[go: up one dir, main page]

CN108257916A - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN108257916A
CN108257916A CN201611242214.5A CN201611242214A CN108257916A CN 108257916 A CN108257916 A CN 108257916A CN 201611242214 A CN201611242214 A CN 201611242214A CN 108257916 A CN108257916 A CN 108257916A
Authority
CN
China
Prior art keywords
region
forming
source
substrate
gate structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611242214.5A
Other languages
Chinese (zh)
Other versions
CN108257916B (en
Inventor
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201611242214.5A priority Critical patent/CN108257916B/en
Publication of CN108257916A publication Critical patent/CN108257916A/en
Application granted granted Critical
Publication of CN108257916B publication Critical patent/CN108257916B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/0193Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/017Manufacturing their source or drain regions, e.g. silicided source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/0186Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS
    • H10D84/853Complementary IGFETs, e.g. CMOS comprising FinFETs

Landscapes

  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体结构及其形成方法,方法包括:形成基底,基底包括衬底、位于衬底上的栅极结构、位于栅极结构两侧基底内的源漏掺杂区、以及位于基底上且覆盖栅极结构顶部的层间介质层,衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;在栅极结构两侧层间介质层内形成露出源漏掺杂区的第一接触开口;对第一区域和第二区域中第一接触开口露出的源漏掺杂区进行P型掺杂隔离肖特基掺杂工艺;在第一接触开口底部形成金属硅化物层;在第一接触开口内形成第一接触孔插塞。本发明可以通过调节第二区域源漏掺杂区的掺杂浓度,在进行P型掺杂隔离肖特基掺杂工艺时避免光罩的使用,实现工艺成本的降低,且对N型器件的影响较小。

A semiconductor structure and a method for forming the same. The method includes: forming a base, the base includes a substrate, a gate structure on the substrate, source and drain doped regions in the base on both sides of the gate structure, and a base on the base and covering The interlayer dielectric layer on the top of the gate structure, the substrate includes a first region for forming a P-type device and a second region for forming an N-type device; an exposed source and drain are formed in the interlayer dielectric layer on both sides of the gate structure The first contact opening of the doped region; performing a P-type doping isolation Schottky doping process on the source and drain doped regions exposed by the first contact opening in the first region and the second region; forming a metal at the bottom of the first contact opening a silicide layer; forming a first contact hole plug in the first contact opening. In the present invention, by adjusting the doping concentration of the source-drain doping region in the second region, the use of a photomask can be avoided during the P-type doping isolation Schottky doping process, and the process cost can be reduced, and the N-type device can be improved. Less affected.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明涉及半导体领域,尤其涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductors, in particular to a semiconductor structure and a forming method thereof.

背景技术Background technique

随着集成电路制造技术的不断发展,器件关键尺寸不断变小,相应出现了很多问题。如接触孔插塞与源漏掺杂区之间接触电阻的增加,从而导致器件的响应速度降低,信号出现延迟,驱动电流减小,进而导致半导体器件的性能退化。With the continuous development of integrated circuit manufacturing technology, the critical dimensions of devices are getting smaller and smaller, and many problems have arisen accordingly. For example, the contact resistance between the contact hole plug and the source-drain doped region increases, which leads to a decrease in the response speed of the device, a delay in the signal, and a decrease in the driving current, thereby degrading the performance of the semiconductor device.

为了降低接触孔插塞与源漏掺杂区的接触电阻,引入了金属硅化物工艺,所述金属硅化物具有较低的电阻率,可以显著减小接触电阻,从而提高驱动电流。In order to reduce the contact resistance between the contact hole plug and the source-drain doped region, a metal silicide process is introduced. The metal silicide has a lower resistivity and can significantly reduce the contact resistance, thereby increasing the driving current.

随着器件关键尺寸的不断变小,采用金属硅化物工艺后,接触电阻已难以满足工艺需求,因此目前引入了掺杂隔离肖特基(Dopant Segregated Schottky,DSS)注入工艺;通过对源漏掺杂区进行DSS注入工艺,以降低所述源漏掺杂区和沟道区的肖特基势垒高度(Schottky Barrier Height,SBH),从而减小接触电阻,进而提高驱动电流。With the continuous reduction of the key dimensions of the device, the contact resistance has been difficult to meet the process requirements after the metal silicide process is adopted, so the Dopant Segregated Schottky (DSS) implantation process has been introduced at present; by doping the source and drain The impurity region is implanted with DSS to reduce the Schottky barrier height (Schottky Barrier Height, SBH) of the source-drain doped region and the channel region, thereby reducing the contact resistance and increasing the driving current.

DSS注入工艺虽然可以有效降低肖特基势垒高度,但是工艺成本较高。Although the DSS implantation process can effectively reduce the Schottky barrier height, the process cost is relatively high.

发明内容Contents of the invention

本发明解决的问题是提供一种半导体结构及其形成方法,在有效降低肖特基势垒高度的同时,降低工艺成本。The problem to be solved by the present invention is to provide a semiconductor structure and its forming method, which can reduce the process cost while effectively reducing the Schottky barrier height.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:形成基底,所述基底包括衬底、位于所述衬底上的栅极结构、位于所述栅极结构两侧基底内的源漏掺杂区、以及位于所述基底上且覆盖所述栅极结构顶部的层间介质层,所述衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;在所述栅极结构两侧的层间介质层内形成露出所述源漏掺杂区的第一接触开口;对所述第一区域和第二区域中第一接触开口露出的所述源漏掺杂区进行P型掺杂隔离肖特基掺杂工艺;完成所述P型掺杂隔离肖特基处理后,在所述第一接触开口的底部形成金属硅化物层;形成所述金属硅化物层后,向所述第一接触开口内填充导电材料,在所述第一接触开口内形成第一接触孔插塞。In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, including: forming a base, the base includes a substrate, a gate structure located on the substrate, and gate structures located in the base on both sides of the gate structure. A source-drain doped region, and an interlayer dielectric layer on the substrate and covering the top of the gate structure, the substrate includes a first region for forming a P-type device and a first region for forming an N-type device Two regions: forming a first contact opening exposing the source-drain doped region in the interlayer dielectric layer on both sides of the gate structure; The source and drain doped regions are subjected to a P-type doping isolation Schottky doping process; after the P-type doping isolation Schottky treatment is completed, a metal silicide layer is formed at the bottom of the first contact opening; After the metal silicide layer is formed, a conductive material is filled into the first contact opening to form a first contact hole plug in the first contact opening.

相应的,本发明还提供一种半导体结构,包括:基底,所述基底包括衬底、位于所述衬底上的栅极结构、位于所述栅极结构两侧基底内的源漏掺杂区、以及位于所述基底上且覆盖所述栅极结构顶部的层间介质层,所述衬底包括具有P型器件的第一区域和具有N型器件的第二区域;接触开口,位于所述栅极结构两侧的层间介质层内且露出所述源漏掺杂区,其中,所述第一区域和第二区域中接触开口露出的所述源漏掺杂区在同一步骤中经历过P型掺杂隔离肖特基掺杂工艺。Correspondingly, the present invention also provides a semiconductor structure, including: a base, the base includes a substrate, a gate structure located on the substrate, and source-drain doped regions located in the base on both sides of the gate structure , and an interlayer dielectric layer on the substrate and covering the top of the gate structure, the substrate includes a first region with a P-type device and a second region with an N-type device; a contact opening is located at the The doped source and drain regions are exposed in the interlayer dielectric layer on both sides of the gate structure, wherein the doped source and drain regions exposed by the contact openings in the first region and the second region have undergone P-type doping isolates the Schottky doping process.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明在形成基底的步骤中,所述基底包括衬底、位于所述衬底上的栅极结构、位于所述栅极结构两侧基底内的源漏掺杂区、以及位于所述基底上且覆盖所述栅极结构顶部的层间介质层,所述衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;在所述栅极结构两侧的层间介质层内形成露出所述源漏掺杂区的第一接触开口后,对所述第一区域和第二区域中第一接触开口露出的所述源漏掺杂区进行P型掺杂隔离肖特基掺杂工艺;也就是说,在进行所述P型掺杂隔离肖特基掺杂工艺时,未在所述第二区域形成用于保护所述第二区域的图形层,而是对所述第一区域和第二区域的源漏掺杂区同时进行所述P型掺杂隔离肖特基掺杂工艺,所述P型掺杂隔离肖特基掺杂工艺用于降低所述第一区域源漏掺杂区和沟道区的肖特基势垒高度,且可以在形成所述第二区域源漏掺杂区时,根据所述P型掺杂隔离肖特基掺杂工艺的参数对所述第二区域源漏掺杂区的掺杂离子浓度进行相应调节,以减小对N型器件电学性能的影响;因此通过本发明所述方案,一方面,仍旧可以降低所述第一区域源漏掺杂区和沟道区的肖特基势垒高度,从而减小所述第一区域的接触电阻,进而提高P型器件的驱动电流;另一方面,相比仅对所述第一区域源漏掺杂区进行所述P型掺杂隔离肖特基掺杂工艺的方案,本发明所述方案可以避免光罩的使用,实现工艺成本的降低,且对N型器件的影响较小。In the step of forming the substrate in the present invention, the substrate includes a substrate, a gate structure on the substrate, source and drain doped regions in the substrate on both sides of the gate structure, and a and cover the interlayer dielectric layer on the top of the gate structure, the substrate includes a first region for forming a P-type device and a second region for forming an N-type device; on both sides of the gate structure After forming a first contact opening exposing the source-drain doped region in the interlayer dielectric layer, performing P-type doping on the source-drain doped region exposed by the first contact opening in the first region and the second region Isolation Schottky doping process; that is to say, when performing the P-type doping isolation Schottky doping process, no pattern layer for protecting the second region is formed in the second region, and The P-type doping isolation Schottky doping process is performed on the source-drain doping regions of the first region and the second region at the same time, and the P-type doping isolation Schottky doping process is used to reduce the The height of the Schottky barrier between the source and drain doped regions of the first region and the channel region, and when the source and drain doped regions of the second region are formed, the Schottky doping can be isolated according to the P-type doping The parameters of the process adjust the doping ion concentration of the source and drain doping regions of the second region accordingly to reduce the impact on the electrical performance of the N-type device; therefore, through the scheme of the present invention, on the one hand, it can still reduce the The Schottky barrier height of the source-drain doped region and the channel region of the first region, thereby reducing the contact resistance of the first region, and then improving the drive current of the P-type device; on the other hand, compared to only The scheme of performing the P-type doping isolation Schottky doping process in the source-drain doping region of the first region, the scheme of the present invention can avoid the use of a photomask, realize the reduction of process cost, and is suitable for N-type devices has less impact.

可选方案中,形成所述第一接触开口后,形成所述金属硅化物层之前,所述形成方法还包括:对所述第一区域和第二区域中的源漏掺杂区进行预非晶化处理;通过所述预非晶化处理,不仅可以降低所述第一区域源漏掺杂区和沟道区的肖特基势垒高度,且还可以降低所述第二区域源漏掺杂区和沟道区的肖特基势垒高度,从而有利于减小所述第一区域和第二区域的接触电阻,提高P型器件和N型器件的驱动电流;此外,通过所述预非晶化处理,还有利于提高金属硅化物层的形成质量均一性。In an optional solution, after forming the first contact opening and before forming the metal silicide layer, the forming method further includes: pre-discharging the source-drain doped regions in the first region and the second region. Crystallization treatment; through the pre-amorphization treatment, not only the Schottky barrier height of the source and drain doped regions and the channel region of the first region can be reduced, but also the source and drain doped regions of the second region can be reduced. The Schottky barrier height of impurity region and channel region, thereby helps to reduce the contact resistance of described first region and second region, improves the driving current of P-type device and N-type device; The amorphization treatment is also beneficial to improve the formation quality uniformity of the metal silicide layer.

本发明所述半导体结构包括接触开口,接触开口位于所述栅极结构两侧的层间介质层内且露出所述源漏掺杂区,其中,所述第一区域和第二区域中接触开口露出的所述源漏掺杂区在同一步骤中经历过P型掺杂隔离肖特基掺杂工艺;因此,通过调整所述半导体结构中第二区域的源漏掺杂区的掺杂浓度至合理值,则可以避免额外采用光罩以进行所述P型掺杂隔离肖特基掺杂工艺,因此所述半导体结构的制造成本较低,且对N型器件的影响较小;同时仍旧可以降低所述第一区域源漏掺杂区和沟道区的肖特基势垒高度,从而减小所述第一区域的接触电阻,进而提高P型器件的驱动电流。The semiconductor structure of the present invention includes a contact opening, the contact opening is located in the interlayer dielectric layer on both sides of the gate structure and exposes the source-drain doped region, wherein the contact opening in the first region and the second region The exposed source and drain doped regions have undergone a P-type doping isolation Schottky doping process in the same step; therefore, by adjusting the doping concentration of the source and drain doped regions in the second region of the semiconductor structure to Reasonable value, then can avoid additionally adopting photomask to carry out described P-type doping isolation Schottky doping process, so the manufacturing cost of described semiconductor structure is lower, and the impact on N-type device is less; The Schottky barrier height of the source-drain doped region and the channel region of the first region is reduced, thereby reducing the contact resistance of the first region, thereby increasing the driving current of the P-type device.

附图说明Description of drawings

图1至图10是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图;1 to 10 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention;

图11是本发明半导体结构一实施例的结构示意图。FIG. 11 is a schematic structural view of an embodiment of the semiconductor structure of the present invention.

具体实施方式Detailed ways

由背景技术可知,掺杂隔离肖特基(Dopant Segregated Schottky,DSS)注入工艺虽然可以有效降低肖特基势垒高度,但是工艺成本较高。分析其原因在于:It can be known from the background art that although the Dopant Segregated Schottky (DSS) implantation process can effectively reduce the Schottky barrier height, the process cost is relatively high. Analyze the reasons for this:

在进行DSS注入工艺时,对N型区域源漏掺杂区所注入的离子类型与P型区域源漏掺杂区所注入的离子类型不同,例如对N型区域源漏掺杂区进行N型DSS注入时,所采用的注入离子源为P或As,对P型区域源漏掺杂区进行P型DSS注入时,所采用的注入离子源为B或BF2,因此,需采用2张光罩以分别进行所述N型DSS注入和P型DSS注入,工艺成本较大。During the DSS implantation process, the type of ions implanted in the source and drain doped regions of the N-type region is different from the ion type implanted in the source and drain doped regions of the P-type region. During DSS implantation, the implanted ion source used is P or As, and when the P-type DSS implantation is performed on the source-drain doped region of the P-type region, the implanted ion source used is B or BF 2 , therefore, two optical cover to perform the N-type DSS injection and the P-type DSS injection respectively, and the process cost is relatively large.

为了解决所述技术问题,本发明提供一种半导体结构的形成方法,在形成基底的步骤中,所述基底包括衬底、位于所述衬底上的栅极结构、位于所述栅极结构两侧基底内的源漏掺杂区、以及位于所述基底上且覆盖所述栅极结构顶部的层间介质层,所述衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;在所述栅极结构两侧的层间介质层内形成露出所述源漏掺杂区的第一接触开口后,对所述第一区域和第二区域中第一接触开口露出的所述源漏掺杂区进行P型掺杂隔离肖特基掺杂工艺。也就是说,在进行所述P型掺杂隔离肖特基掺杂工艺时,未在所述第二区域形成用于保护所述第二区域的图形层,而是对所述第一区域和第二区域的源漏掺杂区同时进行所述P型掺杂隔离肖特基掺杂工艺,所述P型掺杂隔离肖特基掺杂工艺用于降低所述第一区域源漏掺杂区和沟道区的肖特基势垒高度,且可以在形成所述第二区域源漏掺杂区时,根据所述P型掺杂隔离肖特基掺杂工艺的参数对所述第二区域源漏掺杂区的掺杂离子浓度进行相应调节,以减小对N型器件电学性能的影响;因此通过本发明所述方案,一方面,仍旧可以降低所述第一区域源漏掺杂区和沟道区的肖特基势垒高度,从而减小所述第一区域的接触电阻,进而提高P型器件的驱动电流;另一方面,相比仅对所述第一区域源漏掺杂区进行所述P型掺杂隔离肖特基掺杂工艺的方案,本发明所述方案可以避免光罩的使用,实现工艺成本的降低,且对N型器件的影响较小。In order to solve the above technical problem, the present invention provides a method for forming a semiconductor structure. In the step of forming the base, the base includes a substrate, a gate structure on the substrate, and a gate structure located on both sides of the gate structure. A source-drain doped region in the side substrate, and an interlayer dielectric layer located on the substrate and covering the top of the gate structure, the substrate includes a first region for forming a P-type device and a first region for forming an N The second region of the type device; after the first contact opening exposing the source-drain doped region is formed in the interlayer dielectric layer on both sides of the gate structure, the first region in the first region and the second region The source-drain doping region exposed by the contact opening is subjected to a P-type doping isolation Schottky doping process. That is to say, when performing the P-type doping isolation Schottky doping process, a pattern layer for protecting the second region is not formed in the second region, but the first region and the The source and drain doping regions of the second region are simultaneously subjected to the P-type doping isolation Schottky doping process, and the P-type doping isolation Schottky doping process is used to reduce the source and drain doping of the first region region and the Schottky barrier height of the channel region, and when forming the source and drain doped regions of the second region, according to the parameters of the P-type doping isolation Schottky doping process, the second The concentration of doping ions in the source and drain doped regions of the region is adjusted accordingly to reduce the impact on the electrical properties of the N-type device; therefore, through the solution of the present invention, on the one hand, the source and drain doping of the first region can still be reduced. region and the Schottky barrier height of the channel region, thereby reducing the contact resistance of the first region, and then improving the drive current of the P-type device; on the other hand, compared to only doping the source and drain of the first region The scheme of performing the P-type doping isolation Schottky doping process in the impurity region, the scheme of the present invention can avoid the use of a photomask, reduce the process cost, and have less impact on the N-type device.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图1至图10是本发明半导体结构的形成方法一实施例中各步骤对应结构示意图。1 to 10 are schematic diagrams of structures corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

结合参考图1至图5,图1是立体图(仅示意出两个鳍部),图2是垂直于鳍部延伸方向割线(如图1中AA1割线所示)的剖面结构示意图,图4是沿鳍部延伸方向割线(如图1中BB1割线所示)的剖面结构示意图,形成基底,所述基底包括衬底100、位于所述衬底100上的栅极结构(未标示)、位于所述栅极结构两侧基底内的源漏掺杂区(未标示)、以及位于所述基底上且覆盖所述栅极结构顶部的层间介质层103(如图5所示),所述衬底100包括用于形成P型器件的第一区域I和用于形成N型器件的第二区域II。Referring to Figures 1 to 5 in conjunction, Figure 1 is a perspective view (only two fins are shown), and Figure 2 is a schematic cross-sectional structural view of a secant line perpendicular to the extending direction of the fins (as shown by the AA1 secant line in Figure 1). 4 is a schematic cross-sectional structure diagram of a secant line along the extending direction of the fin (as shown by the BB1 secant line in FIG. ), a source-drain doped region (not marked) located in the substrate on both sides of the gate structure, and an interlayer dielectric layer 103 located on the substrate and covering the top of the gate structure (as shown in FIG. 5 ) , the substrate 100 includes a first region I for forming a P-type device and a second region II for forming an N-type device.

以下将结合附图,对形成所述基底的步骤做详细说明。The steps of forming the base will be described in detail below with reference to the accompanying drawings.

结合参考图1和图2,所述衬底100为后续形成半导体器件提供工艺平台。Referring to FIG. 1 and FIG. 2 together, the substrate 100 provides a process platform for subsequent formation of semiconductor devices.

本实施例中,所述基底用于形成鳍式场效应管,因此所述基底还包括位于所述衬底100上分立的鳍部(未标示)。在其他实施例中,所述基底用于形成平面晶体管,相应的,所述基底为平面基底。In this embodiment, the base is used to form a FinFET, so the base further includes discrete fins (not shown) on the substrate 100 . In other embodiments, the substrate is used to form a planar transistor, and accordingly, the substrate is a planar substrate.

本实施例中,所述衬底100包括用于形成P型器件的第一区域I以及用于形成N型器件的第二区域II。相应的,位于所述第一区域I衬底100上的鳍部为第一鳍部110(如图2所示),位于所述第二区域II衬底100上的鳍部为第二鳍部120(如图2所示)。在其他实施例中,所述基底还可以仅用于形成P型器件或者仅用于形成N型器件。In this embodiment, the substrate 100 includes a first region I for forming a P-type device and a second region II for forming an N-type device. Correspondingly, the fins located on the substrate 100 in the first region I are the first fins 110 (as shown in FIG. 2 ), and the fins located on the substrate 100 in the second region II are the second fins. 120 (as shown in Figure 2). In other embodiments, the substrate may also be used only for forming P-type devices or only for forming N-type devices.

所述第一区域I和第二区域II可以为相邻区域,也可以为不相邻区域。本实施例中,所述第一区域I和第二区域II为相邻区域。The first area I and the second area II may be adjacent areas or non-adjacent areas. In this embodiment, the first area I and the second area II are adjacent areas.

本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the substrate 100 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate. substrate.

所述鳍部的材料与所述衬底100的材料相同。本实施例中,所述鳍部的材料为硅,即所述第一鳍部110和第二鳍部120的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the fin is the same as that of the substrate 100 . In this embodiment, the material of the fin is silicon, that is, the material of the first fin 110 and the second fin 120 is silicon. In other embodiments, the material of the fin portion may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

具体地,形成所述衬底100和鳍部的工艺步骤包括:提供初始基底;在所述初始基底表面形成图形化的鳍部掩膜层200(如图2所示);以所述鳍部掩膜层200为掩膜刻蚀所述初始基底,刻蚀后的剩余所述初始基底作为衬底100,位于所述衬底100上的凸起作为鳍部。Specifically, the process steps of forming the substrate 100 and the fins include: providing an initial base; forming a patterned fin mask layer 200 (as shown in FIG. 2 ) on the surface of the initial base; The mask layer 200 is used as a mask to etch the initial base, the remaining initial base after etching is used as the substrate 100 , and the protrusions on the substrate 100 are used as fins.

本实施例中,形成所述衬底100和鳍部后,保留位于所述鳍部顶部的鳍部掩膜层200。所述鳍部掩膜层200的材料为氮化硅,后续在进行平坦化处理工艺时,所述鳍部掩膜层200顶部表面用于定义平坦化处理工艺的停止位置,并起到保护所述鳍部顶部的作用。In this embodiment, after the substrate 100 and the fins are formed, the fin mask layer 200 on the top of the fins remains. The material of the fin mask layer 200 is silicon nitride. When the subsequent planarization process is performed, the top surface of the fin mask layer 200 is used to define the stop position of the planarization process, and to protect the Describe the function of the top of the fin.

结合参考图3,需要说明的是,形成所述衬底100和鳍部后,所述形成方法还包括:在所述鳍部露出的衬底100上形成隔离结构101,所述隔离结构101覆盖所述鳍部的部分侧壁,且所述隔离结构101顶部低于所述鳍部顶部。With reference to FIG. 3 , it should be noted that after forming the substrate 100 and the fins, the forming method further includes: forming an isolation structure 101 on the substrate 100 where the fins are exposed, and the isolation structure 101 covers Part of the sidewall of the fin, and the top of the isolation structure 101 is lower than the top of the fin.

所述隔离结构101作为半导体器件的隔离结构,用于对相邻器件和鳍部起到隔离作用。本实施例中,所述隔离结构101的材料为氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮化硅或氮氧化硅。The isolation structure 101 is used as an isolation structure of a semiconductor device for isolating adjacent devices and fins. In this embodiment, the material of the isolation structure 101 is silicon oxide. In other embodiments, the material of the isolation structure may also be silicon nitride or silicon oxynitride.

具体地,形成所述隔离结构101的工艺步骤包括:在所述鳍部露出的衬底100上填充隔离膜,所述隔离膜顶部高于所述鳍部掩膜层200(如图2所示)顶部;研磨去除高于所述鳍部掩膜层200顶部的隔离膜;回刻部分厚度的剩余隔离膜形成隔离结构101;去除所述鳍部掩膜层200。Specifically, the process step of forming the isolation structure 101 includes: filling an isolation film on the substrate 100 where the fin is exposed, and the top of the isolation film is higher than the fin mask layer 200 (as shown in FIG. 2 ) top; grinding and removing the isolation film higher than the top of the fin mask layer 200; etching back part of the thickness of the remaining isolation film to form the isolation structure 101; removing the fin mask layer 200.

参考图4,在所述衬底100上形成栅极结构(未标示)。Referring to FIG. 4 , a gate structure (not shown) is formed on the substrate 100 .

本实施例中,所述基底包括衬底100以及位于所述衬底100上分立的鳍部,因此所述栅极结构横跨所述鳍部,且覆盖所述鳍部的部分侧壁表面和顶部表面。In this embodiment, the base includes a substrate 100 and discrete fins located on the substrate 100, so the gate structure straddles the fins and covers part of the sidewall surface and the fins. top surface.

具体地,位于所述第一区域I的栅极结构为第一栅极结构610(如图4所示),所述第一栅极结构610横跨所述第一鳍部110,且覆盖所述第一鳍部110的部分侧壁表面和顶部表面;位于所述第二区域II的栅极结构为第二栅极结构620(如图4所示),所述第二栅极结构620横跨所述第二鳍部120,且覆盖所述第二鳍部120的部分侧壁表面和顶部表面。Specifically, the gate structure located in the first region I is a first gate structure 610 (as shown in FIG. 4 ), and the first gate structure 610 straddles the first fin 110 and covers all Part of the sidewall surface and the top surface of the first fin 110; the gate structure located in the second region II is the second gate structure 620 (as shown in FIG. 4 ), and the second gate structure 620 laterally across the second fin 120 and cover part of the sidewall surface and the top surface of the second fin 120 .

本实施例中,采用后形成高k栅介质层后形成栅电极层(high k last metal gatelast)的工艺形成所述栅极结构,因此形成所述栅极结构之前,所述形成方法还包括:形成横跨所述鳍部且覆盖鳍部部分顶部表面和侧壁表面的伪栅结构(dummy gate);在所述伪栅结构两侧的鳍部内形成源漏掺杂区(未标示);形成所述源漏掺杂区后,在所述伪栅结构露出的基底上形成底部介质层102(如图4所示),所述底部介质层102覆盖所述源漏掺杂区,且所述底部介质层102露出所述伪栅结构顶部;形成所述底部介质层102后,去除所述伪栅结构,在所述底部介质层102内形成开口(图未示)。In this embodiment, the gate structure is formed by forming a high-k gate dielectric layer and then forming a gate electrode layer (high k last metal gatelast). Therefore, before forming the gate structure, the forming method further includes: Forming a dummy gate structure (dummy gate) across the fin and covering the top surface and sidewall surface of the fin portion; forming source and drain doped regions (not marked) in the fin on both sides of the dummy gate structure; forming After the source and drain doped regions, a bottom dielectric layer 102 (as shown in FIG. 4 ) is formed on the substrate exposed by the dummy gate structure, the bottom dielectric layer 102 covers the source and drain doped regions, and the The bottom dielectric layer 102 exposes the top of the dummy gate structure; after the bottom dielectric layer 102 is formed, the dummy gate structure is removed, and an opening (not shown) is formed in the bottom dielectric layer 102 .

所述衬底100包括第一区域I和第二区域II,相应的,位于所述第一区域I伪栅结构两侧第一鳍部110内的源漏掺杂区为第一源漏掺杂区(图未示),位于所述第二区域伪栅结构两侧第二鳍部120内的源漏掺杂区为第二源漏掺杂区(图未示);位于所述第一区域I底部介质层102内的开口为第一开口(图未示),位于所述第二区域II底部介质层102内的开口为第二开口(图未示)。The substrate 100 includes a first region I and a second region II, and correspondingly, the source and drain doped regions in the first fins 110 on both sides of the dummy gate structure in the first region I are the first source and drain doped regions. region (not shown), the source and drain doped regions in the second fins 120 on both sides of the dummy gate structure in the second region are the second source and drain doped regions (not shown); in the first region The openings in the I bottom dielectric layer 102 are first openings (not shown), and the openings in the second region II bottom dielectric layer 102 are second openings (not shown).

所述伪栅结构为形成所述第一栅极结构610和第二栅极结构620占据空间位置。所述伪栅结构为单层结构或叠层结构。所述伪栅结构包括伪栅层;或者所述伪栅结构包括伪氧化层以及位于所述伪氧化层上的伪栅层。其中,所述伪栅层的材料为多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳,所述伪氧化层的材料为氧化硅或氮氧化硅。The dummy gate structure occupies a spatial position for forming the first gate structure 610 and the second gate structure 620 . The dummy gate structure is a single-layer structure or a stacked structure. The dummy gate structure includes a dummy gate layer; or the dummy gate structure includes a dummy oxide layer and a dummy gate layer on the dummy oxide layer. Wherein, the material of the dummy gate layer is polycrystalline silicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon carbonitride or amorphous carbon, and the material of the dummy oxide layer is silicon oxide or silicon oxynitride.

所述第一源漏掺杂区用于作为后续所形成P型器件的源区或漏区,所述第二源漏掺杂区用于作为后续所形成N型器件的源区或漏区。本实施例中,通过选择性外延工艺(EPI)形成所述第一源漏掺杂区和第二源漏掺杂区。The first source-drain doped region is used as a source region or drain region of a subsequently formed P-type device, and the second source-drain doped region is used as a source region or drain region of a subsequently formed N-type device. In this embodiment, the first source-drain doped region and the second source-drain doped region are formed by selective epitaxy (EPI).

具体地,形成所述第一源漏掺杂区的步骤包括:在所述第一区域I伪栅结构两侧的第一鳍部110内形成第一外延层112(如图4所示),且在形成所述第一外延层112的过程中,原位自掺杂P型离子以形成所述第一源漏掺杂区。所述第一外延层112的材料可以为Si或SiGe,所述P型离子包括B、Ga和In中的一种或多种。本实施例中,所述第一外延层112的材料为Si;所述P型离子为Ge,即所述第一源漏掺杂区的掺杂离子为Ge离子。Ge离子的掺杂浓度根据实际工艺需求而定,本实施例中,Ge离子的原子百分比含量为35%至65%。Specifically, the step of forming the first source-drain doped region includes: forming a first epitaxial layer 112 (as shown in FIG. 4 ) in the first fin portion 110 on both sides of the dummy gate structure in the first region I, And in the process of forming the first epitaxial layer 112 , in-situ self-doping with P-type ions to form the first source-drain doped region. The material of the first epitaxial layer 112 may be Si or SiGe, and the P-type ions include one or more of B, Ga and In. In this embodiment, the material of the first epitaxial layer 112 is Si; the P-type ions are Ge, that is, the doping ions in the first source-drain doped region are Ge ions. The doping concentration of Ge ions is determined according to actual process requirements. In this embodiment, the atomic percentage of Ge ions is 35% to 65%.

具体地,形成所述第二源漏掺杂区的步骤包括:在所述第二区域II伪栅结构两侧的第二鳍部120内形成第二外延层122(如图4所示),且在形成所述第二外延层122的过程中,原位自掺杂N型离子以形成所述第二源漏掺杂区。所述第二外延层122的材料可以为Si或SiC,所述N型离子包括P和As中的一种或两种。本实施例中,所述第二外延层122的材料为Si;所述N型离子为P,即所述第二源漏掺杂区的掺杂离子为P离子。Specifically, the step of forming the second source-drain doped region includes: forming a second epitaxial layer 122 (as shown in FIG. 4 ) in the second fin portion 120 on both sides of the dummy gate structure in the second region II, And in the process of forming the second epitaxial layer 122, N-type ions are self-doped in situ to form the second source-drain doped region. The material of the second epitaxial layer 122 may be Si or SiC, and the N-type ions include one or both of P and As. In this embodiment, the material of the second epitaxial layer 122 is Si; the N-type ions are P, that is, the doping ions in the second source-drain doped region are P ions.

需要说明的是,后续步骤包括对所述第一源漏掺杂区进行P型掺杂隔离肖特基(Dopant Segregated Schottky,DSS)掺杂工艺,所述掺杂工艺的掺杂离子为P型离子,所述掺杂工艺用于降低所述第一源漏掺杂区和P型器件沟道区的肖特基势垒高度(SchottkyBarrier Height,SBH);为了节省光罩,所述第二源漏掺杂区暴露在所述P型掺杂隔离肖特基掺杂工艺的环境中,即所述第二源漏掺杂区受到P型离子掺杂的影响,因此为了减小对后续所形成N型器件的电学性能的影响,根据实际工艺需求以及后续P型掺杂隔离肖特基掺杂工艺的掺杂浓度,增加所述第二源漏掺杂区的P离子掺杂浓度至合理值。本实施例中,P离子的掺杂浓度为1E21atom/cm3至3E21atom/cm3It should be noted that the subsequent steps include performing a P-type doping isolation Schottky (Dopant Segregated Schottky, DSS) doping process on the first source-drain doped region, and the doping ions in the doping process are P-type Ions, the doping process is used to reduce the Schottky barrier height (Schottky Barrier Height, SBH) of the first source-drain doped region and the P-type device channel region; in order to save the mask, the second source The drain doped region is exposed to the environment of the P-type doping isolation Schottky doping process, that is, the second source-drain doped region is affected by P-type ion doping, so in order to reduce the impact on the subsequent formed The influence of the electrical performance of the N-type device, according to the actual process requirements and the doping concentration of the subsequent P-type doping isolation Schottky doping process, increase the P ion doping concentration of the second source-drain doping region to a reasonable value . In this embodiment, the doping concentration of P ions is 1E21atom/cm 3 to 3E21atom/cm 3 .

还需要说明的是,通过增加所述第二源漏掺杂区的P离子掺杂浓度,还有利于降低所述第一源漏掺杂区和沟道区的肖特基势垒高度,从而有利于减小所述第二区域II的接触电阻,进而提高N型器件的驱动电流。It should also be noted that by increasing the P ion doping concentration of the second source-drain doped region, it is also beneficial to reduce the Schottky barrier height of the first source-drain doped region and the channel region, thereby It is beneficial to reduce the contact resistance of the second region II, thereby increasing the driving current of the N-type device.

本实施例中,通过选择性外延工艺形成所述第一源漏掺杂区和第二源漏掺杂区。在其他实施例中,还可以进行离子掺杂的非外延层方式形成所述第一源漏掺杂区和第二源漏掺杂区,也就是说,可以通过直接对所述第一区域伪栅结构两侧的第一鳍部进行离子掺杂工艺,以形成所述第一源漏掺杂区,通过直接对所述第二区域伪栅结构两侧的第二鳍部进行离子掺杂工艺,以形成所述第二源漏掺杂区。In this embodiment, the first source-drain doped region and the second source-drain doped region are formed through a selective epitaxial process. In other embodiments, the first source-drain doped region and the second source-drain doped region can also be formed in the form of ion-doped non-epitaxial layers, that is, the first region can be directly dummy performing ion doping process on the first fins on both sides of the gate structure to form the first source-drain doped region, by directly performing ion doping process on the second fins on both sides of the dummy gate structure in the second region , to form the second source-drain doped region.

所述底部介质层102的材料为绝缘材料。本实施例中,所述底部介质层102的材料为氧化硅。在其他实施例中,所述底部介质层的材料还可以为氮化硅或氮氧化硅。The material of the bottom dielectric layer 102 is insulating material. In this embodiment, the material of the bottom dielectric layer 102 is silicon oxide. In other embodiments, the material of the bottom dielectric layer may also be silicon nitride or silicon oxynitride.

需要说明的是,形成所述伪栅结构后,形成所述源漏掺杂区之前,所述形成方法还包括:在所述伪栅结构的侧壁上形成侧墙130。所述侧墙130可用于定义所述第一源漏掺杂区和第二源漏掺杂区的位置。所述侧墙130的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述侧墙130可以为单层结构或叠层结构。本实施例中,所述侧墙130为单层结构,所述侧墙130的材料为氮化硅。It should be noted that, after forming the dummy gate structure and before forming the source-drain doped region, the forming method further includes: forming sidewalls 130 on the sidewalls of the dummy gate structure. The sidewalls 130 can be used to define the positions of the first source-drain doped region and the second source-drain doped region. The material of the side wall 130 can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or boron carbonitride, and the sidewall 130 can be a single Layer structure or laminated structure. In this embodiment, the sidewall 130 is a single-layer structure, and the material of the sidewall 130 is silicon nitride.

本实施例中,在所述第一开口(图未示)中形成所述第一栅极结构610,在所述第二开口(图未示)中形成所述第二栅极结构620,且所述第一栅极结构610和第二栅极结构620顶部与所述底部介质层102顶部齐平。In this embodiment, the first gate structure 610 is formed in the first opening (not shown), the second gate structure 620 is formed in the second opening (not shown), and The tops of the first gate structure 610 and the second gate structure 620 are flush with the top of the bottom dielectric layer 102 .

具体地,形成所述第一栅极结构610和第二栅极结构620的步骤包括:在所述第一开口的侧壁和底部、第二开口的侧壁和底部形成栅介质层310,所述栅介质层310还覆盖所述底部介质层102顶部;在所述栅介质层310上形成盖帽层410;在所述盖帽层410上形成P型功函数层320;去除所述第二区域II的P型功函数层320,露出所述盖帽层410;在所述第一区域I的P型功函数层320以及第二区域II的盖帽层410上形成N型功函数层330;在所述N型功函数层330上形成栅极阻挡层420;在所述栅极阻挡层420上形成填充满所述第一开口和第二开口的金属层510;去除高于所述底部介质层102的金属层510,且还去除高于所述底部介质层102的栅极阻挡层420、N型功函数层330、P型功函数层320、盖帽层410和栅介质层310;其中,所述第一开口中的栅介质层310、盖帽层410、P型功函数层320、N型功函数层330、栅极阻挡层420和金属层510用于构成所述第一栅极结构610,所述第二开口中的栅介质层310、盖帽层410、N型功函数层330、栅极阻挡层420和金属层510用于构成所述第二栅极结构620。Specifically, the step of forming the first gate structure 610 and the second gate structure 620 includes: forming a gate dielectric layer 310 on the sidewall and bottom of the first opening, and on the sidewall and bottom of the second opening, so The gate dielectric layer 310 also covers the top of the bottom dielectric layer 102; a capping layer 410 is formed on the gate dielectric layer 310; a P-type work function layer 320 is formed on the capping layer 410; the second region II is removed P-type work function layer 320, exposing the cap layer 410; forming an N-type work function layer 330 on the P-type work function layer 320 of the first region I and the cap layer 410 of the second region II; A gate barrier layer 420 is formed on the N-type work function layer 330; a metal layer 510 filling the first opening and the second opening is formed on the gate barrier layer 420; metal layer 510, and remove the gate barrier layer 420, N-type work function layer 330, P-type work function layer 320, cap layer 410 and gate dielectric layer 310 higher than the bottom dielectric layer 102; wherein, the first The gate dielectric layer 310, the capping layer 410, the P-type work function layer 320, the N-type work function layer 330, the gate barrier layer 420 and the metal layer 510 in an opening are used to form the first gate structure 610, the The gate dielectric layer 310 , the capping layer 410 , the N-type work function layer 330 , the gate barrier layer 420 and the metal layer 510 in the second opening are used to form the second gate structure 620 .

相应的,所述第一源漏掺杂区位于所述第一栅极结构610两侧的第一鳍部110内,所述第二源漏掺杂区位于所述第二栅极结构620两侧的第二鳍部120内。Correspondingly, the first source-drain doped region is located in the first fin portion 110 on both sides of the first gate structure 610, and the second source-drain doped region is located on both sides of the second gate structure 620. Inside the second fin portion 120 on the side.

本实施例中,所述栅介质层310包括界面层(IL,Interfacial Layer)(未标示)以及位于所述界面层表面的高k栅介质层(未标示)。In this embodiment, the gate dielectric layer 310 includes an interfacial layer (IL, Interfacial Layer) (not marked) and a high-k gate dielectric layer (not marked) located on the surface of the interface layer.

所述界面层为形成所述高k栅介质层提供良好的界面基础,从而提高所述高k栅介质层的质量,减小所述高k栅介质层与鳍部之间的界面态密度,且避免所述高k栅介质层与鳍部直接接触造成的不良影响。所述界面层的材料为氧化硅或氮氧化硅。The interface layer provides a good interface basis for forming the high-k gate dielectric layer, thereby improving the quality of the high-k gate dielectric layer and reducing the interface state density between the high-k gate dielectric layer and the fin, In addition, adverse effects caused by direct contact between the high-k gate dielectric layer and the fin are avoided. The material of the interface layer is silicon oxide or silicon oxynitride.

所述高k栅介质层的材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。本实施例中,所述高k栅介质层的材料为HfO2。在其他实施例中,所述高k栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3The material of the high-k gate dielectric layer is a gate dielectric material with a relative permittivity greater than that of silicon oxide. In this embodiment, the material of the high-k gate dielectric layer is HfO 2 . In other embodiments, the material of the high-k gate dielectric layer may also be HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 .

所述盖帽层410不仅对所述栅介质层310起到保护作用,避免所述N型功函数层330和P型功函数层320的金属离子扩散至所述栅介质层310中;所述盖帽层410还可以防止所述栅介质层310中的氧离子扩散至所述N型功函数层330和P型功函数层320内,从而避免所述栅介质层310中氧空位含量增加的问题。本实施例中,所述盖帽层410的材料为TiN。在其他实施例中,所述盖帽层的材料还可以为TiSiN或TaN。The capping layer 410 not only protects the gate dielectric layer 310, but also prevents the metal ions of the N-type work function layer 330 and the P-type work function layer 320 from diffusing into the gate dielectric layer 310; The layer 410 can also prevent oxygen ions in the gate dielectric layer 310 from diffusing into the N-type work function layer 330 and the P-type work function layer 320 , thereby avoiding the problem of increased oxygen vacancy content in the gate dielectric layer 310 . In this embodiment, the material of the capping layer 410 is TiN. In other embodiments, the material of the capping layer may also be TiSiN or TaN.

一方面,所述栅极阻挡层420用于对所述N型功函数层330和P型功函数层320起到保护作用,防止所述金属层510中的易扩散离子扩散至所述N型功函数层330和P型功函数层320内;另一方面,金属层510在所述栅极阻挡层420上的沉积效果较好,所述栅极阻挡层420可以提高所述金属层510的形成质量。本实施例中,所述栅极阻挡层420的材料为TiN。在其他实施例中,所述栅极阻挡层的材料还可以为TiSiN。On the one hand, the gate barrier layer 420 is used to protect the N-type work function layer 330 and the P-type work function layer 320, preventing the easily diffusible ions in the metal layer 510 from diffusing to the N-type In the work function layer 330 and the P-type work function layer 320; form mass. In this embodiment, the material of the gate barrier layer 420 is TiN. In other embodiments, the material of the gate barrier layer may also be TiSiN.

所述P型功函数层320的材料为P型功函数材料,P型功函数材料功函数范围为5.1eV至5.5eV,例如,5.2eV、5.3eV或5.4eV。所述P型功函数层320的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述P型功函数层320。The material of the P-type work function layer 320 is a P-type work function material, and the work function range of the P-type work function material is 5.1eV to 5.5eV, for example, 5.2eV, 5.3eV or 5.4eV. The material of the P-type work function layer 320 is one or more of Ta, TiN, TaN, TaSiN or TiSiN, and the P-type work function layer 320 can be formed by a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. Function layer 320 .

所述N型功函数层330的材料为N型功函数材料,N型功函数材料功函数范围为3.9eV至4.5eV,例如为4eV、4.1eV或4.3eV。所述N型功函数层330的材料可以为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或多种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述N型功函数层330。The material of the N-type work function layer 330 is an N-type work function material, and the work function of the N-type work function material ranges from 3.9eV to 4.5eV, such as 4eV, 4.1eV or 4.3eV. The material of the N-type work function layer 330 can be one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN and AlN, and the material can be formed by chemical vapor deposition, physical vapor deposition or atomic layer deposition. N-type work function layer 330 .

本实施例中,所述金属层510的材料为W。在其他实施例中,所述金属层的材料还可以为Al、Cu、Ag、Au、Pt、Ni或Ti。In this embodiment, the material of the metal layer 510 is W. In other embodiments, the material of the metal layer may also be Al, Cu, Ag, Au, Pt, Ni or Ti.

参考图5,在所述基底上形成层间介质层103,所述层间介质层103覆盖所述栅极结构(未标示)顶部和底部介质层102顶部。Referring to FIG. 5 , an interlayer dielectric layer 103 is formed on the substrate, and the interlayer dielectric layer 103 covers the top of the gate structure (not shown) and the top of the bottom dielectric layer 102 .

具体地,形成所述层间介质层103的步骤包括:形成覆盖所述栅极结构(未标示)顶部和底部介质层102顶部的层间介质膜;对所述层间介质膜进行平坦化工艺,形成层间介质层103且所述层间介质层103顶部高于所述栅极结构顶部。Specifically, the step of forming the interlayer dielectric layer 103 includes: forming an interlayer dielectric film covering the top of the gate structure (not shown) and the top of the bottom dielectric layer 102; performing a planarization process on the interlayer dielectric film , forming an interlayer dielectric layer 103 and the top of the interlayer dielectric layer 103 is higher than the top of the gate structure.

所述层间介质层103的材料为绝缘材料。本实施例中,为了提高工艺兼容性,所述层间介质层103的材料和所述底部介质层102的材料相同,所述层间介质层103的材料为氧化硅。在其他实施例中,所述层间介质层的材料还可以为氮化硅或氮氧化硅。The material of the interlayer dielectric layer 103 is insulating material. In this embodiment, in order to improve process compatibility, the material of the interlayer dielectric layer 103 is the same as that of the bottom dielectric layer 102, and the material of the interlayer dielectric layer 103 is silicon oxide. In other embodiments, the material of the interlayer dielectric layer may also be silicon nitride or silicon oxynitride.

在其他实施例中,还可以采用先形成高k栅介质层先形成栅电极层(high k firstmetal gate first)的工艺形成所述栅极结构。相应的,形成所述基底的步骤包括:提供初始衬底;刻蚀所述初始衬底,形成衬底以及位于所述衬底上分立的鳍部,所述衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;形成横跨所述鳍部且覆盖鳍部部分顶部表面和侧壁表面的栅极结构;在所述栅极结构两侧的鳍部内形成源漏掺杂区;在所述栅极结构露出的基底上形成层间介质层,所述层间介质层顶部高于所述栅极结构顶部。In other embodiments, the gate structure may also be formed by forming a high-k gate dielectric layer first and then forming a gate electrode layer (high k firstmetal gate first). Correspondingly, the step of forming the base includes: providing an initial substrate; etching the initial substrate to form the substrate and discrete fins on the substrate, the substrate includes The first region of the first region and the second region for forming an N-type device; forming a gate structure across the fin and covering the top surface and sidewall surface of the fin portion; in the fin on both sides of the gate structure Forming a source-drain doped region; forming an interlayer dielectric layer on the exposed base of the gate structure, the top of the interlayer dielectric layer being higher than the top of the gate structure.

参考图6,在所述栅极结构(未标示)两侧的层间介质层103内形成露出所述源漏掺杂区(未标示)的第一接触开口155。Referring to FIG. 6 , a first contact opening 155 exposing the source-drain doped region (not shown) is formed in the interlayer dielectric layer 103 on both sides of the gate structure (not shown).

所述第一区域I的第一接触开口155露出所述第一栅极结构610两侧的第一源漏掺杂区,所述第二区域II的第一接触开口155露出所述第二栅极结构620两侧的第二源漏掺杂区。本实施例中,所述第一区域I的第一接触开口155贯穿所述第一区域I的层间介质层103和底部介质层102,所述第二区域II的第一接触开口155贯穿所述第二区域II的层间介质层103和底部介质层102。The first contact opening 155 in the first region I exposes the first source-drain doped regions on both sides of the first gate structure 610, and the first contact opening 155 in the second region II exposes the second gate structure 610. The second source and drain doped regions on both sides of the pole structure 620 . In this embodiment, the first contact opening 155 in the first region I runs through the interlayer dielectric layer 103 and the bottom dielectric layer 102 in the first region I, and the first contact opening 155 in the second region II runs through all The interlayer dielectric layer 103 and the bottom dielectric layer 102 of the second region II are described above.

所述第一接触开口155为后续形成与所述第一源漏掺杂区和第二源漏掺杂区相接触的接触孔插塞提供空间位置。具体地,采用干法刻蚀的方式去除所述第一源漏掺杂区上方以及第二源漏掺杂区上方的层间介质层103和底部介质层102。The first contact opening 155 provides a spatial location for subsequent formation of contact hole plugs in contact with the first source-drain doped region and the second source-drain doped region. Specifically, dry etching is used to remove the interlayer dielectric layer 103 and the bottom dielectric layer 102 above the first source-drain doped region and above the second source-drain doped region.

需要说明的是,本实施例中,所述第一接触开口155采用非自对准工艺形成。所以在刻蚀所述层间介质层103和底部介质层102之前,还在部分所述层间介质层103上形成图形层;在形成所述第一接触开口155的步骤中,以所述图形层为掩膜进行刻蚀。在其他实施例中,所述第一接触开口也可以通过自对准工艺形成。It should be noted that, in this embodiment, the first contact opening 155 is formed using a non-self-aligned process. Therefore, before etching the interlayer dielectric layer 103 and the bottom dielectric layer 102, a pattern layer is also formed on part of the interlayer dielectric layer 103; in the step of forming the first contact opening 155, with the pattern layer as a mask for etching. In other embodiments, the first contact opening may also be formed by a self-alignment process.

还需要说明的是,在形成所述第一接触开口155的过程中,还去除部分厚度的所述第一外延层112和第二外延层122。It should also be noted that, during the process of forming the first contact opening 155 , part of the thickness of the first epitaxial layer 112 and the second epitaxial layer 122 is also removed.

参考图7,对所述第一区域I和第二区域II中第一接触开口155露出的所述源漏掺杂区(图未示)进行P型掺杂隔离肖特基掺杂工艺。Referring to FIG. 7 , a P-type doping isolation Schottky doping process is performed on the source and drain doped regions (not shown) exposed by the first contact opening 155 in the first region I and the second region II.

所述P型掺杂隔离肖特基掺杂工艺用于对所述第一源漏掺杂区掺杂P型离子;后续在所述第一源漏掺杂区上沉积金属层以形成金属硅化物(silicide)层时,通过退火工艺使所述金属层和硅反应形成金属硅化物层的过程中,所述退火工艺也同时驱使所述P型离子分凝于所形成金属硅化物层和硅的界面处,从而可以降低所述第一源漏掺杂区和沟道区的肖特基势垒高度。The P-type doping isolation Schottky doping process is used to dope the first source-drain doped region with P-type ions; subsequently deposit a metal layer on the first source-drain doped region to form metal silicide When forming a silicide layer, the annealing process causes the metal layer and silicon to react to form a metal silicide layer, and the annealing process also drives the P-type ions to segregate in the formed metal silicide layer and silicon interface, so that the height of the Schottky barrier between the first source-drain doped region and the channel region can be reduced.

因此,进行所述P型掺杂隔离肖特基掺杂工艺的步骤中,掺杂离子包括B、Al、Ga和In中的一种或多种。Therefore, in the step of performing the P-type doping isolation Schottky doping process, the doping ions include one or more of B, Al, Ga and In.

本实施例中,所述P型掺杂隔离肖特基掺杂工艺为离子注入工艺,所述P型掺杂隔离肖特基掺杂工艺的掺杂离子为B,所述离子注入工艺的参数根据实际工艺需求而定。本实施例中,所述离子注入工艺的参数包括:注入的离子源为B时,注入的离子能量为500eV至3KeV,注入的离子剂量为1E14atom/cm2至5E15atom/cm2;注入的离子源为BF2时,注入的离子能量为1KeV至10KeV,注入的离子剂量为1E14atom/cm2至5E15atom/cm2In this embodiment, the P-type doping isolation Schottky doping process is an ion implantation process, the doping ion of the P-type doping isolation Schottky doping process is B, and the parameters of the ion implantation process It depends on the actual process requirements. In this embodiment, the parameters of the ion implantation process include: when the implanted ion source is B, the implanted ion energy is 500eV to 3KeV, and the implanted ion dose is 1E14atom/cm 2 to 5E15atom/cm 2 ; the implanted ion source When it is BF 2 , the implanted ion energy is 1KeV to 10KeV, and the implanted ion dose is 1E14atom/cm 2 to 5E15atom/cm 2 .

本实施例中,为了节省光罩,采用无掩膜的方式进行所述P型掺杂隔离肖特基掺杂工艺,相应的,所述P型掺杂隔离肖特基掺杂工艺还对所述第二源漏掺杂区进行掺杂。In this embodiment, in order to save a photomask, the P-type doping isolation Schottky doping process is performed in a maskless manner. Correspondingly, the P-type doping isolation Schottky doping process also The second source-drain doped region is doped.

需要说明的是,为了降低所述第一源漏掺杂区和沟道区的肖特基势垒高度、以及所述第二源漏掺杂区和沟道区的肖特基势垒高度,形成所述第一接触开口155后,所述形成方法还包括:对所述第一区域I和第二区域II中的源漏掺杂区进行预非晶化(Pre-amorphization Implant,PAI)处理,即对所述第一源漏掺杂区和第二源漏掺杂区进行所述预非晶化处理。It should be noted that, in order to reduce the Schottky barrier height of the first source-drain doped region and the channel region, and the Schottky barrier height of the second source-drain doped region and the channel region, After forming the first contact opening 155, the forming method further includes: performing a pre-amorphization (Pre-amorphization Implant, PAI) treatment on the source-drain doped regions in the first region I and the second region II , that is, perform the pre-amorphization treatment on the first source-drain doped region and the second source-drain doped region.

通过所述预非晶化处理,不仅有利于降低肖特基势垒高度;还可以将所述第一接触开口155底部部分厚度的第一外延层112和第二外延层122转化为非晶硅层630,从而有利于提高后续金属硅化物层的形成质量以及质量均一性。Through the pre-amorphization treatment, not only is it beneficial to reduce the height of the Schottky barrier; it can also convert the first epitaxial layer 112 and the second epitaxial layer 122 with the thickness of the bottom part of the first contact opening 155 into amorphous silicon layer 630, which is beneficial to improve the formation quality and quality uniformity of the subsequent metal silicide layer.

本实施例中,所述预非晶化处理为离子注入工艺;所述离子注入工艺的注入离子为Ge离子,注入的离子能量为3KeV至10KeV,注入的离子剂量为1E14atom/cm2至3E15atom/cm2In this embodiment, the pre-amorphization treatment is an ion implantation process; the implanted ions in the ion implantation process are Ge ions, the implanted ion energy is 3KeV to 10KeV, and the implanted ion dose is 1E14atom/ cm2 to 3E15atom/cm2 cm 2 .

还需要说明的是,本实施例中,先进行所述预非晶化处理,再进行所述P型掺杂隔离肖特基掺杂工艺。在其他实施例中,还可以先进行所述P型掺杂隔离肖特基掺杂工艺,再进行所述预非晶化处理。It should also be noted that, in this embodiment, the pre-amorphization treatment is performed first, and then the P-type doping isolation Schottky doping process is performed. In other embodiments, the P-type doping isolation Schottky doping process may be performed first, and then the pre-amorphization treatment is performed.

此外,结合参考图8,完成所述预非晶化处理和P型掺杂隔离肖特基掺杂工艺后,所述形成方法还包括:在所述栅极结构(未标示)上方的层间介质层103内形成露出所述栅极结构顶部的第二接触开口156。In addition, referring to FIG. 8 , after completing the pre-amorphization treatment and the P-type doping isolation Schottky doping process, the forming method further includes: an interlayer above the gate structure (not shown) A second contact opening 156 exposing the top of the gate structure is formed in the dielectric layer 103 .

所述第二接触开口156为后续形成与所述栅极结构电连接的第二接触孔插塞提供空间位置。其中,位于所述第一区域I的第二接触开口156贯穿所述第一栅极结构610上方的层间介质层103并露出所述第一栅极结构610顶部,位于所述第二区域II的第二接触开口156贯穿所述第二栅极结构620上方的层间介质层103并露出所述第二栅极结构620顶部。The second contact opening 156 provides a spatial location for the subsequent formation of a second contact hole plug electrically connected to the gate structure. Wherein, the second contact opening 156 located in the first region I penetrates through the interlayer dielectric layer 103 above the first gate structure 610 and exposes the top of the first gate structure 610, and is located in the second region II The second contact opening 156 penetrates through the interlayer dielectric layer 103 above the second gate structure 620 and exposes the top of the second gate structure 620 .

具体地,在所述第一接触开口155(如图7所示)内形成填充层210,所述填充层210还覆盖所述层间介质层103顶部;在所述填充层210上形成图形化的光刻胶层(图未示);以所述光刻胶层为掩膜,刻蚀所述填充层210和层间介质层103,在所述第一栅极结构610上方的层间介质层103内以及所述第二栅极结构620上方的层间介质层103内形成第二接触开口156;形成所述第二接触开口156后,去除所述光刻胶层和填充层210。Specifically, a filling layer 210 is formed in the first contact opening 155 (as shown in FIG. 7 ), and the filling layer 210 also covers the top of the interlayer dielectric layer 103; A photoresist layer (not shown); using the photoresist layer as a mask, etch the filling layer 210 and the interlayer dielectric layer 103, the interlayer dielectric above the first gate structure 610 A second contact opening 156 is formed in the layer 103 and in the interlayer dielectric layer 103 above the second gate structure 620 ; after the second contact opening 156 is formed, the photoresist layer and the filling layer 210 are removed.

本实施例中,所述填充层210的材料为有机介电材料、底部抗反射层材料、深紫外光吸收氧化硅材料或无定形碳。In this embodiment, the material of the filling layer 210 is organic dielectric material, bottom anti-reflection layer material, deep ultraviolet light absorbing silicon oxide material or amorphous carbon.

参考图9,完成所述P型掺杂隔离肖特基掺杂工艺后,在所述第一接触开口155的底部形成金属硅化物层640。Referring to FIG. 9 , after the P-type doping isolation Schottky doping process is completed, a metal silicide layer 640 is formed at the bottom of the first contact opening 155 .

后续步骤包括在所述第一区域I和第二区域II的第一接触开口155中形成第一接触孔插塞,所述第一接触孔插塞用于与所述源漏掺杂区实现电连接,所述金属硅化物层640用于减小接触区域的接触电阻。Subsequent steps include forming first contact hole plugs in the first contact openings 155 of the first region I and the second region II, and the first contact hole plugs are used to realize electrical connection with the source and drain doped regions. connection, the metal silicide layer 640 is used to reduce the contact resistance of the contact area.

本实施例中,形成所述金属硅化物层640的步骤包括:在所述第一接触开口155表面保形覆盖金属层(图未示);形成所述金属层后,对所述基底进行退火处理,使所述金属层与所述含Si基底反应,将所述金属层转化为金属硅化物层640。具体地,所述金属层与所述第一外延层112和第二外延层122反应,以形成所述金属硅化物层640。In this embodiment, the step of forming the metal silicide layer 640 includes: conformally covering the surface of the first contact opening 155 with a metal layer (not shown); after forming the metal layer, annealing the substrate Treatment reacts the metal layer with the Si-containing substrate, converting the metal layer to a metal silicide layer 640 . Specifically, the metal layer reacts with the first epitaxial layer 112 and the second epitaxial layer 122 to form the metal silicide layer 640 .

本实施例中,所述金属层的材料为Ti,所述第一外延层112和第二外延层122的材料为Si,因此在所述退火处理的过程中,所述金属层中的Ti原子与所述第一外延层112和第二外延层122中的Si原子相互扩散并反应,从而形成材料为TiSi的金属硅化物层640。在其他实施例中,所述金属层还可以为Ni,相应的,所形成的金属硅化物层的材料为NiSi。In this embodiment, the material of the metal layer is Ti, and the material of the first epitaxial layer 112 and the second epitaxial layer 122 is Si, so during the annealing process, the Ti atoms in the metal layer Interdiffuse and react with Si atoms in the first epitaxial layer 112 and the second epitaxial layer 122 to form a metal silicide layer 640 made of TiSi. In other embodiments, the metal layer may also be Ni, and correspondingly, the material of the formed metal silicide layer is NiSi.

本实施例中,所述退火处理为激光退火处理,所述激光退火处理的工艺压强为一个标准大气压。在其他实施例中,所述退火处理还可以为快速热退火处理。In this embodiment, the annealing treatment is laser annealing treatment, and the process pressure of the laser annealing treatment is a standard atmospheric pressure. In other embodiments, the annealing treatment may also be rapid thermal annealing treatment.

为了保证所述金属层与所述第一外延层112和第二外延层122反应的效果,使所形成金属硅化物层640的厚度和质量满足工艺需求,且避免对所述基底内已有的掺杂离子造成不良影响,本实施例中,退火温度为700℃至1000℃。In order to ensure the effect of the metal layer reacting with the first epitaxial layer 112 and the second epitaxial layer 122, the thickness and quality of the formed metal silicide layer 640 meet the process requirements, and avoid damage to the existing The doping ions cause adverse effects. In this embodiment, the annealing temperature is 700°C to 1000°C.

还需要说明的是,所述金属硅化物层640的厚度影响所述接触区域的接触电阻;且当所述金属硅化物层640的厚度过大时,容易导致所述金属层在所述第一接触开口155表面的覆盖性较差,所述金属层中容易出现孔(void)缺陷,从而降低所形成金属硅化物层640的质量,进而影响所形成半导体器件的电学性能。因此,为了使得所形成半导体器件的电学性能满足工艺需求,本实施例中,所述金属硅化物层640的厚度为 It should also be noted that the thickness of the metal silicide layer 640 affects the contact resistance of the contact region; and when the thickness of the metal silicide layer 640 is too large, it is easy to cause the metal layer to The coverage of the surface of the contact opening 155 is poor, and void defects are prone to appear in the metal layer, thereby reducing the quality of the formed metal silicide layer 640 and further affecting the electrical performance of the formed semiconductor device. Therefore, in order to make the electrical performance of the formed semiconductor device meet the process requirements, in this embodiment, the thickness of the metal silicide layer 640 is to

本实施例中,采用物理气相沉积工艺形成所述金属层,所述金属层还位于所述第一接触开口155侧壁,且还位于所述第二接触开口156的底部和侧壁;其中,形成所述金属硅化物层640的步骤中,位于所述第一接触开口155底部的金属层与硅发生反应,且形成所述金属硅化物层640后,保留位于所述第一接触开口155侧壁、第二接触开口156底部和侧壁的金属层。在其他实施例中,形成所述金属层的工艺还可以为化学气相沉积工艺或原子层沉积工艺。In this embodiment, the metal layer is formed by a physical vapor deposition process, and the metal layer is also located on the sidewall of the first contact opening 155, and is also located on the bottom and sidewall of the second contact opening 156; wherein, In the step of forming the metal silicide layer 640 , the metal layer at the bottom of the first contact opening 155 reacts with silicon, and after the metal silicide layer 640 is formed, it remains on the side of the first contact opening 155 The metal layer of the wall, the bottom of the second contact opening 156 and the sidewall. In other embodiments, the process for forming the metal layer may also be a chemical vapor deposition process or an atomic layer deposition process.

本实施例中,为了提高所述金属硅化物层640的形成质量,使所述金属硅化物层640与所述源漏掺杂区可以较好地实现电连接,形成所述金属层之前,所述形成方法还包括:对所述第一接触开口155进行预清洗工艺。In this embodiment, in order to improve the formation quality of the metal silicide layer 640, so that the metal silicide layer 640 and the source-drain doped region can be better electrically connected, before forming the metal layer, the The forming method further includes: performing a pre-cleaning process on the first contact opening 155 .

通过所述预清洗工艺,可去除所述第一接触开口155内的自然氧化层(nativeoxide),为形成所述金属层提供良好的界面态。本实施例中,所述预清洗工艺可以为SiCoNi工艺或者氢氟酸的气相刻蚀工艺。Through the pre-cleaning process, the native oxide layer (native oxide) in the first contact opening 155 can be removed to provide a good interface state for forming the metal layer. In this embodiment, the pre-cleaning process may be a SiCoNi process or a hydrofluoric acid vapor phase etching process.

本实施例中,在形成所述金属层后,对所述基底进行退火处理之前,所述形成方法还包括:在所述金属层上形成阻挡层800。In this embodiment, after forming the metal layer and before annealing the substrate, the forming method further includes: forming a barrier layer 800 on the metal layer.

所述阻挡层800的作用在于:一方面,可以防止后续在所述第一接触开口155中形成第一接触孔插塞时所采用的反应物与所述第一外延层112和第二外延层122发生反应,也可以防止所采用的反应物与所形成的金属硅化物层640发生反应;另一方面,所述阻挡层800用于在后续形成第一接触孔插塞时,提高导电材料在所述第一接触开口155内的粘附性,所述阻挡层800可以起到接触孔衬垫层的作用。本实施例中,所述阻挡层800的材料为TiN。The function of the barrier layer 800 is: on the one hand, it can prevent reactants used in the subsequent formation of the first contact hole plug in the first contact opening 155 from interacting with the first epitaxial layer 112 and the second epitaxial layer. 122 can also prevent the reactants used from reacting with the formed metal silicide layer 640; on the other hand, the barrier layer 800 is used to improve the conductive material in the subsequent formation of the first contact hole plug. Adhesion within the first contact opening 155, the barrier layer 800 may function as a contact hole liner. In this embodiment, the barrier layer 800 is made of TiN.

此外,所述第一栅极结构610上方的层间介质层103内、以及所述第二栅极结构620上方的层间介质层103内形成有第二接触开口156,因此对所述第一接触开口155进行预清洗工艺的步骤中,还对所述第二接触开口156进行所述预清洗工艺;形成所述阻挡层800的步骤中,还在所述第二接触开口156内的金属层上形成所述阻挡层800。In addition, a second contact opening 156 is formed in the interlayer dielectric layer 103 above the first gate structure 610 and in the interlayer dielectric layer 103 above the second gate structure 620, so the first In the step of performing the pre-cleaning process on the contact opening 155, the pre-cleaning process is also performed on the second contact opening 156; in the step of forming the barrier layer 800, the metal layer in the second contact opening 156 is also The barrier layer 800 is formed thereon.

参考图10,形成所述金属硅化物层640后,向所述第一接触开口155(如图9所示)内填充导电材料,在所述第一接触开口155内形成第一接触孔插塞850。Referring to FIG. 10, after the metal silicide layer 640 is formed, a conductive material is filled into the first contact opening 155 (as shown in FIG. 9 ), and a first contact hole plug is formed in the first contact opening 155. 850.

所述第一接触孔插塞850与所述源漏掺杂区实现电连接,用于实现半导体器件内的电连接,还用于实现器件与器件之间的电连接。The first contact hole plug 850 is electrically connected to the source-drain doped region, and is used to realize the electrical connection within the semiconductor device, and is also used to realize the electrical connection between devices.

具体地,形成所述第一接触孔插塞850的步骤包括:向所述第一接触开口155中填充满导电材料,所述导电材料还位于所述层间介质层103顶部;对所述导电材料进行平坦化处理,去除高于所述层间介质层103顶部的导电材料,在所述第一接触开口155内形成所述第一接触孔插塞850。Specifically, the step of forming the first contact hole plug 850 includes: filling the first contact opening 155 with a conductive material, and the conductive material is also located on the top of the interlayer dielectric layer 103; The material is planarized to remove the conductive material higher than the top of the interlayer dielectric layer 103 , and the first contact hole plug 850 is formed in the first contact opening 155 .

本实施例中,所述第一接触孔插塞850的材料为W,可以采用化学气相沉积工艺、溅射工艺或电镀工艺形成所述第一接触孔插塞850。在其他实施例中,所述第一接触孔插塞的材料还可以是Al、Cu、Ag或Au等金属材料。In this embodiment, the material of the first contact hole plug 850 is W, and the first contact hole plug 850 may be formed by a chemical vapor deposition process, a sputtering process or an electroplating process. In other embodiments, the material of the first contact hole plug may also be a metal material such as Al, Cu, Ag or Au.

需要说明的是,所述第一栅极结构610上方的层间介质层103内、以及所述第二栅极结构620上方的层间介质层103内形成有第二接触开口156(如图9所示),因此向所述第一接触开口155内填充导电材料的步骤中,还向所述第二接触开口156内填充导电材料,在所述第二接触开口156内形成第二接触孔插塞860。It should be noted that, a second contact opening 156 is formed in the interlayer dielectric layer 103 above the first gate structure 610 and in the interlayer dielectric layer 103 above the second gate structure 620 (as shown in FIG. 9 shown), therefore in the step of filling the first contact opening 155 with a conductive material, also fill the second contact opening 156 with a conductive material, forming a second contact hole plug in the second contact opening 156 Plug 860.

所述第二接触孔插塞860与所述栅极结构实现电连接,用于实现半导体器件内的电连接,还用于实现器件与器件之间的电连接。The second contact hole plug 860 is electrically connected to the gate structure, and is used to realize the electrical connection within the semiconductor device, and is also used to realize the electrical connection between devices.

参考图11,示出了本发明半导体结构一实施例的结构示意图。相应的,本发明还提供一种半导体结构,包括:Referring to FIG. 11 , a schematic structural diagram of an embodiment of the semiconductor structure of the present invention is shown. Correspondingly, the present invention also provides a semiconductor structure, including:

基底,所述基底包括衬底900、位于所述衬底900上的栅极结构(未标示)、位于所述栅极结构两侧基底内的源漏掺杂区(图未示)、以及位于所述基底上且覆盖所述栅极结构顶部的介质层902,所述衬底900包括具有P型器件的第一区域I和具有N型器件的第二区域II;接触开口950,位于所述栅极结构两侧的介质层902内且露出所述源漏掺杂区,其中,所述第一区域I和第二区域II中接触开口950露出的所述源漏掺杂区在同一步骤中经历过P型掺杂隔离肖特基掺杂工艺。The base, the base includes a substrate 900, a gate structure (not shown) on the substrate 900, source and drain doped regions (not shown) in the base on both sides of the gate structure, and The dielectric layer 902 on the base and covering the top of the gate structure, the substrate 900 includes a first region I with a P-type device and a second region II with an N-type device; a contact opening 950 is located in the The source and drain doped regions are exposed in the dielectric layer 902 on both sides of the gate structure, wherein the source and drain doped regions exposed by the contact opening 950 in the first region I and the second region II are performed in the same step Experienced P-type doping isolation Schottky doping process.

本实施例中,所述半导体结构为鳍式场效应管,因此所述基底还包括位于所述衬底900上分立的鳍部(未标示)。在其他实施例中,所述半导体结构为平面晶体管,相应的,所述基底为平面基底。In this embodiment, the semiconductor structure is a fin field effect transistor, so the base further includes discrete fins (not shown) on the substrate 900 . In other embodiments, the semiconductor structure is a planar transistor, and correspondingly, the substrate is a planar substrate.

本实施例中,所述衬底900包括具有P型器件的第一区域I以及具有N型器件的第二区域II。相应的,位于所述第一区域I衬底900上的鳍部为第一鳍部910,位于所述第二区域II衬底900上的鳍部为第二鳍部920。在其他实施例中,所述基底还可以仅包括具有P型器件的第一区域或者仅包括具有N型器件的第二区域。In this embodiment, the substrate 900 includes a first region I having P-type devices and a second region II having N-type devices. Correspondingly, the fins located on the substrate 900 in the first region I are the first fins 910 , and the fins located on the substrate 900 in the second region II are the second fins 920 . In other embodiments, the substrate may also include only the first region with P-type devices or only the second region with N-type devices.

所述第一区域I和第二区域II可以为相邻区域,也可以为不相邻区域。本实施例中,所述第一区域I和第二区域II为相邻区域。The first area I and the second area II may be adjacent areas or non-adjacent areas. In this embodiment, the first area I and the second area II are adjacent areas.

因此位于所述第一区域I的栅极结构为第一栅极结构941,所述第一栅极结构941横跨所述第一鳍部910,且覆盖所述第一鳍部910的部分侧壁表面和顶部表面;位于所述第二区域II的栅极结构为第二栅极结构942,所述第二栅极结构942横跨所述第二鳍部920,且覆盖所述第二鳍部920的部分侧壁表面和顶部表面。Therefore, the gate structure located in the first region I is the first gate structure 941, and the first gate structure 941 crosses the first fin 910 and covers a part of the first fin 910. Wall surface and top surface; the gate structure located in the second region II is a second gate structure 942, and the second gate structure 942 spans the second fin 920 and covers the second fin Part of the sidewall surface and the top surface of the portion 920.

相应的,位于所述第一栅极结构941两侧第一鳍部910内的源漏掺杂区为第一源漏掺杂区(图未示),位于所述第二栅极结构942两侧第二鳍部920内的源漏掺杂区为第二源漏掺杂区(图未示);位于所述第一区域I的接触开口950露出所述第一源漏掺杂区,位于所述第二区域II的接触开口950露出所述第二源漏掺杂区。Correspondingly, the doped source and drain regions in the first fins 910 on both sides of the first gate structure 941 are first doped source and drain regions (not shown in the figure), and are located on both sides of the second gate structure 942. The source-drain doped region in the second fin portion 920 is the second source-drain doped region (not shown); the contact opening 950 located in the first region I exposes the first source-drain doped region, located in The contact opening 950 of the second region II exposes the second source-drain doped region.

本实施例中,所述衬底900为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the substrate 900 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate. substrate.

所述鳍部的材料与所述衬底900的材料相同。本实施例中,所述鳍部的材料为硅,即所述第一鳍部910和第二鳍部920的材料为硅。在其他实施例中,所述鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the fin is the same as that of the substrate 900 . In this embodiment, the material of the fin is silicon, that is, the material of the first fin 910 and the second fin 920 is silicon. In other embodiments, the material of the fin portion may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

本实施例中,所述半导体结构还包括:位于相邻所述鳍部之间衬底900上的隔离结构901,所述隔离结构901覆盖所述鳍部的部分侧壁,且所述隔离结构901顶部低于所述鳍部顶部。In this embodiment, the semiconductor structure further includes: an isolation structure 901 located on the substrate 900 between adjacent fins, the isolation structure 901 covers part of the sidewalls of the fins, and the isolation structure 901 top is lower than the fin top.

所述隔离结构901作为半导体器件的隔离结构,用于对相邻器件和鳍部起到隔离作用。本实施例中,所述隔离结构901的材料为氧化硅。在其他实施例中,所述隔离结构的材料还可以为氮化硅或氮氧化硅。The isolation structure 901 is used as an isolation structure of a semiconductor device for isolating adjacent devices and fins. In this embodiment, the material of the isolation structure 901 is silicon oxide. In other embodiments, the material of the isolation structure may also be silicon nitride or silicon oxynitride.

需要说明的是,本实施例中,所述半导体结构还包括:位于所述第一栅极结构941两侧第一鳍部910内的第一外延层912,位于所述第二栅极结构942两侧第二鳍部920内的第二外延层922;其中,所述第一源漏掺杂区位于所述第一外延层912内,所述第二源漏掺杂区位于所述第二外延层922内。It should be noted that, in this embodiment, the semiconductor structure further includes: a first epitaxial layer 912 located in the first fins 910 on both sides of the first gate structure 941 , located in the second gate structure 942 The second epitaxial layer 922 in the second fin portion 920 on both sides; wherein, the first doped source and drain region is located in the first epitaxial layer 912, and the second doped source and drain region is located in the second In the epitaxial layer 922 .

所述第一外延层912的材料可以为Si或SiGe,所述第一源漏掺杂区的掺杂离子包括B、Ga和In中的一种或多种。本实施例中,所述第一外延层912的材料为Si;所述第一源漏掺杂区的掺杂离子为Ge离子。Ge离子的掺杂浓度根据实际工艺需求而定,本实施例中,Ge离子的原子百分比含量为35%至65%。The material of the first epitaxial layer 912 may be Si or SiGe, and the doping ions of the first source-drain doping region include one or more of B, Ga and In. In this embodiment, the material of the first epitaxial layer 912 is Si; the doping ions of the first source-drain doping region are Ge ions. The doping concentration of Ge ions is determined according to actual process requirements. In this embodiment, the atomic percentage of Ge ions is 35% to 65%.

所述第二外延层922的材料可以为Si或SiC,所述第二源漏掺杂区的掺杂离子包括P和As中的一种或两种。本实施例中,所述第二外延层922的材料为Si;所述第二源漏掺杂区的掺杂离子为P离子。The material of the second epitaxial layer 922 may be Si or SiC, and the doping ions of the second source-drain doping region include one or both of P and As. In this embodiment, the material of the second epitaxial layer 922 is Si; the doping ions of the second source-drain doping region are P ions.

本实施例中,所述第一区域I和第二区域II中接触开口950露出的所述源漏掺杂区在同一步骤中经历过P型掺杂隔离肖特基(Dopant Segregated Schottky,DSS)掺杂工艺,即所述第一源漏掺杂区和第二源漏掺杂区均经历过P型掺杂隔离肖特基掺杂工艺;所述掺杂工艺的掺杂离子为P型离子,用于降低所述第一源漏掺杂区和P型器件沟道区的肖特基势垒高度(Schottky Barrier Height,SBH),相应的,所述第二源漏掺杂区也受到P型离子掺杂的影响;因此为了减小对所述N型器件的电学性能的影响,相比所述第二源漏掺杂区未受到所述P型掺杂隔离肖特基掺杂工艺影响的情况,本实施例所述第二源漏掺杂区的P离子掺杂浓度更高。In this embodiment, the source and drain doped regions exposed by the contact opening 950 in the first region I and the second region II have undergone P-type doping isolation Schottky (Dopant Segregated Schottky, DSS) in the same step. Doping process, that is, both the first source-drain doped region and the second source-drain doped region have undergone a P-type doping isolation Schottky doping process; the doping ions in the doping process are P-type ions , used to reduce the Schottky barrier height (Schottky Barrier Height, SBH) of the first source-drain doped region and the channel region of the P-type device, correspondingly, the second source-drain doped region is also subjected to P Type ion doping; therefore in order to reduce the impact on the electrical performance of the N-type device, compared to the second source and drain doped region is not affected by the P-type doping isolation Schottky doping process In this case, the doping concentration of P ions in the second source-drain doped region in this embodiment is higher.

具体地,所述第二源漏掺杂区的P离子掺杂浓度根据实际工艺需求以及所述P型掺杂隔离肖特基掺杂工艺的掺杂浓度而定。本实施例中,所述第二源漏掺杂区的P离子掺杂浓度为1E21atom/cm3至3E21atom/cm3Specifically, the P ion doping concentration of the second source-drain doping region is determined according to actual process requirements and the doping concentration of the P-type doping isolation Schottky doping process. In this embodiment, the doping concentration of P ions in the second source-drain doped region is 1E21atom/cm 3 to 3E21atom/cm 3 .

还需要说明的是,通过增加所述第二源漏掺杂区的P离子掺杂浓度,还有利于降低所述第一源漏掺杂区和沟道区的肖特基势垒高度,从而有利于减小所述第二区域II的接触电阻,进而提高N型器件的驱动电流。It should also be noted that by increasing the P ion doping concentration of the second source-drain doped region, it is also beneficial to reduce the Schottky barrier height of the first source-drain doped region and the channel region, thereby It is beneficial to reduce the contact resistance of the second region II, thereby increasing the driving current of the N-type device.

在其他实施例中,所述第一栅极结构两侧第一鳍部内可以不具有第一外延层,所述第二栅极结构两侧第二鳍部内也可以不具有第二外延层;因此,所述第一源漏掺杂区可以位于所述第一鳍部内,所述第二源漏掺杂区可以位于所述第二鳍部内。In other embodiments, there may not be a first epitaxial layer in the first fins on both sides of the first gate structure, and there may be no second epitaxial layer in the second fins on both sides of the second gate structure; therefore The first doped source and drain region may be located in the first fin, and the second doped source and drain region may be located in the second fin.

所述P型掺杂隔离肖特基掺杂工艺用于使所述第一源漏掺杂区内具有P型离子,在实际工艺中,当在所述第一源漏掺杂区上沉积金属层以形成金属硅化物(silicide)层时,通过退火工艺使所述金属层和硅反应形成金属硅化物层的过程中,所述退火工艺也同时驱使所述P型离子分凝于所形成金属硅化物层和硅的界面处,从而可以降低所述第一源漏掺杂区和沟道区的肖特基势垒高度。因此,所述P型掺杂隔离肖特基掺杂工艺的掺杂离子包括B、Al、Ga和In中的一种或多种。本实施例中,所述P型掺杂隔离肖特基掺杂工艺的掺杂离子为B。The P-type doping isolation Schottky doping process is used to make the first source-drain doped region have P-type ions. In the actual process, when depositing metal on the first source-drain doped region layer to form a metal silicide (silicide) layer, the annealing process makes the metal layer and silicon react to form a metal silicide layer, and the annealing process also drives the P-type ions to segregate on the formed metal At the interface between the silicide layer and the silicon, the height of the Schottky barrier between the first source-drain doped region and the channel region can be reduced. Therefore, the doping ions of the P-type doping isolation Schottky doping process include one or more of B, Al, Ga and In. In this embodiment, the doping ion of the P-type doping isolation Schottky doping process is B.

需要说明的是,所述第一区域I和第二区域II中接触开口950露出的所述源漏掺杂区还经历过预非晶化(Pre-amorphization Implant,PAI)离子注入工艺,即所述第一源漏掺杂区和第二源漏掺杂区均经历过预非晶化离子注入工艺;因此所述半导体结构还包括:位于所述接触开口950底部的非晶硅层960,且所述第一区域I的非晶硅层960由所述第一外延层912转化而来,所述第二区域II的非晶硅层960由所述第二外延层922转化而来,所述非晶硅层960有利于提高金属硅化物层的形成质量以及质量均一性。本实施例中,所述预非晶化离子注入工艺的注入离子为Ge离子。It should be noted that, the source and drain doped regions exposed by the contact opening 950 in the first region I and the second region II have also undergone a pre-amorphization (Pre-amorphization Implant, PAI) ion implantation process, that is, the Both the first source-drain doped region and the second source-drain doped region have undergone a pre-amorphization ion implantation process; therefore, the semiconductor structure further includes: an amorphous silicon layer 960 located at the bottom of the contact opening 950, and The amorphous silicon layer 960 in the first region I is transformed from the first epitaxial layer 912, and the amorphous silicon layer 960 in the second region II is transformed from the second epitaxial layer 922. The amorphous silicon layer 960 is beneficial to improve the formation quality and quality uniformity of the metal silicide layer. In this embodiment, the implanted ions in the pre-amorphization ion implantation process are Ge ions.

本实施例中,所述栅极结构为金属栅极结构,即所述第一栅极结构941和第二栅极结构942为金属栅极结构。所述栅极结构包括横跨所述鳍部且覆盖所述鳍部部分顶部表面和侧壁表面的栅介质层(未标示)、以及位于所述栅介质层上的金属层(未标示),且所述栅极结构位于所述介质层902内。In this embodiment, the gate structure is a metal gate structure, that is, the first gate structure 941 and the second gate structure 942 are metal gate structures. The gate structure includes a gate dielectric layer (not shown) spanning the fin and covering part of the top surface and sidewall surfaces of the fin, and a metal layer (not shown) on the gate dielectric layer, And the gate structure is located in the dielectric layer 902 .

本实施例中,所述栅介质层包括界面层(IL,Interfacial Layer)(未标示)以及位于所述界面层表面的高k栅介质层(未标示)。In this embodiment, the gate dielectric layer includes an interfacial layer (IL, Interfacial Layer) (not marked) and a high-k gate dielectric layer (not marked) located on the surface of the interface layer.

所述界面层为形成所述高k栅介质层提供良好的界面基础,从而提高所述高k栅介质层的质量,减小所述高k栅介质层与鳍部之间的界面态密度,且避免所述高k栅介质层与鳍部直接接触造成的不良影响。所述界面层的材料为氧化硅或氮氧化硅。The interface layer provides a good interface basis for forming the high-k gate dielectric layer, thereby improving the quality of the high-k gate dielectric layer and reducing the interface state density between the high-k gate dielectric layer and the fin, In addition, adverse effects caused by direct contact between the high-k gate dielectric layer and the fin are avoided. The material of the interface layer is silicon oxide or silicon oxynitride.

所述高k栅介质层的材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。本实施例中,所述高k栅介质层的材料为HfO2。在其他实施例中,所述高k栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3The material of the high-k gate dielectric layer is a gate dielectric material with a relative permittivity greater than that of silicon oxide. In this embodiment, the material of the high-k gate dielectric layer is HfO 2 . In other embodiments, the material of the high-k gate dielectric layer may also be HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 .

本实施例中,所述金属层的材料为W。在其他实施例中,所述金属层的材料还可以为Al、Cu、Ag、Au、Pt、Ni或Ti。In this embodiment, the material of the metal layer is W. In other embodiments, the material of the metal layer may also be Al, Cu, Ag, Au, Pt, Ni or Ti.

需要说明的是,所述半导体结构还包括:位于所述栅极结构侧壁上的侧墙930,所述侧墙930用于定于所述源漏掺杂区的位置。所述侧墙930的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述侧墙930可以为单层结构或叠层结构。本实施例中,所述侧墙930为单层结构,所述侧墙930的材料为氮化硅。It should be noted that, the semiconductor structure further includes: a sidewall 930 located on the sidewall of the gate structure, and the sidewall 930 is used to define the position of the source-drain doped region. The material of the side wall 930 can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or boron carbonitride, and the sidewall 930 can be a single Layer structure or laminated structure. In this embodiment, the sidewall 930 is a single-layer structure, and the material of the sidewall 930 is silicon nitride.

所述介质层902的材料为绝缘材料,所述介质层902为接触孔插塞的形成工艺提供工艺平台。本实施例中,所述介质层902的材料为氧化硅。在其他实施例中,所述介质层的材料还可以为氮化硅或氮氧化硅。The material of the dielectric layer 902 is an insulating material, and the dielectric layer 902 provides a process platform for the formation process of the contact hole plug. In this embodiment, the material of the dielectric layer 902 is silicon oxide. In other embodiments, the material of the dielectric layer may also be silicon nitride or silicon oxynitride.

本实施例中,所述半导体结构包括接触开口950,接触开口950位于所述栅极结构两侧的介质层902内且露出所述源漏掺杂区(图未示),其中,所述第一区域I和第二区域II中接触开口950露出的所述源漏掺杂区在同一步骤中经历过P型掺杂隔离肖特基掺杂工艺;因此,通过调整所述半导体结构中第二区域II的源漏掺杂区的掺杂浓度至合理值,则可以避免额外采用光罩以进行所述P型掺杂隔离肖特基掺杂工艺,因此所述半导体结构的制造成本较低,且对N型器件的影响较小;同时仍旧可以降低所述第一区域I源漏掺杂区和沟道区的肖特基势垒高度,从而减小所述第一区域I的接触电阻、提高P型器件的驱动电流。In this embodiment, the semiconductor structure includes a contact opening 950, which is located in the dielectric layer 902 on both sides of the gate structure and exposes the source-drain doped region (not shown), wherein the first The source and drain doped regions exposed by the contact opening 950 in the first region I and the second region II have experienced the P-type doping isolation Schottky doping process in the same step; therefore, by adjusting the second If the doping concentration of the source-drain doping region of the region II reaches a reasonable value, additional use of a photomask can be avoided to perform the P-type doping isolation Schottky doping process, so the manufacturing cost of the semiconductor structure is relatively low. And the impact on N-type devices is small; at the same time, the Schottky barrier height of the source-drain doped region and the channel region of the first region I can still be reduced, thereby reducing the contact resistance of the first region I, Increase the driving current of the P-type device.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (18)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 形成基底,所述基底包括衬底、位于所述衬底上的栅极结构、位于所述栅极结构两侧基底内的源漏掺杂区、以及位于所述基底上且覆盖所述栅极结构顶部的层间介质层,所述衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;forming a base, the base includes a substrate, a gate structure located on the substrate, source and drain doped regions located in the base on both sides of the gate structure, and a gate structure located on the base and covering the gate an interlayer dielectric layer on top of the structure, the substrate includes a first region for forming a P-type device and a second region for forming an N-type device; 在所述栅极结构两侧的层间介质层内形成露出所述源漏掺杂区的第一接触开口;forming a first contact opening exposing the source-drain doped region in the interlayer dielectric layer on both sides of the gate structure; 对所述第一区域和第二区域中第一接触开口露出的所述源漏掺杂区进行P型掺杂隔离肖特基掺杂工艺;performing a P-type doping isolation Schottky doping process on the source and drain doped regions exposed by the first contact opening in the first region and the second region; 完成所述P型掺杂隔离肖特基掺杂工艺后,在所述第一接触开口的底部形成金属硅化物层;After the P-type doping isolation Schottky doping process is completed, a metal silicide layer is formed at the bottom of the first contact opening; 形成所述金属硅化物层后,向所述第一接触开口内填充导电材料,在所述第一接触开口内形成第一接触孔插塞。After the metal silicide layer is formed, a conductive material is filled into the first contact opening, and a first contact hole plug is formed in the first contact opening. 2.如权利要求1所述的半导体结构的形成方法,其特征在于,进行所述P型掺杂隔离肖特基掺杂工艺的步骤中,所述P型掺杂隔离肖特基掺杂工艺的掺杂离子包括B、Al、Ga和In中的一种或多种。2. the formation method of semiconductor structure as claimed in claim 1 is characterized in that, in the step of carrying out described P-type doping isolation Schottky doping process, described P-type doping isolation Schottky doping process The dopant ions include one or more of B, Al, Ga and In. 3.如权利要求1或2所述的半导体结构的形成方法,其特征在于,所述P型掺杂隔离肖特基掺杂工艺为离子注入工艺,所述P型掺杂隔离肖特基掺杂工艺的掺杂离子为B;3. The formation method of semiconductor structure as claimed in claim 1 or 2, is characterized in that, described P-type doping isolation Schottky doping process is an ion implantation process, and described P-type doping isolation Schottky doping process The dopant ion of impurity process is B; 所述离子注入工艺的参数包括:注入的离子源为B,注入的离子能量为500eV至3KeV,注入的离子剂量为1E14atom/cm2至5E15atom/cm2;或者,注入的离子源为BF2,注入的离子能量为1KeV至10KeV,注入的离子剂量为1E14atom/cm2至5E15atom/cm2The parameters of the ion implantation process include: the implanted ion source is B, the implanted ion energy is 500eV to 3KeV, and the implanted ion dose is 1E14atom/cm 2 to 5E15atom/cm 2 ; or, the implanted ion source is BF 2 , The implanted ion energy is 1KeV to 10KeV, and the implanted ion dose is 1E14atom/cm 2 to 5E15atom/cm 2 . 4.如权利要求1所述的半导体结构的形成方法,其特征在于,形成基底的步骤中,位于所述第一区域的源漏掺杂区为第一源漏掺杂区,位于所述第二区域的源漏掺杂区为第二源漏掺杂区;4. The method for forming a semiconductor structure according to claim 1, wherein in the step of forming a substrate, the source-drain doped region located in the first region is a first source-drain doped region, and the source-drain doped region located in the first region The source-drain doped region of the second region is the second source-drain doped region; 所述第一源漏掺杂区的掺杂离子包括Ge离子,Ge离子的原子百分比含量为35%至65%;The doping ions in the first source-drain doping region include Ge ions, and the atomic percentage content of Ge ions is 35% to 65%; 所述第二源漏掺杂区的掺杂离子包括P离子,P离子的掺杂浓度为1E21atom/cm3至3E21atom/cm3The doping ions in the second source-drain doping region include P ions, and the doping concentration of the P ions is 1E21atom/cm 3 to 3E21atom/cm 3 . 5.如权利要求1所述的半导体结构的形成方法,其特征在于,形成所述第一接触开口后,形成所述金属硅化物层之前,所述形成方法还包括:对所述第一区域和第二区域中的源漏掺杂区进行预非晶化处理。5. The method for forming a semiconductor structure according to claim 1, wherein after forming the first contact opening and before forming the metal silicide layer, the forming method further comprises: and the source and drain doped regions in the second region are subjected to pre-amorphization treatment. 6.如权利要求5所述的半导体结构的形成方法,其特征在于,所述预非晶化处理为离子注入工艺;6. The method for forming a semiconductor structure according to claim 5, wherein the pre-amorphization treatment is an ion implantation process; 所述离子注入工艺的注入离子为Ge离子,注入的离子能量为3KeV至10KeV,注入的离子剂量为1E14atom/cm2至3E15atom/cm2The implanted ions in the ion implantation process are Ge ions, the implanted ion energy is 3KeV to 10KeV, and the implanted ion dose is 1E14atom/cm 2 to 3E15atom/cm 2 . 7.如权利要求1所述的半导体结构的形成方法,其特征在于,所述基底为含Si基底,形成所述金属硅化物层的步骤包括:在所述第一接触开口表面保形覆盖金属层;形成所述金属层后,对所述基底进行退火处理,使所述金属层与所述含Si基底反应,将所述金属层转化为金属硅化物层。7. The method for forming a semiconductor structure according to claim 1, wherein the substrate is a substrate containing Si, and the step of forming the metal silicide layer comprises: conformally covering the surface of the first contact opening with metal layer; after the metal layer is formed, the substrate is annealed to make the metal layer react with the Si-containing substrate, and convert the metal layer into a metal silicide layer. 8.如权利要求7所述的半导体结构的形成方法,其特征在于,所述退火处理为激光退火处理或快速热退火处理。8. The method for forming a semiconductor structure according to claim 7, wherein the annealing treatment is laser annealing treatment or rapid thermal annealing treatment. 9.如权利要求8所述的半导体结构的形成方法,其特征在于,所述退火处理为激光退火处理,所述激光退火处理的参数包括:退火温度为700℃至1000℃,压强为一个标准大气压。9. The method for forming a semiconductor structure according to claim 8, wherein the annealing treatment is laser annealing treatment, and the parameters of the laser annealing treatment include: the annealing temperature is 700° C. to 1000° C., and the pressure is a standard atmospheric pressure. 10.如权利要求1所述的半导体结构的形成方法,其特征在于,所述金属硅化物层的厚度为 10. the formation method of semiconductor structure as claimed in claim 1 is characterized in that, the thickness of described metal silicide layer is to 11.如权利要求1所述的半导体结构的形成方法,其特征在于,完成所述P型掺杂隔离肖特基掺杂工艺后,在所述第一接触开口的底部形成金属硅化物层之前,所述形成方法还包括:在所述栅极结构上方的层间介质层内形成露出所述栅极结构顶部的第二接触开口;11. The method for forming a semiconductor structure according to claim 1, wherein, after completing the P-type doping isolation Schottky doping process, before forming a metal silicide layer at the bottom of the first contact opening , the forming method further includes: forming a second contact opening exposing the top of the gate structure in the interlayer dielectric layer above the gate structure; 向所述第一接触开口内填充导电材料的步骤中,还向所述第二接触开口内填充导电材料,在所述第二接触开口内形成第二接触孔插塞。In the step of filling the first contact opening with a conductive material, the second contact opening is also filled with a conductive material to form a second contact hole plug in the second contact opening. 12.如权利要求1所述的半导体结构的形成方法,其特征在于,形成基底的步骤中,所述基底还包括位于所述衬底上分立的鳍部;12. The method for forming a semiconductor structure according to claim 1, wherein in the step of forming a base, the base further comprises discrete fins located on the substrate; 所述栅极结构横跨所述鳍部,且覆盖所述鳍部的部分侧壁表面和顶部表面;The gate structure spans the fin and covers part of the sidewall surface and the top surface of the fin; 所述源漏掺杂区位于所述栅极结构两侧的鳍部内。The source-drain doped region is located in the fins on both sides of the gate structure. 13.如权利要求1所述的半导体结构的形成方法,其特征在于,形成基底的步骤包括:提供初始衬底;刻蚀所述初始衬底,形成衬底以及位于所述衬底上分立的鳍部,所述衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;形成横跨所述鳍部且覆盖鳍部部分顶部表面和侧壁表面的伪栅结构;在所述伪栅结构两侧的鳍部内形成源漏掺杂区;在所述伪栅结构露出的基底上形成底部介质层,所述底部介质层露出所述伪栅结构顶部;去除所述伪栅结构,在所述底部介质层内形成开口;在所述开口中形成栅极结构,且所述栅极结构顶部与所述底部介质层顶部齐平;在所述基底上形成层间介质层,所述层间介质层覆盖所述栅极结构顶部和底部介质层顶部;13. The method for forming a semiconductor structure according to claim 1, wherein the step of forming a substrate comprises: providing an initial substrate; etching the initial substrate to form the substrate and the discrete substrates on the substrate Fin, the substrate includes a first region for forming a P-type device and a second region for forming an N-type device; forming a dummy that spans the fin and covers the top surface and the sidewall surface of the fin portion gate structure; forming source and drain doped regions in the fins on both sides of the dummy gate structure; forming a bottom dielectric layer on the substrate exposed by the dummy gate structure, and the bottom dielectric layer exposes the top of the dummy gate structure; removing For the dummy gate structure, an opening is formed in the bottom dielectric layer; a gate structure is formed in the opening, and the top of the gate structure is flush with the top of the bottom dielectric layer; a layer is formed on the substrate an interlayer dielectric layer covering the top of the gate structure and the top of the bottom dielectric layer; 或者,or, 形成基底的步骤包括:提供初始衬底;刻蚀所述初始衬底,形成衬底以及位于所述衬底上分立的鳍部,所述衬底包括用于形成P型器件的第一区域和用于形成N型器件的第二区域;形成横跨所述鳍部且覆盖鳍部部分顶部表面和侧壁表面的栅极结构;在所述栅极结构两侧的鳍部内形成源漏掺杂区;在所述栅极结构露出的基底上形成层间介质层,所述层间介质层顶部高于所述栅极结构顶部。The step of forming the base includes: providing an initial substrate; etching the initial substrate to form a substrate and discrete fins on the substrate, the substrate including a first region for forming a P-type device and A second region for forming an N-type device; forming a gate structure spanning the fin and covering part of the top surface and sidewall surface of the fin; forming source-drain doping in the fins on both sides of the gate structure region; an interlayer dielectric layer is formed on the exposed base of the gate structure, and the top of the interlayer dielectric layer is higher than the top of the gate structure. 14.一种半导体结构,其特征在于,包括:14. A semiconductor structure, characterized in that it comprises: 基底,所述基底包括衬底、位于所述衬底上的栅极结构、位于所述栅极结构两侧基底内的源漏掺杂区、以及位于所述基底上且覆盖所述栅极结构顶部的层间介质层,所述衬底包括具有P型器件的第一区域和具有N型器件的第二区域;A substrate, the substrate comprising a substrate, a gate structure on the substrate, source and drain doped regions in the substrate on both sides of the gate structure, and a substrate located on the substrate and covering the gate structure a top interlayer dielectric layer, the substrate includes a first region with a P-type device and a second region with an N-type device; 接触开口,位于所述栅极结构两侧的层间介质层内且露出所述源漏掺杂区,其中,所述第一区域和第二区域中接触开口露出的所述源漏掺杂区在同一步骤中经历过P型掺杂隔离肖特基掺杂工艺。contact openings, located in the interlayer dielectric layer on both sides of the gate structure and exposing the doped source and drain regions, wherein the doped source and drain regions exposed by the contact openings in the first region and the second region Go through the P-type doping isolation Schottky doping process in the same step. 15.如权利要求14所述的半导体结构,其特征在于,所述P型掺杂隔离肖特基掺杂工艺的掺杂离子包括B、Al、Ga和In中的一种或多种。15. The semiconductor structure according to claim 14, wherein the doping ions of the P-type doping isolation Schottky doping process include one or more of B, Al, Ga and In. 16.如权利要求14所述的半导体结构,其特征在于,位于所述第一区域的源漏掺杂区为第一源漏掺杂区,位于所述第二区域的源漏掺杂区为第二源漏掺杂区;16. The semiconductor structure according to claim 14, wherein the source-drain doped region located in the first region is a first source-drain doped region, and the source-drain doped region located in the second region is the second source-drain doped region; 所述第一源漏掺杂区的掺杂离子包括Ge离子,Ge离子的原子百分比含量为35%至65%;The doping ions in the first source-drain doping region include Ge ions, and the atomic percentage content of Ge ions is 35% to 65%; 所述第二源漏掺杂区的掺杂离子包括P离子,P离子的掺杂浓度为1E21atom/cm3至3E21atom/cm3The doping ions in the second source-drain doping region include P ions, and the doping concentration of P ions is 1E21atom/cm 3 to 3E21atom/cm 3 . 17.如权利要求14所述的半导体结构,其特征在于,所述第一区域和第二区域中第一接触开口露出的所述源漏掺杂区还经历过预非晶化离子注入工艺,所述预非晶化离子注入工艺的注入离子为Ge离子。17. The semiconductor structure according to claim 14, wherein the doped source and drain regions exposed by the first contact opening in the first region and the second region have also undergone a pre-amorphization ion implantation process, The implanted ions in the pre-amorphization ion implantation process are Ge ions. 18.如权利要求14所述的半导体结构,其特征在于,所述基底还包括位于所述衬底上分立的鳍部;18. The semiconductor structure of claim 14, wherein the base further comprises discrete fins on the substrate; 所述栅极结构横跨所述鳍部,且覆盖所述鳍部的部分侧壁表面和顶部表面;The gate structure spans the fin and covers part of the sidewall surface and the top surface of the fin; 所述源漏掺杂区位于所述栅极结构两侧的鳍部内。The source-drain doped region is located in the fins on both sides of the gate structure.
CN201611242214.5A 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same Active CN108257916B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611242214.5A CN108257916B (en) 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611242214.5A CN108257916B (en) 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same

Publications (2)

Publication Number Publication Date
CN108257916A true CN108257916A (en) 2018-07-06
CN108257916B CN108257916B (en) 2020-07-10

Family

ID=62720483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611242214.5A Active CN108257916B (en) 2016-12-28 2016-12-28 Semiconductor structure and method of forming the same

Country Status (1)

Country Link
CN (1) CN108257916B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346697A (en) * 2017-01-23 2018-07-31 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor devices and its manufacturing method and electronic device
CN108447823A (en) * 2017-02-16 2018-08-24 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor device and its manufacturing method and electronic device
CN110718582A (en) * 2018-07-12 2020-01-21 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN110970364A (en) * 2018-09-29 2020-04-07 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112151377A (en) * 2019-06-28 2020-12-29 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112735949A (en) * 2019-10-29 2021-04-30 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN113506747A (en) * 2021-06-28 2021-10-15 上海华力集成电路制造有限公司 Doping Segregation Schottky Fabrication Method for Reducing FinFET Contact Resistance
CN113972164A (en) * 2020-07-24 2022-01-25 中芯国际集成电路制造(上海)有限公司 Method of forming a semiconductor structure
WO2022156179A1 (en) * 2021-01-19 2022-07-28 长鑫存储技术有限公司 Manufacturing method for semiconductor structure, semiconductor structure, transistor, and memory

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777281B1 (en) * 2002-08-08 2004-08-17 Advanced Micro Devices, Inc. Maintaining LDD series resistance of MOS transistors by retarding dopant segregation
CN101414608A (en) * 2007-10-16 2009-04-22 三星电子株式会社 Complementary metal oxide semiconductor device and method of manufacturing the same
CN102737992A (en) * 2011-04-01 2012-10-17 中芯国际集成电路制造(上海)有限公司 Method for manufacturing semiconductor device
CN102983163A (en) * 2011-09-07 2013-03-20 中国科学院微电子研究所 Low source-drain contact resistance MOSFETs and method of making same
CN103000675A (en) * 2011-09-08 2013-03-27 中国科学院微电子研究所 Low source-drain contact resistance MOSFETS and method of making same
CN103165457A (en) * 2011-12-15 2013-06-19 中国科学院微电子研究所 Semiconductor device manufacturing method
CN104167391A (en) * 2014-08-11 2014-11-26 矽力杰半导体技术(杭州)有限公司 Method for manufacturing CMOS structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777281B1 (en) * 2002-08-08 2004-08-17 Advanced Micro Devices, Inc. Maintaining LDD series resistance of MOS transistors by retarding dopant segregation
CN101414608A (en) * 2007-10-16 2009-04-22 三星电子株式会社 Complementary metal oxide semiconductor device and method of manufacturing the same
CN102737992A (en) * 2011-04-01 2012-10-17 中芯国际集成电路制造(上海)有限公司 Method for manufacturing semiconductor device
CN102983163A (en) * 2011-09-07 2013-03-20 中国科学院微电子研究所 Low source-drain contact resistance MOSFETs and method of making same
CN103000675A (en) * 2011-09-08 2013-03-27 中国科学院微电子研究所 Low source-drain contact resistance MOSFETS and method of making same
CN103165457A (en) * 2011-12-15 2013-06-19 中国科学院微电子研究所 Semiconductor device manufacturing method
CN104167391A (en) * 2014-08-11 2014-11-26 矽力杰半导体技术(杭州)有限公司 Method for manufacturing CMOS structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346697A (en) * 2017-01-23 2018-07-31 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor devices and its manufacturing method and electronic device
CN108447823A (en) * 2017-02-16 2018-08-24 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor device and its manufacturing method and electronic device
CN110718582A (en) * 2018-07-12 2020-01-21 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN110970364A (en) * 2018-09-29 2020-04-07 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112151377A (en) * 2019-06-28 2020-12-29 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112151377B (en) * 2019-06-28 2024-05-31 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112735949A (en) * 2019-10-29 2021-04-30 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN112735949B (en) * 2019-10-29 2023-06-06 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN113972164A (en) * 2020-07-24 2022-01-25 中芯国际集成电路制造(上海)有限公司 Method of forming a semiconductor structure
WO2022156179A1 (en) * 2021-01-19 2022-07-28 长鑫存储技术有限公司 Manufacturing method for semiconductor structure, semiconductor structure, transistor, and memory
CN113506747A (en) * 2021-06-28 2021-10-15 上海华力集成电路制造有限公司 Doping Segregation Schottky Fabrication Method for Reducing FinFET Contact Resistance

Also Published As

Publication number Publication date
CN108257916B (en) 2020-07-10

Similar Documents

Publication Publication Date Title
CN108257916B (en) Semiconductor structure and method of forming the same
CN102117750B (en) Mosfet structure and manufacturing method thereof
CN103137488B (en) Semiconductor device and method for manufacturing the same
US9991123B2 (en) Doped protection layer for contact formation
CN108695257B (en) Semiconductor structure and method of forming the same
CN112309861B (en) Semiconductor structure, forming method thereof and transistor
US20200303378A1 (en) Semiconductor Device and Method
CN109216278B (en) Semiconductor structure and method of forming the same
CN109148578B (en) Semiconductor structure and method of forming the same
US12166078B2 (en) Contact structure for semiconductor device and method
CN107346783A (en) Semiconductor structure and its manufacture method
CN108257917B (en) Semiconductor structure and method of forming the same
CN108231762A (en) Semiconductor devices and forming method thereof
CN108074813A (en) Semiconductor structure and forming method thereof
CN107591367B (en) Method for manufacturing semiconductor structure
TWI801923B (en) Semiconductor device and method of manufacture
CN113130655B (en) Semiconductor device and manufacturing method thereof
CN202601574U (en) Semiconductor structure
CN108010846B (en) Method and semiconductor structure for improving short channel effect
CN102856206B (en) Semiconductor structure and manufacturing method thereof
CN109950151B (en) PMOS transistor and forming method thereof
CN103383914B (en) Semiconductor structure and manufacturing method thereof
CN112151607A (en) Semiconductor structure and method of forming the same
CN112397443A (en) Semiconductor structure and forming method thereof
CN109980004A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant