CN108262002A - A kind of preparation method and application for the Fe-Ti binary oxide adsorbents for removing antimony - Google Patents
A kind of preparation method and application for the Fe-Ti binary oxide adsorbents for removing antimony Download PDFInfo
- Publication number
- CN108262002A CN108262002A CN201810156302.6A CN201810156302A CN108262002A CN 108262002 A CN108262002 A CN 108262002A CN 201810156302 A CN201810156302 A CN 201810156302A CN 108262002 A CN108262002 A CN 108262002A
- Authority
- CN
- China
- Prior art keywords
- antimony
- adsorbent
- binary oxide
- preparation
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052787 antimony Inorganic materials 0.000 title claims abstract description 50
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 239000003463 adsorbent Substances 0.000 title claims abstract description 42
- 229910002593 Fe-Ti Inorganic materials 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002351 wastewater Substances 0.000 claims abstract description 15
- 239000002244 precipitate Substances 0.000 claims abstract description 12
- 150000003608 titanium Chemical class 0.000 claims abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 239000000725 suspension Substances 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 6
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 claims description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 238000003760 magnetic stirring Methods 0.000 claims description 4
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 3
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 3
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 claims description 3
- 239000010865 sewage Substances 0.000 claims description 3
- 229910000348 titanium sulfate Inorganic materials 0.000 claims description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 48
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 5
- 150000002505 iron Chemical class 0.000 abstract description 4
- 238000000746 purification Methods 0.000 abstract description 4
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 10
- ZDINGUUTWDGGFF-UHFFFAOYSA-N antimony(5+) Chemical compound [Sb+5] ZDINGUUTWDGGFF-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003651 drinking water Substances 0.000 description 5
- 235000020188 drinking water Nutrition 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- UCXOJWUKTTTYFB-UHFFFAOYSA-N antimony;heptahydrate Chemical compound O.O.O.O.O.O.O.[Sb].[Sb] UCXOJWUKTTTYFB-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 231100000378 teratogenic Toxicity 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种去除锑的Fe‑Ti二元氧化物吸附剂的制备方法及应用,属于重金属污染水体处理领域。本发明吸附剂以铁盐和钛盐为原料,调节pH、共沉淀、超声分散、陈化、离心、洗涤、干燥、研磨、过筛,即得到Fe‑Ti二元氧化物吸附剂。该吸附剂结合了铁氧化物和钛氧化物的优点,具有许多粗糙的微观吸附孔道和较大的比表面积,表面含有丰富的羟基,吸附速度快,吸附容量高,可以选择性的协同吸附废水中的锑。本发明的吸附剂可应用于废水中锑的深度净化和安全控制。
The invention discloses a preparation method and application of an Fe-Ti binary oxide adsorbent for removing antimony, belonging to the field of treatment of heavy metal polluted water bodies. The adsorbent of the present invention uses iron salt and titanium salt as raw materials, adjusts pH, co-precipitates, ultrasonically disperses, ages, centrifuges, washes, dries, grinds, and sieves to obtain the Fe Ti binary oxide adsorbent. The adsorbent combines the advantages of iron oxide and titanium oxide, has many rough microscopic adsorption pores and a large specific surface area, the surface contains abundant hydroxyl groups, fast adsorption speed, high adsorption capacity, and can selectively and synergistically adsorb wastewater Antimony in. The adsorbent of the invention can be applied to deep purification and safety control of antimony in waste water.
Description
技术领域technical field
本发明属于重金属污染水体处理领域,尤其适用于工业废水、生活污水、地下水以及突发性污染废水中锑的深度净化和安全控制。具体涉及一种去除锑的Fe-Ti二元氧化物吸附剂的制备方法及应用。The invention belongs to the field of treatment of heavy metal polluted water bodies, and is especially suitable for deep purification and safety control of antimony in industrial waste water, domestic sewage, ground water and sudden polluted waste water. Specifically relates to a preparation method and application of an Fe-Ti binary oxide adsorbent for removing antimony.
