigen concentration of 1. mu.g/ml and a coating volume of 100. mu.l/well, under the conditions of 1 hour at 37 ℃ or overnight at 4 ℃, and the formulation of coating buffer (PBS) was: 3.58g Na2HPO4,0.24g NaH2PO4,0.2g KCl,8.2g NaCl,950ml H2O, adjusting the pH value to 7.4 by using 1mol/L HCl or 1mol/L NaOH, and supplementing water to 1L;
2. and (3) sealing: after washing the plate 4 times with PBS, blocking solution PBSA (PBS + 2% BSA (V/W)) was added at 200. mu.l/well. Blocking at 37 ℃ for 1 hour;
3. sample adding: after 4 times of PBS plate washing, purified trispecific antibody samples were added, 100. mu.l/well, incubated at 37 ℃ for 1 hour, sample gradient preparation method: taking 10 μ g/ml purified CD19-CD3-GITR TsAb _ M or CD19-CD3-GITR TsAb _ D as the initial concentration, carrying out a dilution of 6 gradients in a multiple ratio, each gradient being provided with 2 duplicate wells;
4. color development: after washing the plate 4 times with PBST (PBS + 0.05% Tween-20(V/V)), the HRP-labeled chromogenic antibody (purchased from Abcam) was diluted 1/5000 with blocking solution PBSA, added at 100. mu.l/well, and incubated at 37 ℃ for 1 hour. After washing the plate for 4 times with PBS, adding a color developing solution TMB (purchased from KPL company) with 100 mul/hole, and developing for 5-10 minutes at room temperature in a dark place;
5. termination reaction and result determination: add stop solution (1M HCl), 100. mu.l/well, read the absorbance (OD) at 450nm wavelength on a microplate reader450)。
The ELISA results are shown in fig. 12A and 12B: FIG. 12A illustrates that CD19-CD3-GITR TsAb _ M has in vitro binding activity to the recombinant antigens CD19-hFc, CD3-hFc, and GITR-hFc, wherein both GITR and CD19 binding activity is higher and CD3 binding activity is weaker; FIG. 12B illustrates that CD19-CD3-GITR TsAb _ D also has in vitro binding activity with the recombinant antigens CD19-hFc, CD3-hFc and GITR-hFc, where both GITR and CD19 binding activity were higher and CD3 binding activity was weaker.
Example 16: CD19-CD3-GITR trispecific antibody mediated cell killing assay
Using human Peripheral Blood Mononuclear Cells (PBMC) as experimental material, the monomeric form of the TiTE trispecific antibody (CD19-CD3-GITR TsAb _ M), the dimeric form of the TiTE trispecific antibody (CD19-CD3-GITR TsAb _ D) and the anti-CD 19/anti-CD 3 BiTE bispecific antibody (CD19-CD 3BsAb, available from WUJIANG Yonghai protein technology Co., Ltd.) were used to act on the same donorCIK cells prepared from human PBMC of origin (CD3)+CD56+) And CCL-86Raji lymphoma cells (CD 19)+Purchased from ATCC), cell death was detected, and the difference in the killing efficiency of CCL-86Raji target cells by three antibody-mediated CIK effector cells was compared.
Cell killing experiment step:
isolation of PBMC: adding anticoagulant blood of a newly extracted volunteer, adding medical normal saline with the same volume, slowly adding lymphocyte separation liquid (purchased from GE Healthcare) with the same volume with the blood along the wall of a centrifugal tube, keeping the liquid level obviously layered, centrifuging at 2000rpm for 20min, sucking a middle white fog-shaped cell layer into the new centrifugal tube, adding PBS buffer solution with more than 2 times of volume for washing, centrifuging at 1100rpm for 10min, repeatedly washing once, re-suspending with a small amount of pre-cooled X-vivo15 serum-free culture medium (purchased from Lonza), and counting cells for later use;
CIK cell culture and expansion: PBMC were resuspended in CIK basal medium (90% X-vivo15+ 10% FBS) (available from Gbico Co.) to a cell density of 1X 106Adding to full-length antibody Anti-CD3(5ug/ml), full-length antibody Anti-CD28(5ug/ml) and NovoNectin (25ug/ml) coated T25 flasks (both full-length antibody and NovoNectin are from Youjiang Yoshiki protein technology Co., Ltd.), adding cytokine IFN-gamma (200 ng/ml) and IL-1 beta (2 ng/ml) to the flasks, placing in an incubator, and culturing at saturation humidity, 37 deg.C and 5.0% CO2Culturing under the conditions of (1). After overnight culture, adding 500U/ml IL-2 (purchased from Wujiang near-shore protein technology Co., Ltd.) to continue culture, counting every 2-3 days and adding 500U/ml IL-2 into CIK basal medium according to the ratio of 1 × 106Cell passage is carried out at a density of/ml;
killing efficiency of CIK cells against Raji cells: performing cell killing experiment in 96-well plate with reaction volume of 100uL, collecting the above cultured CIK cells at 1 × 105Adding Raji cells at 1X 105Each of CD19-CD3BsAb, CD19-CD3-GITR cells was added to each of the cells (CIK effector cells: Raji target cells (E: T ratio) 1: 1) at different final concentrations (25, 12.5, 6.25, 3.125ng/ml)The TsAb _ M and CD19-CD3-GITR TsAb _ D antibody samples are uniformly mixed at room temperature for 3-5 min, after co-culture is carried out for 3h at 37 ℃, 10 mu l of CCK-8 is added into each hole, reaction is continuously carried out for 2-3 h at 37 ℃, and then OD (optical density) is measured by using an enzyme labeling instrument450The cell killing efficiency was calculated according to the following formula, and each set of experiments was tested 3 times repeatedly; the cell killing efficiency without any added antibody was also used as a blank.
Figure BDA0001199277720000661
The results are shown in FIG. 13: when CIK effector cells: raji target cells (E: T ratio) 1: 1, under the condition of not adding any antibody, the killing efficiency of the CIK cells to Raji cells for 3h is about 23 percent; under the condition of adding higher concentration of antibody (25, 12.5 and 6.25ng/ml), the killing efficiency of the CIK cells on Raji cells is remarkably improved, wherein the cell killing effect mediated by CD19-CD3-GITR TsAb _ D is the best, the killing efficiency is about 93 percent, 77 percent and 73 percent respectively, the killing efficiency is the second best of the effects of CD19-CD3-GITR TsAb _ M, the killing efficiency is about 88 percent, 83 percent and 66 percent, the effect of CD19-CD3BsAb is the weakest, and the killing efficiency is about 80 percent, 54 percent and 54 percent respectively; with the addition of lower concentrations of antibody (3.125ng/ml), the killing efficiency of the CIK cells on Raji cells mediated by CD19-CD3-GITR TsAb _ D and CD19-CD3-GITR TsAb _ M is still improved to some extent, and the killing efficiency is about 57% and 49%, respectively, while the CD19-CD3BsAb has no effect basically compared with the blank control. The results show that the target killing activity of T cells on CD19 positive tumor cells mediated by two forms of CD19-CD3-GITR TiTE trispecific antibodies is better than that of CD19-CD3 BiTE bispecific antibodies, wherein the dimeric form has better effect than the monomeric form.
Example 17: construction of eukaryotic expression vectors for CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D
In the present invention, the TiTE trispecific antibody targeting the human CD19 protein on the surface of lymphoma B cells, the human CD3 on the surface of T cells and the T cell positive co-stimulatory molecule CD40L protein was named CD19-CD3-CD40L TsAb.
First, CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D construction scheme design
The specific construction scheme of the monomer form of CD19-CD3-CD40L TsAb _ M is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-CD 40L scFv are connected by a Linker (Linker), specifically, the sequences of the anti-CD 19 scFv and the anti-CD3 scFv are connected by a Linker 1(Linker 1), and the sequences of the anti-CD3 scFv and the anti-CD 40L scFv are connected by a Linker 2(Linker 2).
The specific construction scheme of the dimer form of CD19-CD3-CD40L TsAb _ D is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-CD 40L scFv are connected by a Linker (Linker), specifically, the anti-CD 19 scFv and the anti-CD3 scFv are connected by a Linker 1(Linker 1), and the anti-CD3 scFv and the anti-CD 40L scFv sequences are connected by an IgD hinge region (Ala 90-Val 170) as a Linker 2(Linker 2).
For expression of the trispecific antibody in mammalian cells, the mammalian system expression was codon optimized for the anti-CD 19 scFv, anti-CD3 scFv, and anti-CD 40L scFv sequences.
Specifically, the nucleotide sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 65.
The nucleotide sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 66.
The nucleotide sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 64.
The nucleotide sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 68.
The nucleotide sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 69.
The nucleotide sequence of the anti-CD3 scFv is shown in SEQ ID NO. 67.
The nucleotide sequence of the heavy chain variable region of the anti-CD 40L scFv is shown in SEQ ID NO.83, and specifically comprises the following steps:
GAGGTGCAGCTGCTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGCCATGAGCTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCGCCATCAGCGGCAGCGGCGGCAGCACCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCAAGAGCTACGGCGCCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC。
the nucleotide sequence of the variable region of the light chain of the anti-CD 40L scFv is shown in SEQ ID NO.84, and specifically comprises the following steps:
GACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGAGCATCAGCAGCTACCTGAACTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGAGCTACAGCACCCCCAACACCTTCGGCCAGGGCACCAAGGTGGAGATCAAGCGC。
the nucleotide sequence of the anti-CD 40L scFv is shown in SEQ ID NO.82, and specifically comprises the following steps:
GAGGTGCAGCTGCTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGCCATGAGCTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCGCCATCAGCGGCAGCGGCGGCAGCACCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCAAGAGCTACGGCGCCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGAGCATCAGCAGCTACCTGAACTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGAGCTACAGCACCCCCAACACCTTCGGCCAGGGCACCAAGGTGGAGATCAAGCGC。
the nucleotide sequence of the monomeric CD19-CD3-CD40L TsAb _ M connecting fragment 1(Linker 1) is shown as SEQ ID NO. 2.
The nucleotide sequence of the monomeric CD19-CD3-CD40L TsAb _ M connecting fragment 2(Linker 2) is shown as SEQ ID NO. 4.
The nucleotide sequence of the dimeric form of CD19-CD3-CD40L TsAb _ D connecting fragment 1(Linker 1) is shown in SEQ ID NO. 6.
The nucleotide sequence of the dimeric form of CD19-CD3-CD40L TsAb _ D connecting fragment 2(Linker 2) is shown in SEQ ID NO. 8.
For expression and successful secretion of the trispecific antibody into the culture medium in CHO-S cells, a signal peptide expressed by the antibody secretory type was selected for this example.
The amino acid sequence of the secretory expression signal peptide is shown as SEQ ID NO. 88.
The nucleotide sequence of the secretory expression signal peptide is shown as SEQ ID NO. 89.
Secondly, construction of eukaryotic expression vectors of CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D
The construction and expression of the tri-specific antibody of the invention select a transient expression vector pcDNA3.1 (purchased from Shanghai Ying Jun Biotech Co., Ltd.) of mammalian cell protein. To construct monospecific and dimeric forms of trispecific antibodies, primers as shown in Table 5 were designed, all of which were synthesized by Suzhou Jinzhi Biotech, Inc., and gene templates for amplification were synthesized by Suzhou Hongxin Tech, Inc., respectively.
Cloning construction for CD19-CD3-CD40L TsAb _ M Signal peptide fragment was first amplified using primers pcDNA3.1-Sig-F and Sig-R, and then using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3- (GGGGS)3Amplification of anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, (GGGGS) from-CD 40L-F and pcDNA3.1-CD40L-R3Linker 2+ anti-CD 40L scFv; cloning construction for CD19-CD3-CD40L TsAb _ D was carried out by first amplifying signal peptide fragments using primers pcDNA3.1-Sig-F and Sig-R, and then amplifying gene sequences for anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, IgD hinge region Linker2 and anti-CD 40L scFv using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3-IgD-F and IgD-R, IgD-CD40L-F and pcDNA3.1-CD40L-R, respectively. After amplification, the amplified DNA is used
Figure BDA0001199277720000691
The PCR one-step directional cloning kit (purchased from Wujiang near-shore protein science and technology Co., Ltd.) respectively splices full-length gene sequences of the monomer and dimer three-specificity antibodies, seamlessly clones the full-length gene sequences to a pcDNA3.1 expression vector which is subjected to EcoRI and HindIII linearization treatment, transforms Escherichia coli DH5 alpha, performs positive cloning identification by colony PCR, and performs sequencing identification on recombinants (recombinant plasmids) which are identified to be positive. Then sequencing is positiveThe exact recombinants (recombinant plasmids) were arranged in plasmids and used for transfection of CHO-S cells.
Sequencing revealed that the full-length gene sequences of the monomeric form of CD19-CD3-CD40L TsAb _ M and the dimeric form of CD19-CD3-CD40L TsAb _ D were correct and consistent with the expectations.
Specifically, the nucleotide sequence of the monomeric form of CD19-CD3-CD40L TsAb _ M is shown in SEQ ID NO.33, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGGAGGCGGAGGTTCCGGCGGTGGGGGATCGGGGGGTGGAGGGAGTGAGGTGCAGCTGCTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGCCATGAGCTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCGCCATCAGCGGCAGCGGCGGCAGCACCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCAAGAGCTACGGCGCCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGAGCATCAGCAGCTACCTGAACTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGAGCTACAGCACCCCCAACACCTTCGGCCAGGGCACCAAGGTGGAGATCAAGCGC。
the nucleotide sequence of the dimeric form of CD19-CD3-CD40L TsAb _ D is shown in SEQ ID NO.35, and specifically comprises the following components:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGCCAGCAAGAGCAAGAAGGAGATCTTCCGCTGGCCCGAGAGCCCCAAGGCCCAGGCCAGCAGCGTGCCCACCGCCCAGCCCCAGGCCGAGGGCAGCCTGGCCAAGGCCACCACCGCCCCCGCCACCACCCGCAACACCGGCCGCGGCGGCGAGGAGAAGAAGAAGGAGAAGGAGAAGGAGGAGCAGGAGGAGCGCGAGACCAAGACCCCCGAGTGCCCCAGCCACACCCAGCCCCTGGGCGTGGAGGTGCAGCTGCTGGAGAGCGGCGGCGGCCTGGTGCAGCCCGGCGGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGCCATGAGCTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGAGCGCCATCAGCGGCAGCGGCGGCAGCACCTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCAAGAGCTACGGCGCCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGAGCATCAGCAGCTACCTGAACTGGTACCAGCAGAAGCCCGGCAAGGCCCCCAAGCTGCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGAGCTACAGCACCCCCAACACCTTCGGCCAGGGCACCAAGGTGGAGATCAAGCGC。
TABLE 5 primers used in the cloning of the CD19-CD3-CD40L trispecific antibody Gene
Figure BDA0001199277720000721
Figure BDA0001199277720000731
Example 18: expression and purification of CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D
Expression of CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D
1.1 the passage density of CHO-S cells (purchased from Thermo Fisher Scientific Co.) 1 day before transfection was 0.5-0.6X 106/ml;
1.2. Cell density statistics is carried out on the day of transfection, and when the density is 1-1.4 multiplied by 106Activity/ml>90%, can be used for plasmid transfection;
1.3. preparation of transfection complex: for each project (CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D), two centrifuge tubes/culture flasks were prepared and placed in 20ml containers, respectively, to obtain the recombinant plasmid prepared in example 17:
adding 600 mu l of PBS and 20 mu g of recombinant plasmid into the tube, and uniformly mixing;
add 600. mu.l PBS, 20ul FreeStyleTMMAX Transfection Reagent (available from Thermo Fisher Scientific Co.) and blending;
1.4. adding the diluted transfection reagent into the diluted recombinant plasmid, and uniformly mixing to prepare a transfection compound;
1.5. standing the transfection complex for 15-20 min, and adding a single drop of the transfection complex into the cell culture at a constant speed;
1.6. at 37 ℃ CO2Culturing the transfected cells at 8% concentration and 130rpm of shaker, collecting the culture supernatant after 5 days, and detecting the expression of the target protein
Purification of CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D
2.1 sample pretreatment
Taking 20ml of the transfected cell culture supernatant, adding a buffer solution of 20mM PB and 200mM NaCl to adjust the pH value to 7.5;
2.2Protein L affinity column purification
Protein purification chromatography column: protein L affinity chromatography column (available from GE Healthcare, column volume 1.0ml)
Buffer a (buffer a): PBS, pH7.4
Buffer b (buffer b): 0.1M Glycine, pH3.0
Buffer c (buffer c): 0.1M Glycine, pH2.7
And (3) purification process: the Protein L affinity chromatography column was pretreated with Buffer A using AKTA explorer 100 type Protein purification system (purchased from GE Healthcare), and the culture supernatant was sampled and the effluent was collected. After the sample loading is finished, balancing the chromatographic column by using at least 1.5ml of Buffer A, eluting by using Buffer B and Buffer C respectively after balancing, collecting target protein eluent (1% of 1M Tris needs to be added in advance into a collecting pipe of the eluent, the pH value of the eluent is neutralized by pH8.0, and the final concentration of Tris is about 10mM), and finally concentrating and dialyzing into Buffer PBS.
The final purified recombinant proteins CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D were analyzed by SDS-PAGE, and the electrophoretograms under reducing and non-reducing conditions are shown in FIG. 14. As can be seen from the figure, the purity of both the CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D recombinant proteins was > 95% after purification on Protein L affinity chromatography column: wherein the theoretical molecular weight of the recombinant protein CD19-CD3-CD40L TsAb _ M is 79.2kDa, and the protein presents a single electrophoretic band under reducing and non-reducing conditions, and the molecular weight is consistent with that of a monomer, so that the trispecific antibody is in a monomer form (FIG. 14A); the theoretical molecular weight of the recombinant CD19-CD3-CD40L TsAb _ D protein is 87.1kDa, the electrophoretic band of the protein exhibits a molecular weight consistent with that of a monomer under reducing conditions, and the electrophoretic band exhibits a molecular weight consistent with that of a dimer (about 180kDa) under non-reducing conditions (FIG. 14B), indicating that the two protein molecules can form disulfide bonds through the IgD hinge region to each other, and thus the trispecific antibody is in a dimer form.
In addition, the purified recombinant protein samples are subjected to N/C terminal sequence analysis, and the results show that the expressed recombinant protein samples have no correct reading frame and are consistent with the theoretical N/C terminal amino acid sequence, and mass spectrometry further confirms that CD19-CD3-CD40L TsAb _ M is in a monomer form, and CD19-CD3-CD40L TsAb _ D is in a dimer form.
