CN108257965A - Flash memory storage structure and its manufacturing method - Google Patents
Flash memory storage structure and its manufacturing method Download PDFInfo
- Publication number
- CN108257965A CN108257965A CN201611249146.5A CN201611249146A CN108257965A CN 108257965 A CN108257965 A CN 108257965A CN 201611249146 A CN201611249146 A CN 201611249146A CN 108257965 A CN108257965 A CN 108257965A
- Authority
- CN
- China
- Prior art keywords
- floating gate
- layer
- field oxygen
- storage structure
- tunnel oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 230000005055 memory storage Effects 0.000 title claims abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 33
- 230000001681 protective effect Effects 0.000 claims abstract description 29
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 26
- 229920005591 polysilicon Polymers 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000003860 storage Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 12
- 125000006850 spacer group Chemical group 0.000 claims abstract description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000000151 deposition Methods 0.000 claims abstract description 10
- 238000002955 isolation Methods 0.000 claims description 19
- 230000005641 tunneling Effects 0.000 claims description 8
- 238000001312 dry etching Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 8
- 238000001039 wet etching Methods 0.000 abstract description 7
- 230000007797 corrosion Effects 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
本发明涉及一种闪存存储结构及其制造方法。该方法包括:在衬底结构上淀积多晶硅层;利用所述多晶硅层形成浮栅和覆盖在浮栅上的场氧结构;在所述浮栅底部的边角处形成保护侧墙;在场氧结构及浮栅上形成隧穿氧化层;在所述隧穿氧化层上形成控制栅。上述闪存存储结构及方法,通过在浮栅底部边角处形成保护侧墙,在后续形成隧穿氧化层后,即使经历多次湿法腐蚀,隧穿氧化层的底部边角处被腐蚀,也会被保护侧墙阻止进一步腐蚀。控制栅不会形成尖角,可以有效地防止电子反隧穿。进一步地,保护侧墙采用不易被电子隧穿的氮化硅材料,也可以有效防止电子反隧穿。所形成的半导体器件擦除更加稳定。
The invention relates to a flash storage structure and a manufacturing method thereof. The method includes: depositing a polysilicon layer on the substrate structure; using the polysilicon layer to form a floating gate and a field oxygen structure covering the floating gate; forming a protective spacer at the corner of the bottom of the floating gate; A tunnel oxide layer is formed on the structure and the floating gate; a control gate is formed on the tunnel oxide layer. In the above-mentioned flash memory storage structure and method, by forming protective sidewalls at the bottom corners of the floating gate, after the subsequent formation of the tunnel oxide layer, even if the bottom corners of the tunnel oxide layer are corroded through multiple times of wet etching, the Further corrosion will be prevented by the protective side walls. The control grid does not form sharp corners, which can effectively prevent electron anti-tunneling. Further, the protective sidewall is made of silicon nitride material which is not easily tunneled by electrons, which can also effectively prevent anti-tunneling of electrons. The formed semiconductor device is more stable in erasure.
Description
技术领域technical field
本发明涉及半导体存储技术领域,特别是涉及一种闪存存储结构及其制造方法。The invention relates to the technical field of semiconductor storage, in particular to a flash memory storage structure and a manufacturing method thereof.
背景技术Background technique
半导体存储器件的基本单位为可以表示0和1两种状态的半导体结构,一般地,都采用半导体器件常见的MOS结构。传统的闪存(FLASH存储)的基本结构大都是在MOS结构中加入浮栅存储或释放电荷以实现表示0和1两种状态。The basic unit of a semiconductor memory device is a semiconductor structure that can represent two states of 0 and 1. Generally, a common MOS structure of a semiconductor device is used. The basic structure of traditional flash memory (FLASH storage) mostly adds floating gates to store or release charges in the MOS structure to realize two states of 0 and 1.
图1为采用具有浮栅的基本结构形成的存储器的原理图。如图2a所示,是这种基本存储单元的结构示意图。该基本存储单元10包括衬底结构15、设于衬底15上的多晶硅浮栅11、形成在浮栅11上的场氧结构12、覆盖在浮栅11和场氧结构12上的隧穿氧化层13、以及覆盖在隧穿氧化层13上的多晶硅控制栅14。其中,浮栅11具有尖端111。FIG. 1 is a schematic diagram of a memory formed using a basic structure with a floating gate. As shown in Fig. 2a, it is a schematic diagram of the structure of this basic storage unit. The basic storage unit 10 includes a substrate structure 15, a polysilicon floating gate 11 disposed on the substrate 15, a field oxygen structure 12 formed on the floating gate 11, and a tunnel oxide covering the floating gate 11 and the field oxygen structure 12. layer 13, and a polysilicon control gate 14 overlying the tunnel oxide layer 13. Wherein, the floating gate 11 has a tip 111 .
在对该基本存储单元10进行擦除时,是在控制栅14上加高压,使浮栅11尖端放电。浮栅11中存储的电子从隧穿氧化层13穿透到控制栅14,改变基本存储单元10的存储状态,达到擦除的目的。可以理解的是,隧穿氧化层13越薄,电子越容易发生隧穿。When the basic memory cell 10 is erased, a high voltage is applied to the control gate 14 to discharge the tip of the floating gate 11 . The electrons stored in the floating gate 11 penetrate from the tunnel oxide layer 13 to the control gate 14 to change the storage state of the basic memory cell 10 to achieve the purpose of erasing. It can be understood that the thinner the tunneling oxide layer 13 is, the easier it is for electrons to tunnel.
然而在该基本存储单元10的制程中,形成浮栅11后会进一步形成覆盖有隧穿氧化层13的中间结构。此后该中间结构会经历多次湿法腐蚀工艺。由于湿法腐蚀的不稳定性,在隧穿氧化层13的底部的边角处会相对其他地方腐蚀得更多,因此在后续形成控制栅14的过程中,控制栅14在该处形成尖角141,如图2b所示。电子很容易从控制栅14隧穿进入浮栅11(该过程称为反隧穿),导致擦除不稳定。However, in the manufacturing process of the basic memory cell 10 , after the floating gate 11 is formed, an intermediate structure covered with a tunnel oxide layer 13 is further formed. Thereafter, the intermediate structure undergoes multiple wet etching processes. Due to the instability of wet etching, the corners at the bottom of the tunnel oxide layer 13 will be etched more than other places, so in the subsequent process of forming the control gate 14, the control gate 14 forms sharp corners there. 141, as shown in Figure 2b. Electrons can easily tunnel from the control gate 14 into the floating gate 11 (this process is called anti-tunneling), resulting in unstable erasing.
发明内容Contents of the invention
基于此,有必要提供一种闪存存储结构的制造方法,其可以消除浮栅底部边角处的过刻蚀,提高擦除的稳定性。Based on this, it is necessary to provide a method for manufacturing a flash memory storage structure, which can eliminate the over-etching at the bottom corner of the floating gate and improve the stability of erasing.
一种闪存存储结构的制造方法,包括:A method for manufacturing a flash storage structure, comprising:
在衬底结构上淀积多晶硅层;Depositing a polysilicon layer on the substrate structure;
利用所述多晶硅层形成浮栅和覆盖在浮栅上的场氧结构;using the polysilicon layer to form a floating gate and a field oxygen structure covering the floating gate;
对所述浮栅底部的边角处形成保护侧墙;forming protective side walls at the corners of the bottom of the floating grid;
在场氧结构及浮栅上形成隧穿氧化层;Form a tunnel oxide layer on the field oxygen structure and the floating gate;
在所述隧穿氧化层上形成控制栅。A control gate is formed on the tunnel oxide layer.
在其中一个实施例中,所述对所述浮栅底部的边角处形成保护侧墙的步骤包括:In one of the embodiments, the step of forming protective sidewalls at the corners of the bottom of the floating gate includes:
在形成浮栅和场氧结构后的中间结构上沉积隔离层;所述隔离层覆盖场氧结构、浮栅的侧墙以及未覆盖浮栅的衬底结构上;Depositing an isolation layer on the intermediate structure after forming the floating gate and the field oxygen structure; the isolation layer covers the field oxygen structure, the sidewall of the floating gate, and the substrate structure not covering the floating gate;
去除部分隔离层并仅保留位于浮栅底部的边角处的保护侧墙。Part of the isolation layer is removed and only the protective spacers at the corners at the bottom of the floating gate remain.
在其中一个实施例中,去除部分所述隔离层时采用干法刻蚀和自对准。In one embodiment, dry etching and self-alignment are used to remove part of the isolation layer.
在其中一个实施例中,所述隔离层采用氮化硅材料。In one of the embodiments, the isolation layer is made of silicon nitride.
在其中一个实施例中,所述利用所述多晶硅层形成浮栅和覆盖在浮栅上的场氧结构的步骤包括:In one of the embodiments, the step of using the polysilicon layer to form a floating gate and a field oxygen structure covering the floating gate includes:
在所述多晶硅层上形成掩膜层;forming a mask layer on the polysilicon layer;
图形化所述掩膜层形成浮栅窗口露出部分多晶硅层;patterning the mask layer to form a floating gate window to expose part of the polysilicon layer;
在所述浮栅窗口内进行氧化生长形成场氧结构;performing oxidation growth in the floating gate window to form a field oxygen structure;
去除所述掩膜层并刻蚀场氧结构覆盖区域之外的多晶硅层以形成浮栅。The mask layer is removed and the polysilicon layer outside the area covered by the field oxygen structure is etched to form a floating gate.
在其中一个实施例中,去除所述掩膜层并干法蚀刻多晶硅层以形成浮栅。In one embodiment, the mask layer is removed and the polysilicon layer is dry etched to form a floating gate.
一种闪存存储结构,包括:A flash storage structure comprising:
衬底结构;Substrate structure;
浮栅,形成在所述衬底结构上;a floating gate formed on the substrate structure;
场氧结构,覆盖在所述浮栅上;a field oxygen structure covering the floating gate;
保护侧墙,位于所述浮栅底部的边角处;Protective side walls, located at the corners of the bottom of the floating grid;
隧穿氧化层,形成在所述浮栅和场氧结构上;a tunnel oxide layer formed on the floating gate and field oxygen structures;
控制栅,形成在所述隧穿氧化层上。A control gate is formed on the tunnel oxide layer.
在其中一个实施例中,所述保护侧墙为减弱电子隧穿的材料。In one embodiment, the protective sidewall is made of a material that weakens electron tunneling.
在其中一个实施例中,所述保护侧墙为氮化硅材料。In one of the embodiments, the protection spacer is made of silicon nitride material.
在其中一个实施例中,所述保护侧墙覆盖在浮栅侧墙上的部分的高度为浮栅侧墙高度的1/5~1/2。In one embodiment, the height of the part of the protective sidewall covering the sidewall of the floating gate is 1/5-1/2 of the height of the sidewall of the floating gate.
上述实施例的闪存存储结构及方法,通过在浮栅底部边角处形成保护侧墙,后续形成隧穿氧化层后,即使经历多次湿法腐蚀,隧穿氧化层的底部边角处被腐蚀,也会被保护侧墙阻止进一步腐蚀。控制栅不会形成尖角,可以有效地防止电子反隧穿。进一步地,保护侧墙采用不易被电子隧穿的材料,也可以有效防止电子反隧穿。因此所形成的半导体器件擦除更加稳定。In the flash memory storage structure and method of the above embodiments, by forming protective sidewalls at the corners of the bottom of the floating gate, after subsequent formation of the tunneling oxide layer, even after multiple times of wet etching, the corners at the bottom of the tunneling oxide layer will be corroded , will also be protected from further corrosion by the side walls. The control grid does not form sharp corners, which can effectively prevent electron anti-tunneling. Further, the protective sidewall is made of a material that is not easily tunneled by electrons, which can also effectively prevent anti-tunneling of electrons. Therefore, the erase of the formed semiconductor device is more stable.
附图说明Description of drawings
图1为采用具有浮栅的基本结构形成的存储器的原理图;1 is a schematic diagram of a memory formed using a basic structure with a floating gate;
图2a为图1中的基本存储单元的结构示意图;Figure 2a is a schematic structural view of the basic storage unit in Figure 1;
图2b为图1中的基本存储单元在出现湿法刻蚀缺陷时的结构示意图;Figure 2b is a schematic structural view of the basic memory cell in Figure 1 when wet etching defects occur;
图3为一实施例的闪存存储结构的制造方法流程图;Fig. 3 is a flow chart of a manufacturing method of a flash storage structure of an embodiment;
图4a~图4e为图3所示流程中各步骤处理后的中间结构示意图;Figures 4a to 4e are schematic diagrams of the intermediate structure after each step in the process shown in Figure 3;
图5为形成浮栅的流程图;Fig. 5 is the flowchart of forming floating gate;
图6a~图6c及图4b为图5所示流程中各步骤处理后的中间结构示意图;Figures 6a to 6c and Figure 4b are schematic diagrams of the intermediate structure after each step in the process shown in Figure 5;
图7为在中间结构上沉积隔离层后所形成的结构示意图。FIG. 7 is a schematic diagram of a structure formed after depositing an isolation layer on the intermediate structure.
具体实施方式Detailed ways
以下结合附图和具体实施例进行进一步说明。Further description will be made below in conjunction with the accompanying drawings and specific embodiments.
图3为一实施例的闪存存储结构的制造方法流程图。该方法包括以下步骤S110~S150。图4a~图4e为各步骤处理后的中间结构示意图。FIG. 3 is a flowchart of a manufacturing method of a flash storage structure according to an embodiment. The method includes the following steps S110-S150. 4a to 4e are schematic diagrams of intermediate structures after each step of processing.
步骤S110:在衬底结构100上淀积多晶硅层200。衬底结构100包括衬底、在衬底上形成的源极区、漏极区和沟道区,且沟道区上方具有栅氧层,为简单起见,这些细节结构在图4a~4e中未明确示出,仅以整个衬底结构100来表示。本步骤是在完成衬底结构100之后的工序。本步骤处理后形成的结构如图4a所示。Step S110 : depositing a polysilicon layer 200 on the substrate structure 100 . The substrate structure 100 includes a substrate, a source region, a drain region and a channel region formed on the substrate, and there is a gate oxide layer above the channel region. For simplicity, these detailed structures are not shown in FIGS. 4a-4e It is explicitly shown that only the entire substrate structure 100 is represented. This step is a process after the substrate structure 100 is completed. The structure formed after this step is shown in Figure 4a.
步骤S120:利用所述多晶硅层200形成浮栅210和覆盖在浮栅上的场氧结构220。多晶硅层200经过处理,形成浮栅210和场氧结构220。本步骤处理后形成的结构如图4b所示。由于后续湿法清洗由经过很多步湿法工艺,导致后续的隧穿氧化层220底部边角处内凹、甚至浮栅210的底部的边角处内凹,因此需要执行以下步骤S130。Step S120 : using the polysilicon layer 200 to form a floating gate 210 and a field oxygen structure 220 covering the floating gate. The polysilicon layer 200 is processed to form a floating gate 210 and a field oxygen structure 220 . The structure formed after this step is shown in Figure 4b. Since the subsequent wet cleaning involves many steps of wet process, the subsequent bottom corners of the tunnel oxide layer 220 are concave, and even the bottom corners of the floating gate 210 are concave, so the following step S130 needs to be performed.
步骤S130:对所述浮栅210底部的边角处形成保护侧墙610。本步骤处理后形成的结构如图4c所示。Step S130 : forming protective sidewalls 610 at corners of the bottom of the floating gate 210 . The structure formed after this step is shown in Figure 4c.
步骤S140:在场氧结构220及浮栅210上形成隧穿氧化层。隧穿氧化层300为二氧化硅层,可以采用淀积的方式形成。本步骤处理后形成的结构如图4d所示。Step S140 : forming a tunnel oxide layer on the field oxygen structure 220 and the floating gate 210 . The tunnel oxide layer 300 is a silicon dioxide layer and can be formed by deposition. The structure formed after this step is shown in Figure 4d.
步骤S150:在所述隧穿氧化层300上形成控制栅400。本步骤处理后形成的结构如图4e所示。Step S150 : forming a control gate 400 on the tunnel oxide layer 300 . The structure formed after this step is shown in Figure 4e.
上述实施例的方法,通过在浮栅210底部边角处形成保护侧墙610,在后续形成隧穿氧化层220后,即使经历多次湿法腐蚀,隧穿氧化层220的底部边角处被腐蚀,也会被保护侧墙610阻止进一步腐蚀。控制栅400不会形成尖角,可以有效地防止电子反隧穿。进一步地,保护侧墙610采用不易被电子隧穿的氮化硅材料,也可以有效防止电子反隧穿。因此所形成的半导体器件擦除更加稳定。In the method of the above embodiment, by forming the protective spacer 610 at the bottom corner of the floating gate 210, after the subsequent formation of the tunnel oxide layer 220, even after multiple times of wet etching, the bottom corner of the tunnel oxide layer 220 is Corrosion is also prevented by the protective sidewall 610 from further corrosion. The control gate 400 does not form sharp corners, which can effectively prevent electron reverse tunneling. Further, the protective sidewall 610 is made of silicon nitride material which is not easily tunneled by electrons, which can also effectively prevent anti-tunneling of electrons. Therefore, the erase of the formed semiconductor device is more stable.
在一个实施例中,如图5所示,上述步骤S120可以包括以下子步骤S121~S124。图6a~图6c及图4b为各步骤处理后的中间结构示意图。In one embodiment, as shown in FIG. 5 , the above step S120 may include the following sub-steps S121-S124. 6a to 6c and FIG. 4b are schematic diagrams of intermediate structures after each step of processing.
子步骤S121:在所述多晶硅层200上形成掩膜层500。所述掩膜层500可以为氮化硅(SiN)层。本步骤处理后形成的结构如图6a所示。Sub-step S121 : forming a mask layer 500 on the polysilicon layer 200 . The mask layer 500 may be a silicon nitride (SiN) layer. The structure formed after this step is shown in Figure 6a.
子步骤S122:图形化所述掩膜层500形成浮栅窗口510露出部分多晶硅层。本步骤处理后形成的结构如图6b所示。Sub-step S122 : patterning the mask layer 500 to form a floating gate window 510 exposing part of the polysilicon layer. The structure formed after this step is shown in Figure 6b.
子步骤S123:在所述浮栅窗口内进行氧化生长形成场氧结构。本步骤在生长场氧结构的同时,可以形成浮栅的尖端。本步骤处理后形成的结构如图6c所示。Sub-step S123: Perform oxidation growth in the floating gate window to form a field oxygen structure. In this step, the tip of the floating gate can be formed while growing the field oxygen structure. The structure formed after this step is shown in Figure 6c.
子步骤S124:去除所述掩膜层并刻蚀场氧结构覆盖区域之外的多晶硅层以形成浮栅。本步骤处理后形成的结构如图4b所示。Sub-step S124: removing the mask layer and etching the polysilicon layer outside the area covered by the field oxygen structure to form a floating gate. The structure formed after this step is shown in Figure 4b.
在一个实施例中,上述步骤S130可以包括以下子步骤S131~S132。以下结合图4b、图7和图4c进行说明。In one embodiment, the above step S130 may include the following sub-steps S131-S132. The following description will be made in conjunction with Fig. 4b, Fig. 7 and Fig. 4c.
步骤S131:在形成浮栅和场氧结构后的中间结构上沉积隔离层。该中间结构如图4b所示。经过本步骤处理后,如图7所示,该隔离层600覆盖场氧结构220、浮栅210的侧墙以及未覆盖浮栅210的衬底结构100上。该隔离层500可以采用氮化硅材料。可以理解,经过沉积隔离层,浮栅210的边角处也会有部分隔离层。Step S131 : depositing an isolation layer on the intermediate structure after forming the floating gate and the field oxygen structure. This intermediate structure is shown in Figure 4b. After this step, as shown in FIG. 7 , the isolation layer 600 covers the field oxygen structure 220 , the sidewall of the floating gate 210 and the substrate structure 100 not covering the floating gate 210 . The isolation layer 500 can be made of silicon nitride material. It can be understood that after depositing the isolation layer, there will be part of the isolation layer at the corners of the floating gate 210 .
步骤S132:去除部分隔离层并仅保留位于浮栅边角处的隔离层形成保护侧墙。去除的部分隔离层包括覆盖在场氧结构表面的部分、覆盖在浮栅侧墙的部分以及覆盖在衬底结构上的部分。本步骤可以采用干法刻蚀。在刻蚀位于浮栅侧墙的部分时,采用自对准刻蚀。经过本步骤处理后,形成的结构如图4c所示。Step S132 : removing part of the isolation layer and keeping only the isolation layer at the corner of the floating gate to form a protective spacer. The removed part of the isolation layer includes the part covering the surface of the field oxygen structure, the part covering the sidewall of the floating gate and the part covering the substrate structure. In this step, dry etching may be used. Self-aligned etching is used when etching the portion located on the sidewall of the floating gate. After this step, the formed structure is shown in Figure 4c.
可以理解,还可以采用其他方式在所述浮栅边角处形成保护侧墙,不限于上述方式。It can be understood that other ways may also be used to form protective sidewalls at the corners of the floating gate, which are not limited to the above ways.
基于相同发明构思,提供一种闪存存储结构。如图4e所示,该闪存存储结构包括依次层叠的衬底结构100、浮栅210、场氧结构220、隧穿氧化层300以及控制栅400。Based on the same inventive concept, a flash storage structure is provided. As shown in FIG. 4 e , the flash storage structure includes a substrate structure 100 , a floating gate 210 , a field oxide structure 220 , a tunnel oxide layer 300 and a control gate 400 stacked in sequence.
衬底结构100包括衬底、在衬底上形成的源极区、漏极区和沟道区,且沟道区上方具有栅氧层,浮栅210位于栅氧层上。为简单起见,这些细节结构在图4e中未明确示出,仅以整个衬底结构100来表示。浮栅210形成在所述衬底结构100上,且位于所述源极区和漏极区之间的沟道之上。浮栅210为多晶硅材料。所述浮栅210具有放电尖端211。场氧结构220覆盖在所述浮栅210上,场氧结构220为二氧化硅材料。隧穿氧化层300形成在所述浮栅210和场氧结构220上,隧穿氧化层300为二氧化硅材料。其中,浮栅210底部的边角处的设有保护侧墙610,所述保护侧墙610可以采用减弱电子隧穿的材料,例如氮化硅材料。隧穿氧化层300覆盖在浮栅210的侧墙以及保护侧墙610上。控制栅400形成在所述隧穿氧化层300上,控制栅400为多晶硅材料。保护侧墙610的高度为浮栅侧墙高度的1/5~1/2。The substrate structure 100 includes a substrate, a source region, a drain region and a channel region formed on the substrate, and a gate oxide layer is located above the channel region, and the floating gate 210 is located on the gate oxide layer. For the sake of simplicity, these detailed structures are not explicitly shown in FIG. 4 e , but are only represented by the entire substrate structure 100 . A floating gate 210 is formed on the substrate structure 100 above the channel between the source region and the drain region. The floating gate 210 is polysilicon material. The floating gate 210 has a discharge tip 211 . The field oxygen structure 220 covers the floating gate 210, and the field oxygen structure 220 is silicon dioxide material. A tunnel oxide layer 300 is formed on the floating gate 210 and the field oxygen structure 220 , and the tunnel oxide layer 300 is made of silicon dioxide. Wherein, a protective spacer 610 is provided at a corner of the bottom of the floating gate 210, and the protective spacer 610 may be made of a material that weakens electron tunneling, such as silicon nitride. The tunnel oxide layer 300 covers the sidewalls of the floating gate 210 and the protection sidewalls 610 . A control gate 400 is formed on the tunnel oxide layer 300, and the control gate 400 is made of polysilicon material. The height of the protection sidewall 610 is 1/5˜1/2 of the height of the floating gate sidewall.
上述实施例的闪存存储结构,通过在浮栅210底部边角处形成保护侧墙610,在后续形成隧穿氧化层300后,即使经历多次湿法腐蚀,隧穿氧化层220的底部边角处被腐蚀,也会被保护侧墙610阻止进一步腐蚀。控制栅400不会形成尖角,可以有效地防止电子反隧穿。进一步地,保护侧墙610采用不易被电子隧穿的氮化硅材料,也可以有效防止电子反隧穿。所形成的半导体器件擦除更加稳定。In the flash memory storage structure of the above embodiment, by forming the protective spacer 610 at the bottom corner of the floating gate 210, after the subsequent formation of the tunnel oxide layer 300, the bottom corner of the tunnel oxide layer 220 will remain intact even after multiple times of wet etching. Corrosion at the place will be prevented by the protective side wall 610 from further corrosion. The control gate 400 does not form sharp corners, which can effectively prevent electron reverse tunneling. Further, the protective sidewall 610 is made of silicon nitride material which is not easily tunneled by electrons, which can also effectively prevent anti-tunneling of electrons. The formed semiconductor device is more stable in erasure.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611249146.5A CN108257965A (en) | 2016-12-29 | 2016-12-29 | Flash memory storage structure and its manufacturing method |
PCT/CN2017/110888 WO2018121109A1 (en) | 2016-12-29 | 2017-11-14 | Flash storage structure and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611249146.5A CN108257965A (en) | 2016-12-29 | 2016-12-29 | Flash memory storage structure and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108257965A true CN108257965A (en) | 2018-07-06 |
Family
ID=62706935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611249146.5A Pending CN108257965A (en) | 2016-12-29 | 2016-12-29 | Flash memory storage structure and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108257965A (en) |
WO (1) | WO2018121109A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048511A (en) * | 2018-10-15 | 2020-04-21 | 无锡华润上华科技有限公司 | Flash device and preparation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114005830A (en) * | 2021-10-29 | 2022-02-01 | 上海华虹宏力半导体制造有限公司 | Manufacturing method of flash memory |
CN116113240A (en) * | 2022-11-29 | 2023-05-12 | 上海华虹宏力半导体制造有限公司 | Flash memory and method for manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08204034A (en) * | 1995-01-26 | 1996-08-09 | Sanyo Electric Co Ltd | Manufacture of nonvolatile semiconductor memory device |
US5879993A (en) * | 1997-09-29 | 1999-03-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride spacer technology for flash EPROM |
US6001690A (en) * | 1998-02-13 | 1999-12-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming flash EPROM by using iso+aniso silicon nitride spacer etching technology |
US6908813B2 (en) * | 2003-04-09 | 2005-06-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming tiny silicon nitride spacer for flash EPROM by fully wet etching technology |
CN101123269A (en) * | 2006-08-10 | 2008-02-13 | 台湾积体电路制造股份有限公司 | Split gate flash memory device and method of manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000216274A (en) * | 1999-01-26 | 2000-08-04 | Seiko Epson Corp | Semiconductor device and manufacturing method thereof |
KR20030060139A (en) * | 2002-01-07 | 2003-07-16 | 삼성전자주식회사 | Split-gate type non-volatile memory and method of fabricating the same |
KR100718253B1 (en) * | 2005-08-17 | 2007-05-16 | 삼성전자주식회사 | Manufacturing method of nonvolatile memory device |
-
2016
- 2016-12-29 CN CN201611249146.5A patent/CN108257965A/en active Pending
-
2017
- 2017-11-14 WO PCT/CN2017/110888 patent/WO2018121109A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08204034A (en) * | 1995-01-26 | 1996-08-09 | Sanyo Electric Co Ltd | Manufacture of nonvolatile semiconductor memory device |
US5879993A (en) * | 1997-09-29 | 1999-03-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride spacer technology for flash EPROM |
US6001690A (en) * | 1998-02-13 | 1999-12-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming flash EPROM by using iso+aniso silicon nitride spacer etching technology |
US6908813B2 (en) * | 2003-04-09 | 2005-06-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming tiny silicon nitride spacer for flash EPROM by fully wet etching technology |
CN101123269A (en) * | 2006-08-10 | 2008-02-13 | 台湾积体电路制造股份有限公司 | Split gate flash memory device and method of manufacturing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111048511A (en) * | 2018-10-15 | 2020-04-21 | 无锡华润上华科技有限公司 | Flash device and preparation method thereof |
CN111048511B (en) * | 2018-10-15 | 2022-03-01 | 无锡华润上华科技有限公司 | Flash device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2018121109A1 (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7416945B1 (en) | Method for forming a split gate memory device | |
CN104934427B (en) | Flash cell and its manufacture method | |
CN106298793A (en) | Autoregistration grid flash memory device and manufacture method thereof | |
CN109712981B (en) | Memory and forming method thereof | |
CN109378314B (en) | A method of manufacturing a flash memory device | |
CN111180448A (en) | Nonvolatile memory and manufacturing method thereof | |
US6977200B2 (en) | Method of manufacturing split-gate memory | |
CN108257965A (en) | Flash memory storage structure and its manufacturing method | |
KR100953050B1 (en) | Nonvolatile Memory Device and Manufacturing Method Thereof | |
CN110047943B (en) | Flash memory device and manufacturing method thereof | |
US6812120B1 (en) | Method of forming floating gate of memory device | |
CN112185815B (en) | Method for forming split gate flash memory cell | |
JP5044443B2 (en) | Semiconductor device and manufacturing method thereof | |
CN101359694B (en) | Flash memory and manufacturing method thereof | |
US20060040446A1 (en) | Method for manufacturing interpoly dielectric | |
CN110854120A (en) | Method of forming a semiconductor | |
CN105140301A (en) | Floating gate type flash memory structure and fabrication method thereof | |
CN108122920A (en) | Improve the method for floating gate type flash memory efficiency of erasing and floating gate type flash memory | |
CN108039323A (en) | The production method and integrated circuit of floating gate type flash memory | |
US6908813B2 (en) | Method of forming tiny silicon nitride spacer for flash EPROM by fully wet etching technology | |
CN107863298A (en) | The preparation method and floating gate type flash memory of floating gate type flash memory | |
KR100800902B1 (en) | Flash memory device manufacturing method | |
JP2994938B2 (en) | Manufacturing method of nonvolatile semiconductor memory device | |
CN112002634A (en) | Method for forming semiconductor structure | |
JP2004080015A (en) | Method of forming an asymmetric non-volatile memory device using small in-situ doped polysilicon spacers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180706 |
|
RJ01 | Rejection of invention patent application after publication |