背景技术Background technique
锑(Antimony)作为一种重要的有色金属,被视为全球战略资源之一,应用于多个工业领域,我国锑储量和产量居世界首位。近年来自然运动和人为活动加剧了锑的污染,含锑废物通过岩石风化、大气沉降、雨水冲刷和人为排等因素放进入天然水体,锑污染已经非常普遍。锑是一种有毒有害元素,在巴塞尔公约中将锑列为危险废物,对生物体具有强烈的生物毒性(致癌、致畸、致突变),吸收后可与体内的某些酶的巯基相结合,破坏组织新陈代谢,损害心、肝、肾及神经系统。因此国家制定了严格的锑排放标准:《锡、锑、汞工业污染物排放标准》(GB30770-2014)中规定生产锑矿产品和生产锑金属产品的现有企业总锑排放标准为1.0mg/L,《地表水环境质量标准》(GB 3838-2002)集中式生活饮用水地表水源地特定项目标准限值锑为0.005mg/L,《生活饮用水卫生标准》(GB5749-2006)中锑的最高限值为5μg/L。因此锑废水的治理刻不容缓,高效经济的处理含锑废水具有重大的社会、经济和环境意义。Antimony, as an important non-ferrous metal, is regarded as one of the global strategic resources and is used in many industrial fields. The reserves and output of antimony in my country rank first in the world. In recent years, natural movement and human activities have exacerbated antimony pollution. Antimony-containing wastes have been released into natural water bodies through rock weathering, atmospheric deposition, rainwater erosion, and human discharge. Antimony pollution has become very common. Antimony is a toxic and harmful element. Antimony is listed as hazardous waste in the Basel Convention. It has strong biological toxicity (carcinogenic, teratogenic, mutagenic) to organisms. After absorption, it can interact with the sulfhydryl group of certain enzymes in the body Combined, destroy tissue metabolism, damage the heart, liver, kidney and nervous system. Therefore, the country has formulated strict antimony discharge standards: "Tin, antimony, mercury industrial pollutant discharge standards" (GB30770-2014) stipulates that the total antimony discharge standard of existing enterprises that produce antimony mineral products and antimony metal products is 1.0mg/ L, "Environmental Quality Standards for Surface Water" (GB 3838-2002) The standard limit value of antimony for specific items of centralized drinking water surface water sources is 0.005mg/L, and the antimony content in "Sanitary Standards for Drinking Water" (GB5749-2006) The upper limit is 5μg/L. Therefore, the treatment of antimony wastewater is urgent, and the efficient and economical treatment of antimony wastewater has great social, economic and environmental significance.
目前锑处理工艺通常用石灰中和法、电化学沉淀法、强化混凝沉淀法、吸附法、离子交换和膜分离等方法。其中吸附法由于成本低、去除效率高、产生污泥量少、操作简单且工程上易于实施等优点而多被应用于废水的深度处理。吸附技术的核心在于吸附剂的开发,但大部分吸附剂具有溶胀明显、吸附反应活性偏弱、吸附量和吸附选择性偏低、有害离子溶出严重且需要频繁再生等缺点,再加上锑元素特殊的化学性质,其在不同的环境(Eh-pH)条件下,存在不同的形态变化,给锑去除带来了困难。近年来,零价铁及铁氧化物等以铁基材料为主的吸附材料,常被广泛应用于重金属的吸附去除,但单一铁基吸附材料存在反应活性偏弱、吸附量和吸附选择性偏低等缺点。研究表明复合双氧化物比单一氧化物具有更广泛的Eh-pH适用范围、反应活性强、更高的吸附量和吸附效率等。目前,国内外对于锑污染废水的深度吸附处理还缺乏高效的吸附剂。因此,开发一种吸附容量大、经济可靠的吸附剂材料具有重要的意义。At present, antimony treatment processes usually use lime neutralization, electrochemical precipitation, enhanced coagulation precipitation, adsorption, ion exchange and membrane separation. Among them, the adsorption method is mostly used in the advanced treatment of wastewater due to its advantages of low cost, high removal efficiency, less sludge generation, simple operation and easy engineering implementation. The core of adsorption technology lies in the development of adsorbents, but most adsorbents have the disadvantages of obvious swelling, weak adsorption reaction activity, low adsorption capacity and adsorption selectivity, serious dissolution of harmful ions, and frequent regeneration. The special chemical properties, which have different morphological changes under different environmental (Eh-pH) conditions, bring difficulties to the removal of antimony. In recent years, iron-based adsorption materials such as zero-valent iron and iron oxides have been widely used in the adsorption and removal of heavy metals, but single iron-based adsorption materials have weak reactivity, adsorption capacity and adsorption selectivity. low-level disadvantages. Studies have shown that composite double oxides have a wider range of Eh-pH applications, stronger reactivity, higher adsorption capacity and adsorption efficiency than single oxides. At present, there is still a lack of efficient adsorbents for the deep adsorption treatment of antimony-contaminated wastewater at home and abroad. Therefore, it is of great significance to develop an adsorbent material with large adsorption capacity, which is economical and reliable.
发明内容Contents of the invention
本发明的目的是通过Fe离子和Ti离子在碱性条件下共沉淀合成一种比表面积大、吸附容量大、吸附效率高、运行费用低、无二次污染、经济、环保的吸附材料。The object of the present invention is to synthesize an economical and environment-friendly adsorption material with large specific surface area, large adsorption capacity, high adsorption efficiency, low operating cost, no secondary pollution, and no secondary pollution by coprecipitation of Fe ions and Ti ions under alkaline conditions.