Therefore, it can be known that the amino acid sequence of the monomeric form of CD19-CD3-CD40L TsAb _ M is shown in SEQ ID No.32, specifically:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSYGAFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPNTFGQGTKVEIKR。
the amino acid sequence of the dimeric form of CD19-CD3-CD40L TsAb _ D is shown in SEQ ID NO.34, and specifically comprises the following components:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSYGAFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPNTFGQGTKVEIKR。
the amino acid sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 40.
The amino acid sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 41.
The amino acid sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 42.
The amino acid sequence of the anti-CD3 scFv is shown in SEQ ID NO. 43.
The amino acid sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 44.
The amino acid sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 45.
The amino acid sequence of the anti-CD 40L scFv is shown in SEQ ID NO.58, and specifically comprises the following steps:
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSYGAFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPNTFGQGTKVEIKR。
the amino acid sequence of the heavy chain variable region of the anti-CD 40L scFv is shown in SEQ ID NO.59, and specifically comprises the following steps:
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSYGAFDYWGQGTLVTVSS。
the amino acid sequence of the light chain variable region of the anti-CD 40L scFv is shown in SEQ ID NO.60, and specifically comprises the following steps:
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPNTFGQGTKVEIKR。
the amino acid sequence of the monomeric CD19-CD3-CD40L TsAb _ M connecting fragment 1(Linker 1) is shown as SEQ ID NO. 1.
The amino acid sequence of the monomeric CD19-CD3-CD40L TsAb _ M connecting fragment 2(Linker 2) is shown as SEQ ID NO. 3.
The amino acid sequence of the dimeric form of CD19-CD3-CD40L TsAb _ D connecting fragment 1(Linker 1) is shown in SEQ ID NO. 5.
The amino acid sequence of the dimeric form of CD19-CD3-CD40L TsAb _ D connecting fragment 2(Linker 2) is shown in SEQ ID NO. 7.
Example 19: ELISA for detecting the antigen binding activity of CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D
ELISA operation steps:
1. recombinant antigen coating: human CD19-hFc, human CD3-hFc and human CD40L-hFc fusion proteins (purchased from Wujiang near-shore protein technologies, Ltd.) were coated on 96-well plates, respectively, with an antigen concentration of 1. mu.g/ml and a coating volume of 100. mu.l/well, under conditions of 1 hour at 37 ℃ or overnight at 4 ℃, and the formulation of coating buffer (PBS) was: 3.58g Na2HPO4,0.24g NaH2PO4,0.2g KCl,8.2g NaCl,950ml H2O, adjusting the pH to 1mol/L HCl or 1mol/L NaOH7.4, supplementing water to 1L;
2. and (3) sealing: after washing the plate 4 times with PBS, blocking solution PBSA (PBS + 2% BSA (V/W)) was added at 200. mu.l/well. Blocking at 37 ℃ for 1 hour;
3. sample adding: after 4 times of PBS plate washing, purified trispecific antibody samples were added, 100. mu.l/well, incubated at 37 ℃ for 1 hour, sample gradient preparation method: taking 10 mu g/ml purified CD19-CD3-CD40L TsAb _ M or CD19-CD3-CD40L TsAb _ D as a starting concentration, carrying out a double-ratio dilution of 6 gradients, wherein each gradient is provided with 2 multiple wells;
4. color development: after washing the plate 4 times with PBST (PBS + 0.05% Tween-20(V/V)), the HRP-labeled chromogenic antibody (purchased from Abcam) was diluted 1/5000 with blocking solution PBSA, added at 100. mu.l/well, and incubated at 37 ℃ for 1 hour. After washing the plate for 4 times with PBS, adding a color developing solution TMB (purchased from KPL company) with 100 mul/hole, and developing for 5-10 minutes at room temperature in a dark place;
5. termination reaction and result determination: add stop solution (1M HCl), 100. mu.l/well, read the absorbance (OD) at 450nm wavelength on a microplate reader450)。
The ELISA results are shown in fig. 15A and 15B: FIG. 15A illustrates that CD19-CD3-CD40L TsAb _ M has in vitro binding activity to recombinant antigens CD19-hFc, CD3-hFc, and CD40L-hFc, with the highest CD40L binding activity and the next lowest CD19 binding activity and the weaker CD3 binding activity; FIG. 15B illustrates that CD19-CD3-CD40L TsAb _ D has in vitro binding activity as well as recombinant antigens CD19-hFc, CD3-hFc and CD40L-hFc, with the highest CD40L binding activity and the second lowest CD19 binding activity and the weaker CD3 binding activity.
Example 20: CD19-CD3-CD40L trispecific antibody mediated cell killing experiment
Using human Peripheral Blood Mononuclear Cells (PBMC) as experimental material, CIK cells (CD 3-CD 3-CD40L TsAb _ M) prepared by the present invention and prepared by using the above monomer form of TiTE trispecific antibody (CD19-CD3-CD40L TsAb _ M), dimer form of TiTE trispecific antibody (CD19-CD3-CD40L TsAb _ D) and anti-CD 19/anti-CD 3 BiTE bispecific antibody (CD19-CD 3BsAb, available from Wujiang Korea protein technology Co., Ltd.) were respectively acted on human PBMC of the same donor origin+CD56+) And CCL-86Raji lymphoma cells (CD 19)+Purchased from ATCC), cell death was detected, and the difference in the killing efficiency of CCL-86Raji target cells by three antibody-mediated CIK effector cells was compared.
Cell killing experiment step:
isolation of PBMC: adding anticoagulant blood of a newly extracted volunteer, adding medical normal saline with the same volume, slowly adding lymphocyte separation liquid (purchased from GE Healthcare) with the same volume with the blood along the wall of a centrifugal tube, keeping the liquid level obviously layered, centrifuging at 2000rpm for 20min, sucking a middle white fog-shaped cell layer into the new centrifugal tube, adding PBS buffer solution with more than 2 times of volume for washing, centrifuging at 1100rpm for 10min, repeatedly washing once, re-suspending with a small amount of pre-cooled X-vivo15 serum-free culture medium (purchased from Lonza), and counting cells for later use;
CIK cell culture and expansion: PBMC were resuspended in CIK basal medium (90% X-vivo15+ 10% FBS) (available from Gbico Co.) to a cell density of 1X 106Adding to full-length antibody Anti-CD3(5ug/ml), full-length antibody Anti-CD28(5ug/ml) and NovoNectin (25ug/ml) coated T25 flasks (both full-length antibody and NovoNectin are from Youjiang Yoshiki protein technology Co., Ltd.), adding cytokine IFN-gamma (200 ng/ml) and IL-1 beta (2 ng/ml) to the flasks, placing in an incubator, and culturing at saturation humidity, 37 deg.C and 5.0% CO2Culturing under the conditions of (1). After overnight culture, adding 500U/ml IL-2 (purchased from Wujiang near-shore protein technology Co., Ltd.) to continue culture, counting every 2-3 days and adding 500U/ml IL-2 into CIK basal medium according to the ratio of 1 × 106Cell passage is carried out at a density of/ml;
killing efficiency of CIK cells against Raji cells: performing cell killing experiment in 96-well plate with reaction volume of 100uL, collecting the above cultured CIK cells at 1 × 105Adding Raji cells at 1X 105Each of the cells (CIK effector cells: Raji target cells (E: T ratio) 1: 1) was inoculated with CD19-CD3BsAb, CD19-CD3-CD40L TsAb _ M and CD19-CD3-CD40L TsAb _ D antibody samples at different final concentrations (25, 12.5, 6.25, 3.125ng/ml), mixed at room temperature for 3 to 5min, co-cultured at 37 ℃ for 3 hours, and then 1 was added to each well0 mul of CCK-8, continuing the reaction for 2-3 h at 37 ℃, and then measuring OD by using an enzyme-labeling instrument450The cell killing efficiency was calculated according to the following formula, and each set of experiments was tested 3 times repeatedly; the cell killing efficiency without any added antibody was also used as a blank.
Figure BDA0001199277720000781
The results are shown in FIG. 16: when CIK effector cells: raji target cells (E: T ratio) 1: 1, under the condition of not adding any antibody, the killing efficiency of the CIK cells to Raji cells for 3h is about 23 percent; under the condition of adding higher concentration of antibody (25, 12.5 and 6.25ng/ml), the killing efficiency of the CIK cells on Raji cells is remarkably improved, wherein the cell killing effect mediated by CD19-CD3-CD40L TsAb _ D is the best, the killing efficiency is about 94%, 90% and 82%, the killing efficiency is the second best of the CD19-CD3-CD40L TsAb _ M, the killing efficiency is about 91%, 88% and 73%, the killing efficiency of CD19-CD3BsAb is the weakest, and the killing efficiency is about 80%, 54% and 54% respectively; the killing efficiency of the CIK cells on Raji cells mediated by CD19-CD3-CD40L TsAb _ D and CD19-CD3-CD40L TsAb _ M is improved to some extent under the condition of adding lower concentration of antibody (3.125ng/ml), the killing efficiency is about 68% and 61%, respectively, and the killing efficiency of CD19-CD3BsAb is basically ineffective compared with a blank control. The results show that the target killing activity of T cells on CD19 positive tumor cells mediated by two forms of CD19-CD3-CD40L TiTE trispecific antibodies is better than that of CD19-CD3 BiTE bispecific antibodies, wherein the dimeric form has better effect than the monomeric form.
Example 21: construction of eukaryotic expression vectors for CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D
In the present invention, the TiTE trispecific antibody targeting the human CD19 protein on the surface of lymphoma B cells, the human CD3 on the surface of T cells and the T cell positive co-stimulatory molecule CD27 protein was named CD19-CD3-CD27 TsAb.
First, CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D construction scheme design
The specific construction scheme of the monomer form of CD19-CD3-CD27TsAb _ M is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-CD 27 scFv are connected by a Linker (Linker), specifically, the sequences of the anti-CD 19 scFv and the anti-CD3 scFv are connected by a Linker 1(Linker 1), and the sequences of the anti-CD3 scFv and the anti-CD 27 scFv are connected by a Linker 2(Linker 2).
The specific construction scheme of the dimer form of CD19-CD3-CD27TsAb _ D is as follows: the sequences of the anti-CD 19 scFv, the anti-CD3 scFv and the anti-CD 27 scFv are connected by a Linker (Linker), specifically, the anti-CD 19 scFv and the anti-CD3 scFv are connected by a Linker 1(Linker 1), and the anti-CD3 scFv and the anti-CD 27 scFv are connected by an IgD hinge region (Ala 90-Val 170) as a Linker 2(Linker 2).
For expression of the trispecific antibody in mammalian cells, the mammalian system expression was codon optimized for the anti-CD 19 scFv, anti-CD3 scFv, and anti-CD 27 scFv sequences.
Specifically, the nucleotide sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 65.
The nucleotide sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 66.
The nucleotide sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 64.
The nucleotide sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 68.
The nucleotide sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 69.
The nucleotide sequence of the anti-CD3 scFv is shown in SEQ ID NO. 67.
The nucleotide sequence of the heavy chain variable region of the anti-CD 27 scFv is shown in SEQ ID NO.86, and specifically comprises the following steps:
CAGGTGCAGCTGGTGGAGAGCGGCGGCGGCGTGGTGCAGCCCGGCCGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGACATGCACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGGCCGTGATCTGGTACGACGGCAGCAACAAGTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCCGCGGCAGCGGCAACTGGGGCTTCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGC。
the nucleotide sequence of the light chain variable region of the anti-CD 27 scFv is shown in SEQ ID NO.87, and specifically comprises the following steps:
GACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACACCTACCCCCGCACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
the nucleotide sequence of the anti-CD 27 scFv is shown in SEQ ID NO.85, and specifically comprises the following steps:
CAGGTGCAGCTGGTGGAGAGCGGCGGCGGCGTGGTGCAGCCCGGCCGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGACATGCACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGGCCGTGATCTGGTACGACGGCAGCAACAAGTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCCGCGGCAGCGGCAACTGGGGCTTCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACACCTACCCCCGCACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
the nucleotide sequence of the monomeric CD19-CD3-CD27TsAb _ M connecting fragment 1(Linker 1) is shown as SEQ ID NO. 2.
The nucleotide sequence of the monomeric CD19-CD3-CD27TsAb _ M connecting fragment 2(Linker 2) is shown as SEQ ID NO. 4.
The nucleotide sequence of the dimeric form of CD19-CD3-CD27TsAb _ D connecting fragment 1(Linker 1) is shown in SEQ ID NO. 6.
The nucleotide sequence of the dimeric form of CD19-CD3-CD27TsAb _ D connecting fragment 2(Linker 2) is shown in SEQ ID NO. 8.
For expression and successful secretion of the trispecific antibody into the culture medium in CHO-S cells, a signal peptide expressed by the antibody secretory type was selected for this example.
The amino acid sequence of the secretory expression signal peptide is shown as SEQ ID NO. 88.
The nucleotide sequence of the secretory expression signal peptide is shown as SEQ ID NO. 89.
Secondly, construction of eukaryotic expression vectors of CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D
The construction and expression of the tri-specific antibody of the invention select a transient expression vector pcDNA3.1 (purchased from Shanghai Ying Jun Biotech Co., Ltd.) of mammalian cell protein. To construct monospecific and dimeric forms of trispecific antibodies, primers as shown in Table 6 were designed, all of which were synthesized by Suzhou Jinzhi Biotech, Inc., and gene templates for amplification were synthesized by Suzhou Hongxin Tech, Inc., respectively.
Cloning construction for CD19-CD3-CD27TsAb _ M Signal peptide fragment was first amplified using primers pcDNA3.1-Sig-F and Sig-R, and then using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3- (GGGGS)3Amplification of anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, (GGGGS) from-CD 27-F and pcDNA3.1-CD27-R3Linker 2+ anti-CD 27 scFv gene sequence; cloning for CD19-CD3-CD27TsAb _ D was carried out by first amplifying signal peptide fragments using primers pcDNA3.1-Sig-F and Sig-R, and then amplifying gene sequences of anti-CD 19 scFv, GGGGS Linker 1+ anti-CD3 scFv, IgD hinge region Linker2 and anti-CD 27 scFv using primers Sig-CD19-F and CD19-R, CD19-G4S-CD3-F and CD3-R, CD3-IgD-F and IgD-R, IgD-CD27-F and pcDNA3.1-CD27-R, respectively. After amplification, the amplified DNA is used
Figure BDA0001199277720000811
The PCR one-step directional cloning kit (purchased from Wujiang near-shore protein science and technology Co., Ltd.) respectively splices full-length gene sequences of the monomer and dimer three-specificity antibodies, seamlessly clones the full-length gene sequences to a pcDNA3.1 expression vector which is subjected to EcoRI and HindIII linearization treatment, transforms Escherichia coli DH5 alpha, performs positive cloning identification by colony PCR, and performs sequencing identification on recombinants (recombinant plasmids) which are identified to be positive. The correctly sequenced recombinants (recombinant plasmids) were then mapped into plasmids and used for transfection of CHO-S cells.
Sequencing revealed that the full-length gene sequences of the monomeric form of CD19-CD3-CD27TsAb _ M and the dimeric form of CD19-CD3-CD27TsAb _ D were correct and consistent with the expectations.
Specifically, the nucleotide sequence of the monomeric form of CD19-CD3-CD27TsAb _ M is shown in SEQ ID NO.37, and specifically comprises:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGGAGGCGGAGGTTCCGGCGGTGGGGGATCGGGGGGTGGAGGGAGTCAGGTGCAGCTGGTGGAGAGCGGCGGCGGCGTGGTGCAGCCCGGCCGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGACATGCACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGGCCGTGATCTGGTACGACGGCAGCAACAAGTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCCGCGGCAGCGGCAACTGGGGCTTCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACACCTACCCCCGCACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
the nucleotide sequence of the dimeric form of CD19-CD3-CD27TsAb _ D is shown in SEQ ID NO.39, and specifically comprises the following components:
GACATCCAGCTGACCCAGAGCCCCGCCAGCCTGGCCGTGAGCCTGGGCCAGCGCGCCACCATCAGCTGCAAGGCCAGCCAGAGCGTGGACTACGACGGCGACAGCTACCTGAACTGGTACCAGCAGATCCCCGGCCAGCCCCCCAAGCTGCTGATCTACGACGCCAGCAACCTGGTGAGCGGCATCCCCCCCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAACATCCACCCCGTGGAGAAGGTGGACGCCGCCACCTACCACTGCCAGCAGAGCACCGAGGACCCCTGGACCTTCGGCGGCGGCACCAAGCTGGAGATCAAGGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCCAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGCGCCCCGGCAGCAGCGTGAAGATCAGCTGCAAGGCCAGCGGCTACGCCTTCAGCAGCTACTGGATGAACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCCAGATCTGGCCCGGCGACGGCGACACCAACTACAACGGCAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACGAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGGCCAGCGAGGACAGCGCCGTGTACTTCTGCGCCCGCCGCGAGACCACCACCGTGGGCCGCTACTACTACGCCATGGACTACTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGTGGCGGAGGGTCCGACATCAAGCTGCAGCAGAGCGGCGCCGAGCTGGCCCGCCCCGGCGCCAGCGTGAAGATGAGCTGCAAGACCAGCGGCTACACCTTCACCCGCTACACCATGCACTGGGTGAAGCAGCGCCCCGGCCAGGGCCTGGAGTGGATCGGCTACATCAACCCCAGCCGCGGCTACACCAACTACAACCAGAAGTTCAAGGACAAGGCCACCCTGACCACCGACAAGAGCAGCAGCACCGCCTACATGCAGCTGAGCAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCGCCCGCTACTACGACGACCACTACTGCCTGGACTACTGGGGCCAGGGCACCACCCTGACCGTGAGCAGCGTGGAGGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCAGCGGCGGCGTGGACGACATCCAGCTGACCCAGAGCCCCGCCATCATGAGCGCCAGCCCCGGCGAGAAGGTGACCATGACCTGCCGCGCCAGCAGCAGCGTGAGCTACATGAACTGGTACCAGCAGAAGAGCGGCACCAGCCCCAAGCGCTGGATCTACGACACCAGCAAGGTGGCCAGCGGCGTGCCCTACCGCTTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGCCGAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCCTGACCTTCGGCGCCGGCACCAAGCTGGAGCTGAAGGCCAGCAAGAGCAAGAAGGAGATCTTCCGCTGGCCCGAGAGCCCCAAGGCCCAGGCCAGCAGCGTGCCCACCGCCCAGCCCCAGGCCGAGGGCAGCCTGGCCAAGGCCACCACCGCCCCCGCCACCACCCGCAACACCGGCCGCGGCGGCGAGGAGAAGAAGAAGGAGAAGGAGAAGGAGGAGCAGGAGGAGCGCGAGACCAAGACCCCCGAGTGCCCCAGCCACACCCAGCCCCTGGGCGTGCAGGTGCAGCTGGTGGAGAGCGGCGGCGGCGTGGTGCAGCCCGGCCGCAGCCTGCGCCTGAGCTGCGCCGCCAGCGGCTTCACCTTCAGCAGCTACGACATGCACTGGGTGCGCCAGGCCCCCGGCAAGGGCCTGGAGTGGGTGGCCGTGATCTGGTACGACGGCAGCAACAAGTACTACGCCGACAGCGTGAAGGGCCGCTTCACCATCAGCCGCGACAACAGCAAGAACACCCTGTACCTGCAGATGAACAGCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCCGCGGCAGCGGCAACTGGGGCTTCTTCGACTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGACATCCAGATGACCCAGAGCCCCAGCAGCCTGAGCGCCAGCGTGGGCGACCGCGTGACCATCACCTGCCGCGCCAGCCAGGGCATCAGCCGCTGGCTGGCCTGGTACCAGCAGAAGCCCGAGAAGGCCCCCAAGAGCCTGATCTACGCCGCCAGCAGCCTGCAGAGCGGCGTGCCCAGCCGCTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAACACCTACCCCCGCACCTTCGGCCAGGGCACCAAGGTGGAGATCAAG。
TABLE 6 primers used in the cloning of the CD19-CD3-CD27 trispecific antibody Gene
Figure BDA0001199277720000841
Example 22: expression and purification of CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D
Expression of CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D
1.1 the passage density of CHO-S cells (purchased from Thermo Fisher Scientific Co.) 1 day before transfection was 0.5-0.6X 106/ml;
1.2. Cell density statistics is carried out on the day of transfection, and when the density is 1-1.4 multiplied by 106Activity/ml>90%, can be used for plasmid transfection;
1.3. preparation of transfection complex: for each project (CD19-CD3-CD27 TsAb _ M and CD19-CD3-CD27TsAb _ D), two centrifuge tubes/culture flasks were prepared, each placed at 20ml, and the recombinant plasmids prepared in example 21 were taken:
adding 600 mu l of PBS and 20 mu g of recombinant plasmid into the tube, and uniformly mixing;
add 600. mu.l PBS, 20ul FreeStyleTMMAX Transfection Reagent (available from Thermo Fisher Scientific Co.) and blending;
1.4. adding the diluted transfection reagent into the diluted recombinant plasmid, and uniformly mixing to prepare a transfection compound;
1.5. standing the transfection complex for 15-20 min, and adding a single drop of the transfection complex into the cell culture at a constant speed;
1.6. at 37 ℃ CO2Culturing the transfected cells at 8% concentration and 130rpm of shaker, collecting the culture supernatant after 5 days, and detecting the expression of the target protein
Purification of CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D
2.1 sample pretreatment
Taking 20ml of the transfected cell culture supernatant, adding a buffer solution of 20mM PB and 200mM NaCl to adjust the pH value to 7.5;
2.2Protein L affinity column purification
Protein purification chromatography column: protein L affinity chromatography column (available from GE Healthcare, column volume 1.0ml)
Buffer a (buffer a): PBS, pH7.4
Buffer b (buffer b): 0.1M Glycine, pH3.0
Buffer c (buffer c): 0.1M Glycine, pH2.7
And (3) purification process: the Protein L affinity chromatography column was pretreated with Buffer A using AKTA explorer 100 type Protein purification system (purchased from GE Healthcare), and the culture supernatant was sampled and the effluent was collected. After the sample loading is finished, balancing the chromatographic column by using at least 1.5ml of Buffer A, eluting by using Buffer B and Buffer C respectively after balancing, collecting target protein eluent (1% of 1M Tris needs to be added in advance into a collecting pipe of the eluent, the pH value of the eluent is neutralized by pH8.0, and the final concentration of Tris is about 10mM), and finally concentrating and dialyzing into Buffer PBS.
The final purified recombinant proteins CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D were analyzed by SDS-PAGE, and the electrophoretograms under reducing and non-reducing conditions are shown in FIG. 17. As can be seen from the figure, the purity of both the CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D recombinant proteins was > 95% after purification on a Protein L affinity column: wherein the theoretical molecular weight of the recombinant protein CD19-CD3-CD27TsAb _ M is 80.1kDa, and the protein presents a single electrophoretic band under reducing and non-reducing conditions, and the molecular weight is consistent with that of a monomer, so that the trispecific antibody is in a monomer form (FIG. 17A); the theoretical molecular weight of the recombinant CD19-CD3-CD27TsAb _ D protein is 88.0kDa, the electrophoretic band of the protein exhibits a molecular weight consistent with that of a monomer under reducing conditions, and the electrophoretic band exhibits a molecular weight consistent with that of a dimer (about 180kDa) under non-reducing conditions (FIG. 17B), indicating that the two protein molecules can form disulfide bonds through the IgD hinge region to each other, and thus the trispecific antibody is in a dimer form.
In addition, the purified recombinant protein samples are subjected to N/C terminal sequence analysis, and the results show that the expressed recombinant protein samples have no reading frame and are consistent with the theoretical N/C terminal amino acid sequence, and mass spectrometry further confirms that CD19-CD3-CD27TsAb _ M is in a monomer form, and CD19-CD3-CD27TsAb _ D is in a dimer form.
Therefore, it can be known that the amino acid sequence of the monomeric form of CD19-CD3-CD27TsAb _ M is shown in SEQ ID No.36, specifically:
DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKGGGGSGGGGSGGGGSQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSGNWGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGISRWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNTYPRTFGQGTKVEIK。
the amino acid sequence of the dimeric form of CD19-CD3-CD27TsAb _ D is shown in SEQ ID NO.38, and specifically comprises the following components: DIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKVDAATYHCQQSTEDPWTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGSSVKISCKASGYAFSSYWMNWVKQRPGQGLEWIGQIWPGDGDTNYNGKFKGKATLTADESSSTAYMQLSSLASEDSAVYFCARRETTTVGRYYYAMDYWGQGTTVTVSSGGGGSDIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELKASKSKKEIFRWPESPKAQASSVPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERETKTPECPSHTQPLGVQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSGNWGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGISRWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNTYPRTFGQGTKVEIK are provided.
The amino acid sequence of the anti-CD 19 scFv is shown in SEQ ID NO. 40.
The amino acid sequence of the heavy chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 41.
The amino acid sequence of the light chain variable region of the anti-CD 19 scFv is shown in SEQ ID NO. 42.
The amino acid sequence of the anti-CD3 scFv is shown in SEQ ID NO. 43.
The amino acid sequence of the heavy chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 44.
The amino acid sequence of the light chain variable region of the anti-CD3 scFv is shown in SEQ ID NO. 45.
The amino acid sequence of the anti-CD 27 scFv is shown as SEQ ID NO.61, and specifically comprises the following steps:
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSGNWGFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGISRWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNTYPRTFGQGTKVEIK。
the amino acid sequence of the heavy chain variable region of the anti-CD 27 scFv is shown in SEQ ID NO.62, and specifically comprises the following steps:
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYDMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSGNWGFFDYWGQGTLVTVSS。
the amino acid sequence of the light chain variable region of the anti-CD 27 scFv is shown in SEQ ID NO.63, and specifically comprises the following steps:
DIQMTQSPSSLSASVGDRVTITCRASQGISRWLAWYQQKPEKAPKSLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYNTYPRTFGQGTKVEIK。
the amino acid sequence of the monomeric CD19-CD3-CD27TsAb _ M connecting fragment 1(Linker 1) is shown as SEQ ID NO. 1.
The amino acid sequence of the monomeric CD19-CD3-CD27TsAb _ M connecting fragment 2(Linker 2) is shown as SEQ ID NO. 3.
The amino acid sequence of the dimeric form of CD19-CD3-CD27TsAb _ D connecting fragment 1(Linker 1) is shown in SEQ ID NO. 5.
The amino acid sequence of the dimeric form of CD19-CD3-CD27TsAb _ D connecting fragment 2(Linker 2) is shown in SEQ ID NO. 7.
Example 23: ELISA for detecting the antigen binding activity of CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D
ELISA operation steps:
1. recombinant antigen coating: human CD19-hFc, human CD3-hFc and human CD27-hFc fusion proteins (purchased from Wujiang near-shore protein technologies, Ltd.) were coated on 96-well plates, respectively, with an antigen concentration of 1. mu.g/ml and a coating volume of 100. mu.l/well, under the conditions of 1 hour at 37 ℃ or overnight at 4 ℃, and the formulation of coating buffer (PBS) was: 3.58g Na2HPO4,0.24g NaH2PO4,0.2g KCl,8.2g NaCl,950ml H2O, adjusting the pH value to 7.4 by using 1mol/L HCl or 1mol/L NaOH, and supplementing water to 1L;
2. and (3) sealing: after washing the plate 4 times with PBS, blocking solution PBSA (PBS + 2% BSA (V/W)) was added at 200. mu.l/well. Blocking at 37 ℃ for 1 hour;
3. sample adding: after 4 times of PBS plate washing, purified trispecific antibody samples were added, 100. mu.l/well, incubated at 37 ℃ for 1 hour, sample gradient preparation method: taking 10 mu g/ml purified CD19-CD3-CD27TsAb _ M or CD19-CD3-CD27TsAb _ D as a starting concentration, carrying out a dilution by multiple of 6 gradients, wherein each gradient is provided with 2 duplicate wells;
4. color development: after washing the plate 4 times with PBST (PBS + 0.05% Tween-20(V/V)), the HRP-labeled chromogenic antibody (purchased from Abcam) was diluted 1/5000 with blocking solution PBSA, added at 100. mu.l/well, and incubated at 37 ℃ for 1 hour. After washing the plate for 4 times with PBS, adding a color developing solution TMB (purchased from KPL company) with 100 mul/hole, and developing for 5-10 minutes at room temperature in a dark place;
5. termination reaction and result determination: add stop solution (1M HCl), 100. mu.l/well, read the absorbance (OD) at 450nm wavelength on a microplate reader450)。
The ELISA results are shown in fig. 18A and 18B: FIG. 18A illustrates that CD19-CD3-CD27TsAb _ M has in vitro binding activity to recombinant antigens CD19-hFc, CD3-hFc, and CD27-hFc, with the highest CD27 binding activity and the second lowest CD19 binding activity, and the weaker CD3 binding activity; FIG. 18B illustrates that CD19-CD3-CD27TsAb _ D also has in vitro binding activity with recombinant antigens CD19-hFc, CD3-hFc, and CD27-hFc, with the highest CD27 binding activity and the second lowest CD19 binding activity, and the weaker CD3 binding activity.
Example 24: CD19-CD3-CD27 trispecific antibody mediated cell killing experiment
Using human Peripheral Blood Mononuclear Cells (PBMC) as experimental material, the monomeric form of the TiTE trispecific antibody (CD19-CD3-CD27 TsAb _ M), the dimeric form of the TiTE trispecific antibody (CD19-CD3-CD27 TsAb _ D) and the anti-CD 19/anti-CD 3 BiTE bispecific antibody (CD19-CD 3BsAb, available from Wujiang Korea protein technology Co., Ltd.) prepared by the present invention were allowed to act on human PBMC (CD3 PBMC) of the same donor source+CD56+) And CCL-86Raji lymphoma cells (CD 19)+Purchased from ATCC), cell death was detected, and the difference in the killing efficiency of CCL-86Raji target cells by three antibody-mediated CIK effector cells was compared.
Cell killing experiment step:
isolation of PBMC: adding anticoagulant blood of a newly extracted volunteer, adding medical normal saline with the same volume, slowly adding lymphocyte separation liquid (purchased from GE Healthcare) with the same volume with the blood along the wall of a centrifugal tube, keeping the liquid level obviously layered, centrifuging at 2000rpm for 20min, sucking a middle white fog-shaped cell layer into the new centrifugal tube, adding PBS buffer solution with more than 2 times of volume for washing, centrifuging at 1100rpm for 10min, repeatedly washing once, re-suspending with a small amount of pre-cooled X-vivo15 serum-free culture medium (purchased from Lonza), and counting cells for later use;
CIK cell culture and expansion: PBMC were resuspended in CIK basal medium (90% X-vivo15+ 10% FBS) (available from Gbico Co.) to a cell density of 1X 106Adding to full-length antibody Anti-CD3(5ug/ml), full-length antibody Anti-CD28(5ug/ml) and NovoNectin (25ug/ml) coated T25 flasks (both full-length antibody and NovoNectin are from Youjiang Yoshiki protein technology Co., Ltd.), adding cytokine IFN-gamma (200 ng/ml) and IL-1 beta (2 ng/ml) to the flasks, placing in an incubator, and culturing at saturation humidity, 37 deg.C and 5.0% CO2Culturing under the conditions of (1). After overnight culture, adding 500U/ml IL-2 (purchased from Wujiang near-shore protein technology Co., Ltd.) to continue culture, counting every 2-3 days and adding 500U/ml IL-2 into CIK basal medium according to the ratio of 1 × 106Cell passage is carried out at a density of/ml;
killing efficiency of CIK cells against Raji cells: performing cell killing experiment in 96-well plate with reaction volume of 100uL, collecting the above cultured CIK cells at 1 × 105Adding Raji cells at 1X 105Separately (CIK effector cells: Raji target cells (E: T ratio) 1: 1), respectively adding CD19-CD3BsAb, CD19-CD3-CD27TsAb _ M and CD19-CD3-CD27TsAb _ D antibody samples with different final concentrations (25, 12.5, 6.25 and 3.125ng/ml), uniformly mixing at room temperature for 3-5 min, co-culturing at 37 ℃ for 3h, adding 10 mul of CCK-8 into each well, continuously reacting at 37 ℃ for 2-3 h, and then measuring OD by using an enzyme reader450The cell killing efficiency was calculated according to the following formula, and each set of experiments was tested 3 times repeatedly; the cell killing efficiency without any added antibody was also used as a blank.
Figure BDA0001199277720000891
The results are shown in FIG. 19: when CIK effector cells: raji target cells (E: T ratio) 1: 1, under the condition of not adding any antibody, the killing efficiency of the CIK cells to Raji cells for 3h is about 23 percent; under the condition of adding higher concentration of antibody (25, 12.5 and 6.25ng/ml), the killing efficiency of the CIK cells on Raji cells is remarkably improved, wherein the cell killing effect mediated by CD19-CD3-CD27TsAb _ D is the best, the killing efficiency is respectively about 89%, 84% and 74%, the killing efficiency is the second best of the killing efficiency of CD19-CD3-CD27TsAb _ M, the killing efficiency is respectively about 89%, 84% and 67%, the killing efficiency of CD19-CD3BsAb is the weakest, and the killing efficiency is respectively about 80%, 54% and 54%; with the addition of lower concentrations of antibody (3.125ng/ml), the killing efficiency of the CIK cells on Raji cells mediated by CD19-CD3-CD27TsAb _ D and CD19-CD3-CD27TsAb _ M is still improved to some extent, the killing efficiency is about 55% and 49%, respectively, and the killing efficiency of CD19-CD3BsAb is basically ineffective compared with the blank control. The results show that the target killing activity of T cells on CD19 positive tumor cells mediated by two forms of CD19-CD3-CD27 TiTE trispecific antibodies is better than that of CD19-CD3 BiTE bispecific antibodies, wherein the dimeric form has better effect than the monomeric form.
While the invention has been described with respect to a preferred embodiment, it will be understood by those skilled in the art that the foregoing and other changes, omissions and deviations in the form and detail thereof may be made without departing from the scope of this invention. Those skilled in the art can make various changes, modifications and equivalent arrangements, which are equivalent to the embodiments of the present invention, without departing from the spirit and scope of the present invention, and which may be made by utilizing the techniques disclosed above; meanwhile, any changes, modifications and variations of the above-described embodiments, which are equivalent to those of the technical spirit of the present invention, are within the scope of the technical solution of the present invention.
SEQUENCE LISTING
<110> Shanghai offshore Biotechnology Ltd
<120> a trifunctional molecule combining CD19, CD3 and T cell positive co-stimulatory molecule and application thereof
<130> 164332
<160> 115
<170> PatentIn version 3.3
<210> 1
<211> 5
<212> PRT
<213> Artificial
<220>
<223> of linker fragment 1 in anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody in monomeric form
Amino acid sequence
<400> 1
Gly Gly Gly Gly Ser
1 5
<210> 2
<211> 15
<212> DNA
<213> Artificial
<220>
<223> of linker fragment 1 in anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody in monomeric form
Nucleotide sequence
<400> 2
ggtggcggag ggtcc 15
<210> 3
<211> 15
<212> PRT
<213> Artificial
<220>
<223> of linker fragment 2 in monomeric form of anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody
Amino acid sequence
<400> 3
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
1 5 10 15
<210> 4
<211> 45
<212> DNA
<213> Artificial
<220>
<223> of linker fragment 2 in monomeric form of anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody
Nucleotide sequence
<400> 4
ggaggcggag gttccggcgg tgggggatcg gggggtggag ggagt 45
<210> 5
<211> 5
<212> PRT
<213> Artificial
<220>
<223> linker fragment in dimeric form of anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody
1 amino acid sequence
<400> 5
Gly Gly Gly Gly Ser
1 5
<210> 6
<211> 15
<212> DNA
<213> Artificial
<220>
<223> linker fragment in dimeric form of anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody
1 nucleotide sequence
<400> 6
ggtggcggag ggtcc 15
<210> 7
<211> 81
<212> PRT
<213> Artificial
<220>
<223> linker fragment in dimeric form of anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody
2, or a pharmaceutically acceptable salt thereof
<400> 7
Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu Ser Pro Lys
1 5 10 15
Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln Ala Glu Gly Ser
20 25 30
Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr Gly Arg
35 40 45
Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln Glu Glu
50 55 60
Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro Leu Gly
65 70 75 80
Val
<210> 8
<211> 243
<212> DNA
<213> Artificial
<220>
<223> linker fragment in dimeric form of anti-CD 19/anti-CD 3/anti-T cell positive costimulatory molecule trispecific antibody
2, or a pharmaceutically acceptable salt thereof
<400> 8
gccagcaaga gcaagaagga gatcttccgc tggcccgaga gccccaaggc ccaggccagc 60
agcgtgccca ccgcccagcc ccaggccgag ggcagcctgg ccaaggccac caccgccccc 120
gccaccaccc gcaacaccgg ccgcggcggc gaggagaaga agaaggagaa ggagaaggag 180
gagcaggagg agcgcgagac caagaccccc gagtgcccca gccacaccca gcccctgggc 240
gtg 243
<210> 9
<211> 134
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of extracellular region of T cell positive co-stimulatory molecule human CD28
<400> 9
Asn Lys Ile Leu Val Lys Gln Ser Pro Met Leu Val Ala Tyr Asp Asn
1 5 10 15
Ala Val Asn Leu Ser Cys Lys Tyr Ser Tyr Asn Leu Phe Ser Arg Glu
20 25 30
Phe Arg Ala Ser Leu His Lys Gly Leu Asp Ser Ala Val Glu Val Cys
35 40 45
Val Val Tyr Gly Asn Tyr Ser Gln Gln Leu Gln Val Tyr Ser Lys Thr
50 55 60
Gly Phe Asn Cys Asp Gly Lys Leu Gly Asn Glu Ser Val Thr Phe Tyr
65 70 75 80
Leu Gln Asn Leu Tyr Val Asn Gln Thr Asp Ile Tyr Phe Cys Lys Ile
85 90 95
Glu Val Met Tyr Pro Pro Pro Tyr Leu Asp Asn Glu Lys Ser Asn Gly
100 105 110
Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro Ser Pro Leu Phe
115 120 125
Pro Gly Pro Ser Lys Pro
130
<210> 10
<211> 163
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of human 4-1BB extracellular domain of T cell positive co-stimulatory molecule
<400> 10
Leu Gln Asp Pro Cys Ser Asn Cys Pro Ala Gly Thr Phe Cys Asp Asn
1 5 10 15
Asn Arg Asn Gln Ile Cys Ser Pro Cys Pro Pro Asn Ser Phe Ser Ser
20 25 30
Ala Gly Gly Gln Arg Thr Cys Asp Ile Cys Arg Gln Cys Lys Gly Val
35 40 45
Phe Arg Thr Arg Lys Glu Cys Ser Ser Thr Ser Asn Ala Glu Cys Asp
50 55 60
Cys Thr Pro Gly Phe His Cys Leu Gly Ala Gly Cys Ser Met Cys Glu
65 70 75 80
Gln Asp Cys Lys Gln Gly Gln Glu Leu Thr Lys Lys Gly Cys Lys Asp
85 90 95
Cys Cys Phe Gly Thr Phe Asn Asp Gln Lys Arg Gly Ile Cys Arg Pro
100 105 110
Trp Thr Asn Cys Ser Leu Asp Gly Lys Ser Val Leu Val Asn Gly Thr
115 120 125
Lys Glu Arg Asp Val Val Cys Gly Pro Ser Pro Ala Asp Leu Ser Pro
130 135 140
Gly Ala Ser Ser Val Thr Pro Pro Ala Pro Ala Arg Glu Pro Gly His
145 150 155 160
Ser Pro Gln
<210> 11
<211> 120
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of human ICOS extracellular domain of T cell positive co-stimulatory molecule
<400> 11
Glu Ile Asn Gly Ser Ala Asn Tyr Glu Met Phe Ile Phe His Asn Gly
1 5 10 15
Gly Val Gln Ile Leu Cys Lys Tyr Pro Asp Ile Val Gln Gln Phe Lys
20 25 30
Met Gln Leu Leu Lys Gly Gly Gln Ile Leu Cys Asp Leu Thr Lys Thr
35 40 45
Lys Gly Ser Gly Asn Thr Val Ser Ile Lys Ser Leu Lys Phe Cys His
50 55 60
Ser Gln Leu Ser Asn Asn Ser Val Ser Phe Phe Leu Tyr Asn Leu Asp
65 70 75 80
His Ser His Ala Asn Tyr Tyr Phe Cys Asn Leu Ser Ile Phe Asp Pro
85 90 95
Pro Pro Phe Lys Val Thr Leu Thr Gly Gly Tyr Leu His Ile Tyr Glu
100 105 110
Ser Gln Leu Cys Cys Gln Leu Lys
115 120
<210> 12
<211> 186
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of human OX40 extracellular region of T cell positive co-stimulatory molecule
<400> 12
Leu His Cys Val Gly Asp Thr Tyr Pro Ser Asn Asp Arg Cys Cys His
1 5 10 15
Glu Cys Arg Pro Gly Asn Gly Met Val Ser Arg Cys Ser Arg Ser Gln
20 25 30
Asn Thr Val Cys Arg Pro Cys Gly Pro Gly Phe Tyr Asn Asp Val Val
35 40 45
Ser Ser Lys Pro Cys Lys Pro Cys Thr Trp Cys Asn Leu Arg Ser Gly
50 55 60
Ser Glu Arg Lys Gln Leu Cys Thr Ala Thr Gln Asp Thr Val Cys Arg
65 70 75 80
Cys Arg Ala Gly Thr Gln Pro Leu Asp Ser Tyr Lys Pro Gly Val Asp
85 90 95
Cys Ala Pro Cys Pro Pro Gly His Phe Ser Pro Gly Asp Asn Gln Ala
100 105 110
Cys Lys Pro Trp Thr Asn Cys Thr Leu Ala Gly Lys His Thr Leu Gln
115 120 125
Pro Ala Ser Asn Ser Ser Asp Ala Ile Cys Glu Asp Arg Asp Pro Pro
130 135 140
Ala Thr Gln Pro Gln Glu Thr Gln Gly Pro Pro Ala Arg Pro Ile Thr
145 150 155 160
Val Gln Pro Thr Glu Ala Trp Pro Arg Thr Ser Gln Gly Pro Ser Thr
165 170 175
Arg Pro Val Glu Val Pro Gly Gly Arg Ala
180 185
<210> 13
<211> 137
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of human GITR extracellular domain of T cell positive co-stimulatory molecule
<400> 13
Gln Arg Pro Thr Gly Gly Pro Gly Cys Gly Pro Gly Arg Leu Leu Leu
1 5 10 15
Gly Thr Gly Thr Asp Ala Arg Cys Cys Arg Val His Thr Thr Arg Cys
20 25 30
Cys Arg Asp Tyr Pro Gly Glu Glu Cys Cys Ser Glu Trp Asp Cys Met
35 40 45
Cys Val Gln Pro Glu Phe His Cys Gly Asp Pro Cys Cys Thr Thr Cys
50 55 60
Arg His His Pro Cys Pro Pro Gly Gln Gly Val Gln Ser Gln Gly Lys
65 70 75 80
Phe Ser Phe Gly Phe Gln Cys Ile Asp Cys Ala Ser Gly Thr Phe Ser
85 90 95
Gly Gly His Glu Gly His Cys Lys Pro Trp Thr Asp Cys Thr Gln Phe
100 105 110
Gly Phe Leu Thr Val Phe Pro Gly Asn Lys Thr His Asn Ala Val Cys
115 120 125
Val Pro Gly Ser Pro Pro Ala Glu Pro
130 135
<210> 14
<211> 215
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of extracellular region of T cell positive co-stimulatory molecule human CD40L
<400> 14
His Arg Arg Leu Asp Lys Ile Glu Asp Glu Arg Asn Leu His Glu Asp
1 5 10 15
Phe Val Phe Met Lys Thr Ile Gln Arg Cys Asn Thr Gly Glu Arg Ser
20 25 30
Leu Ser Leu Leu Asn Cys Glu Glu Ile Lys Ser Gln Phe Glu Gly Phe
35 40 45
Val Lys Asp Ile Met Leu Asn Lys Glu Glu Thr Lys Lys Glu Asn Ser
50 55 60
Phe Glu Met Gln Lys Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val
65 70 75 80
Ile Ser Glu Ala Ser Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu
85 90 95
Lys Gly Tyr Tyr Thr Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly
100 105 110
Lys Gln Leu Thr Val Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln
115 120 125
Val Thr Phe Cys Ser Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile
130 135 140
Ala Ser Leu Cys Leu Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu
145 150 155 160
Arg Ala Ala Asn Thr His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser
165 170 175
Ile His Leu Gly Gly Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe
180 185 190
Val Asn Val Thr Asp Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr
195 200 205
Ser Phe Gly Leu Leu Lys Leu
210 215
<210> 15
<211> 172
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of extracellular region of T cell positive co-stimulatory molecule human CD27
<400> 15
Ala Thr Pro Ala Pro Lys Ser Cys Pro Glu Arg His Tyr Trp Ala Gln
1 5 10 15
Gly Lys Leu Cys Cys Gln Met Cys Glu Pro Gly Thr Phe Leu Val Lys
20 25 30
Asp Cys Asp Gln His Arg Lys Ala Ala Gln Cys Asp Pro Cys Ile Pro
35 40 45
Gly Val Ser Phe Ser Pro Asp His His Thr Arg Pro His Cys Glu Ser
50 55 60
Cys Arg His Cys Asn Ser Gly Leu Leu Val Arg Asn Cys Thr Ile Thr
65 70 75 80
Ala Asn Ala Glu Cys Ala Cys Arg Asn Gly Trp Gln Cys Arg Asp Lys
85 90 95
Glu Cys Thr Glu Cys Asp Pro Leu Pro Asn Pro Ser Leu Thr Ala Arg
100 105 110
Ser Ser Gln Ala Leu Ser Pro His Pro Gln Pro Thr His Leu Pro Tyr
115 120 125
Val Ser Glu Met Leu Glu Ala Arg Thr Ala Gly His Met Gln Thr Leu
130 135 140
Ala Asp Phe Arg Gln Leu Pro Ala Arg Thr Leu Ser Thr His Trp Pro
145 150 155 160
Pro Gln Arg Ser Leu Cys Ser Ser Asp Phe Ile Arg
165 170
<210> 16
<211> 759
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-4-1BB TsAb _ M in monomer form
<400> 16
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
500 505 510
Ser Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser
515 520 525
Glu Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly
530 535 540
Tyr Tyr Trp Ser Trp Ile Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp
545 550 555 560
Ile Gly Glu Ile Asn His Gly Gly Tyr Val Thr Tyr Asn Pro Ser Leu
565 570 575
Glu Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser
580 585 590
Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
595 600 605
Ala Arg Asp Tyr Gly Pro Gly Asn Tyr Asp Trp Tyr Phe Asp Leu Trp
610 615 620
Gly Arg Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
625 630 635 640
Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser
645 650 655
Pro Ala Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys
660 665 670
Arg Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys
675 680 685
Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala
690 695 700
Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
705 710 715 720
Thr Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr
725 730 735
Cys Gln Gln Arg Ser Asn Trp Pro Pro Ala Leu Thr Phe Cys Gly Gly
740 745 750
Thr Lys Val Glu Ile Lys Arg
755
<210> 17
<211> 2277
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-4-1BB TsAb _ M in monomer form
<400> 17
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaagggaggc 1500
ggaggttccg gcggtggggg atcggggggt ggagggagtc aggtgcagct gcagcagtgg 1560
ggcgccggcc tgctgaagcc cagcgagacc ctgagcctga cctgcgccgt gtacggcggc 1620
agcttcagcg gctactactg gagctggatc cgccagagcc ccgagaaggg cctggagtgg 1680
atcggcgaga tcaaccacgg cggctacgtg acctacaacc ccagcctgga gagccgcgtg 1740
accatcagcg tggacaccag caagaaccag ttcagcctga agctgagcag cgtgaccgcc 1800
gccgacaccg ccgtgtacta ctgcgcccgc gactacggcc ccggcaacta cgactggtac 1860
ttcgacctgt ggggccgcgg caccctggtg accgtgagca gcggcggcgg cggcagcggc 1920
ggcggcggca gcggcggcgg cggcagcgag atcgtgctga cccagagccc cgccaccctg 1980
agcctgagcc ccggcgagcg cgccaccctg agctgccgcg ccagccagag cgtgagcagc 2040
tacctggcct ggtaccagca gaagcccggc caggcccccc gcctgctgat ctacgacgcc 2100
agcaaccgcg ccaccggcat ccccgcccgc ttcagcggca gcggcagcgg caccgacttc 2160
accctgacca tcagcagcct ggagcccgag gacttcgccg tgtactactg ccagcagcgc 2220
agcaactggc cccccgccct gaccttctgc ggcggcacca aggtggagat caagcgc 2277
<210> 18
<211> 825
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-4-1BB TsAb _ D in dimer form
<400> 18
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu Ser
500 505 510
Pro Lys Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln Ala Glu
515 520 525
Gly Ser Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr
530 535 540
Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln
545 550 555 560
Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro
565 570 575
Leu Gly Val Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys
580 585 590
Pro Ser Glu Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe
595 600 605
Ser Gly Tyr Tyr Trp Ser Trp Ile Arg Gln Ser Pro Glu Lys Gly Leu
610 615 620
Glu Trp Ile Gly Glu Ile Asn His Gly Gly Tyr Val Thr Tyr Asn Pro
625 630 635 640
Ser Leu Glu Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln
645 650 655
Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr
660 665 670
Tyr Cys Ala Arg Asp Tyr Gly Pro Gly Asn Tyr Asp Trp Tyr Phe Asp
675 680 685
Leu Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly
690 695 700
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr
705 710 715 720
Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu
725 730 735
Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln
740 745 750
Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser Asn
755 760 765
Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr
770 775 780
Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val
785 790 795 800
Tyr Tyr Cys Gln Gln Arg Ser Asn Trp Pro Pro Ala Leu Thr Phe Cys
805 810 815
Gly Gly Thr Lys Val Glu Ile Lys Arg
820 825
<210> 19
<211> 2475
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-4-1BB TsAb _ D in dimeric form
<400> 19
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaaggccagc 1500
aagagcaaga aggagatctt ccgctggccc gagagcccca aggcccaggc cagcagcgtg 1560
cccaccgccc agccccaggc cgagggcagc ctggccaagg ccaccaccgc ccccgccacc 1620
acccgcaaca ccggccgcgg cggcgaggag aagaagaagg agaaggagaa ggaggagcag 1680
gaggagcgcg agaccaagac ccccgagtgc cccagccaca cccagcccct gggcgtgcag 1740
gtgcagctgc agcagtgggg cgccggcctg ctgaagccca gcgagaccct gagcctgacc 1800
tgcgccgtgt acggcggcag cttcagcggc tactactgga gctggatccg ccagagcccc 1860
gagaagggcc tggagtggat cggcgagatc aaccacggcg gctacgtgac ctacaacccc 1920
agcctggaga gccgcgtgac catcagcgtg gacaccagca agaaccagtt cagcctgaag 1980
ctgagcagcg tgaccgccgc cgacaccgcc gtgtactact gcgcccgcga ctacggcccc 2040
ggcaactacg actggtactt cgacctgtgg ggccgcggca ccctggtgac cgtgagcagc 2100
ggcggcggcg gcagcggcgg cggcggcagc ggcggcggcg gcagcgagat cgtgctgacc 2160
cagagccccg ccaccctgag cctgagcccc ggcgagcgcg ccaccctgag ctgccgcgcc 2220
agccagagcg tgagcagcta cctggcctgg taccagcaga agcccggcca ggccccccgc 2280
ctgctgatct acgacgccag caaccgcgcc accggcatcc ccgcccgctt cagcggcagc 2340
ggcagcggca ccgacttcac cctgaccatc agcagcctgg agcccgagga cttcgccgtg 2400
tactactgcc agcagcgcag caactggccc cccgccctga ccttctgcgg cggcaccaag 2460
gtggagatca agcgc 2475
<210> 20
<211> 760
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-ICOS TsAb _ M in monomeric form
<400> 20
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
500 505 510
Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly
515 520 525
Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly
530 535 540
Tyr Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp
545 550 555 560
Met Gly Trp Ile Asn Pro His Ser Gly Gly Thr Asn Tyr Ala Gln Lys
565 570 575
Phe Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala
580 585 590
Tyr Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr
595 600 605
Cys Ala Arg Thr Tyr Tyr Tyr Asp Ser Ser Gly Tyr Tyr His Asp Ala
610 615 620
Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly
625 630 635 640
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln
645 650 655
Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp Arg Val
660 665 670
Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Arg Leu Leu Ala Trp
675 680 685
Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Val Ala
690 695 700
Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser
705 710 715 720
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe
725 730 735
Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Trp Thr Phe Gly
740 745 750
Gln Gly Thr Lys Val Glu Ile Lys
755 760
<210> 21
<211> 2280
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-ICOS TsAb _ M in monomeric form
<400> 21
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaagggaggc 1500
ggaggttccg gcggtggggg atcggggggt ggagggagtc aggtgcagct ggtgcagagc 1560
ggcgccgagg tgaagaagcc cggcgccagc gtgaaggtga gctgcaaggc cagcggctac 1620
accttcaccg gctactacat gcactgggtg cgccaggccc ccggccaggg cctggagtgg 1680
atgggctgga tcaaccccca cagcggcggc accaactacg cccagaagtt ccagggccgc 1740
gtgaccatga cccgcgacac cagcatcagc accgcctaca tggagctgag ccgcctgcgc 1800
agcgacgaca ccgccgtgta ctactgcgcc cgcacctact actacgacag cagcggctac 1860
taccacgacg ccttcgacat ctggggccag ggcaccatgg tgaccgtgag cagcggcggc 1920
ggcggcagcg gcggcggcgg cagcggcggc ggcggcagcg acatccagat gacccagagc 1980
cccagcagcg tgagcgccag cgtgggcgac cgcgtgacca tcacctgccg cgccagccag 2040
ggcatcagcc gcctgctggc ctggtaccag cagaagcccg gcaaggcccc caagctgctg 2100
atctacgtgg ccagcagcct gcagagcggc gtgcccagcc gcttcagcgg cagcggcagc 2160
ggcaccgact tcaccctgac catcagcagc ctgcagcccg aggacttcgc cacctactac 2220
tgccagcagg ccaacagctt cccctggacc ttcggccagg gcaccaaggt ggagatcaag 2280
<210> 22
<211> 826
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-ICOS TsAb _ D in dimeric form
<400> 22
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu Ser
500 505 510
Pro Lys Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln Ala Glu
515 520 525
Gly Ser Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr
530 535 540
Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln
545 550 555 560
Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro
565 570 575
Leu Gly Val Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
580 585 590
Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe
595 600 605
Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu
610 615 620
Glu Trp Met Gly Trp Ile Asn Pro His Ser Gly Gly Thr Asn Tyr Ala
625 630 635 640
Gln Lys Phe Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser
645 650 655
Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val
660 665 670
Tyr Tyr Cys Ala Arg Thr Tyr Tyr Tyr Asp Ser Ser Gly Tyr Tyr His
675 680 685
Asp Ala Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
690 695 700
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp
705 710 715 720
Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp
725 730 735
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Arg Leu Leu
740 745 750
Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
755 760 765
Val Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
770 775 780
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
785 790 795 800
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Trp Thr
805 810 815
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
820 825
<210> 23
<211> 2478
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-ICOS TsAb _ D in dimeric form
<400> 23
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaaggccagc 1500
aagagcaaga aggagatctt ccgctggccc gagagcccca aggcccaggc cagcagcgtg 1560
cccaccgccc agccccaggc cgagggcagc ctggccaagg ccaccaccgc ccccgccacc 1620
acccgcaaca ccggccgcgg cggcgaggag aagaagaagg agaaggagaa ggaggagcag 1680
gaggagcgcg agaccaagac ccccgagtgc cccagccaca cccagcccct gggcgtgcag 1740
gtgcagctgg tgcagagcgg cgccgaggtg aagaagcccg gcgccagcgt gaaggtgagc 1800
tgcaaggcca gcggctacac cttcaccggc tactacatgc actgggtgcg ccaggccccc 1860
ggccagggcc tggagtggat gggctggatc aacccccaca gcggcggcac caactacgcc 1920
cagaagttcc agggccgcgt gaccatgacc cgcgacacca gcatcagcac cgcctacatg 1980
gagctgagcc gcctgcgcag cgacgacacc gccgtgtact actgcgcccg cacctactac 2040
tacgacagca gcggctacta ccacgacgcc ttcgacatct ggggccaggg caccatggtg 2100
accgtgagca gcggcggcgg cggcagcggc ggcggcggca gcggcggcgg cggcagcgac 2160
atccagatga cccagagccc cagcagcgtg agcgccagcg tgggcgaccg cgtgaccatc 2220
acctgccgcg ccagccaggg catcagccgc ctgctggcct ggtaccagca gaagcccggc 2280
aaggccccca agctgctgat ctacgtggcc agcagcctgc agagcggcgt gcccagccgc 2340
ttcagcggca gcggcagcgg caccgacttc accctgacca tcagcagcct gcagcccgag 2400
gacttcgcca cctactactg ccagcaggcc aacagcttcc cctggacctt cggccagggc 2460
accaaggtgg agatcaag 2478
<210> 24
<211> 755
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-OX40TsAb _ M in monomer form
<400> 24
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
500 505 510
Ser Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser
515 520 525
Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser
530 535 540
Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser
545 550 555 560
Tyr Ile Ser Ser Ser Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys
565 570 575
Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu
580 585 590
Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys Ala
595 600 605
Arg Gly Val Tyr His Asn Gly Trp Ser Phe Phe Asp Tyr Trp Gly Gln
610 615 620
Gly Thr Leu Leu Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly
625 630 635 640
Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser
645 650 655
Ser Leu Ser Ala Ser Val Gly Asn Arg Val Thr Ile Thr Cys Arg Ala
660 665 670
Ser Gln Asp Ile Ser Ser Trp Leu Ala Trp Tyr Gln Gln Lys Pro Glu
675 680 685
Lys Ala Pro Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly
690 695 700
Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu
705 710 715 720
Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln
725 730 735
Gln Tyr Asn Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu
740 745 750
Ile Lys Arg
755
<210> 25
<211> 2265
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-OX40TsAb _ M in monomer form
<400> 25
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaagggaggc 1500
ggaggttccg gcggtggggg atcggggggt ggagggagtc agctggtgga gagcggcggc 1560
ggcctggtgc agcccggcgg cagcctgcgc ctgagctgcg ccgccagcgg cttcaccttc 1620
agcagctaca gcatgaactg ggtgcgccag gcccccggca agggcctgga gtgggtgagc 1680
tacatcagca gcagcagcag caccatctac tacgccgaca gcgtgaaggg ccgcttcacc 1740
atcagccgcg acaacgccaa gaacagcctg tacctgcaga tgaacagcct gcgcgacgag 1800
gacaccgccg tgtactactg cgcccgcggc gtgtaccaca acggctggag cttcttcgac 1860
tactggggcc agggcaccct gctgaccgtg agcagcggcg gcggcggcag cggcggcggc 1920
ggcagcggcg gcggcggcag cgacatccag atgacccaga gccccagcag cctgagcgcc 1980
agcgtgggca accgcgtgac catcacctgc cgcgccagcc aggacatcag cagctggctg 2040
gcctggtacc agcagaagcc cgagaaggcc cccaagagcc tgatctacgc cgccagcagc 2100
ctgcagagcg gcgtgcccag ccgcttcagc ggcagcggca gcggcaccga cttcaccctg 2160
accatcagca gcctgcagcc cgaggacttc gccacctact actgccagca gtacaacagc 2220
taccccctga ccttcggcca gggcacccgc ctggagatca agcgc 2265
<210> 26
<211> 821
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-OX40TsAb _ D in dimeric form
<400> 26
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu Ser
500 505 510
Pro Lys Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln Ala Glu
515 520 525
Gly Ser Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr
530 535 540
Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln
545 550 555 560
Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro
565 570 575
Leu Gly Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
580 585 590
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser
595 600 605
Tyr Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
610 615 620
Val Ser Tyr Ile Ser Ser Ser Ser Ser Thr Ile Tyr Tyr Ala Asp Ser
625 630 635 640
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu
645 650 655
Tyr Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr
660 665 670
Cys Ala Arg Gly Val Tyr His Asn Gly Trp Ser Phe Phe Asp Tyr Trp
675 680 685
Gly Gln Gly Thr Leu Leu Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
690 695 700
Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser
705 710 715 720
Pro Ser Ser Leu Ser Ala Ser Val Gly Asn Arg Val Thr Ile Thr Cys
725 730 735
Arg Ala Ser Gln Asp Ile Ser Ser Trp Leu Ala Trp Tyr Gln Gln Lys
740 745 750
Pro Glu Lys Ala Pro Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln
755 760 765
Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
770 775 780
Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr
785 790 795 800
Cys Gln Gln Tyr Asn Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Arg
805 810 815
Leu Glu Ile Lys Arg
820
<210> 27
<211> 2463
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-OX40TsAb _ D in dimeric form
<400> 27
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaaggccagc 1500
aagagcaaga aggagatctt ccgctggccc gagagcccca aggcccaggc cagcagcgtg 1560
cccaccgccc agccccaggc cgagggcagc ctggccaagg ccaccaccgc ccccgccacc 1620
acccgcaaca ccggccgcgg cggcgaggag aagaagaagg agaaggagaa ggaggagcag 1680
gaggagcgcg agaccaagac ccccgagtgc cccagccaca cccagcccct gggcgtgcag 1740
ctggtggaga gcggcggcgg cctggtgcag cccggcggca gcctgcgcct gagctgcgcc 1800
gccagcggct tcaccttcag cagctacagc atgaactggg tgcgccaggc ccccggcaag 1860
ggcctggagt gggtgagcta catcagcagc agcagcagca ccatctacta cgccgacagc 1920
gtgaagggcc gcttcaccat cagccgcgac aacgccaaga acagcctgta cctgcagatg 1980
aacagcctgc gcgacgagga caccgccgtg tactactgcg cccgcggcgt gtaccacaac 2040
ggctggagct tcttcgacta ctggggccag ggcaccctgc tgaccgtgag cagcggcggc 2100
ggcggcagcg gcggcggcgg cagcggcggc ggcggcagcg acatccagat gacccagagc 2160
cccagcagcc tgagcgccag cgtgggcaac cgcgtgacca tcacctgccg cgccagccag 2220
gacatcagca gctggctggc ctggtaccag cagaagcccg agaaggcccc caagagcctg 2280
atctacgccg ccagcagcct gcagagcggc gtgcccagcc gcttcagcgg cagcggcagc 2340
ggcaccgact tcaccctgac catcagcagc ctgcagcccg aggacttcgc cacctactac 2400
tgccagcagt acaacagcta ccccctgacc ttcggccagg gcacccgcct ggagatcaag 2460
cgc 2463
<210> 28
<211> 754
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-GITR TsAb _ M in monomeric form
<400> 28
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
500 505 510
Ser Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Lys Pro Ser
515 520 525
Gln Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr
530 535 540
Ser Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu
545 550 555 560
Glu Trp Leu Ala His Ile Trp Trp Asp Asp Asp Lys Tyr Tyr Asn Pro
565 570 575
Ser Leu Lys Ser Gln Leu Thr Ile Ser Lys Asp Thr Ser Arg Asn Gln
580 585 590
Val Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Ala Ala Thr Tyr
595 600 605
Tyr Cys Ala Arg Thr Arg Arg Tyr Phe Pro Phe Ala Tyr Trp Gly Gln
610 615 620
Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly
625 630 635 640
Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr Gln Ser Gln Lys
645 650 655
Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Val Thr Cys Lys Ala
660 665 670
Ser Gln Asn Val Gly Thr Asn Val Ala Trp Tyr Gln Gln Lys Pro Gly
675 680 685
Gln Ser Pro Lys Ala Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly
690 695 700
Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu
705 710 715 720
Thr Ile Asn Asn Val His Ser Glu Asp Leu Ala Glu Tyr Phe Cys Gln
725 730 735
Gln Tyr Asn Thr Asp Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
740 745 750
Ile Lys
<210> 29
<211> 2262
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-GITR TsAb _ M in monomeric form
<400> 29
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaagggaggc 1500
ggaggttccg gcggtggggg atcggggggt ggagggagtc aggtgaccct gaaggagagc 1560
ggccccggca tcctgaagcc cagccagacc ctgagcctga cctgcagctt cagcggcttc 1620
agcctgagca ccagcggcat gggcgtgggc tggatccgcc agcccagcgg caagggcctg 1680
gagtggctgg cccacatctg gtgggacgac gacaagtact acaaccccag cctgaagagc 1740
cagctgacca tcagcaagga caccagccgc aaccaggtgt tcctgaagat caccagcgtg 1800
gacaccgccg acgccgccac ctactactgc gcccgcaccc gccgctactt ccccttcgcc 1860
tactggggcc agggcaccct ggtgaccgtg agcagcggcg gcggcggcag cggcggcggc 1920
ggcagcggcg gcggcggcag cgacatcgtg atgacccaga gccagaagtt catgagcacc 1980
agcgtgggcg accgcgtgag cgtgacctgc aaggccagcc agaacgtggg caccaacgtg 2040
gcctggtacc agcagaagcc cggccagagc cccaaggccc tgatctacag cgccagctac 2100
cgctacagcg gcgtgcccga ccgcttcacc ggcagcggca gcggcaccga cttcaccctg 2160
accatcaaca acgtgcacag cgaggacctg gccgagtact tctgccagca gtacaacacc 2220
gaccccctga ccttcggcgc cggcaccaag ctggagatca ag 2262
<210> 30
<211> 820
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-GITR TsAb _ D in dimeric form
<400> 30
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu Ser
500 505 510
Pro Lys Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln Ala Glu
515 520 525
Gly Ser Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr
530 535 540
Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln
545 550 555 560
Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro
565 570 575
Leu Gly Val Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Lys
580 585 590
Pro Ser Gln Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu
595 600 605
Ser Thr Ser Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys
610 615 620
Gly Leu Glu Trp Leu Ala His Ile Trp Trp Asp Asp Asp Lys Tyr Tyr
625 630 635 640
Asn Pro Ser Leu Lys Ser Gln Leu Thr Ile Ser Lys Asp Thr Ser Arg
645 650 655
Asn Gln Val Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Ala Ala
660 665 670
Thr Tyr Tyr Cys Ala Arg Thr Arg Arg Tyr Phe Pro Phe Ala Tyr Trp
675 680 685
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
690 695 700
Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr Gln Ser
705 710 715 720
Gln Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Val Thr Cys
725 730 735
Lys Ala Ser Gln Asn Val Gly Thr Asn Val Ala Trp Tyr Gln Gln Lys
740 745 750
Pro Gly Gln Ser Pro Lys Ala Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr
755 760 765
Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe
770 775 780
Thr Leu Thr Ile Asn Asn Val His Ser Glu Asp Leu Ala Glu Tyr Phe
785 790 795 800
Cys Gln Gln Tyr Asn Thr Asp Pro Leu Thr Phe Gly Ala Gly Thr Lys
805 810 815
Leu Glu Ile Lys
820
<210> 31
<211> 2460
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-GITR TsAb _ D in dimeric form
<400> 31
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaaggccagc 1500
aagagcaaga aggagatctt ccgctggccc gagagcccca aggcccaggc cagcagcgtg 1560
cccaccgccc agccccaggc cgagggcagc ctggccaagg ccaccaccgc ccccgccacc 1620
acccgcaaca ccggccgcgg cggcgaggag aagaagaagg agaaggagaa ggaggagcag 1680
gaggagcgcg agaccaagac ccccgagtgc cccagccaca cccagcccct gggcgtgcag 1740
gtgaccctga aggagagcgg ccccggcatc ctgaagccca gccagaccct gagcctgacc 1800
tgcagcttca gcggcttcag cctgagcacc agcggcatgg gcgtgggctg gatccgccag 1860
cccagcggca agggcctgga gtggctggcc cacatctggt gggacgacga caagtactac 1920
aaccccagcc tgaagagcca gctgaccatc agcaaggaca ccagccgcaa ccaggtgttc 1980
ctgaagatca ccagcgtgga caccgccgac gccgccacct actactgcgc ccgcacccgc 2040
cgctacttcc ccttcgccta ctggggccag ggcaccctgg tgaccgtgag cagcggcggc 2100
ggcggcagcg gcggcggcgg cagcggcggc ggcggcagcg acatcgtgat gacccagagc 2160
cagaagttca tgagcaccag cgtgggcgac cgcgtgagcg tgacctgcaa ggccagccag 2220
aacgtgggca ccaacgtggc ctggtaccag cagaagcccg gccagagccc caaggccctg 2280
atctacagcg ccagctaccg ctacagcggc gtgcccgacc gcttcaccgg cagcggcagc 2340
ggcaccgact tcaccctgac catcaacaac gtgcacagcg aggacctggc cgagtacttc 2400
tgccagcagt acaacaccga ccccctgacc ttcggcgccg gcaccaagct ggagatcaag 2460
<210> 32
<211> 752
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-CD40L TsAb _ M in monomer form
<400> 32
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
500 505 510
Ser Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
515 520 525
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser
530 535 540
Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
545 550 555 560
Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser
565 570 575
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
580 585 590
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
595 600 605
Cys Ala Lys Ser Tyr Gly Ala Phe Asp Tyr Trp Gly Gln Gly Thr Leu
610 615 620
Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
625 630 635 640
Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
645 650 655
Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser
660 665 670
Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
675 680 685
Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser
690 695 700
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
705 710 715 720
Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr
725 730 735
Ser Thr Pro Asn Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
740 745 750
<210> 33
<211> 2256
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-CD40L TsAb _ M in monomer form
<400> 33
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaagggaggc 1500
ggaggttccg gcggtggggg atcggggggt ggagggagtg aggtgcagct gctggagagc 1560
ggcggcggcc tggtgcagcc cggcggcagc ctgcgcctga gctgcgccgc cagcggcttc 1620
accttcagca gctacgccat gagctgggtg cgccaggccc ccggcaaggg cctggagtgg 1680
gtgagcgcca tcagcggcag cggcggcagc acctactacg ccgacagcgt gaagggccgc 1740
ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 1800
gccgaggaca ccgccgtgta ctactgcgcc aagagctacg gcgccttcga ctactggggc 1860
cagggcaccc tggtgaccgt gagcagcggc ggcggcggca gcggcggcgg cggcagcggc 1920
ggcggcggca gcgacatcca gatgacccag agccccagca gcctgagcgc cagcgtgggc 1980
gaccgcgtga ccatcacctg ccgcgccagc cagagcatca gcagctacct gaactggtac 2040
cagcagaagc ccggcaaggc ccccaagctg ctgatctacg ccgccagcag cctgcagagc 2100
ggcgtgccca gccgcttcag cggcagcggc agcggcaccg acttcaccct gaccatcagc 2160
agcctgcagc ccgaggactt cgccacctac tactgccagc agagctacag cacccccaac 2220
accttcggcc agggcaccaa ggtggagatc aagcgc 2256
<210> 34
<211> 818
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-CD40L TsAb _ D in dimer form
<400> 34
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu Ser
500 505 510
Pro Lys Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln Ala Glu
515 520 525
Gly Ser Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr
530 535 540
Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln
545 550 555 560
Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro
565 570 575
Leu Gly Val Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln
580 585 590
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
595 600 605
Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
610 615 620
Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala
625 630 635 640
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
645 650 655
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
660 665 670
Tyr Tyr Cys Ala Lys Ser Tyr Gly Ala Phe Asp Tyr Trp Gly Gln Gly
675 680 685
Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
690 695 700
Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
705 710 715 720
Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
725 730 735
Gln Ser Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys
740 745 750
Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val
755 760 765
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
770 775 780
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
785 790 795 800
Ser Tyr Ser Thr Pro Asn Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
805 810 815
Lys Arg
<210> 35
<211> 2454
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-CD40L TsAb _ D in dimer form
<400> 35
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaaggccagc 1500
aagagcaaga aggagatctt ccgctggccc gagagcccca aggcccaggc cagcagcgtg 1560
cccaccgccc agccccaggc cgagggcagc ctggccaagg ccaccaccgc ccccgccacc 1620
acccgcaaca ccggccgcgg cggcgaggag aagaagaagg agaaggagaa ggaggagcag 1680
gaggagcgcg agaccaagac ccccgagtgc cccagccaca cccagcccct gggcgtggag 1740
gtgcagctgc tggagagcgg cggcggcctg gtgcagcccg gcggcagcct gcgcctgagc 1800
tgcgccgcca gcggcttcac cttcagcagc tacgccatga gctgggtgcg ccaggccccc 1860
ggcaagggcc tggagtgggt gagcgccatc agcggcagcg gcggcagcac ctactacgcc 1920
gacagcgtga agggccgctt caccatcagc cgcgacaaca gcaagaacac cctgtacctg 1980
cagatgaaca gcctgcgcgc cgaggacacc gccgtgtact actgcgccaa gagctacggc 2040
gccttcgact actggggcca gggcaccctg gtgaccgtga gcagcggcgg cggcggcagc 2100
ggcggcggcg gcagcggcgg cggcggcagc gacatccaga tgacccagag ccccagcagc 2160
ctgagcgcca gcgtgggcga ccgcgtgacc atcacctgcc gcgccagcca gagcatcagc 2220
agctacctga actggtacca gcagaagccc ggcaaggccc ccaagctgct gatctacgcc 2280
gccagcagcc tgcagagcgg cgtgcccagc cgcttcagcg gcagcggcag cggcaccgac 2340
ttcaccctga ccatcagcag cctgcagccc gaggacttcg ccacctacta ctgccagcag 2400
agctacagca cccccaacac cttcggccag ggcaccaagg tggagatcaa gcgc 2454
<210> 36
<211> 754
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-CD27TsAb _ M in monomer form
<400> 36
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
500 505 510
Ser Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly
515 520 525
Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser
530 535 540
Tyr Asp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
545 550 555 560
Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser
565 570 575
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
580 585 590
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
595 600 605
Cys Ala Arg Gly Ser Gly Asn Trp Gly Phe Phe Asp Tyr Trp Gly Gln
610 615 620
Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly
625 630 635 640
Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser
645 650 655
Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala
660 665 670
Ser Gln Gly Ile Ser Arg Trp Leu Ala Trp Tyr Gln Gln Lys Pro Glu
675 680 685
Lys Ala Pro Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly
690 695 700
Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu
705 710 715 720
Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln
725 730 735
Gln Tyr Asn Thr Tyr Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu
740 745 750
Ile Lys
<210> 37
<211> 2262
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-CD27TsAb _ M in monomer form
<400> 37
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaagggaggc 1500
ggaggttccg gcggtggggg atcggggggt ggagggagtc aggtgcagct ggtggagagc 1560
ggcggcggcg tggtgcagcc cggccgcagc ctgcgcctga gctgcgccgc cagcggcttc 1620
accttcagca gctacgacat gcactgggtg cgccaggccc ccggcaaggg cctggagtgg 1680
gtggccgtga tctggtacga cggcagcaac aagtactacg ccgacagcgt gaagggccgc 1740
ttcaccatca gccgcgacaa cagcaagaac accctgtacc tgcagatgaa cagcctgcgc 1800
gccgaggaca ccgccgtgta ctactgcgcc cgcggcagcg gcaactgggg cttcttcgac 1860
tactggggcc agggcaccct ggtgaccgtg agcagcggcg gcggcggcag cggcggcggc 1920
ggcagcggcg gcggcggcag cgacatccag atgacccaga gccccagcag cctgagcgcc 1980
agcgtgggcg accgcgtgac catcacctgc cgcgccagcc agggcatcag ccgctggctg 2040
gcctggtacc agcagaagcc cgagaaggcc cccaagagcc tgatctacgc cgccagcagc 2100
ctgcagagcg gcgtgcccag ccgcttcagc ggcagcggca gcggcaccga cttcaccctg 2160
accatcagca gcctgcagcc cgaggacttc gccacctact actgccagca gtacaacacc 2220
tacccccgca ccttcggcca gggcaccaag gtggagatca ag 2262
<210> 38
<211> 820
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of CD19-CD3-CD27TsAb _ D in dimer form
<400> 38
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Asp
245 250 255
Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
260 265 270
Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr
275 280 285
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
290 295 300
Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys
305 310 315 320
Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met
325 330 335
Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala
340 345 350
Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr
355 360 365
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Gly
370 375 380
Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro
385 390 395 400
Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg
405 410 415
Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
420 425 430
Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly
435 440 445
Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu
450 455 460
Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln
465 470 475 480
Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
485 490 495
Leu Lys Ala Ser Lys Ser Lys Lys Glu Ile Phe Arg Trp Pro Glu Ser
500 505 510
Pro Lys Ala Gln Ala Ser Ser Val Pro Thr Ala Gln Pro Gln Ala Glu
515 520 525
Gly Ser Leu Ala Lys Ala Thr Thr Ala Pro Ala Thr Thr Arg Asn Thr
530 535 540
Gly Arg Gly Gly Glu Glu Lys Lys Lys Glu Lys Glu Lys Glu Glu Gln
545 550 555 560
Glu Glu Arg Glu Thr Lys Thr Pro Glu Cys Pro Ser His Thr Gln Pro
565 570 575
Leu Gly Val Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln
580 585 590
Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
595 600 605
Ser Ser Tyr Asp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
610 615 620
Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala
625 630 635 640
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
645 650 655
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
660 665 670
Tyr Tyr Cys Ala Arg Gly Ser Gly Asn Trp Gly Phe Phe Asp Tyr Trp
675 680 685
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
690 695 700
Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser
705 710 715 720
Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys
725 730 735
Arg Ala Ser Gln Gly Ile Ser Arg Trp Leu Ala Trp Tyr Gln Gln Lys
740 745 750
Pro Glu Lys Ala Pro Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln
755 760 765
Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
770 775 780
Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr
785 790 795 800
Cys Gln Gln Tyr Asn Thr Tyr Pro Arg Thr Phe Gly Gln Gly Thr Lys
805 810 815
Val Glu Ile Lys
820
<210> 39
<211> 2460
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of CD19-CD3-CD27TsAb _ D in dimeric form
<400> 39
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag 780
cagagcggcg ccgagctggc ccgccccggc gccagcgtga agatgagctg caagaccagc 840
ggctacacct tcacccgcta caccatgcac tgggtgaagc agcgccccgg ccagggcctg 900
gagtggatcg gctacatcaa ccccagccgc ggctacacca actacaacca gaagttcaag 960
gacaaggcca ccctgaccac cgacaagagc agcagcaccg cctacatgca gctgagcagc 1020
ctgaccagcg aggacagcgc cgtgtactac tgcgcccgct actacgacga ccactactgc 1080
ctggactact ggggccaggg caccaccctg accgtgagca gcgtggaggg cggcagcggc 1140
ggcagcggcg gcagcggcgg cagcggcggc gtggacgaca tccagctgac ccagagcccc 1200
gccatcatga gcgccagccc cggcgagaag gtgaccatga cctgccgcgc cagcagcagc 1260
gtgagctaca tgaactggta ccagcagaag agcggcacca gccccaagcg ctggatctac 1320
gacaccagca aggtggccag cggcgtgccc taccgcttca gcggcagcgg cagcggcacc 1380
agctacagcc tgaccatcag cagcatggag gccgaggacg ccgccaccta ctactgccag 1440
cagtggagca gcaaccccct gaccttcggc gccggcacca agctggagct gaaggccagc 1500
aagagcaaga aggagatctt ccgctggccc gagagcccca aggcccaggc cagcagcgtg 1560
cccaccgccc agccccaggc cgagggcagc ctggccaagg ccaccaccgc ccccgccacc 1620
acccgcaaca ccggccgcgg cggcgaggag aagaagaagg agaaggagaa ggaggagcag 1680
gaggagcgcg agaccaagac ccccgagtgc cccagccaca cccagcccct gggcgtgcag 1740
gtgcagctgg tggagagcgg cggcggcgtg gtgcagcccg gccgcagcct gcgcctgagc 1800
tgcgccgcca gcggcttcac cttcagcagc tacgacatgc actgggtgcg ccaggccccc 1860
ggcaagggcc tggagtgggt ggccgtgatc tggtacgacg gcagcaacaa gtactacgcc 1920
gacagcgtga agggccgctt caccatcagc cgcgacaaca gcaagaacac cctgtacctg 1980
cagatgaaca gcctgcgcgc cgaggacacc gccgtgtact actgcgcccg cggcagcggc 2040
aactggggct tcttcgacta ctggggccag ggcaccctgg tgaccgtgag cagcggcggc 2100
ggcggcagcg gcggcggcgg cagcggcggc ggcggcagcg acatccagat gacccagagc 2160
cccagcagcc tgagcgccag cgtgggcgac cgcgtgacca tcacctgccg cgccagccag 2220
ggcatcagcc gctggctggc ctggtaccag cagaagcccg agaaggcccc caagagcctg 2280
atctacgccg ccagcagcct gcagagcggc gtgcccagcc gcttcagcgg cagcggcagc 2340
ggcaccgact tcaccctgac catcagcagc ctgcagcccg aggacttcgc cacctactac 2400
tgccagcagt acaacaccta cccccgcacc ttcggccagg gcaccaaggt ggagatcaag 2460
<210> 40
<211> 250
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-CD 19 scFv
<400> 40
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val
115 120 125
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val
130 135 140
Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met
145 150 155 160
Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175
Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly
180 185 190
Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr Met Gln
195 200 205
Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg
210 215 220
Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp Tyr Trp
225 230 235 240
Gly Gln Gly Thr Thr Val Thr Val Ser Ser
245 250
<210> 41
<211> 124
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of anti-CD 19 scFv
<400> 41
Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser
1 5 10 15
Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr
20 25 30
Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45
Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe
50 55 60
Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys
85 90 95
Ala Arg Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp
100 105 110
Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120
<210> 42
<211> 111
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of anti-CD 19 scFv
<400> 42
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20 25 30
Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35 40 45
Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65 70 75 80
Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85 90 95
Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110
<210> 43
<211> 243
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-CD3 scFv
<400> 43
Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15
Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30
Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45
Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60
Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly
115 120 125
Gly Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser
130 135 140
Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys
145 150 155 160
Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser
165 170 175
Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser
180 185 190
Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser
195 200 205
Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys
210 215 220
Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu
225 230 235 240
Glu Leu Lys
<210> 44
<211> 119
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of anti-CD3 scFv
<400> 44
Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15
Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30
Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45
Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60
Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Thr Leu Thr Val Ser Ser
115
<210> 45
<211> 106
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of anti-CD3 scFv
<400> 45
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15
Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met
20 25 30
Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45
Asp Thr Ser Lys Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80
Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr
85 90 95
Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105
<210> 46
<211> 246
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-4-1 BB scFv
<400> 46
Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr
20 25 30
Tyr Trp Ser Trp Ile Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Ile
35 40 45
Gly Glu Ile Asn His Gly Gly Tyr Val Thr Tyr Asn Pro Ser Leu Glu
50 55 60
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Arg Asp Tyr Gly Pro Gly Asn Tyr Asp Trp Tyr Phe Asp Leu Trp Gly
100 105 110
Arg Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly
115 120 125
Gly Gly Ser Gly Gly Gly Gly Ser Glu Ile Val Leu Thr Gln Ser Pro
130 135 140
Ala Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg
145 150 155 160
Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro
165 170 175
Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr
180 185 190
Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
195 200 205
Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys
210 215 220
Gln Gln Arg Ser Asn Trp Pro Pro Ala Leu Thr Phe Cys Gly Gly Thr
225 230 235 240
Lys Val Glu Ile Lys Arg
245
<210> 47
<211> 121
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of anti-4-1 BB scFv
<400> 47
Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr
20 25 30
Tyr Trp Ser Trp Ile Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Ile
35 40 45
Gly Glu Ile Asn His Gly Gly Tyr Val Thr Tyr Asn Pro Ser Leu Glu
50 55 60
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Arg Asp Tyr Gly Pro Gly Asn Tyr Asp Trp Tyr Phe Asp Leu Trp Gly
100 105 110
Arg Gly Thr Leu Val Thr Val Ser Ser
115 120
<210> 48
<211> 110
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of anti-4-1 BB scFv
<400> 48
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45
Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser Asn Trp Pro Pro
85 90 95
Ala Leu Thr Phe Cys Gly Gly Thr Lys Val Glu Ile Lys Arg
100 105 110
<210> 49
<211> 247
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-ICOS scFv
<400> 49
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Trp Ile Asn Pro His Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Thr Tyr Tyr Tyr Asp Ser Ser Gly Tyr Tyr His Asp Ala Phe
100 105 110
Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Gly Gly Gly
115 120 125
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met
130 135 140
Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr
145 150 155 160
Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Arg Leu Leu Ala Trp Tyr
165 170 175
Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Val Ala Ser
180 185 190
Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
195 200 205
Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala
210 215 220
Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Trp Thr Phe Gly Gln
225 230 235 240
Gly Thr Lys Val Glu Ile Lys
245
<210> 50
<211> 125
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of ICOS scFv
<400> 50
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Trp Ile Asn Pro His Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Thr Tyr Tyr Tyr Asp Ser Ser Gly Tyr Tyr His Asp Ala Phe
100 105 110
Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125
<210> 51
<211> 107
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of ICOS-resistant scFv
<400> 51
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Arg Leu
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Val Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Trp
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105
<210> 52
<211> 242
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-OX 40scFv
<400> 52
Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu
1 5 10 15
Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met
20 25 30
Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr
35 40 45
Ile Ser Ser Ser Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys Gly
50 55 60
Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln
65 70 75 80
Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
85 90 95
Gly Val Tyr His Asn Gly Trp Ser Phe Phe Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Leu Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
115 120 125
Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
130 135 140
Leu Ser Ala Ser Val Gly Asn Arg Val Thr Ile Thr Cys Arg Ala Ser
145 150 155 160
Gln Asp Ile Ser Ser Trp Leu Ala Trp Tyr Gln Gln Lys Pro Glu Lys
165 170 175
Ala Pro Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val
180 185 190
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
195 200 205
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
210 215 220
Tyr Asn Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile
225 230 235 240
Lys Arg
<210> 53
<211> 119
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of anti-OX 40scFv
<400> 53
Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu
1 5 10 15
Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ser Met
20 25 30
Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Tyr
35 40 45
Ile Ser Ser Ser Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val Lys Gly
50 55 60
Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln
65 70 75 80
Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
85 90 95
Gly Val Tyr His Asn Gly Trp Ser Phe Phe Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Leu Thr Val Ser Ser
115
<210> 54
<211> 108
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of anti-OX 40scFv
<400> 54
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asn Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Ser Trp
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Glu Lys Ala Pro Lys Ser Leu Ile
35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Tyr Pro Leu
85 90 95
Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg
100 105
<210> 55
<211> 241
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-GITR scFv
<400> 55
Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Lys Pro Ser Gln
1 5 10 15
Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30
Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu
35 40 45
Trp Leu Ala His Ile Trp Trp Asp Asp Asp Lys Tyr Tyr Asn Pro Ser
50 55 60
Leu Lys Ser Gln Leu Thr Ile Ser Lys Asp Thr Ser Arg Asn Gln Val
65 70 75 80
Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Ala Ala Thr Tyr Tyr
85 90 95
Cys Ala Arg Thr Arg Arg Tyr Phe Pro Phe Ala Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
115 120 125
Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr Gln Ser Gln Lys Phe
130 135 140
Met Ser Thr Ser Val Gly Asp Arg Val Ser Val Thr Cys Lys Ala Ser
145 150 155 160
Gln Asn Val Gly Thr Asn Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln
165 170 175
Ser Pro Lys Ala Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val
180 185 190
Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
195 200 205
Ile Asn Asn Val His Ser Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln
210 215 220
Tyr Asn Thr Asp Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile
225 230 235 240
Lys
<210> 56
<211> 119
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of anti-GITR SCFV
<400> 56
Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Lys Pro Ser Gln
1 5 10 15
Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30
Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu
35 40 45
Trp Leu Ala His Ile Trp Trp Asp Asp Asp Lys Tyr Tyr Asn Pro Ser
50 55 60
Leu Lys Ser Gln Leu Thr Ile Ser Lys Asp Thr Ser Arg Asn Gln Val
65 70 75 80
Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Ala Ala Thr Tyr Tyr
85 90 95
Cys Ala Arg Thr Arg Arg Tyr Phe Pro Phe Ala Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Val Thr Val Ser Ser
115
<210> 57
<211> 107
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of anti-GITR scFv
<400> 57
Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
1 5 10 15
Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn
20 25 30
Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu Ile
35 40 45
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Asn Val His Ser
65 70 75 80
Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Thr Asp Pro Leu
85 90 95
Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile Lys
100 105
<210> 58
<211> 239
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-CD 40L scFv
<400> 58
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Ser Tyr Gly Ala Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110
Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
115 120 125
Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala
130 135 140
Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile
145 150 155 160
Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys
165 170 175
Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg
180 185 190
Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser
195 200 205
Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser
210 215 220
Thr Pro Asn Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
225 230 235
<210> 59
<211> 116
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of anti-CD 40L scFv
<400> 59
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Lys Ser Tyr Gly Ala Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110
Thr Val Ser Ser
115
<210> 60
<211> 108
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of anti-CD 40L scFv
<400> 60
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
20 25 30
Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Asn
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105
<210> 61
<211> 241
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of anti-CD 27 scFv
<400> 61
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Asp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Gly Ser Gly Asn Trp Gly Phe Phe Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
115 120 125
Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
130 135 140
Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
145 150 155 160
Gln Gly Ile Ser Arg Trp Leu Ala Trp Tyr Gln Gln Lys Pro Glu Lys
165 170 175
Ala Pro Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val
180 185 190
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
195 200 205
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
210 215 220
Tyr Asn Thr Tyr Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
225 230 235 240
Lys
<210> 62
<211> 119
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of heavy chain variable region of anti-CD 27 scFv
<400> 62
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Asp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Gly Ser Gly Asn Trp Gly Phe Phe Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Val Thr Val Ser Ser
115
<210> 63
<211> 107
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of light chain variable region of anti-CD 27 scFv
<400> 63
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Arg Trp
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Glu Lys Ala Pro Lys Ser Leu Ile
35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Thr Tyr Pro Arg
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105
<210> 64
<211> 750
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-CD 19 scFv
<400> 64
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aagggcggcg gcggcagcgg cggcggcggc 360
agcggcggcg gcggcagcca ggtgcagctg cagcagagcg gcgccgagct ggtgcgcccc 420
ggcagcagcg tgaagatcag ctgcaaggcc agcggctacg ccttcagcag ctactggatg 480
aactgggtga agcagcgccc cggccagggc ctggagtgga tcggccagat ctggcccggc 540
gacggcgaca ccaactacaa cggcaagttc aagggcaagg ccaccctgac cgccgacgag 600
agcagcagca ccgcctacat gcagctgagc agcctggcca gcgaggacag cgccgtgtac 660
ttctgcgccc gccgcgagac caccaccgtg ggccgctact actacgccat ggactactgg 720
ggccagggca ccaccgtgac cgtgagcagc 750
<210> 65
<211> 372
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of anti-CD 19 scFv
<400> 65
caggtgcagc tgcagcagag cggcgccgag ctggtgcgcc ccggcagcag cgtgaagatc 60
agctgcaagg ccagcggcta cgccttcagc agctactgga tgaactgggt gaagcagcgc 120
cccggccagg gcctggagtg gatcggccag atctggcccg gcgacggcga caccaactac 180
aacggcaagt tcaagggcaa ggccaccctg accgccgacg agagcagcag caccgcctac 240
atgcagctga gcagcctggc cagcgaggac agcgccgtgt acttctgcgc ccgccgcgag 300
accaccaccg tgggccgcta ctactacgcc atggactact ggggccaggg caccaccgtg 360
accgtgagca gc 372
<210> 66
<211> 333
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of anti-CD 19 scFv
<400> 66
gacatccagc tgacccagag ccccgccagc ctggccgtga gcctgggcca gcgcgccacc 60
atcagctgca aggccagcca gagcgtggac tacgacggcg acagctacct gaactggtac 120
cagcagatcc ccggccagcc ccccaagctg ctgatctacg acgccagcaa cctggtgagc 180
ggcatccccc cccgcttcag cggcagcggc agcggcaccg acttcaccct gaacatccac 240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggacccctgg 300
accttcggcg gcggcaccaa gctggagatc aag 333
<210> 67
<211> 729
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-CD3 scFv
<400> 67
gacatcaagc tgcagcagag cggcgccgag ctggcccgcc ccggcgccag cgtgaagatg 60
agctgcaaga ccagcggcta caccttcacc cgctacacca tgcactgggt gaagcagcgc 120
cccggccagg gcctggagtg gatcggctac atcaacccca gccgcggcta caccaactac 180
aaccagaagt tcaaggacaa ggccaccctg accaccgaca agagcagcag caccgcctac 240
atgcagctga gcagcctgac cagcgaggac agcgccgtgt actactgcgc ccgctactac 300
gacgaccact actgcctgga ctactggggc cagggcacca ccctgaccgt gagcagcgtg 360
gagggcggca gcggcggcag cggcggcagc ggcggcagcg gcggcgtgga cgacatccag 420
ctgacccaga gccccgccat catgagcgcc agccccggcg agaaggtgac catgacctgc 480
cgcgccagca gcagcgtgag ctacatgaac tggtaccagc agaagagcgg caccagcccc 540
aagcgctgga tctacgacac cagcaaggtg gccagcggcg tgccctaccg cttcagcggc 600
agcggcagcg gcaccagcta cagcctgacc atcagcagca tggaggccga ggacgccgcc 660
acctactact gccagcagtg gagcagcaac cccctgacct tcggcgccgg caccaagctg 720
gagctgaag 729
<210> 68
<211> 357
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of anti-CD3 scFv
<400> 68
gacatcaagc tgcagcagag cggcgccgag ctggcccgcc ccggcgccag cgtgaagatg 60
agctgcaaga ccagcggcta caccttcacc cgctacacca tgcactgggt gaagcagcgc 120
cccggccagg gcctggagtg gatcggctac atcaacccca gccgcggcta caccaactac 180
aaccagaagt tcaaggacaa ggccaccctg accaccgaca agagcagcag caccgcctac 240
atgcagctga gcagcctgac cagcgaggac agcgccgtgt actactgcgc ccgctactac 300
gacgaccact actgcctgga ctactggggc cagggcacca ccctgaccgt gagcagc 357
<210> 69
<211> 318
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of anti-CD3 scFv
<400> 69
gacatccagc tgacccagag ccccgccatc atgagcgcca gccccggcga gaaggtgacc 60
atgacctgcc gcgccagcag cagcgtgagc tacatgaact ggtaccagca gaagagcggc 120
accagcccca agcgctggat ctacgacacc agcaaggtgg ccagcggcgt gccctaccgc 180
ttcagcggca gcggcagcgg caccagctac agcctgacca tcagcagcat ggaggccgag 240
gacgccgcca cctactactg ccagcagtgg agcagcaacc ccctgacctt cggcgccggc 300
accaagctgg agctgaag 318
<210> 70
<211> 738
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-4-1 BB scFv
<400> 70
caggtgcagc tgcagcagtg gggcgccggc ctgctgaagc ccagcgagac cctgagcctg 60
acctgcgccg tgtacggcgg cagcttcagc ggctactact ggagctggat ccgccagagc 120
cccgagaagg gcctggagtg gatcggcgag atcaaccacg gcggctacgt gacctacaac 180
cccagcctgg agagccgcgt gaccatcagc gtggacacca gcaagaacca gttcagcctg 240
aagctgagca gcgtgaccgc cgccgacacc gccgtgtact actgcgcccg cgactacggc 300
cccggcaact acgactggta cttcgacctg tggggccgcg gcaccctggt gaccgtgagc 360
agcggcggcg gcggcagcgg cggcggcggc agcggcggcg gcggcagcga gatcgtgctg 420
acccagagcc ccgccaccct gagcctgagc cccggcgagc gcgccaccct gagctgccgc 480
gccagccaga gcgtgagcag ctacctggcc tggtaccagc agaagcccgg ccaggccccc 540
cgcctgctga tctacgacgc cagcaaccgc gccaccggca tccccgcccg cttcagcggc 600
agcggcagcg gcaccgactt caccctgacc atcagcagcc tggagcccga ggacttcgcc 660
gtgtactact gccagcagcg cagcaactgg ccccccgccc tgaccttctg cggcggcacc 720
aaggtggaga tcaagcgc 738
<210> 71
<211> 363
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of anti-4-1 BB scFv
<400> 71
caggtgcagc tgcagcagtg gggcgccggc ctgctgaagc ccagcgagac cctgagcctg 60
acctgcgccg tgtacggcgg cagcttcagc ggctactact ggagctggat ccgccagagc 120
cccgagaagg gcctggagtg gatcggcgag atcaaccacg gcggctacgt gacctacaac 180
cccagcctgg agagccgcgt gaccatcagc gtggacacca gcaagaacca gttcagcctg 240
aagctgagca gcgtgaccgc cgccgacacc gccgtgtact actgcgcccg cgactacggc 300
cccggcaact acgactggta cttcgacctg tggggccgcg gcaccctggt gaccgtgagc 360
agc 363
<210> 72
<211> 330
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of anti-4-1 BB scFv
<400> 72
gagatcgtgc tgacccagag ccccgccacc ctgagcctga gccccggcga gcgcgccacc 60
ctgagctgcc gcgccagcca gagcgtgagc agctacctgg cctggtacca gcagaagccc 120
ggccaggccc cccgcctgct gatctacgac gccagcaacc gcgccaccgg catccccgcc 180
cgcttcagcg gcagcggcag cggcaccgac ttcaccctga ccatcagcag cctggagccc 240
gaggacttcg ccgtgtacta ctgccagcag cgcagcaact ggccccccgc cctgaccttc 300
tgcggcggca ccaaggtgga gatcaagcgc 330
<210> 73
<211> 741
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-ICOS scFv
<400> 73
caggtgcagc tggtgcagag cggcgccgag gtgaagaagc ccggcgccag cgtgaaggtg 60
agctgcaagg ccagcggcta caccttcacc ggctactaca tgcactgggt gcgccaggcc 120
cccggccagg gcctggagtg gatgggctgg atcaaccccc acagcggcgg caccaactac 180
gcccagaagt tccagggccg cgtgaccatg acccgcgaca ccagcatcag caccgcctac 240
atggagctga gccgcctgcg cagcgacgac accgccgtgt actactgcgc ccgcacctac 300
tactacgaca gcagcggcta ctaccacgac gccttcgaca tctggggcca gggcaccatg 360
gtgaccgtga gcagcggcgg cggcggcagc ggcggcggcg gcagcggcgg cggcggcagc 420
gacatccaga tgacccagag ccccagcagc gtgagcgcca gcgtgggcga ccgcgtgacc 480
atcacctgcc gcgccagcca gggcatcagc cgcctgctgg cctggtacca gcagaagccc 540
ggcaaggccc ccaagctgct gatctacgtg gccagcagcc tgcagagcgg cgtgcccagc 600
cgcttcagcg gcagcggcag cggcaccgac ttcaccctga ccatcagcag cctgcagccc 660
gaggacttcg ccacctacta ctgccagcag gccaacagct tcccctggac cttcggccag 720
ggcaccaagg tggagatcaa g 741
<210> 74
<211> 375
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of ICOS scFv
<400> 74
caggtgcagc tggtgcagag cggcgccgag gtgaagaagc ccggcgccag cgtgaaggtg 60
agctgcaagg ccagcggcta caccttcacc ggctactaca tgcactgggt gcgccaggcc 120
cccggccagg gcctggagtg gatgggctgg atcaaccccc acagcggcgg caccaactac 180
gcccagaagt tccagggccg cgtgaccatg acccgcgaca ccagcatcag caccgcctac 240
atggagctga gccgcctgcg cagcgacgac accgccgtgt actactgcgc ccgcacctac 300
tactacgaca gcagcggcta ctaccacgac gccttcgaca tctggggcca gggcaccatg 360
gtgaccgtga gcagc 375
<210> 75
<211> 321
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of ICOS scFv
<400> 75
gacatccaga tgacccagag ccccagcagc gtgagcgcca gcgtgggcga ccgcgtgacc 60
atcacctgcc gcgccagcca gggcatcagc cgcctgctgg cctggtacca gcagaagccc 120
ggcaaggccc ccaagctgct gatctacgtg gccagcagcc tgcagagcgg cgtgcccagc 180
cgcttcagcg gcagcggcag cggcaccgac ttcaccctga ccatcagcag cctgcagccc 240
gaggacttcg ccacctacta ctgccagcag gccaacagct tcccctggac cttcggccag 300
ggcaccaagg tggagatcaa g 321
<210> 76
<211> 726
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-OX 40scFv
<400> 76
cagctggtgg agagcggcgg cggcctggtg cagcccggcg gcagcctgcg cctgagctgc 60
gccgccagcg gcttcacctt cagcagctac agcatgaact gggtgcgcca ggcccccggc 120
aagggcctgg agtgggtgag ctacatcagc agcagcagca gcaccatcta ctacgccgac 180
agcgtgaagg gccgcttcac catcagccgc gacaacgcca agaacagcct gtacctgcag 240
atgaacagcc tgcgcgacga ggacaccgcc gtgtactact gcgcccgcgg cgtgtaccac 300
aacggctgga gcttcttcga ctactggggc cagggcaccc tgctgaccgt gagcagcggc 360
ggcggcggca gcggcggcgg cggcagcggc ggcggcggca gcgacatcca gatgacccag 420
agccccagca gcctgagcgc cagcgtgggc aaccgcgtga ccatcacctg ccgcgccagc 480
caggacatca gcagctggct ggcctggtac cagcagaagc ccgagaaggc ccccaagagc 540
ctgatctacg ccgccagcag cctgcagagc ggcgtgccca gccgcttcag cggcagcggc 600
agcggcaccg acttcaccct gaccatcagc agcctgcagc ccgaggactt cgccacctac 660
tactgccagc agtacaacag ctaccccctg accttcggcc agggcacccg cctggagatc 720
aagcgc 726
<210> 77
<211> 357
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of anti-OX 40scFv
<400> 77
cagctggtgg agagcggcgg cggcctggtg cagcccggcg gcagcctgcg cctgagctgc 60
gccgccagcg gcttcacctt cagcagctac agcatgaact gggtgcgcca ggcccccggc 120
aagggcctgg agtgggtgag ctacatcagc agcagcagca gcaccatcta ctacgccgac 180
agcgtgaagg gccgcttcac catcagccgc gacaacgcca agaacagcct gtacctgcag 240
atgaacagcc tgcgcgacga ggacaccgcc gtgtactact gcgcccgcgg cgtgtaccac 300
aacggctgga gcttcttcga ctactggggc cagggcaccc tgctgaccgt gagcagc 357
<210> 78
<211> 324
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of anti-OX 40scFv
<400> 78
gacatccaga tgacccagag ccccagcagc ctgagcgcca gcgtgggcaa ccgcgtgacc 60
atcacctgcc gcgccagcca ggacatcagc agctggctgg cctggtacca gcagaagccc 120
gagaaggccc ccaagagcct gatctacgcc gccagcagcc tgcagagcgg cgtgcccagc 180
cgcttcagcg gcagcggcag cggcaccgac ttcaccctga ccatcagcag cctgcagccc 240
gaggacttcg ccacctacta ctgccagcag tacaacagct accccctgac cttcggccag 300
ggcacccgcc tggagatcaa gcgc 324
<210> 79
<211> 723
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-GITR scFv
<400> 79
caggtgaccc tgaaggagag cggccccggc atcctgaagc ccagccagac cctgagcctg 60
acctgcagct tcagcggctt cagcctgagc accagcggca tgggcgtggg ctggatccgc 120
cagcccagcg gcaagggcct ggagtggctg gcccacatct ggtgggacga cgacaagtac 180
tacaacccca gcctgaagag ccagctgacc atcagcaagg acaccagccg caaccaggtg 240
ttcctgaaga tcaccagcgt ggacaccgcc gacgccgcca cctactactg cgcccgcacc 300
cgccgctact tccccttcgc ctactggggc cagggcaccc tggtgaccgt gagcagcggc 360
ggcggcggca gcggcggcgg cggcagcggc ggcggcggca gcgacatcgt gatgacccag 420
agccagaagt tcatgagcac cagcgtgggc gaccgcgtga gcgtgacctg caaggccagc 480
cagaacgtgg gcaccaacgt ggcctggtac cagcagaagc ccggccagag ccccaaggcc 540
ctgatctaca gcgccagcta ccgctacagc ggcgtgcccg accgcttcac cggcagcggc 600
agcggcaccg acttcaccct gaccatcaac aacgtgcaca gcgaggacct ggccgagtac 660
ttctgccagc agtacaacac cgaccccctg accttcggcg ccggcaccaa gctggagatc 720
aag 723
<210> 80
<211> 357
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of anti-GITR scFv
<400> 80
caggtgaccc tgaaggagag cggccccggc atcctgaagc ccagccagac cctgagcctg 60
acctgcagct tcagcggctt cagcctgagc accagcggca tgggcgtggg ctggatccgc 120
cagcccagcg gcaagggcct ggagtggctg gcccacatct ggtgggacga cgacaagtac 180
tacaacccca gcctgaagag ccagctgacc atcagcaagg acaccagccg caaccaggtg 240
ttcctgaaga tcaccagcgt ggacaccgcc gacgccgcca cctactactg cgcccgcacc 300
cgccgctact tccccttcgc ctactggggc cagggcaccc tggtgaccgt gagcagc 357
<210> 81
<211> 321
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of anti-GITR scFv
<400> 81
gacatcgtga tgacccagag ccagaagttc atgagcacca gcgtgggcga ccgcgtgagc 60
gtgacctgca aggccagcca gaacgtgggc accaacgtgg cctggtacca gcagaagccc 120
ggccagagcc ccaaggccct gatctacagc gccagctacc gctacagcgg cgtgcccgac 180
cgcttcaccg gcagcggcag cggcaccgac ttcaccctga ccatcaacaa cgtgcacagc 240
gaggacctgg ccgagtactt ctgccagcag tacaacaccg accccctgac cttcggcgcc 300
ggcaccaagc tggagatcaa g 321
<210> 82
<211> 717
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-CD 40L scFv
<400> 82
gaggtgcagc tgctggagag cggcggcggc ctggtgcagc ccggcggcag cctgcgcctg 60
agctgcgccg ccagcggctt caccttcagc agctacgcca tgagctgggt gcgccaggcc 120
cccggcaagg gcctggagtg ggtgagcgcc atcagcggca gcggcggcag cacctactac 180
gccgacagcg tgaagggccg cttcaccatc agccgcgaca acagcaagaa caccctgtac 240
ctgcagatga acagcctgcg cgccgaggac accgccgtgt actactgcgc caagagctac 300
ggcgccttcg actactgggg ccagggcacc ctggtgaccg tgagcagcgg cggcggcggc 360
agcggcggcg gcggcagcgg cggcggcggc agcgacatcc agatgaccca gagccccagc 420
agcctgagcg ccagcgtggg cgaccgcgtg accatcacct gccgcgccag ccagagcatc 480
agcagctacc tgaactggta ccagcagaag cccggcaagg cccccaagct gctgatctac 540
gccgccagca gcctgcagag cggcgtgccc agccgcttca gcggcagcgg cagcggcacc 600
gacttcaccc tgaccatcag cagcctgcag cccgaggact tcgccaccta ctactgccag 660
cagagctaca gcacccccaa caccttcggc cagggcacca aggtggagat caagcgc 717
<210> 83
<211> 348
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of anti-CD 40L scFv
<400> 83
gaggtgcagc tgctggagag cggcggcggc ctggtgcagc ccggcggcag cctgcgcctg 60
agctgcgccg ccagcggctt caccttcagc agctacgcca tgagctgggt gcgccaggcc 120
cccggcaagg gcctggagtg ggtgagcgcc atcagcggca gcggcggcag cacctactac 180
gccgacagcg tgaagggccg cttcaccatc agccgcgaca acagcaagaa caccctgtac 240
ctgcagatga acagcctgcg cgccgaggac accgccgtgt actactgcgc caagagctac 300
ggcgccttcg actactgggg ccagggcacc ctggtgaccg tgagcagc 348
<210> 84
<211> 324
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of anti-CD 40L scFv
<400> 84
gacatccaga tgacccagag ccccagcagc ctgagcgcca gcgtgggcga ccgcgtgacc 60
atcacctgcc gcgccagcca gagcatcagc agctacctga actggtacca gcagaagccc 120
ggcaaggccc ccaagctgct gatctacgcc gccagcagcc tgcagagcgg cgtgcccagc 180
cgcttcagcg gcagcggcag cggcaccgac ttcaccctga ccatcagcag cctgcagccc 240
gaggacttcg ccacctacta ctgccagcag agctacagca cccccaacac cttcggccag 300
ggcaccaagg tggagatcaa gcgc 324
<210> 85
<211> 723
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of anti-CD 27 scFv
<400> 85
caggtgcagc tggtggagag cggcggcggc gtggtgcagc ccggccgcag cctgcgcctg 60
agctgcgccg ccagcggctt caccttcagc agctacgaca tgcactgggt gcgccaggcc 120
cccggcaagg gcctggagtg ggtggccgtg atctggtacg acggcagcaa caagtactac 180
gccgacagcg tgaagggccg cttcaccatc agccgcgaca acagcaagaa caccctgtac 240
ctgcagatga acagcctgcg cgccgaggac accgccgtgt actactgcgc ccgcggcagc 300
ggcaactggg gcttcttcga ctactggggc cagggcaccc tggtgaccgt gagcagcggc 360
ggcggcggca gcggcggcgg cggcagcggc ggcggcggca gcgacatcca gatgacccag 420
agccccagca gcctgagcgc cagcgtgggc gaccgcgtga ccatcacctg ccgcgccagc 480
cagggcatca gccgctggct ggcctggtac cagcagaagc ccgagaaggc ccccaagagc 540
ctgatctacg ccgccagcag cctgcagagc ggcgtgccca gccgcttcag cggcagcggc 600
agcggcaccg acttcaccct gaccatcagc agcctgcagc ccgaggactt cgccacctac 660
tactgccagc agtacaacac ctacccccgc accttcggcc agggcaccaa ggtggagatc 720
aag 723
<210> 86
<211> 357
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of heavy chain variable region of anti-CD 27 scFv
<400> 86
caggtgcagc tggtggagag cggcggcggc gtggtgcagc ccggccgcag cctgcgcctg 60
agctgcgccg ccagcggctt caccttcagc agctacgaca tgcactgggt gcgccaggcc 120
cccggcaagg gcctggagtg ggtggccgtg atctggtacg acggcagcaa caagtactac 180
gccgacagcg tgaagggccg cttcaccatc agccgcgaca acagcaagaa caccctgtac 240
ctgcagatga acagcctgcg cgccgaggac accgccgtgt actactgcgc ccgcggcagc 300
ggcaactggg gcttcttcga ctactggggc cagggcaccc tggtgaccgt gagcagc 357
<210> 87
<211> 321
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence of light chain variable region of anti-CD 27 scFv
<400> 87
gacatccaga tgacccagag ccccagcagc ctgagcgcca gcgtgggcga ccgcgtgacc 60
atcacctgcc gcgccagcca gggcatcagc cgctggctgg cctggtacca gcagaagccc 120
gagaaggccc ccaagagcct gatctacgcc gccagcagcc tgcagagcgg cgtgcccagc 180
cgcttcagcg gcagcggcag cggcaccgac ttcaccctga ccatcagcag cctgcagccc 240
gaggacttcg ccacctacta ctgccagcag tacaacacct acccccgcac cttcggccag 300
ggcaccaagg tggagatcaa g 321
<210> 88
<211> 19
<212> PRT
<213> Artificial
<220>
<223> amino acid sequence of secretory expression signal peptide
<400> 88
Met Thr Arg Leu Thr Val Leu Ala Leu Leu Ala Gly Leu Leu Ala Ser
1 5 10 15
Ser Arg Ala
<210> 89
<211> 57
<212> DNA
<213> Artificial
<220>
<223> nucleotide sequence for secretory expression of signal peptide
<400> 89
atgacccggc tgaccgtgct ggccctgctg gccggcctgc tggcctcctc cagggcc 57
<210> 90
<211> 59
<212> DNA
<213> Artificial
<220>
<223> pcDNA3.1-Sig-F
<400> 90
gtgctggata tctgcagaat tcgccgccac catgacccgg ctgaccgtgc tggccctgc 59
<210> 91
<211> 49
<212> DNA
<213> Artificial
<220>
<223> Sig-R
<400> 91
ggccctggag gaggccagca ggccggccag cagggccagc acggtcagc 49
<210> 92
<211> 42
<212> DNA
<213> Artificial
<220>
<223> Sig-CD19-F
<400> 92
ctgctggcct cctccagggc cgacatccag ctgacccaga gc 42
<210> 93
<211> 23
<212> DNA
<213> Artificial
<220>
<223> CD19-R
<400> 93
gctgctcacg gtcacggtgg tgc 23
<210> 94
<211> 56
<212> DNA
<213> Artificial
<220>
<223> CD19-G4S-CD3-F
<400> 94
ccaccgtgac cgtgagcagc ggtggcggag ggtccgacat caagctgcag cagagc 56
<210> 95
<211> 20
<212> DNA
<213> Artificial
<220>
<223> CD3-R
<400> 95
cttcagctcc agcttggtgc 20
<210> 96
<211> 72
<212> DNA
<213> Artificial
<220>
<223> CD3-(GGGGS)3-4-1BB-F
<400> 96
gcaccaagct ggagctgaag ggcggcggcg gcagcggcgg cggcggcagc ggcggcggcg 60
gcagccaggt gc 72
<210> 97
<211> 51
<212> DNA
<213> Artificial
<220>
<223> pcDNA3.1-4-1BB-R
<400> 97
ctgatcagcg gtttaaactt aagctttcag cgcttgatct ccaccttggt g 51
<210> 98
<211> 41
<212> DNA
<213> Artificial
<220>
<223> CD3-IgD-F
<400> 98
gcaccaagct ggagctgaag gccagcaaga gcaagaagga g 41
<210> 99
<211> 21
<212> DNA
<213> Artificial
<220>
<223> IgD-R
<400> 99
cacgcccagg ggctgggtgt g 21
<210> 100
<211> 42
<212> DNA
<213> Artificial
<220>
<223> IgD-4-1BB-F
<400> 100
cacacccagc ccctgggcgt gcaggtgcag ctgcagcagt gg 42
<210> 101
<211> 86
<212> DNA
<213> Artificial
<220>
<223> CD3-(GGGGS)3-ICOS-F
<400> 101
gcaccaagct ggagctgaag ggcggcggcg gcagcggcgg cggcggcagc ggcggcggcg 60
gcagccaggt gcagctggtg cagagc 86
<210> 102
<211> 50
<212> DNA
<213> Artificial
<220>
<223> pcDNA3.1-ICOS-R
<400> 102
ctgatcagcg gtttaaactt aagctttcac ttgatctcca ccttggtgcc 50
<210> 103
<211> 42
<212> DNA
<213> Artificial
<220>
<223> IgD-ICOS-F
<400> 103
cacacccagc ccctgggcgt gcaggtgcag ctggtgcaga gc 42
<210> 104
<211> 85
<212> DNA
<213> Artificial
<220>
<223> CD3-(GGGGS)3-OX40-F
<400> 104
gcaccaagct ggagctgaag ggcggcggcg gcagcggcgg cggcggcagc ggcggcggcg 60
gcagccagct ggtggagagc ggcgg 85
<210> 105
<211> 52
<212> DNA
<213> Artificial
<220>
<223> pcDNA3.1-OX40-R
<400> 105
ctgatcagcg gtttaaactt aagctttcag cgcttgatct ccaggcgggt gc 52
<210> 106
<211> 45
<212> DNA
<213> Artificial
<220>
<223> IgD-OX40-F
<400> 106
gccacaccca gcccctgggc gtgcagctgg tggagagcgg cggcg 45
<210> 107
<211> 85
<212> DNA
<213> Artificial
<220>
<223> CD3-(GGGGS)3-GITR-F
<400> 107
gcaccaagct ggagctgaag ggcggcggcg gcagcggcgg cggcggcagc ggcggcggcg 60
gcagccaggt gaccctgaag gagag 85
<210> 108
<211> 52
<212> DNA
<213> Artificial
<220>
<223> pcDNA3.1-GITR-R
<400> 108
ctgatcagcg gtttaaactt aagctttcac ttgatctcca gcttggtgcc gg 52
<210> 109
<211> 43
<212> DNA
<213> Artificial
<220>
<223> IgD-GITR-F
<400> 109
gccacaccca gcccctgggc gtgcaggtga ccctgaagga gag 43
<210> 110
<211> 87
<212> DNA
<213> Artificial
<220>
<223> CD3-(GGGGS)3-CD40L-F
<400> 110
ggcaccaagc tggagctgaa gggcggcggc ggcagcggcg gcggcggcag cggcggcggc 60
ggcagcgagg tgcagctgct ggagagc 87
<210> 111
<211> 51
<212> DNA
<213> Artificial
<220>
<223> pcDNA3.1-CD40L-R
<400> 111
ctgatcagcg gtttaaactt aagctttcag cgcttgatct ccaccttggt g 51
<210> 112
<211> 43
<212> DNA
<213> Artificial
<220>
<223> IgD-CD40L-F
<400> 112
gccacaccca gcccctgggc gtggaggtgc agctgctgga gag 43
<210> 113
<211> 86
<212> DNA
<213> Artificial
<220>
<223> CD3-(GGGGS)3-CD27-F
<400> 113
gcaccaagct ggagctgaag ggcggcggcg gcagcggcgg cggcggcagc ggcggcggcg 60
gcagccaggt gcagctggtg gagagc 86
<210> 114
<211> 51
<212> DNA
<213> Artificial
<220>
<223> pcDNA3.1-CD27-R
<400> 114
ctgatcagcg gtttaaactt aagctttcac ttgatctcca ccttggtgcc c 51
<210> 115
<211> 43
<212> DNA
<213> Artificial
<220>
<223> IgD-CD27-F
<400> 115
gccacaccca gcccctgggc gtgcaggtgc agctggtgga gag 43

Claims (11)

1. A trifunctional molecule comprising a first domain capable of binding to CD19, a second domain capable of binding to and activating a T-cell surface CD3 molecule, and a third domain capable of binding to and activating a T-cell positive costimulatory molecule,
wherein the first domain is a single chain antibody against CD19, the second domain is a single chain antibody against CD3, the third domain is a single chain antibody against a T cell costimulatory molecule selected from the group consisting of a single chain antibody against 4-1BB, a single chain antibody against ICOS, a single chain antibody against OX40, a single chain antibody against GITR, a single chain antibody against CD40L, and a single chain antibody against CD27, the single chain antibody comprising a heavy chain variable region and a light chain variable region,
the first domain and the second domain are connected by a linker1, the second domain and the third domain are connected by a linker2,
the connecting segment 1 and the connecting segment 2 are respectively a connecting segment taking G4S as a unit and a hinge region segment of immunoglobulin IgD shown as SEQ ID NO. 7.
2. The trifunctional molecule of claim 1, wherein the trifunctional molecule is capable of binding to and activating a T-cell surface CD3 molecule and a T-cell positive costimulatory molecule, while recognizing CD19, thereby generating a first signal and a second signal required for T-cell activation.
3. Trifunctional molecule according to claim 1, characterized in that the amino acid sequence of the linker fragment in G4S units is as shown in any of SEQ ID No.1, SEQ ID No.3, SEQ ID No. 5.
4. The trifunctional molecule of claim 1, wherein the anti-CD 19 single-chain antibody has the heavy chain variable region amino acid sequence as set forth in SEQ ID No. 41; the amino acid sequence of the light chain variable region of the anti-CD 19 single-chain antibody is shown in SEQ ID NO. 42; the amino acid sequence of the heavy chain variable region of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 44; the amino acid sequence of the light chain variable region of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 45; the amino acid sequence of the heavy chain variable region of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 47; the amino acid sequence of the light chain variable region of the anti-4-1 BB single-chain antibody is shown in SEQ ID NO. 48; the amino acid sequence of the heavy chain variable region of the single-chain antibody for resisting ICOS is shown as SEQ ID NO. 50; the amino acid sequence of the light chain variable region of the anti-ICOS single-chain antibody is shown in SEQ ID NO. 51; the amino acid sequence of the heavy chain variable region of the anti-OX 40 single-chain antibody is shown as SEQ ID No. 53; the amino acid sequence of the light chain variable region of the anti-OX 40 single-chain antibody is shown as SEQ ID No. 54; the amino acid sequence of the heavy chain variable region of the anti-GITR single-chain antibody is shown as SEQ ID NO. 56; the amino acid sequence of the light chain variable region of the anti-GITR single-chain antibody is shown as SEQ ID NO. 57; the amino acid sequence of the heavy chain variable region of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 59; the amino acid sequence of the light chain variable region of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 60; the amino acid sequence of the heavy chain variable region of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 62; the amino acid sequence of the light chain variable region of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 63.
5. The trifunctional molecule according to claim 4, wherein the anti-CD 19 single-chain antibody has an amino acid sequence as shown in SEQ ID No. 40; the amino acid sequence of the anti-CD3 single-chain antibody is shown in SEQ ID NO. 43; the amino acid sequence of the single-chain antibody for resisting 4-1BB is shown as SEQ ID NO. 46; the amino acid sequence of the single-chain antibody for resisting ICOS is shown as SEQ ID NO. 49; the amino acid sequence of the anti-OX 40 single-chain antibody is shown as SEQ ID NO. 52; the amino acid sequence of the anti-GITR single-chain antibody is shown as SEQ ID NO. 55; the amino acid sequence of the anti-CD 40L single-chain antibody is shown in SEQ ID NO. 58; the amino acid sequence of the anti-CD 27 single-chain antibody is shown in SEQ ID NO. 61.
6. Trifunctional molecule according to claim 1, characterized in that the amino acid sequence of the trifunctional molecule is as shown in any of SEQ ID No.18, SEQ ID No.22, SEQ ID No.26, SEQ ID No.30, SEQ ID No.34 or SEQ ID No. 38.
7. A polynucleotide encoding a trifunctional molecule according to any one of claims 1-6.
8. An expression vector comprising the polynucleotide of claim 7.
9. A host cell transformed with the expression vector of claim 8.
10. A method of preparing a trifunctional molecule according to any one of claims 1-6, comprising: constructing an expression vector containing a gene sequence of the trifunctional molecules, then transforming the expression vector containing the gene sequence of the trifunctional molecules into host cells for induction expression, and separating the expression product to obtain the trifunctional molecules.
11. Use of the trifunctional molecules of any one of claims 1-6 for the preparation of a medicament for the treatment of tumors.
CN201611258691.0A 2016-12-30 2016-12-30 Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof Active CN108264559B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201611258691.0A CN108264559B (en) 2016-12-30 2016-12-30 Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof
EP17888652.9A EP3564265A4 (en) 2016-12-30 2017-08-09 TRIFUNCTIONAL MOLECULE AND ITS APPLICATION
PCT/CN2017/096594 WO2018120843A1 (en) 2016-12-30 2017-08-09 Trifunctional molecule and application thereof
US16/474,555 US11535666B2 (en) 2016-12-30 2017-08-09 Trifunctional molecule and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611258691.0A CN108264559B (en) 2016-12-30 2016-12-30 Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof

Publications (2)

Publication Number Publication Date
CN108264559A CN108264559A (en) 2018-07-10
CN108264559B true CN108264559B (en) 2021-08-10

Family

ID=62754611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611258691.0A Active CN108264559B (en) 2016-12-30 2016-12-30 Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof

Country Status (1)

Country Link
CN (1) CN108264559B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220010544A (en) 2019-05-21 2022-01-25 노파르티스 아게 CD19 binding molecules and uses thereof
CN115368448A (en) * 2022-07-19 2022-11-22 合肥天港免疫药物有限公司 Bispecific antibodies and uses thereof
CN115368463A (en) * 2022-07-19 2022-11-22 合肥天港免疫药物有限公司 Bispecific antibodies and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036678A1 (en) * 2014-09-02 2016-03-10 Medimmune, Llc Formulations of bispecific antibodies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060235201A1 (en) * 2003-02-06 2006-10-19 Roman Kischel Enduring T cell response
WO2004106381A1 (en) * 2003-05-31 2004-12-09 Micromet Ag Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders
CN100376599C (en) * 2004-04-01 2008-03-26 北京安波特基因工程技术有限公司 Recombining single chained three specific antibodies of anti CCA, anti CD 3, anti CD 28 through genetic engineering
CN105233291A (en) * 2014-07-09 2016-01-13 博笛生物科技有限公司 Combined therapy composition and combined therapy method for treating cancers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036678A1 (en) * 2014-09-02 2016-03-10 Medimmune, Llc Formulations of bispecific antibodies

Also Published As

Publication number Publication date
CN108264559A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
CN106589129B (en) Tri-functional molecule combined with CD19, CD3 and CD28 and application thereof
JP7642010B2 (en) Improved antigen-binding receptors
CN109485734B (en) Bispecific chimeric antigen receptor targeting BCMA and CD19 and application thereof
CN108610420B (en) Humanized antibodies against CD19 and CD 19-targeting immune effector cells
CN112574309B (en) anti-PD-L1 nano antibody and application thereof
CN108264561B (en) Tri-functional molecule combining CD19, CD3 and T cell negative co-stimulatory molecule and application thereof
KR20230024252A (en) Masked IL12 Fusion Proteins and Methods of Use Thereof
EP3878869A1 (en) Nkg2a antibody, preparation method therefor and application thereof
AU2021203626B2 (en) Chimeric polypeptides and methods of altering their localisation in the cell membrane
AU2021273789B2 (en) Human IL-15 mutant and use thereof
CN108264558B (en) Trispecific molecule fusing anti-CD 19, anti-CD3 antibody structural domain and T cell positive co-stimulatory molecule ligand and application
CN113621068B (en) Antibody or antigen binding fragment thereof specifically binding to CD276, and preparation method and application thereof
CN108264559B (en) Tri-functional molecule combined with CD19, CD3 and T cell positive co-stimulatory molecule and application thereof
EP3564265A1 (en) Trifunctional molecule and application thereof
CN108264560B (en) Bifunctional molecule combining CD3 and CD28 and application thereof
CN113614103A (en) Non-native NKG2D receptor that does not directly signal cells to which it is attached
CN108264557B (en) Bifunctional molecule combining CD3 and T cell negative co-stimulatory molecule and application thereof
CN108264562B (en) Bifunctional molecule combining CD3 and T cell positive co-stimulatory molecule and application thereof
CN108264566B (en) Bispecific molecule fusing anti-CD3 antibody structural domain and T cell positive co-stimulatory molecule ligand and application thereof
WO2022195241A1 (en) Cd160 binding domain
RU2825816C2 (en) Improved antigen-binding receptors
CN114539423B (en) A tri-specific fusion protein and its use
CN113004416B (en) Construction and application of HER2-CD137 targeted bispecific antibody
RU2832538C2 (en) Non-natural nkg2d receptors which do not directly transmit signal to cells with which they are bound
WO2024007358A1 (en) Antibody binding to human cd207, anti-human cd207 chimeric antigen receptor, and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Room a664-30, building 2, 351 GuoShouJing Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 201203

Applicant after: Huihe Biotechnology (Shanghai) Co.,Ltd.

Address before: Room a664-30, building 2, 351 GuoShouJing Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 201203

Applicant before: SHANGHAI NOVOPROTEIN BIOTECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant