CN108223031A - S-co2布雷顿循环透平、压缩机和发电机一体式机组 - Google Patents
S-co2布雷顿循环透平、压缩机和发电机一体式机组 Download PDFInfo
- Publication number
- CN108223031A CN108223031A CN201711437338.3A CN201711437338A CN108223031A CN 108223031 A CN108223031 A CN 108223031A CN 201711437338 A CN201711437338 A CN 201711437338A CN 108223031 A CN108223031 A CN 108223031A
- Authority
- CN
- China
- Prior art keywords
- turbine
- impeller
- compressor
- gear
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 111
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000010248 power generation Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000153 supplemental effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 241000321453 Paranthias colonus Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- CUZMQPZYCDIHQL-VCTVXEGHSA-L calcium;(2s)-1-[(2s)-3-[(2r)-2-(cyclohexanecarbonylamino)propanoyl]sulfanyl-2-methylpropanoyl]pyrrolidine-2-carboxylate Chemical group [Ca+2].N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1.N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1 CUZMQPZYCDIHQL-VCTVXEGHSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 210000003464 cuspid Anatomy 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/08—Adaptations for driving, or combinations with, pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/32—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0095—Oxides of carbon, e.g. CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/14—External refrigeration with work-producing gas expansion loop
- F25J2270/16—External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/912—Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
S‑CO2布雷顿循环透平、压缩机和发电机一体式机组,包括CO2主压缩机的叶轮,CO2主压缩机的叶轮固定在第一小齿轮轴的一端,第一小齿轮轴的另一端固定高压CO2透平的叶轮,高压CO2透平的叶轮透平输出的功率与CO2主压缩机的叶轮之差通过第一小齿轮传到大齿轮一端,大齿轮另一端通过第二小齿轮与第二小齿轮轴相连,所述的第二小齿轮轴一端设置CO2再压缩机的叶轮,另一端设置低压CO2透平的叶轮,低压CO2透平的叶轮与CO2再压缩机的叶轮功率之差通过第二小齿轮传到大齿轮上,本发明具有结构十分紧凑、制造成本低、占地面积很小的特点。
Description
技术领域
本发明涉及超临界二氧化碳技术领域为工质的布雷顿循环的发电装置中的CO2透平、CO2压缩机和发电机三种关鍵转动机械,特别涉及S-CO2布雷顿循环透平、压缩机和发电机一体式机组。
背景技术
当前,对CO2等温室气体排放的管制和新能源的开发,引起了世界各国的高度重视,而利用S-CO2为工质的布雷顿循环,对新能源的开发具有革命性的意义。这是因为,它与以水和水蒸汽为循环介质的郎肯循环相比,技术上有突出优势:
1.在接近临界点时,S-CO2兼有气体和液体的双重特性,即密度远远高于气体,接近液体,使机組尺寸大幅缩小;而粘度接近气体,很低,对传输和传热很有利。S-CO2的这种独特性能,使透平、压缩机、换热器的体积与常规的工艺技术相比,可缩小到30分之一以内,在航空、航天、军舰上应用意义重大。
2.采用S-CO2为工质、在封闭的布雷顿热力循环中做功,热电转换效率远高于传统的蒸汽轮机和燃气轮机。由于布雷顿循环过程为闭式过程,做功工质S-CO2不受热源形式的影响,所以循环热源可以来自太阳能、核反应堆、地热、工业余热、化石燃料燃烧、垃圾焚烧等多种热源形式。
3.S-CO2布雷顿循环无相变过程,不用凝汽器;而汽轮机的排汽要用水来冷凝,造成能量浪费在水中,凉水塔还需要大量冷却水,凉水塔风扇排出的水雾浪费水资源。因此,S-CO2布雷顿循环适合荒漠或高山缺水地区的应用。
4.不需要锅炉给水除氧、脫盐、排污,为新一代清洁能源的发展提供了新途径。
但S-CO2布雷顿循环技术用于发电领域尚处于研究阶段,美国2004年才开始该技术的研发,2012年美国桑迪亚国家实验室(SNL)和美国能源部核能办公室(DOE-NE)公布了S-CO2再压缩布雷顿循环完整的试验报告,被公认为世界上第一套成功的试验装置。该套S-CO2再压缩布雷顿闭式循环系统的核心设备包括主加热器、CO2透平(1#透平、2#透平)、CO2压缩机(主压缩机、再压缩机)、发电机、换热器(低温回热器、高温回热器、预冷器)等。
CO2透平进气的高压由CO2压缩机提供,进气的高温由主加热器和回收压缩机排气的热量来提供。CO2透平膨胀后输出的功率,扣除CO2压缩机所需的功率后,驱动发电机。
CO2压缩机的作用,一是提供CO2透平进气所需的高压,二是克服CO2封闭循环系统的阻力降;三是CO2的压缩热通过低温回热器和高温回热器回收,提供CO2透平进气所需的热能。
发电机也是该装置输出电能的核心设备之一。
可见完整的S-CO2布雷顿循环发电装置必须包括透平、压缩机和发电机三大核心动设备。
该试验装置有两套同轴的超高速“透平-发电机-压缩机”机组,每套机组轴的一端固定一个向心透平叶轮,另一端固定一个离心压缩机叶轮,中间为交流发电机。为了简化机组结构,未设减速机以便输出60Hz的电能。该试验装置机组的转速过高,叶轮的外径过小,使得叶轮中气体的雷诺数接近于临界雷诺数,并且因半开式叶轮的叶顶间隙与叶片高度的比值较大,降低了向心透平膨胀机和离心压缩机的效率。为了获得较高的效率,主压缩机的进气温度和压力接近CO2的临界值,但有合理的隔离度,避免了CO2工质进入两相区,保证了压缩机运行的安全性。
2017.5.9公布的美国专利《US 9,644,502Regenerative thermodynamic powergeneration cycle systems,and methods for operating》图1发电系统流程简图(现有技术),与目前世界上S-CO2布雷顿闭式循环发电系统的主流技术比较接近。因发电机的转速为3600r/min(60Hz电网)或3000r/min(50Hz电网),而透平和压缩机的转速远高于此值,实际的转动设备机组中配置了减速机,普遍采用一套或两套“压缩机-透平-减速机-发电机”机组。
发明专利CN104727868B《煤基新型超临界工质多级分流再热式高效发电系统》,2016.6.1,公开了一种煤基新型超临界工质多级分流再热式高效发电系统。核心的转动机械是三套机组,设置了三台发电机。透平和发电机之间的减速机,图上未表示。
发明专利CN104632308B《基于超临界二氧化碳布雷顿循环的紧凑式透平机械装置》,2017.1.11,仅涉及CO2透平,未涉及CO2压缩机和发电机,还不是完整的S-CO2布雷顿循环发电装置。
在行星齿轮的外围布置太多的CO2透平不符合当前S-CO2布雷顿闭式循环发电系统,CO2透平普遍只有2~4个叶轮的现状。在行星齿轮下方布置几个CO2透平也不便维修。
发明专利CN102758653B《一种多级向心透平系统》,2015.6.24,用大齿轮驱动2~4个小齿轮,每个小齿轮轴的两端均联接向心透平,4~8级向心透平输出的功率通过小齿轮传到大齿轮上,大齿轮轴驱动发电机输出电力。这种将所有的向心透平集装在一台齿轮箱上的机型,与美国桑迪亚S-CO2布雷顿循环发电试验装置和以上三项发明专利采用的转动设备机组的型式相比,具有结构紧凑,制造成本低,占地面积小的优势。
但存在的不足是:该专利仅针对向心透平,未涉及压缩机由什么驱动机来驱动。如果压缩机用电动机驱动,将出现机械能变成电能,又由电能变成机械能的效率损失;如果压缩机用其它透平驱动,就会成为两套机组。另外,每根小齿轮轴的两端固定向心透平,两个向心透平输出功率之和通过小齿轮传到大齿轮上,造成每个齿轮对承担的负荷很高,高速齿轮传动功率损失较大。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供S-CO2布雷顿循环透平、压缩机和发电机一体式机组,只需采用两个单级高速CO2透平叶轮即可满足工艺要求,具有结构十分紧凑、制造成本低、占地面积很小的特点。
为了达到上述目的,本发明采用的技术方案是:
S-CO2布雷顿循环透平、压缩机和发电机一体式机组,包括CO2主压缩机的叶轮2,CO2主压缩机的叶轮2固定在第一小齿轮轴4的一端,第一小齿轮轴4的另一端固定高压CO2透平的叶轮7,高压CO2透平的叶轮7透平输出的功率与CO2主压缩机的叶轮2之差通过第一小齿轮5传到大齿轮8一端,大齿轮8另一端通过第二小齿轮12与第二小齿轮轴11相连,所述的第二小齿轮轴11一端设置CO2再压缩机的叶轮10,另一端设置低压CO2透平的叶轮14,低压CO2透平的叶轮14与CO2再压缩机的叶轮10功率之差通过第二小齿轮12传到大齿轮8上。
所述的第一小齿轮5和第二小齿轮12传到大齿轮8上的功率,用大齿轮轴15经过联轴器16传到发电机17上输出电力。
所述的CO2主压缩机的叶轮2外侧设置有CO2主压缩机的机壳1,CO2主压缩机的机壳1固定在齿轮箱3的侧壁上。
所述的高压CO2透平的叶轮7外侧设置有高压CO2透平的机壳6,高压CO2透平的机壳6固定在齿轮箱3侧壁上。
所述的CO2再压缩机的叶轮10外侧设置有CO2再压缩机的机壳9,CO2再压缩机的机壳9固定在齿轮箱3的侧壁上。
所述的低压CO2透平的叶轮14外侧设置有低压CO2透平的机壳13,低压CO2透平的机壳13固定在齿轮箱3的侧壁上。
本发明的有益效果是:
本发明将S-CO2布雷顿循环发电装置的两台向心透平的机壳和叶轮、两台离心压缩机的机壳和叶轮,以及一台发电机集装在同一台齿轮箱上,与普遍采用两套“压缩机-透平-减速机-发电机”机组的现有技术相比,具有结构十分紧凑、制造成本低、占地面积很小的明显优势;此外,由于两组高速齿轮对传动的功率是透平输出的功率与压缩机需要的功率之差,而不是发明专利CN102758653B每组高速齿轮对传动的功率都是两个向心透平输出功率之和,避免了齿轮对承担的负荷很高、传动功率损失较大的缺陷。
附图说明
图1是当前S-CO2布雷顿再压缩回热式闭路循环发电主流技术的工艺流程简图。
图2是S-CO2布雷顿循环CO2透平、CO2压缩机和发电机一体机组方案图。
图3是S-CO2布雷顿循环CO2透平、CO2压缩机和发电机一体机组三维示意图。
具体实施方式
下面结合附图对本发明的结构原理和工作原理作详细叙述。
如图1所示:本发明的CO2透平、CO2压缩机和发电机一体机组适用于如图1所示的工艺流程。该工艺流程的主要设备包括:CO2主压缩机18、CO2再压缩机19、高压CO2透平20、低压CO2透平21、发电机22、低温回热器23、高温回热器24、主热源加热器25、补充热源加热器26和预冷器27。
工艺流程是:比CO2临界点的温度310C和压力73.825bar.A略高的S-CO2工质进入CO2主压缩机18加压,其排气进入低温回热器23,用低压CO2透平21排气的余热加热,再与CO2再压缩机19的排气混合后,进入高温回热器24,用低压CO2透平21排气再加热。然后,经主热源加热器25,用热源(太阳能、核能等)升温后进入高压CO2透平20。
高温高压的CO2气在高压CO2透平20膨胀做功后,排气温度降低,再经过补充热源加热器26加热后,进入低压CO2透平21,CO2气在此膨胀做功后的排气,依次进入高温回热器24和低温回热器23。低压CO2透平21的排气热量用来加热CO2主压缩机18和CO2再压缩机19的排气后,温度降低。从低温回热器23出来的CO2工质分为两路,一路进入预冷器27冷却后重新进入CO2主压缩机18,进行下一次CO2气体的封闭循环;另一路进入CO2再压缩机19。
高压透平和低压透平的CO2气膨胀降压降温释放的能量用于驱动CO2主压缩机18和CO2再压缩机19,剩余的能量驱动发电机22。CO2气在整个系统中封闭循环的压力降则由这两台CO2压缩机提供。由此可知,S-CO2布雷顿循环发电机组中的核心转动机器是CO2透平、CO2压缩机和发电机22。目前世界上S-CO2布雷顿再压缩回热式闭路循环发电装置,透平、压缩机和发电机布置在同一根轴上,普遍采用两套“压缩机-透平-减速机-发电机”机组的模式,机组很长。
对于当今世界上S-CO2布雷顿循环发电装置的上述工艺流程本发明只需采用两个单级高速CO2透平(向心膨胀机)叶轮即可满足工艺要求。至于CO2压缩,本发明只需采用两个高速离心压缩机叶轮即可满足工艺要求。
从以上工艺流程可知,S-CO2布雷顿循环发电装置中的三种关鍵转动机械的功能是:
CO2透平的功能:利用CO2压缩机提供的压力能,主热源、补充热源和压缩机排气提供的热能,使透平的进气升压升温。CO2气进入向心透平膨胀,将压力能和热能转化为机械能,用来驱动CO2压缩机和发电机22。
CO2压缩机的功能:提供CO2透平进气所需的压力能、克服CO2封闭循环系统的阻力降、CO2的压缩热通过低温回热器23和高温回热器24回收,提供CO2透平进气所需的热能。
发电机22的功能:将CO2透平提供的机械能转化为电能。
如图2所示:CO2主压缩机的机壳1固定在齿轮箱3的侧壁上,CO2主压缩机的叶轮2固定在第一小齿轮轴4的端部,另一端部固定高压CO2透平的叶轮7,高压CO2透平输出的功率减去CO2主压缩机需要的功率之差,通过第一小齿轮5传到大齿轮8上。高压CO2透平的机壳6也固定在齿轮箱3的另一端侧壁上。相似的,CO2再压缩机的机壳9固定在齿轮箱3的侧壁上,CO2再压缩机的叶轮10固定在第二小齿轮轴11的端部,另一端部固定低压CO2透平的叶轮14,低压CO2透平输出的功率减去CO2再压缩机需要的功率之差,通过第二小齿轮12传到大齿轮8上。低压CO2透平的机壳13也固定在齿轮箱3的另一端侧壁上。
第一小齿轮5和第二小齿轮12传到大齿轮8上的功率,用大齿轮轴15经过联轴器16传到发电机17上,输出电力。
本发明将输出功率最大的向心透平叶轮与需要功率最大的离心压缩机叶轮固定在同一根小齿轮轴的两端;将输出功率较小的向心透平叶轮与需要功率较小的离心压缩机叶轮固定在同一根小齿轮轴的两端。透平与压缩机功率之差才传到大齿轮上,避免了发明专利CN102758653B将两个向心透平叶轮固定在同一根小齿轮轴的两端,造成该齿轮对承担的负荷很高,高速齿轮传动功率损失较大的缺陷。
本发明还考虑了大齿轮和小齿轮齿数的组合原则:大齿轮8的转速应为3000r/min(50±0.5Hz电网)或3600r/min(60Hz±0.5电网),在气动计算确定向心透平和离心压缩机的转速时,转速比(齿数比)应为非整数,各对啮合齿轮的齿数互为质数,使磨损均匀分摊到所有的齿上,以利于新齿轮组跑合一段时间后,每个齿的齿形将趋于它的理想齿形,使齿轮的运转趋于平稳。从而延长齿轮的寿命,并减轻高速齿轮啮合的振动和噪声。
图3用三维示意图的方式,形象地表达出本发明将S-CO2布雷顿循环系统中,全部关鍵的转动机械—CO2透平、CO2压缩机和发电机被集装成一台完整的机组。显示出该机组具有结构紧凑,占地面积很小,便于维修的特点。
Claims (6)
1.S-CO2布雷顿循环透平、压缩机和发电机一体式机组,其特征在于,包括CO2主压缩机的叶轮(2),CO2主压缩机的叶轮(2)固定在第一小齿轮轴(4)的一端,第一小齿轮轴(4)的另一端固定高压CO2透平的叶轮(7),高压CO2透平的叶轮(7)透平输出的功率与CO2主压缩机的叶轮(2)之差通过第一小齿轮(5)传到大齿轮(8)一端,大齿轮(8)另一端通过第二小齿轮(12)与第二小齿轮轴(11)相连,所述的第二小齿轮轴(11)一端设置CO2再压缩机的叶轮(10),另一端设置低压CO2透平的叶轮(14),低压CO2透平的叶轮(14)与CO2再压缩机的叶轮(10)功率之差通过第二小齿轮(12)传到大齿轮(8)上。
2.根据权利要求1所述的S-CO2布雷顿循环透平、压缩机和发电机一体式机组,其特征在于,所述的第一小齿轮(5)和第二小齿轮(12)传到大齿轮(8)上的功率,用大齿轮轴(15)经过联轴器(16)传到发电机(17)上输出电力。
3.根据权利要求1所述的S-CO2布雷顿循环透平、压缩机和发电机一体式机组,其特征在于,所述的CO2主压缩机的叶轮(2)外侧设置有CO2主压缩机的机壳(1),CO2主压缩机的机壳(1)固定在齿轮箱(3)的侧壁上。
4.根据权利要求1所述的S-CO2布雷顿循环透平、压缩机和发电机一体式机组,其特征在于,所述的高压CO2透平的叶轮(7)外侧设置有高压CO2透平的机壳(6),高压CO2透平的机壳(6)固定在齿轮箱(3)侧壁上。
5.根据权利要求1所述的S-CO2布雷顿循环透平、压缩机和发电机一体式机组,其特征在于,所述的CO2再压缩机的叶轮(10)外侧设置有CO2再压缩机的机壳(9),CO2再压缩机的机壳(9)固定在齿轮箱(3)的侧壁上。
6.根据权利要求1所述的S-CO2布雷顿循环透平、压缩机和发电机一体式机组,其特征在于,所述的低压CO2透平的叶轮(14)外侧设置有低压CO2透平的机壳(13),低压CO2透平的机壳(13)固定在齿轮箱(3)的侧壁上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711437338.3A CN108223031A (zh) | 2017-12-26 | 2017-12-26 | S-co2布雷顿循环透平、压缩机和发电机一体式机组 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711437338.3A CN108223031A (zh) | 2017-12-26 | 2017-12-26 | S-co2布雷顿循环透平、压缩机和发电机一体式机组 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108223031A true CN108223031A (zh) | 2018-06-29 |
Family
ID=62648048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711437338.3A Pending CN108223031A (zh) | 2017-12-26 | 2017-12-26 | S-co2布雷顿循环透平、压缩机和发电机一体式机组 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108223031A (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110566287A (zh) * | 2019-09-18 | 2019-12-13 | 上海朝临动力科技有限公司 | 发电装置的主机系统、发电装置及发电系统 |
CN110685817A (zh) * | 2019-10-11 | 2020-01-14 | 上海朝临动力科技有限公司 | 涡扇发动机及航空器 |
CN110700899A (zh) * | 2019-11-08 | 2020-01-17 | 上海朝临动力科技有限公司 | 发电装置的主机系统、发电装置及发电系统 |
CN110966052A (zh) * | 2019-12-02 | 2020-04-07 | 东方电气集团东方汽轮机有限公司 | 一种压缩机透平一体式机组及其运行方法 |
CN110985337A (zh) * | 2019-12-02 | 2020-04-10 | 东方电气集团东方汽轮机有限公司 | 一种一体式驱动机组及其运行方法 |
FR3095008A1 (fr) * | 2019-04-12 | 2020-10-16 | Psa Automobiles Sa | Ensemble comprenant deux compresseurs radiaux et deux turbines radiales |
FR3095007A1 (fr) * | 2019-04-12 | 2020-10-16 | Psa Automobiles Sa | Ensemble comprenant deux compresseurs radiaux et deux turbines radiales |
CN111810260A (zh) * | 2020-06-30 | 2020-10-23 | 上海发电设备成套设计研究院有限责任公司 | 一种超临界二氧化碳分流再压缩循环发电系统 |
CN112524822A (zh) * | 2021-01-05 | 2021-03-19 | 浙江态能动力技术有限公司 | 一种太阳能系统及其二氧化碳循环控制系统 |
CN112524821A (zh) * | 2021-01-05 | 2021-03-19 | 浙江态能动力技术有限公司 | 一种太阳能蓄热系统以及供暖系统 |
CN112524824A (zh) * | 2021-01-05 | 2021-03-19 | 浙江态能动力技术有限公司 | 一种太阳能集热系统 |
FR3115316A1 (fr) * | 2020-10-15 | 2022-04-22 | Psa Automobiles Sa | Turbogenerateur a couplage magnetique |
US20220178268A1 (en) * | 2019-03-06 | 2022-06-09 | Industrom Power LLC | Intercooled Cascade Cycle Waste Heat Recovery System |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3477239A (en) * | 1967-05-16 | 1969-11-11 | Messer Griesheim Gmbh | Multistage compression drive in gas separation |
EP0672877A1 (en) * | 1994-03-15 | 1995-09-20 | The BOC Group plc | Cryogenic air separation |
US5490760A (en) * | 1992-10-15 | 1996-02-13 | Man Gutehoffnungshutte Ag | Multishaft geared multishaft turbocompressor with return channel stages and radial expaner |
US5901579A (en) * | 1998-04-03 | 1999-05-11 | Praxair Technology, Inc. | Cryogenic air separation system with integrated machine compression |
-
2017
- 2017-12-26 CN CN201711437338.3A patent/CN108223031A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3477239A (en) * | 1967-05-16 | 1969-11-11 | Messer Griesheim Gmbh | Multistage compression drive in gas separation |
US5490760A (en) * | 1992-10-15 | 1996-02-13 | Man Gutehoffnungshutte Ag | Multishaft geared multishaft turbocompressor with return channel stages and radial expaner |
EP0672877A1 (en) * | 1994-03-15 | 1995-09-20 | The BOC Group plc | Cryogenic air separation |
US5901579A (en) * | 1998-04-03 | 1999-05-11 | Praxair Technology, Inc. | Cryogenic air separation system with integrated machine compression |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11708766B2 (en) * | 2019-03-06 | 2023-07-25 | Industrom Power LLC | Intercooled cascade cycle waste heat recovery system |
US20220178268A1 (en) * | 2019-03-06 | 2022-06-09 | Industrom Power LLC | Intercooled Cascade Cycle Waste Heat Recovery System |
FR3095008A1 (fr) * | 2019-04-12 | 2020-10-16 | Psa Automobiles Sa | Ensemble comprenant deux compresseurs radiaux et deux turbines radiales |
FR3095007A1 (fr) * | 2019-04-12 | 2020-10-16 | Psa Automobiles Sa | Ensemble comprenant deux compresseurs radiaux et deux turbines radiales |
CN110566287A (zh) * | 2019-09-18 | 2019-12-13 | 上海朝临动力科技有限公司 | 发电装置的主机系统、发电装置及发电系统 |
CN110685817A (zh) * | 2019-10-11 | 2020-01-14 | 上海朝临动力科技有限公司 | 涡扇发动机及航空器 |
CN110700899A (zh) * | 2019-11-08 | 2020-01-17 | 上海朝临动力科技有限公司 | 发电装置的主机系统、发电装置及发电系统 |
CN110966052A (zh) * | 2019-12-02 | 2020-04-07 | 东方电气集团东方汽轮机有限公司 | 一种压缩机透平一体式机组及其运行方法 |
CN110985337A (zh) * | 2019-12-02 | 2020-04-10 | 东方电气集团东方汽轮机有限公司 | 一种一体式驱动机组及其运行方法 |
CN111810260A (zh) * | 2020-06-30 | 2020-10-23 | 上海发电设备成套设计研究院有限责任公司 | 一种超临界二氧化碳分流再压缩循环发电系统 |
FR3115316A1 (fr) * | 2020-10-15 | 2022-04-22 | Psa Automobiles Sa | Turbogenerateur a couplage magnetique |
CN112524822A (zh) * | 2021-01-05 | 2021-03-19 | 浙江态能动力技术有限公司 | 一种太阳能系统及其二氧化碳循环控制系统 |
CN112524821B (zh) * | 2021-01-05 | 2021-11-19 | 浙江态能动力技术有限公司 | 一种用于光热发电的超临界二氧化碳循环发电系统 |
CN112524824B (zh) * | 2021-01-05 | 2021-12-10 | 浙江态能动力技术有限公司 | 一种用于光热发电的超临界二氧化碳自冷却透平系统 |
CN112524822B (zh) * | 2021-01-05 | 2021-11-05 | 浙江态能动力技术有限公司 | 一种用于光热发电的超临界二氧化碳循环控制系统 |
CN112524824A (zh) * | 2021-01-05 | 2021-03-19 | 浙江态能动力技术有限公司 | 一种太阳能集热系统 |
CN112524821A (zh) * | 2021-01-05 | 2021-03-19 | 浙江态能动力技术有限公司 | 一种太阳能蓄热系统以及供暖系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108223031A (zh) | S-co2布雷顿循环透平、压缩机和发电机一体式机组 | |
Larjola | Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC) | |
Yang et al. | Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China | |
JP3681434B2 (ja) | コージェネレーション装置およびコンバインドサイクル発電装置 | |
CN107683366B (zh) | 废热回收简单循环系统和方法 | |
JP2011106302A (ja) | エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム | |
CN101761368A (zh) | 一种低品位热流原动机、发电系统及其方法 | |
Kabeyi et al. | Performance analysis of an open cycle gas turbine power plant in grid electricity generation | |
RU2644801C2 (ru) | Термодинамическая система комбинированного цикла для выработки механической энергии и способ выработки механической энергии и приведения в действие турбомашины | |
CN201546768U (zh) | 一种低品位热流发电系统 | |
CN101275470A (zh) | 火力发电站 | |
CN202468183U (zh) | 太阳能混合动力回热涡流气轮机发电系统 | |
CN104533550B (zh) | 能提供全部给水回热抽汽的二次再热汽轮机超高压缸 | |
CN101988397A (zh) | 一种低品位热流原动机、发电系统及其方法 | |
KR20130056856A (ko) | 원심 압축기 | |
AU2014282782A1 (en) | Direct-drive power conversion system for wind turbines compatible with energy storage | |
Bianchi et al. | Design of a single-shaft compressor, generator, turbine for small-scale supercritical CO2 systems for waste heat to power conversion applications | |
AU2020102834A4 (en) | Muilt-compressor and Muilt-function Electricity Generating System Directly Linking to Wind Mill | |
CN105888757B (zh) | 一种闭式循环发电装置 | |
Garris et al. | A new thermally driven refrigeration system with environmental benefits | |
CN104791129A (zh) | 一种船舶废热利用π型斯特林发电机系统 | |
CN202937317U (zh) | 快启动汽轮机组 | |
JP4028070B2 (ja) | コンバインドサイクル発電プラント | |
Hudson | Technical and economic overview of geothermal atmospheric exhaust and condensing turbines, binary cycle and biphase plant | |
CN218717034U (zh) | 低品位烟气余热发电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180629 |
|
WD01 | Invention patent application deemed withdrawn after publication |