本发明的目的是通过以下方式来实现的:The purpose of the present invention is achieved in the following manner:
本发明提供的一种去除锑的Fe-Ti二元氧化物吸附剂的制备方法,具体步骤如下:A kind of preparation method of the Fe-Ti binary oxide adsorbent that removes antimony provided by the invention, concrete steps are as follows:
A、将铁盐和钛盐按摩尔比例为0.2-5∶1分别溶于无氧去离子水中;A, iron salt and titanium salt are respectively dissolved in anaerobic deionized water in a molar ratio of 0.2-5:1;
B、用磁力搅拌器按转速为1000rpm剧烈地搅拌步骤A中的混合液,待其充分混合后,加入1M的Na0H水溶液将pH保持在5.0-7.0范围内;B. Vigorously stir the mixed solution in step A with a magnetic stirrer at a rotating speed of 1000rpm. After it is fully mixed, add 1M NaOH aqueous solution to keep the pH within the range of 5.0-7.0;
C、将步骤B得到的混合液超声分散10-50min后得到悬浮液,将该悬浮液按转速为200rpm继续搅拌0.5-1.0h,然后在室温下陈化2-6h,过滤得到棕色沉淀物;C. Ultrasonic disperse the mixed solution obtained in step B for 10-50 minutes to obtain a suspension, and continue to stir the suspension at a speed of 200 rpm for 0.5-1.0 h, then age at room temperature for 2-6 h, and filter to obtain a brown precipitate;
D、将步骤C所得的棕色沉淀物用去离子水清洗5遍,每次洗涤用的去离子水的体积与反应体系的体积比为2∶1,直至洗涤下来清水的pH为7.0,得到悬浮固体;D, the brown precipitate obtained in step C is washed 5 times with deionized water, and the volume ratio of the volume of deionized water used for each washing to the volume of the reaction system is 2:1, until the pH of the clear water after washing is 7.0, and the suspension is obtained. solid;
E、将经步骤D后得到的悬浮固体离心弃去上清液后在110-150℃下真空干燥至恒重,然后将得到的干燥固体物研磨成粉末后过200目筛,即得到所述的去除锑的Fe-Ti二元氧化物吸附剂;E. Centrifuge the suspended solid obtained after step D to discard the supernatant, then vacuum-dry it at 110-150°C to constant weight, then grind the obtained dry solid into powder and pass it through a 200-mesh sieve to obtain the Fe-Ti binary oxide adsorbent for antimony removal;
进一步,所述的铁盐属于硝酸铁、氯化铁、硫酸铁中的一种或几种,所述的钛盐属于硝酸钛、氯化钛、硫酸钛中的一种或几种;Further, the iron salt belongs to one or more of ferric nitrate, ferric chloride, and ferric sulfate, and the titanium salt belongs to one or more of titanium nitrate, titanium chloride, and titanium sulfate;
进一步,所述的铁盐和钛盐摩尔比例为2∶1;Further, the molar ratio of the iron salt and the titanium salt is 2:1;
进一步,步骤B中所述的pH保持在6.00±0.02。Further, the pH in step B is maintained at 6.00±0.02.
本发明的另一目的是还提供了一种Fe-Ti二元氧化物吸附剂在工业废水、生活污水、地下水以及突发性污染废水中锑的深度净化和安全控制中的应用。Another object of the present invention is to also provide an application of Fe-Ti binary oxide adsorbent in deep purification and safety control of antimony in industrial wastewater, domestic sewage, groundwater and sudden pollution wastewater.
本发明所述的Fe-Ti二元氧化物吸附剂的制备方法,具有如下优点:The preparation method of Fe-Ti binary oxide adsorbent of the present invention has the following advantages:
(1)本发明制备方法简单,无需高温高压,条件易控制,危险性低,环境友好;原材料成本低廉,能耗低;(1) The preparation method of the present invention is simple, does not need high temperature and high pressure, the conditions are easy to control, the risk is low, and the environment is friendly; the cost of raw materials is low, and the energy consumption is low;
(2)本发明所制备的Fe-Ti二元氧化物吸附剂,兼有铁氧化物和铜氧化物的优点,表面具有丰富的羟基,同时弥补单独氧化物使用时的不足,提高了对锑的协同吸附去除能力;(2) Fe-Ti binary oxide sorbent prepared by the present invention has the advantages of iron oxide and copper oxide concurrently, and the surface has abundant hydroxyl groups, which makes up for the deficiency when the oxide alone is used simultaneously, and improves antimony Synergistic adsorption and removal capacity;
(3)本发明所制备的Fe-Ti二元氧化物吸附剂对水中的锑酸根离子具有优越的吸附性能。适用于普通饮用水、地下水以及饮用水突发性污染中锑的净化去除;(3) The Fe-Ti binary oxide adsorbent prepared by the present invention has superior adsorption properties for antimonate ions in water. It is suitable for the purification and removal of antimony in ordinary drinking water, ground water and sudden pollution of drinking water;
(4)本发明利用合成Fe-Ti二元氧化物吸附剂协同体系对锑去除效率高,效果非常稳定,成本低,受环境干扰因小,易于控制,自动化运行。(4) The present invention utilizes the synergistic system of synthetic Fe-Ti binary oxide adsorbent to remove antimony with high efficiency, very stable effect, low cost, little environmental interference, easy control and automatic operation.
附图说明Description of drawings
图1Fe-Ti二元氧化物的扫描电镜图。Fig. 1 SEM image of Fe-Ti binary oxide.
图2Fe-Ti二元氧化物的XRD射线衍射图。Fig. 2 XRD ray diffraction pattern of Fe-Ti binary oxide.
图3不同pH条件下Fe-Ti二元氧化物对锑的吸附去除。Figure 3 Adsorption and removal of antimony by Fe-Ti binary oxides under different pH conditions.
图4Fe-Ti二元氧化物对锑的吸附动力学曲线图。Figure 4 The adsorption kinetics curve of Fe-Ti binary oxides on antimony.
图5吸附锑(V)前后Fe-Ti吸附剂的红外衍射图。Fig. 5 Infrared diffraction patterns of Fe-Ti adsorbent before and after adsorption of antimony (V).
图6锑去除的滤柱实验装置图。Figure 6 Schematic diagram of the filter column experimental setup for antimony removal.
图6中:1、含锑废水,2、搅拌装置,3、进水管,4、蠕动泵,5、滤柱,6、吸附材料,7、石英砂,8、脱脂棉,9、出水管,10、支撑装置。In Figure 6: 1. Antimony-containing wastewater, 2. Stirring device, 3. Water inlet pipe, 4. Peristaltic pump, 5. Filter column, 6. Adsorption material, 7. Quartz sand, 8. Absorbent cotton, 9. Outlet pipe, 10 , Supporting device.
具体实施方式Detailed ways
下面将结合具体实施例对本发明做进一步的说明。The present invention will be further described below in conjunction with specific embodiments.
实施例1:本发明一种用于锑的Fe-Ti二元氧化物吸附剂的制备方法(如图1所示)Embodiment 1: A kind of preparation method (as shown in Figure 1) of Fe-Ti binary oxide adsorbent for antimony of the present invention
磁力搅拌(100rpm)状态下,将0.25mol四氯化钛(TiCl4)慢慢注射到1L的0.5M氯化铁(溶于0.1M HCl)溶液中;同时缓慢滴加1M NaOH溶液直到pH值保持在6.00±0.02,将混合液超声分散30min后得到悬浮液,将该悬浮液按转速为200rpm,继续搅拌0.8h;然后将凝胶状的黄-棕色的沉淀在母液中陈化4天;使得吸附材料表面生成吸附能力极强的活化层,沉淀并固液分离,将棕-黄色沉淀用去离子水清洗5遍,每次洗涤水体积与反应体系的体积比为2∶1,直到洗下来清水的pH为7.0,悬浮固体离心冷冻干燥后,在130℃下干燥至恒重;研磨成粉末后过200目筛,得到Fe-Ti二元氧化物吸附剂。Under magnetic stirring (100rpm), slowly inject 0.25mol titanium tetrachloride (TiCl 4 ) into 1L of 0.5M ferric chloride (dissolved in 0.1M HCl) solution; at the same time, slowly add 1M NaOH solution dropwise until the pH value Keep it at 6.00±0.02, ultrasonically disperse the mixture for 30 minutes to obtain a suspension, and keep stirring the suspension at a speed of 200 rpm for 0.8 hours; then age the gelatinous yellow-brown precipitate in the mother liquor for 4 days; Make the surface of the adsorption material generate an activated layer with strong adsorption capacity, precipitate and separate the solid and liquid, wash the brown-yellow precipitate with deionized water 5 times, and the volume ratio of the volume of each washing water to the reaction system is 2:1, until the washing The pH of the clear water is 7.0, and the suspended solid is centrifuged and freeze-dried, and then dried to constant weight at 130°C; ground into powder and passed through a 200-mesh sieve to obtain Fe-Ti binary oxide adsorbent.
实施例2:本发明一种用于锑的Fe-Ti二元氧化物吸附剂的制备方法(如图1所示)Embodiment 2: A kind of preparation method of Fe-Ti binary oxide adsorbent for antimony of the present invention (as shown in Figure 1)
磁力搅拌(100rpm)状态下,将1mol硫酸钛慢慢注射到1L的0.2M硫酸铁(溶于0.1MHCl)溶液中;同时缓慢滴加1M NaOH溶液直到pH值保持在5.0,将混合液超声分散10min后得到悬浮液,将该悬浮液按转速为200rpm,继续搅拌0.5h;然后将凝胶状的黄-棕色的沉淀在母液中陈化2天;使得吸附材料表面生成吸附能力极强的活化层,沉淀并固液分离,将棕-黄色沉淀用去离子水清洗5遍,每次洗涤水体积与反应体系的体积比为2∶1,直到洗下来清水的pH为7.0,悬浮固体离心冷冻干燥后,在110℃下干燥至恒重;研磨成粉末后过200目筛,得到Fe-Ti二元氧化物吸附剂。In the state of magnetic stirring (100rpm), slowly inject 1mol of titanium sulfate into 1L of 0.2M ferric sulfate (dissolved in 0.1M HCl) solution; at the same time, slowly add 1M NaOH solution dropwise until the pH value remains at 5.0, and ultrasonically disperse the mixture After 10 minutes, the suspension was obtained, and the suspension was stirred at a speed of 200 rpm for 0.5 hours; then the gelatinous yellow-brown precipitate was aged in the mother liquor for 2 days; the surface of the adsorption material was activated to generate a strong adsorption capacity. layer, precipitation and solid-liquid separation, the brown-yellow precipitate was washed 5 times with deionized water, the volume ratio of each washing water to the reaction system was 2:1, until the pH of the washed water was 7.0, the suspended solid was centrifuged and frozen After drying, it is dried at 110°C to constant weight; it is ground into powder and passed through a 200-mesh sieve to obtain Fe-Ti binary oxide adsorbent.
实施例3:本发明一种用于锑的Fe-Ti二元氧化物吸附剂的制备方法(如图1所示)Embodiment 3: A kind of preparation method of Fe-Ti binary oxide adsorbent for antimony of the present invention (as shown in Figure 1)
磁力搅拌(100rpm)状态下,将1mol硝酸钛慢慢注射到1L的5M硝酸铁(溶于0.1MHCl)溶液中;同时缓慢滴加1M NaOH溶液直到pH值保持在7.0,将混合液超声分散50min后得到悬浮液,将该悬浮液按转速为200rpm,继续搅拌1h;然后将凝胶状的黄-棕色的沉淀在母液中陈化6天;使得吸附材料表面生成吸附能力极强的活化层,沉淀并固液分离,将棕-黄色沉淀用去离子水清洗5遍,每次洗涤水体积与反应体系的体积比为2∶1,直到洗下来清水的pH为7.0,悬浮固体离心冷冻干燥后,在150℃下干燥至恒重;研磨成粉末后过200目筛,得到Fe-Ti二元氧化物吸附剂。Under magnetic stirring (100rpm), slowly inject 1mol of titanium nitrate into 1L of 5M ferric nitrate (dissolved in 0.1M HCl) solution; at the same time, slowly add 1M NaOH solution dropwise until the pH value remains at 7.0, and ultrasonically disperse the mixture for 50min After obtaining the suspension, the suspension is 200rpm according to the rotating speed, and continues to stir for 1h; then the gelatinous yellow-brown precipitate is aged in the mother liquor for 6 days; the surface of the adsorption material is made to generate an active layer with strong adsorption capacity. Precipitation and solid-liquid separation, wash the brown-yellow precipitate with deionized water 5 times, the volume ratio of each washing water to the reaction system is 2:1, until the pH of the washed water is 7.0, the suspended solid is centrifuged and freeze-dried , dried at 150°C to constant weight; ground into powder and passed through a 200-mesh sieve to obtain Fe-Ti binary oxide adsorbent.
实验例1:对去除锑的Fe-Ti二元氧化物吸附剂合成材料进行电镜扫描和XRD衍射表征(如图1-2所示)Experimental Example 1: Electron microscope scanning and XRD diffraction characterization of Fe-Ti binary oxide adsorbent synthetic material for antimony removal (as shown in Figure 1-2)
扫描电镜(SEM)显示制备的Fe-Ti二元氧化物吸附剂具有微米级别的聚集微小颗粒,纳米颗粒大量重叠聚集在一起,表面类似珊瑚礁的突起聚集成簇,突起表面具有较多粗糙的微观吸附孔道结构和较大的比表面积(232.339m2/g),最小粒径为0.486μm,平均粒径为6.88μm。XRD衍射图谱结果表明其表面为无定型态结构,材料表面富含高密度亲水性羟基,吸附在固体表面,对废水中锑的吸附能力强,吸附量高,吸附速度快,可重复利用,具有很强的实际应用价值。Scanning electron microscopy (SEM) shows that the prepared Fe-Ti binary oxide adsorbent has micron-scale aggregated tiny particles, a large number of overlapping and aggregated nanoparticles, and protrusions on the surface similar to coral reefs clustered into clusters, and the protrusion surface has more rough microscopic Adsorption pore structure and large specific surface area (232.339m 2 /g), the minimum particle size is 0.486μm, and the average particle size is 6.88μm. The results of XRD diffraction pattern show that its surface is an amorphous structure. The surface of the material is rich in high-density hydrophilic hydroxyl groups, which are adsorbed on the solid surface. It has strong adsorption capacity for antimony in wastewater, high adsorption capacity, fast adsorption speed, and can be reused. , has strong practical application value.
实验例2:Fe-Ti二元氧化物在不同pH条件下对锑(V)的吸附去除的实验(如图3所示)Experimental Example 2: The experiment of adsorption and removal of antimony (V) by Fe-Ti binary oxides under different pH conditions (as shown in Figure 3)
在40mL聚乙烯塑料离心管中加入30mL初始浓度为10mg/L Sb(V)溶液,然后加入0.015g吸附剂,控制溶液pH值分别为2、3、4、5、6、7、8、9、10,温度控制为25℃,转速为120rpm,恒温振荡24h,然后抽取少量样品,过0.45μm硝酸纤维素滤膜后,稀释数倍,用LC-AFS97800原子荧光光度计测定吸附前后液相中Sb(V)的浓度。结论得出Fe-Ti二元氧化物对锑的去除率受pH值的影响较明显,在酸性条件下去除率明显高于在碱性条件下的去除率,最佳pH为6.00±0.02,去除率基本达到99.31%。Add 30mL of Sb(V) solution with an initial concentration of 10mg/L into a 40mL polyethylene plastic centrifuge tube, then add 0.015g of adsorbent, and control the pH of the solution to be 2, 3, 4, 5, 6, 7, 8, 9 , 10, the temperature is controlled at 25°C, the rotation speed is 120rpm, and the temperature is oscillated for 24h, then a small amount of sample is taken, passed through a 0.45μm nitrocellulose filter membrane, diluted several times, and measured by LC-AFS97800 atomic fluorescence spectrometer in the liquid phase before and after adsorption. Concentration of Sb(V). It is concluded that the removal rate of antimony by Fe-Ti binary oxides is significantly affected by the pH value, and the removal rate under acidic conditions is significantly higher than that under alkaline conditions. The optimum pH is 6.00±0.02. The rate basically reached 99.31%.
实验例3:Fe-Ti二元氧化物对锑的吸附动力学实验(如图4所示)Experimental example 3: The adsorption kinetic experiment of Fe-Ti binary oxide on antimony (as shown in Figure 4)
在300mL聚乙烯塑料离心管中加入0.02g吸附剂,加入200mL初始浓度为10mg/L Sb(V)溶液,调节最佳pH值为5.00±0.02,放入全温震荡培养箱做吸附实验,温度为25℃,转速调节为120rpm,振荡时间为10min、20min、30min、1h、1.5h、2h、3h、4h、5h、7h、9h、11h、13h、24h、36h、48h、60h、72h,然后抽取0.5mL左右的样品,经过0.45μm硝酸纤维素滤膜后,稀释数倍,用LC-AFS97800原子荧光光度计测定其Sb(V)的浓度。由初始浓度C0与不同时间下的浓度差Ce之差计算吸附量:随着时间的不断增加,Fe-Ti二元氧化物对锑(V)的吸附量也在不断的提高,在60h时其最大吸附量为69.96mg/g。Add 0.02g of adsorbent to a 300mL polyethylene plastic centrifuge tube, add 200mL of Sb(V) solution with an initial concentration of 10mg/L, adjust the optimum pH value to 5.00±0.02, and put it into a full-temperature shaking incubator for adsorption experiments. at 25°C, the rotation speed is adjusted to 120rpm, the shaking time is 10min, 20min, 30min, 1h, 1.5h, 2h, 3h, 4h, 5h, 7h, 9h, 11h, 13h, 24h, 36h, 48h, 60h, 72h, and then Take about 0.5mL sample, pass through 0.45μm nitrocellulose filter, dilute several times, and measure the concentration of Sb(V) with LC-AFS97800 atomic fluorescence spectrometer. The adsorption amount is calculated from the difference between the initial concentration C 0 and the concentration difference C e at different times: with the continuous increase of time, the adsorption amount of Fe-Ti binary oxide to antimony (V) is also increasing, and at 60h At that time, its maximum adsorption capacity was 69.96mg/g.
实验例4:Fe-Ti二元氧化物吸附锑前后的红外衍射图(如图5所示)Experimental example 4: Infrared diffraction patterns of Fe-Ti binary oxide before and after adsorption of antimony (as shown in Figure 5)
由图可知:1350cm-1左右的一个强峰,可能是由吸附剂表面所吸附的硝酸根或者碳酸根产生的,硝酸根和碳酸根可能是在制备过程中吸附在吸附剂表面的,在锑的吸附过程中,被替换掉。对于Fe-Ti吸附剂:1650cm-1左右的较弱的峰,是由吸附剂表面的O-H基团弯曲震动产生的;3350cm-1左右的宽峰是由吸附剂表面的O-H基团伸缩震动产生的;这两个峰的大小在吸附前后都有所变化,显示出锑吸附是发生在O-H基团上的。It can be seen from the figure that a strong peak around 1350cm -1 may be produced by the nitrate or carbonate adsorbed on the surface of the adsorbent. The nitrate and carbonate may be adsorbed on the surface of the adsorbent during the preparation process. During the adsorption process, it is replaced. For Fe-Ti adsorbent: the weaker peak around 1650cm -1 is produced by the bending vibration of the OH group on the surface of the adsorbent; the broad peak around 3350cm -1 is produced by the stretching vibration of the OH group on the surface of the adsorbent ; the size of these two peaks changed before and after adsorption, showing that the antimony adsorption occurred on the OH group.
应用实施例:Fe-Ti二元氧化物吸附剂滤柱对锑(V)的去除应用例(如图6所示)Application example: Fe-Ti binary oxide adsorbent filter column for antimony (V) removal application example (as shown in Figure 6)
用焦锑酸钾(K2H2Sb2O7·4H2O)配制500μg/L的废水于1L锥形瓶中,用0.1mol/L的HCl/NaOH溶液将pH调节6.00±0.02,搅拌器搅拌均匀后用蠕动泵泵入滤柱,取Fe-Ti二元氧化物吸附剂填充于柱中(柱底填脱脂棉),采用下流式出水,约为5空床体积(BV)/h,HRT为10min,每隔一段时间从出口采样,测锑(V)的浓度,实验结果如表1所示,从实验结果可以得出经过Fe-Ti二元氧化物吸附剂对含锑(V)废水处理之后,其出水达到《生活饮用水卫生标准》(GB5749-2006)排水标准(Sb<5μg/L)。Use potassium pyroantimonate (K 2 H 2 Sb 2 O 7 4H 2 O) to prepare 500 μg/L wastewater in a 1L Erlenmeyer flask, adjust the pH to 6.00±0.02 with 0.1mol/L HCl/NaOH solution, and stir After the filter is stirred evenly, it is pumped into the filter column with a peristaltic pump, and the Fe-Ti binary oxide adsorbent is filled in the column (the bottom of the column is filled with absorbent cotton). HRT is 10min, samples are taken from the outlet at regular intervals, and the concentration of antimony (V) is measured. The experimental results are shown in Table 1. From the experimental results, it can be concluded that the Fe-Ti binary oxide adsorbent has a positive effect on the concentration of antimony (V) After the wastewater is treated, its effluent meets the drainage standard (Sb<5μg/L) of the Hygienic Standard for Drinking Water (GB5749-2006).
表1:Fe-Ti二元氧化物多批次去除含锑(V)废水的实验结果Table 1: Experimental results of multiple batches of Fe-Ti binary oxides for the removal of antimony (V)-containing wastewater
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810156302.6A CN108262002B (en) | 2018-02-24 | 2018-02-24 | Preparation method and application of Fe-Ti binary oxide adsorbent for removing antimony |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810156302.6A CN108262002B (en) | 2018-02-24 | 2018-02-24 | Preparation method and application of Fe-Ti binary oxide adsorbent for removing antimony |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108262002A true CN108262002A (en) | 2018-07-10 |
CN108262002B CN108262002B (en) | 2021-03-02 |
Family
ID=62774272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810156302.6A Active CN108262002B (en) | 2018-02-24 | 2018-02-24 | Preparation method and application of Fe-Ti binary oxide adsorbent for removing antimony |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108262002B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097063A (en) * | 2018-09-23 | 2018-12-28 | 邓文武 | A kind of soil-repairing agent and preparation method thereof |
CN110090615A (en) * | 2019-04-24 | 2019-08-06 | 华东理工大学 | A kind of preparation method and application of high-valence state metal ferrites adsorbent |
CN110186830A (en) * | 2019-06-03 | 2019-08-30 | 上海理工大学 | Laboratory dyeing waste water removes antimony filtrate test device and method |
CN111909335A (en) * | 2020-07-13 | 2020-11-10 | 旬阳领盛新材料科技有限公司 | A kind of antimony removal adsorption resin and preparation method thereof |
CN112320918A (en) * | 2020-10-19 | 2021-02-05 | 武汉大学 | Method for doping Fe (OH) by metal ions2Method for removing halogenated organic pollutants in water |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1890021A (en) * | 2003-12-05 | 2007-01-03 | 英特凯特公司 | Mixed metal oxide sorbents |
WO2008072896A1 (en) * | 2006-12-13 | 2008-06-19 | Korea Research Institute Of Chemical Technology | A porous organic-inorganic hybrid materials and an absorbent comprising the same |
CN101279789A (en) * | 2008-05-26 | 2008-10-08 | 上海工程技术大学 | Method for treating polluted water with iron-titanium composite oxide nanomaterials |
CN105478074A (en) * | 2015-12-23 | 2016-04-13 | 中国科学院烟台海岸带研究所 | Preparation method and application of heavy metal ion remover |
CN106215848A (en) * | 2012-09-13 | 2016-12-14 | 清华大学 | A kind of preparation method of iron titanium oxide de-fluoridation adsorbent |
CN107413296A (en) * | 2017-07-21 | 2017-12-01 | 浙江省农业科学院 | A kind of charcoal ferrojacobsite composite for being used to adsorb heavy metal antimony cadmium |
-
2018
- 2018-02-24 CN CN201810156302.6A patent/CN108262002B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1890021A (en) * | 2003-12-05 | 2007-01-03 | 英特凯特公司 | Mixed metal oxide sorbents |
WO2008072896A1 (en) * | 2006-12-13 | 2008-06-19 | Korea Research Institute Of Chemical Technology | A porous organic-inorganic hybrid materials and an absorbent comprising the same |
CN101279789A (en) * | 2008-05-26 | 2008-10-08 | 上海工程技术大学 | Method for treating polluted water with iron-titanium composite oxide nanomaterials |
CN106215848A (en) * | 2012-09-13 | 2016-12-14 | 清华大学 | A kind of preparation method of iron titanium oxide de-fluoridation adsorbent |
CN105478074A (en) * | 2015-12-23 | 2016-04-13 | 中国科学院烟台海岸带研究所 | Preparation method and application of heavy metal ion remover |
CN107413296A (en) * | 2017-07-21 | 2017-12-01 | 浙江省农业科学院 | A kind of charcoal ferrojacobsite composite for being used to adsorb heavy metal antimony cadmium |
Non-Patent Citations (2)
Title |
---|
YONGCHAO LI等: ""Preparation of iron-copper binary oxide and its effective removal on antimony(V) from water"", 《DESALINATION AND WATER TREATMENT》 * |
汪赛奇: ""Fe-Ti复合氧化物的制备、表征及其对水中As(V)的吸附研究"", 《中国博士学位论文全文数据库 工程科技I辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097063A (en) * | 2018-09-23 | 2018-12-28 | 邓文武 | A kind of soil-repairing agent and preparation method thereof |
CN110090615A (en) * | 2019-04-24 | 2019-08-06 | 华东理工大学 | A kind of preparation method and application of high-valence state metal ferrites adsorbent |
CN110090615B (en) * | 2019-04-24 | 2022-03-11 | 华东理工大学 | A kind of preparation method and application of high valence metal ferrite adsorbent |
CN110186830A (en) * | 2019-06-03 | 2019-08-30 | 上海理工大学 | Laboratory dyeing waste water removes antimony filtrate test device and method |
CN111909335A (en) * | 2020-07-13 | 2020-11-10 | 旬阳领盛新材料科技有限公司 | A kind of antimony removal adsorption resin and preparation method thereof |
CN112320918A (en) * | 2020-10-19 | 2021-02-05 | 武汉大学 | Method for doping Fe (OH) by metal ions2Method for removing halogenated organic pollutants in water |
CN112320918B (en) * | 2020-10-19 | 2021-10-22 | 武汉大学 | A method for removing halogenated organic pollutants in water by doping Fe(OH)2 with metal ions |
Also Published As
Publication number | Publication date |
---|---|
CN108262002B (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Mechanism study on manganese (II) removal from acid mine wastewater using red mud and its application to a lab-scale column | |
CN108262002A (en) | A kind of preparation method and application for the Fe-Ti binary oxide adsorbents for removing antimony | |
CN109317091B (en) | Modified sepiolite heavy metal adsorption material and preparation method thereof | |
Zhang et al. | Removal of toxic heavy metal ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from waste batteries or lithium cells using nanosized metal oxides: A review | |
CN102489245B (en) | Modified pumice absorbing material and preparation method as well as application thereof | |
CN106076261B (en) | A kind of adsorbent for heavy metal and preparation method and application | |
CN1751783A (en) | Composite adsorption material for removing arsenic in water and preparation method thereof | |
CN107311387B (en) | A kind of deep treatment method of dyeing waste water | |
CN110508243B (en) | Preparation method and application of biomass-based porous carbon-supported iron floc adsorption material | |
CN104138750A (en) | Method for deep dephosphorization by using embedded lanthanum oxide composite resin | |
CN109289762B (en) | Preparation method of manganese-activated amorphous iron-based adsorbent | |
CN111111612B (en) | Preparation and use method of magnetic porous biochar for removing chromium in water | |
CN105107471A (en) | Sulphydryl lignocellulose/montmorillonite composite heavy metal ion adsorbent and preparation and application thereof | |
CN107970890B (en) | Hydroxyl iron modified activated carbon composite material and preparation method thereof | |
CN104587956A (en) | Preparation method of coated nano zero-valent iron taking multilayer activated-carbon-coated graphene oxide composite powder as carrier | |
CN107469765A (en) | A kind of preparation method of diatomite/ferrous acid magnesium base composite material | |
CN109772271A (en) | A kind of iron-manganese modified algae adsorbent and preparation method thereof | |
CN106040165B (en) | A kind of magnetic modified zeolite material and the preparation method and application thereof for adsorbing except nickel | |
CN116196884B (en) | A manganese activated red mud catalytic oxidation adsorption material and its preparation method and application | |
CN104645932B (en) | A kind of iron-manganese oxide compound modified zeolite and its preparation method and application | |
CN104353407B (en) | A kind of Fe-Mn system adsorbent and its preparation and application method | |
CN109174066A (en) | A kind of preparation method of nano lanthanum oxide de-fluoridation adsorbent | |
CN104941573A (en) | Manganite-loaded adsorbent and preparation method thereof as well as application of manganite-loaded adsorbent in treating chemical nickel plating waste liquid | |
CN102728299A (en) | Titanium-dioxide-doped composite magnetic nano-grade adsorbent, preparation method thereof, and application thereof | |
Yadav et al. | An overview of effluent treatment for the removal of pollutant dyes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |