[go: up one dir, main page]

CN108204965A - A kind of micro-fluidic light quantum substance finger print target of NERS-SERS substrates - Google Patents

A kind of micro-fluidic light quantum substance finger print target of NERS-SERS substrates Download PDF

Info

Publication number
CN108204965A
CN108204965A CN201810328541.5A CN201810328541A CN108204965A CN 108204965 A CN108204965 A CN 108204965A CN 201810328541 A CN201810328541 A CN 201810328541A CN 108204965 A CN108204965 A CN 108204965A
Authority
CN
China
Prior art keywords
metal nanoparticle
nanoparticle sol
micro
channel
ners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810328541.5A
Other languages
Chinese (zh)
Other versions
CN108204965B (en
Inventor
陈志斌
肖程
秦梦泽
张冬晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
63908 Troops of PLA
Original Assignee
63908 Troops of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 63908 Troops of PLA filed Critical 63908 Troops of PLA
Priority to CN201810328541.5A priority Critical patent/CN108204965B/en
Publication of CN108204965A publication Critical patent/CN108204965A/en
Application granted granted Critical
Publication of CN108204965B publication Critical patent/CN108204965B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention provides a kind of micro-fluidic light quantum substance finger print targets of NERS SERS substrates.Its structure includes micro-channel unit and temperature gradient controller;Temperature gradient controller includes two micro temperature sensors, a semiconductor chilling plate and a Miniature heating plate;Micro-channel unit includes metal nanoparticle colloidal sol memory, recover and level Four fluid channel.Gap enhancing Raman scattering is equipped in third level fluid channel to be combined with Surface enhanced Raman scattering(NERS‑SERS)Substrate, NERS SERS substrates are made of sinusoidal pattern silver grating and metal nanoparticle colloidal sol;The setting of semiconductor chilling plate and Miniature heating plate can ensure to generate temperature gradient at micro-channel unit both ends.The present invention have many advantages, such as light, high integration, high sensitivity, can continuously detect, the feature of environmental protection it is good, particularly suitable for portable, the repeatable type, kind and its " Raman fingerprint " for identifying the explosives such as trace ammunition present in air.

Description

一种NERS-SERS基底微流控光量子物质指纹靶标A NERS-SERS Substrate Microfluidic Optical Quantum Matter Fingerprint Target

技术领域technical field

本发明涉及光量子表面增强拉曼散射(SERS)光谱检测、微流控物质检测及痕量爆炸物检测技术领域,具体地说是一种NERS-SERS基底微流控光量子物质指纹靶标。The invention relates to the technical fields of optical quantum Surface Enhanced Raman Scattering (SERS) spectrum detection, microfluidic substance detection and trace explosive detection, in particular to a NERS-SERS substrate microfluidic optical quantum substance fingerprint target.

背景技术Background technique

当前表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)微流控检测技术中,广泛使用的拉曼增强基底主要有两种:一种是单一金属纳米颗粒溶胶,包括金纳米颗粒溶胶和银纳米颗粒溶胶;另一种是纳米阵列结构,包括半球纳米阵列结构、柱状纳米阵列结构等。单一金属纳米颗粒溶胶的SERS增强因子一般能够达到108,为提高探测灵敏度,SERS增强因子还有待提高。纳米阵列结构的拉曼增强基底具有无法实现连续检测的缺陷,原因是:检测分子容易吸附在纳米阵列结构上,检测一次之后需要对基底进行清洗,去除吸附的检测分子,以免对下次检测结果产生影响。In the current surface-enhanced Raman scattering (Surface Enhanced Raman Scattering, SERS) microfluidic detection technology, there are two main types of Raman-enhanced substrates widely used: one is a single metal nanoparticle sol, including gold nanoparticle sol and silver nanoparticle sol. Particle sol; the other is nano-array structure, including hemispherical nano-array structure, columnar nano-array structure, etc. The SERS enhancement factor of a single metal nanoparticle sol can generally reach 10 8 . In order to improve the detection sensitivity, the SERS enhancement factor needs to be improved. The Raman-enhanced substrate of the nano-array structure has the disadvantage that continuous detection cannot be realized. The reason is that the detection molecules are easily adsorbed on the nano-array structure. make an impact.

发明内容Contents of the invention

本发明的目的就是提供一种NERS-SERS基底微流控光量子物质指纹靶标,以解决现有微流控SERS检测无法连续采样检测及探测灵敏度低的问题。The purpose of the present invention is to provide a NERS-SERS substrate microfluidic photoquantum substance fingerprint target to solve the problems that the existing microfluidic SERS detection cannot be continuously sampled and detected and the detection sensitivity is low.

本发明的目的是这样实现的:一种NERS-SERS基底微流控光量子物质指纹靶标,包括微流道单元和用于控制所述微流道单元两端温度梯度的温度梯度控制器;The object of the present invention is achieved in this way: a NERS-SERS substrate microfluidic optical quantum substance fingerprint target, including a microfluidic unit and a temperature gradient controller for controlling the temperature gradient at both ends of the microfluidic unit;

所述微流道单元包括金属纳米颗粒溶胶存储器、第一级微流道、第二级微流道、第三级微流道、第四级微流道和金属纳米颗粒溶胶回收器;所述金属纳米颗粒溶胶存储器用于存储金属纳米颗粒溶胶,所述金属纳米颗粒溶胶回收器用于对金属纳米颗粒溶胶进行回收;所述第一级微流道、所述第二级微流道、所述第三级微流道和所述第四级微流道依序相接,所述金属纳米颗粒溶胶存储器内的金属纳米颗粒溶胶可依序经所述第一级微流道、所述第二级微流道、所述第三级微流道和所述第四级微流道后进入所述金属纳米颗粒溶胶回收器;所述金属纳米颗粒溶胶回收器的上表面呈开放式结构;The microchannel unit includes a metal nanoparticle sol storage, a first-stage microchannel, a second-stage microchannel, a third-stage microchannel, a fourth-stage microchannel and a metal nanoparticle sol recoverer; The metal nanoparticle sol storage is used to store the metal nanoparticle sol, and the metal nanoparticle sol recycler is used to recover the metal nanoparticle sol; the first-stage microchannel, the second-stage microchannel, the The third-level micro-channel and the fourth-level micro-channel are sequentially connected, and the metal nano-particle sol in the metal nano-particle sol storage can pass through the first-level micro-channel, the second The first-level micro-channel, the third-level micro-channel and the fourth-level micro-channel enter the metal nanoparticle sol recoverer; the upper surface of the metal nanoparticle sol recoverer is an open structure;

所述第二级微流道包括至少三条毛细微流道,每一条毛细微流道的上表面均为完全开放结构;所述第二级微流道用于使所述微流道单元内的金属纳米颗粒溶胶吸收浓缩空气中的待检测痕量物质;The second-level micro-channels include at least three capillary micro-channels, and the upper surface of each capillary micro-channel is a completely open structure; the second-level micro-channels are used to make the micro-channels in the micro-channel unit The metal nanoparticle sol absorbs the trace substances to be detected in the concentrated air;

所述第三级微流道是集成了SERS增强检测区的微流道;在所述第三级微流道的上表面设置有一个激光入射与探测信号采集小孔;在所述第三级微流道内的下表面集成有周期性的正弦型银光栅,所述正弦型银光栅与其上所流动着的金属纳米颗粒溶胶共同构成了NERS-SERS基底;The third-level micro-channel is a micro-channel integrated with a SERS enhanced detection area; a small hole for laser incident and detection signal collection is arranged on the upper surface of the third-level micro-channel; A periodic sinusoidal silver grating is integrated on the lower surface of the microchannel, and the sinusoidal silver grating and the metal nanoparticle sol flowing on it together constitute the NERS-SERS substrate;

所述温度梯度控制器包括第一微型温度传感器、第二微型温度传感器、微型加热片和半导体制冷片;The temperature gradient controller includes a first miniature temperature sensor, a second miniature temperature sensor, a miniature heating chip and a semiconductor cooling chip;

所述第一微型温度传感器位于所述金属纳米颗粒溶胶回收器的下方,用于检测所述金属纳米颗粒溶胶回收器周围的温度;所述第二微型温度传感器位于所述金属纳米颗粒溶胶存储器的下方,用于检测所述金属纳米颗粒溶胶存储器周围的温度;The first miniature temperature sensor is located below the metal nanoparticle sol recoverer, and is used to detect the temperature around the metal nanoparticle sol recoverer; the second miniature temperature sensor is located at the metal nanoparticle sol storage Below, for detecting the temperature around the metal nanoparticle sol storage;

所述微型加热片位于所述第一微型温度传感器的下方,用于升高所述金属纳米颗粒溶胶回收器周围的温度;所述半导体制冷片位于所述第二微型温度传感器的下方,用于降低所述金属纳米颗粒溶胶存储器周围的温度。The miniature heating sheet is located below the first miniature temperature sensor for increasing the temperature around the metal nanoparticle sol recovery device; the semiconductor refrigeration sheet is located below the second miniature temperature sensor for Lower the temperature around the metal nanoparticle sol reservoir.

所述正弦型银光栅是通过激光干涉光刻以及物理气相沉积工艺加工而成。所述正弦型银光栅的周期为400nm~1000nm,正弦型振幅为10nm~100nm,光栅银层厚度为50nm~200nm。The sinusoidal silver grating is processed by laser interference photolithography and physical vapor deposition. The period of the sinusoidal silver grating is 400nm-1000nm, the sinusoidal amplitude is 10nm-100nm, and the thickness of the silver layer of the grating is 50nm-200nm.

所述微流道单元内流动的金属纳米颗粒溶胶的形状为球形,球形颗粒的直径为50nm~200nm。The shape of the metal nanoparticle sol flowing in the microchannel unit is spherical, and the diameter of the spherical particles is 50nm-200nm.

所述金属纳米颗粒溶胶存储器和所述金属纳米颗粒溶胶回收器均为长方体的容器结构;所述金属纳米颗粒溶胶存储器的长为1000μm~5000μm,宽为1000μm~5000μm,深度为50μm~200μm;所述金属纳米颗粒溶胶回收器的长为1000μm~5000μm,宽为1000μm~5000μm,深度为50μm~200μm。Both the metal nanoparticle sol storage and the metal nanoparticle sol collector are cuboid container structures; the metal nanoparticle sol storage has a length of 1000 μm to 5000 μm, a width of 1000 μm to 5000 μm, and a depth of 50 μm to 200 μm; The metal nanoparticle sol recoverer has a length of 1000 μm to 5000 μm, a width of 1000 μm to 5000 μm, and a depth of 50 μm to 200 μm.

所述第一级微流道和所述第四级微流道均是长条形通道结构,其横截面为长方形或圆形;所述第一级微流道的长度为1 mm~5mm,宽度为100μm~500μm,深度为50μm~200μm;所述第四级微流道的长度为1 mm~5mm,宽度为100μm~500μm,深度为50μm~200μm。Both the first-stage micro-channel and the fourth-stage micro-channel are elongated channel structures with a rectangular or circular cross-section; the length of the first-stage micro-channel is 1 mm to 5 mm, The width is 100 μm-500 μm, and the depth is 50 μm-200 μm; the length of the fourth-stage micro-channel is 1 mm-5 mm, the width is 100 μm-500 μm, and the depth is 50 μm-200 μm.

所述第二级微流道中每条毛细微流道的宽度为10μm~30μm,长度为1 mm~5mm,深度为5μm~20μm。Each capillary microchannel in the second-stage microchannel has a width of 10 μm to 30 μm, a length of 1 mm to 5 mm, and a depth of 5 μm to 20 μm.

所述第三级微流道为长条形通道结构;所述第三级微流道的长度为0.2 mm~2mm,宽度为100μm~500μm,深度为5μm~20μm。The third-level micro-channel is an elongated channel structure; the length of the third-level micro-channel is 0.2 mm to 2 mm, the width is 100 μm to 500 μm, and the depth is 5 μm to 20 μm.

所述第一微型温度传感器距所述金属纳米颗粒溶胶回收器的下方底部2mm~5mm;所述微型加热片距所述金属纳米颗粒溶胶回收器的下方底部5mm~15mm。The first miniature temperature sensor is 2mm-5mm away from the lower bottom of the metal nanoparticle sol recoverer; the micro heating plate is 5mm-15mm away from the lower bottom of the metal nanoparticle sol recoverer.

所述第二微型温度传感器距所述金属纳米颗粒溶胶存储器的下方底部2mm~5mm;所述半导体制冷片距所述金属纳米颗粒溶胶存储器的下方底部5mm~15mm。The second miniature temperature sensor is 2 mm to 5 mm away from the lower bottom of the metal nanoparticle sol storage; the semiconductor refrigeration chip is 5 mm to 15 mm away from the lower bottom of the metal nanoparticle sol storage.

本发明中的微流道单元是仿生犬类鼻腔内部结构,本发明可连续探测空气中是否含有痕量弹药等爆炸物,且探测灵敏度高。通过控制微流道单元两端温度梯度,调整微流道单元内金属纳米颗粒溶胶的流动速度,保证在第三级集成SERS增强检测区的微流道内二聚体有较高浓度,从而实现NERS-SERS基底的作用,进一步提高SERS检测的灵敏度。通过控制微流道单元两端温度梯度,利用仿生植物蒸腾作用实现了微流道单元内金属纳米颗粒溶胶的不断更新流动,解决了当前微流控SERS检测技术无法连续采样快速检测的问题。因此,本发明具有高集成度、高灵敏度、可连续采样等优点。The microfluidic channel unit in the present invention is the internal structure of the bionic canine nasal cavity, and the present invention can continuously detect whether the air contains explosives such as trace ammunition, and has high detection sensitivity. By controlling the temperature gradient at both ends of the microchannel unit and adjusting the flow velocity of the metal nanoparticle sol in the microchannel unit, it is ensured that the dimer in the microchannel in the third-level integrated SERS enhanced detection area has a higher concentration, thereby realizing NERS -The role of the SERS substrate to further improve the sensitivity of SERS detection. By controlling the temperature gradient at both ends of the microfluidic channel unit, the bionic plant transpiration is used to realize the continuous renewal flow of the metal nanoparticle sol in the microfluidic channel unit, which solves the problem that the current microfluidic SERS detection technology cannot continuously sample and quickly detect. Therefore, the present invention has the advantages of high integration, high sensitivity, continuous sampling and the like.

本发明中NERS-SERS基底中的周期正弦型银光栅不易吸附检测分子,无需清洗就能再次检测,同时通过本发明中的温度梯度控制器来控制微流道单元内的金属纳米颗粒溶胶的不断流动,从而实现可连续检测。本发明将微流控技术与NERS-SERS检测技术有机结合,综合了两者的特色和优势,实现对痕量爆炸物气体的高灵敏度、连续在线检测。The periodical sinusoidal silver grating in the NERS-SERS substrate in the present invention is not easy to absorb detection molecules, and can be detected again without cleaning, and at the same time, the temperature gradient controller in the present invention is used to control the continuous flow of the metal nanoparticle sol in the microchannel unit. Flow, so as to achieve continuous detection. The invention organically combines the microfluidic technology and the NERS-SERS detection technology, integrates the characteristics and advantages of the two, and realizes high-sensitivity and continuous on-line detection of trace explosive gas.

附图说明Description of drawings

图1是本发明中一种NERS-SERS基底微流控的光量子物质指纹靶标的结构示意图,其中“1”即虚线框内表示的是本发明中的“微流道单元”。Fig. 1 is a structural schematic diagram of an optical quantum substance fingerprint target of NERS-SERS substrate microfluidics in the present invention, wherein "1" means the "microfluidic unit" in the present invention indicated in the dotted box.

图2是本发明中微流道单元的第二级微流道和第三级微流道的结构示意图。Fig. 2 is a structural schematic diagram of the second-stage microchannel and the third-stage microchannel of the microchannel unit in the present invention.

图3是本发明中第三级微流道内下表面的NERS-SERS基底的结构示意图。Fig. 3 is a schematic structural view of the NERS-SERS substrate on the inner and lower surface of the third-stage microchannel in the present invention.

图4是普通单一金纳米颗粒溶胶之间的电磁场强度分布示意图。Fig. 4 is a schematic diagram of the distribution of electromagnetic field intensity between ordinary single gold nanoparticle sols.

图5是本发明中NERS-SERS基底中的金纳米颗粒溶胶之间的电磁场强度分布示意图。Fig. 5 is a schematic diagram of the electromagnetic field intensity distribution between gold nanoparticle sols in the NERS-SERS substrate of the present invention.

图6是本发明中四级微流道内的金属纳米颗粒溶胶二聚体浓度分布示意图。Fig. 6 is a schematic diagram of the concentration distribution of the metal nanoparticle sol dimer in the four-stage microfluidic channel in the present invention.

图中:1、微流道单元,2、金属纳米颗粒溶胶存储器,3、金属纳米颗粒溶胶加载通道,4、第一级微流道,5、第二级微流道,6、第三级微流道,7、激光入射与探测信号采集小孔,8、第四级微流道,9、金属纳米颗粒溶胶回收器,10、第一微型温度传感器,11、微型加热片,12、半导体制冷片,13、第二微型温度传感器,14、NERS-SERS基底,15、正弦型银光栅,16、金属纳米颗粒溶胶。In the figure: 1. Microchannel unit, 2. Metal nanoparticle sol storage, 3. Metal nanoparticle sol loading channel, 4. First stage microchannel, 5. Second stage microchannel, 6. Third stage Microchannel, 7. Small hole for laser incidence and detection signal collection, 8. Fourth stage microchannel, 9. Metal nanoparticle sol recovery device, 10. First micro temperature sensor, 11. Micro heating plate, 12. Semiconductor Refrigerator sheet, 13, second miniature temperature sensor, 14, NERS-SERS substrate, 15, sinusoidal silver grating, 16, metal nanoparticle sol.

具体实施方式Detailed ways

如图1所示,本发明靶标包括微流道单元1和温度梯度控制器。微流道单元1包括金属纳米颗粒溶胶存储器2、第一级微流道4、第二级微流道5、第三级微流道6、第四级微流道8和金属纳米颗粒溶胶回收器9。温度梯度控制器包括第一微型温度传感器10、第二微型温度传感器13、微型加热片11和半导体制冷片12。As shown in FIG. 1 , the target of the present invention includes a microfluidic unit 1 and a temperature gradient controller. Microchannel unit 1 includes metal nanoparticle sol storage 2, first stage microchannel 4, second stage microchannel 5, third stage microchannel 6, fourth stage microchannel 8 and metal nanoparticle sol recovery Device 9. The temperature gradient controller includes a first miniature temperature sensor 10 , a second miniature temperature sensor 13 , a miniature heating chip 11 and a semiconductor cooling chip 12 .

金属纳米颗粒溶胶存储器2和金属纳米颗粒溶胶回收器9均为长方体的容器结构,金属纳米颗粒溶胶存储器2为封闭结构,金属纳米颗粒溶胶回收器9的上表面是完全开放式结构,便于蒸腾作用的产生。金属纳米颗粒溶胶存储器2的长为1000μm~5000μm,宽为1000μm~5000μm,深度为50μm~200μm。金属纳米颗粒溶胶回收器9的长为1000μm~5000μm,宽为1000μm~5000μm,深度为50μm~200μm。The metal nanoparticle sol storage 2 and the metal nanoparticle sol recovery device 9 are cuboid container structures, the metal nanoparticle sol storage 2 is a closed structure, and the upper surface of the metal nanoparticle sol recovery device 9 is a completely open structure, which is convenient for transpiration generation. The metal nanoparticle sol memory 2 has a length of 1000 μm to 5000 μm, a width of 1000 μm to 5000 μm, and a depth of 50 μm to 200 μm. The metal nanoparticle sol collector 9 has a length of 1000 μm-5000 μm, a width of 1000 μm-5000 μm, and a depth of 50 μm-200 μm.

在金属纳米颗粒溶胶存储器2的上表面设有金属纳米颗粒溶胶加载通道3,金属纳米颗粒溶胶加载通道3例如可以为竖向的圆管结构,金属纳米颗粒溶胶加载通道3与金属纳米颗粒溶胶存储器2的内腔相连通,通过金属纳米颗粒溶胶加载通道3可向金属纳米颗粒溶胶存储器2内通入金属纳米颗粒溶胶。A metal nanoparticle sol loading channel 3 is provided on the upper surface of the metal nanoparticle sol storage 2. The metal nanoparticle sol loading channel 3 can be a vertical circular tube structure, for example. The metal nanoparticle sol loading channel 3 and the metal nanoparticle sol storage The inner cavity of 2 is connected, and the metal nanoparticle sol can be introduced into the metal nanoparticle sol storage 2 through the metal nanoparticle sol loading channel 3 .

金属纳米颗粒溶胶存储器2内的金属纳米颗粒溶胶可依序通过第一级微流道4、第二级微流道5、第三级微流道6和第四级微流道8后进入金属纳米颗粒溶胶回收器9内。第一级微流道4与金属纳米颗粒溶胶存储器2相连通,第四级微流道8与金属纳米颗粒溶胶回收器9相连通。第一级微流道4和第四级微流道8是长条形通道结构,其横截面可以是长方形或圆形。第一级微流道4的长度为1 mm~5mm,宽度为100μm~500μm,深度为50μm~200μm。第四级微流道8的长度为1 mm~5mm,宽度为100μm~500μm,深度为50μm~200μm。The metal nanoparticle sol in the metal nanoparticle sol memory 2 can pass through the first-stage microchannel 4, the second-stage microchannel 5, the third-stage microchannel 6, and the fourth-stage microchannel 8 to enter the metal nanoparticle sol. In the nanoparticle sol recovery device 9. The first stage microchannel 4 communicates with the metal nanoparticle sol storage 2 , and the fourth stage microchannel 8 communicates with the metal nanoparticle sol recycler 9 . The first-level micro-channel 4 and the fourth-level micro-channel 8 are elongated channel structures, and their cross-sections can be rectangular or circular. The length of the first-stage micro-channel 4 is 1 mm-5 mm, the width is 100 μm-500 μm, and the depth is 50 μm-200 μm. The length of the fourth-stage micro-channel 8 is 1 mm to 5 mm, the width is 100 μm to 500 μm, and the depth is 50 μm to 200 μm.

如图2所示,第二级微流道5由至少三个并行设置的毛细微流道组成,每个毛细微流道上表面为完全开放结构,每个毛细微流道的宽度为10μm~30μm,长度为1 mm~5mm,深度为5μm~20μm。第二级微流道5用于使微流道单元1中的金属纳米颗粒溶胶吸收浓缩空气中的待检测痕量物质,因此其是开放型的微流道。As shown in Figure 2, the second-stage microchannel 5 is composed of at least three capillary microchannels arranged in parallel, the upper surface of each capillary microchannel is a completely open structure, and the width of each capillary microchannel is 10 μm to 30 μm , with a length of 1 mm to 5 mm and a depth of 5 μm to 20 μm. The second-stage microchannel 5 is used to make the metal nanoparticle sol in the microchannel unit 1 absorb trace substances to be detected in the concentrated air, so it is an open microchannel.

第三级微流道6同样是长条形通道结构,第三级微流道6是集成了SERS增强检测区的微流道,第三级微流道6的长度为0.2 mm~2mm,宽度为100μm~500μm,深度为5μm~20μm。在第三级微流道6的上表面设置有一个激光入射与探测信号采集小孔7,激光器所发射信号可通过该小孔照射到第三级微流道6内,拉曼光谱仪也可通过该小孔检测第三级微流道6内NERS-SERS基底14所产生的拉曼信号。SERS增强检测区的匹配激光工作波长为470nm、532nm、658nm或785nm。The third-level micro-channel 6 is also a long strip channel structure. The third-level micro-channel 6 is a micro-channel integrated with a SERS enhanced detection area. The length of the third-level micro-channel 6 is 0.2 mm to 2 mm, and the width It is 100 μm to 500 μm, and the depth is 5 μm to 20 μm. A small hole 7 for laser incident and detection signal collection is arranged on the upper surface of the third-stage micro-flow channel 6, and the signal emitted by the laser can be irradiated into the third-stage micro-flow channel 6 through the small hole, and the Raman spectrometer can also pass through The small hole detects the Raman signal generated by the NERS-SERS substrate 14 in the third-stage micro-channel 6 . The matching laser operating wavelength of the SERS enhanced detection region is 470nm, 532nm, 658nm or 785nm.

结合图3,在第三级微流道6内的下表面集成了周期性的正弦型银光栅15,正弦型银光栅15与其上所流动的金属纳米颗粒溶胶16一起构成了NERS(Nanogap Enhanced RamanScattering)-SERS基底14,NERS-SERS基底14即是间隙增强拉曼散射与表面增强拉曼散射结合的基底。正弦型银光栅15是通过激光干涉光刻以及物理气相沉积工艺加工集成到第三级微流道6内的下表面的。正弦型银光栅15的周期为400 nm~1000nm,正弦型振幅为10 nm~100nm,银光栅膜层厚度为50 nm~200nm。金属纳米颗粒溶胶16在整个微流道单元1内流动,可以是银或金纳米颗粒溶胶,用于吸附空气中的待检测痕量物质分子,并形成二聚体。金属纳米颗粒溶胶16的形状为球形,球形颗粒的直径为50~200nm。In conjunction with FIG. 3 , periodic sinusoidal silver gratings 15 are integrated on the lower surface of the third-stage microchannel 6 , and the sinusoidal silver gratings 15 together with the metal nanoparticle sol 16 flowing thereon constitute the NERS (Nanogap Enhanced RamanScattering )-SERS substrate 14, the NERS-SERS substrate 14 is the substrate combining gap-enhanced Raman scattering and surface-enhanced Raman scattering. The sinusoidal silver grating 15 is integrated into the lower surface of the third-level micro-channel 6 through laser interference lithography and physical vapor deposition processes. The period of the sinusoidal silver grating 15 is 400 nm-1000 nm, the sinusoidal amplitude is 10 nm-100 nm, and the thickness of the silver grating film is 50 nm-200 nm. The metal nanoparticle sol 16 flows in the entire microchannel unit 1 , which can be silver or gold nanoparticle sol, and is used to adsorb trace substance molecules in the air to be detected and form dimers. The shape of the metal nanoparticle sol 16 is spherical, and the diameter of the spherical particles is 50-200 nm.

如图6所示,图6是四级微流道内的金属纳米颗粒溶胶二聚体浓度的分布示意图,图中,灰度值小的区域代表浓度较小,灰度值大的区域代表浓度较大,可以看出从第一级微流道到第四级微流道的金属纳米颗粒溶胶二聚体浓度逐渐增大且在第三级微流道已达到较大浓度。As shown in Figure 6, Figure 6 is a schematic diagram of the distribution of the concentration of the metal nanoparticle sol dimer in the four-stage microflow channel. In the figure, the area with a small gray value represents a small concentration, and the area with a large gray value represents a relatively high concentration. It can be seen that the concentration of metal nanoparticle sol dimer gradually increases from the first-stage microchannel to the fourth-stage microchannel and has reached a larger concentration in the third-stage microchannel.

如图4和图5所示,以金纳米颗粒溶胶为例,图4是普通单一金纳米颗粒溶胶之间的电磁场强度分布,图5是NERS-SERS基底中的金纳米颗粒溶胶之间的电磁场强度分布,显然,后者比前者的电磁场强度有了显著提高,故而通过本发明可提高探测的灵敏度。As shown in Figure 4 and Figure 5, taking the gold nanoparticle sol as an example, Figure 4 is the electromagnetic field intensity distribution between ordinary single gold nanoparticle sols, and Figure 5 is the electromagnetic field between gold nanoparticle sols in the NERS-SERS substrate In terms of intensity distribution, obviously, the electromagnetic field strength of the latter has been significantly improved compared with the former, so the detection sensitivity can be improved by the present invention.

本发明采用NERS-SERS基底,即金属纳米颗粒溶胶与周期正弦型银光栅结合,周期正弦型银光栅形成的表面等离子体共振效应和金属纳米颗粒溶胶形成的局部等离子体共振效应能够发生耦合作用,使金属纳米颗粒溶胶之间的局域电磁场得到进一步增强,SERS增强因子可达109,相比现有技术而言提高了一个数量级,从而提高了SERS检测的灵敏度,实现了高灵敏度检测。The present invention adopts the NERS-SERS substrate, that is, the metal nanoparticle sol is combined with the periodic sinusoidal silver grating, and the surface plasmon resonance effect formed by the periodic sinusoidal silver grating and the local plasmon resonance effect formed by the metal nanoparticle sol can be coupled, The local electromagnetic field between the metal nanoparticle sols is further enhanced, and the SERS enhancement factor can reach 10 9 , which is an order of magnitude higher than the prior art, thereby improving the sensitivity of SERS detection and realizing high-sensitivity detection.

第一微型温度传感器10位于金属纳米颗粒溶胶回收器9的下方,第一微型温度传感器10距金属纳米颗粒溶胶回收器9的下方底部2mm~5mm。微型加热片11位于第一微型温度传感器10的下方,微型加热片11距金属纳米颗粒溶胶回收器9的下方底部5mm~15mm。微型加热片11的尺寸为毫米量级,本实施例中微型加热片11的尺寸为8×8×3.5mm。The first miniature temperature sensor 10 is located below the metal nanoparticle sol recoverer 9 , and the first miniature temperature sensor 10 is 2 mm to 5 mm away from the bottom of the metal nanoparticle sol recoverer 9 . The micro-heating chip 11 is located below the first micro-temperature sensor 10 , and the distance from the micro-heating chip 11 to the lower bottom of the metal nanoparticle sol recoverer 9 is 5 mm to 15 mm. The size of the micro-heating chip 11 is on the order of millimeters, and the size of the micro-heating chip 11 in this embodiment is 8×8×3.5 mm.

第二微型温度传感器13位于金属纳米颗粒溶胶存储器2的下方,第二微型温度传感器13距金属纳米颗粒溶胶存储器2的下方底部2mm~5mm。微型温度传感器的尺寸为毫米量级,本实施例中第一微型温度传感器10和第二微型温度传感器13的尺寸均为4×4×3mm。半导体制冷片12位于第二微型温度传感器13的下方,半导体制冷片12距金属纳米颗粒溶胶存储器2的下方底部5mm~15mm。The second miniature temperature sensor 13 is located below the metal nanoparticle sol storage 2 , and the second miniature temperature sensor 13 is 2 mm to 5 mm away from the bottom of the metal nanoparticle sol storage 2 . The size of the miniature temperature sensors is on the order of millimeters. In this embodiment, the dimensions of the first miniature temperature sensor 10 and the second miniature temperature sensor 13 are both 4×4×3 mm. The semiconductor cooling chip 12 is located below the second miniature temperature sensor 13 , and the semiconductor cooling chip 12 is 5 mm to 15 mm away from the bottom of the metal nanoparticle sol storage 2 .

半导体制冷片12用于降低金属纳米颗粒溶胶存储器2周围区域的温度,微型加热片11用于升高金属纳米颗粒溶胶回收器9周围区域的温度,利用第一微型温度传感器10测量金属纳米颗粒溶胶回收器9周围区域的温度,利用第二微型温度传感器13测量金属纳米颗粒溶胶存储器2周围区域的温度,从而控制微流道单元1两端的温度梯度。利用蒸腾作用调整微流道单元1中金属纳米颗粒溶胶16的流动速度,金属纳米颗粒溶胶16从金属纳米颗粒溶胶存储器2流向金属纳米颗粒溶胶回收器9。The semiconductor cooling chip 12 is used to reduce the temperature of the area around the metal nanoparticle sol storage 2, and the micro heating chip 11 is used to increase the temperature of the area around the metal nanoparticle sol recovery device 9, and the first micro temperature sensor 10 is used to measure the metal nanoparticle sol The temperature of the area around the recoverer 9 is measured by the second miniature temperature sensor 13 to measure the temperature of the area around the metal nanoparticle sol storage 2, thereby controlling the temperature gradient at both ends of the micro-channel unit 1 . The flow velocity of the metal nanoparticle sol 16 in the microchannel unit 1 is adjusted by transpiration, and the metal nanoparticle sol 16 flows from the metal nanoparticle sol storage 2 to the metal nanoparticle sol collector 9 .

本发明提供了一种能够与拉曼光谱仪、激光器结合,用于检测空气中痕量爆炸物分子的NERS-SERS基底微流控光量子物质指纹靶标。所述NERS-SERS基底微流控光量子物质指纹靶标包括微流道单元和温度梯度控制器;温度梯度控制器包括两个微型温度传感器、一个半导体制冷片和一个微型加热片;微流道单元包括金属纳米颗粒溶胶存储器、回收器及四级微流道。在第三级微流道内设有NERS-SERS基底,NERS-SERS基底是由周期正弦型银光栅以及其上的金属纳米颗粒溶胶组成;半导体制冷片和微型加热片的设置能够保证在微流道单元两端产生温度梯度,再通过微型温度传感器检测结果去控制所需的温度梯度,从而利用蒸腾作用驱动微流道单元内金属纳米颗粒溶胶不断更新流动。本发明具有轻便、高集成度、高灵敏度、可连续检测、环保性好等优点,特别适合用于便携、可重复识别空气中存在的痕量弹药等爆炸物的类型、品种及其“拉曼指纹”。The invention provides a NERS-SERS substrate microfluidic optical quantum material fingerprint target which can be combined with a Raman spectrometer and a laser for detecting trace explosive molecules in the air. The NERS-SERS substrate microfluidic optical quantum substance fingerprint target includes a microfluidic channel unit and a temperature gradient controller; the temperature gradient controller includes two miniature temperature sensors, a semiconductor refrigeration chip and a micro heating chip; the microfluidic channel unit includes Metal nanoparticle sol storage, recycler and four-stage micro-flow channel. There is a NERS-SERS substrate in the third-level microchannel, which is composed of a periodic sinusoidal silver grating and a metal nanoparticle sol on it; A temperature gradient is generated at both ends of the channel unit, and then the required temperature gradient is controlled through the detection results of the micro-temperature sensor, so that the transpiration is used to drive the metal nanoparticle sol in the micro-channel unit to continuously update the flow. The invention has the advantages of portability, high integration, high sensitivity, continuous detection, good environmental protection, etc., and is especially suitable for portable and repeatable identification of the types and varieties of explosives such as trace ammunition in the air and their "Raman fingerprint".

Claims (10)

1.一种NERS-SERS基底微流控光量子物质指纹靶标,其特征是,包括微流道单元和用于控制所述微流道单元两端温度梯度的温度梯度控制器;1. A NERS-SERS substrate microfluidic optical quantum substance fingerprint target, characterized in that it includes a microfluidic unit and a temperature gradient controller for controlling the temperature gradient at both ends of the microfluidic unit; 所述微流道单元包括金属纳米颗粒溶胶存储器、第一级微流道、第二级微流道、第三级微流道、第四级微流道和金属纳米颗粒溶胶回收器;所述金属纳米颗粒溶胶存储器用于存储金属纳米颗粒溶胶,所述金属纳米颗粒溶胶回收器用于对金属纳米颗粒溶胶进行回收;所述第一级微流道、所述第二级微流道、所述第三级微流道和所述第四级微流道依序相接,所述金属纳米颗粒溶胶存储器内的金属纳米颗粒溶胶可依序经所述第一级微流道、所述第二级微流道、所述第三级微流道和所述第四级微流道后进入所述金属纳米颗粒溶胶回收器;所述金属纳米颗粒溶胶回收器的上表面呈开放式结构;The microchannel unit includes a metal nanoparticle sol storage, a first-stage microchannel, a second-stage microchannel, a third-stage microchannel, a fourth-stage microchannel and a metal nanoparticle sol recoverer; The metal nanoparticle sol storage is used to store the metal nanoparticle sol, and the metal nanoparticle sol recycler is used to recover the metal nanoparticle sol; the first-stage microchannel, the second-stage microchannel, the The third-level micro-channel and the fourth-level micro-channel are sequentially connected, and the metal nano-particle sol in the metal nano-particle sol storage can pass through the first-level micro-channel, the second The first-level micro-channel, the third-level micro-channel and the fourth-level micro-channel enter the metal nanoparticle sol recoverer; the upper surface of the metal nanoparticle sol recoverer is an open structure; 所述第二级微流道包括至少三条毛细微流道,每一条毛细微流道的上表面均为完全开放结构;所述第二级微流道用于使所述微流道单元内的金属纳米颗粒溶胶吸收浓缩空气中的待检测痕量物质;The second-level micro-channels include at least three capillary micro-channels, and the upper surface of each capillary micro-channel is a completely open structure; the second-level micro-channels are used to make the micro-channels in the micro-channel unit The metal nanoparticle sol absorbs the trace substances to be detected in the concentrated air; 所述第三级微流道是集成了SERS增强检测区的微流道;在所述第三级微流道的上表面设置有一个激光入射与探测信号采集小孔;在所述第三级微流道内的下表面集成有周期性的正弦型银光栅,所述正弦型银光栅与其上所流动着的金属纳米颗粒溶胶共同构成了NERS-SERS基底;The third-level micro-channel is a micro-channel integrated with a SERS enhanced detection area; a small hole for laser incident and detection signal collection is arranged on the upper surface of the third-level micro-channel; A periodic sinusoidal silver grating is integrated on the lower surface of the microchannel, and the sinusoidal silver grating and the metal nanoparticle sol flowing on it together constitute the NERS-SERS substrate; 所述温度梯度控制器包括第一微型温度传感器、第二微型温度传感器、微型加热片和半导体制冷片;The temperature gradient controller includes a first miniature temperature sensor, a second miniature temperature sensor, a miniature heating chip and a semiconductor cooling chip; 所述第一微型温度传感器位于所述金属纳米颗粒溶胶回收器的下方,用于检测所述金属纳米颗粒溶胶回收器周围的温度;所述第二微型温度传感器位于所述金属纳米颗粒溶胶存储器的下方,用于检测所述金属纳米颗粒溶胶存储器周围的温度;The first miniature temperature sensor is located below the metal nanoparticle sol recoverer, and is used to detect the temperature around the metal nanoparticle sol recoverer; the second miniature temperature sensor is located at the metal nanoparticle sol storage Below, for detecting the temperature around the metal nanoparticle sol storage; 所述微型加热片位于所述第一微型温度传感器的下方,用于升高所述金属纳米颗粒溶胶回收器周围的温度;所述半导体制冷片位于所述第二微型温度传感器的下方,用于降低所述金属纳米颗粒溶胶存储器周围的温度。The miniature heating sheet is located below the first miniature temperature sensor for increasing the temperature around the metal nanoparticle sol recovery device; the semiconductor refrigeration sheet is located below the second miniature temperature sensor for Lower the temperature around the metal nanoparticle sol reservoir. 2.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述正弦型银光栅是通过激光干涉光刻以及物理气相沉积工艺加工而成。2. The NERS-SERS substrate microfluidic optical quantum substance fingerprint target according to claim 1, wherein the sinusoidal silver grating is processed by laser interference lithography and physical vapor deposition. 3.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述正弦型银光栅的周期为400nm~1000nm,正弦型振幅为10nm~100nm,光栅银层厚度为50nm~200nm。3. The NERS-SERS substrate microfluidic optical quantum substance fingerprint target according to claim 1, wherein the period of the sinusoidal silver grating is 400nm~1000nm, the sinusoidal amplitude is 10nm~100nm, and the thickness of the silver layer of the grating is 50nm to 200nm. 4.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述微流道单元内流动的金属纳米颗粒溶胶的形状为球形,球形颗粒的直径为50nm~200nm。4. NERS-SERS substrate microfluidic light quantum material fingerprint target according to claim 1, is characterized in that, the shape of the metal nanoparticle sol flowing in the described microchannel unit is spherical, and the diameter of spherical particle is 50nm~ 200nm. 5.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述金属纳米颗粒溶胶存储器和所述金属纳米颗粒溶胶回收器均为长方体的容器结构;所述金属纳米颗粒溶胶存储器的长为1000μm~5000μm,宽为1000μm~5000μm,深度为50μm~200μm;所述金属纳米颗粒溶胶回收器的长为1000μm~5000μm,宽为1000μm~5000μm,深度为50μm~200μm。5. NERS-SERS substrate microfluidic photoquantum material fingerprint target according to claim 1, is characterized in that, described metal nanoparticle sol memory and described metal nanoparticle sol recovery device are the container structure of cuboid; The metal nanoparticle sol memory has a length of 1000 μm to 5000 μm, a width of 1000 μm to 5000 μm, and a depth of 50 μm to 200 μm; the metal nanoparticle sol recovery device has a length of 1000 μm to 5000 μm, a width of 1000 μm to 5000 μm, and a depth of 50 μm to 200 μm . 6.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述第一级微流道和所述第四级微流道均是长条形通道结构,其横截面为长方形或圆形;所述第一级微流道的长度为1 mm~5mm,宽度为100μm~500μm,深度为50μm~200μm;所述第四级微流道的长度为1 mm~5mm,宽度为100μm~500μm,深度为50μm~200μm。6. The NERS-SERS substrate microfluidic optical quantum substance fingerprint target according to claim 1, wherein the first-level microfluidic channel and the fourth-level microfluidic channel are elongated channel structures, Its cross section is rectangular or circular; the length of the first-stage microchannel is 1 mm to 5 mm, the width is 100 μm to 500 μm, and the depth is 50 μm to 200 μm; the length of the fourth-stage microchannel is 1 mm ~5mm, the width is 100μm~500μm, and the depth is 50μm~200μm. 7.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述第二级微流道中每条毛细微流道的宽度为10μm~30μm,长度为1 mm~5mm,深度为5μm~20μm。7. The NERS-SERS substrate microfluidic optical quantum substance fingerprint target according to claim 1, wherein the width of each capillary microchannel in the second-stage microchannel is 10 μm to 30 μm, and the length is 1 mm ~5mm, and the depth is 5μm~20μm. 8.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述第三级微流道为长条形通道结构;所述第三级微流道的长度为0.2 mm~2mm,宽度为100μm~500μm,深度为5μm~20μm。8. NERS-SERS substrate microfluidic photoquantum substance fingerprint target according to claim 1, is characterized in that, described third-level microfluidic channel is elongated channel structure; The length of described third-level microfluidic channel 0.2 mm to 2 mm in width, 100 μm to 500 μm in width, and 5 μm to 20 μm in depth. 9.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述第一微型温度传感器距所述金属纳米颗粒溶胶回收器的下方底部2mm~5mm;所述微型加热片距所述金属纳米颗粒溶胶回收器的下方底部5mm~15mm。9. The NERS-SERS substrate microfluidic photoquantum substance fingerprint target according to claim 1, wherein the first miniature temperature sensor is 2 mm to 5 mm from the bottom of the metal nanoparticle sol recoverer; The distance from the miniature heating sheet to the lower bottom of the metal nanoparticle sol recovery device is 5 mm to 15 mm. 10.根据权利要求1所述的NERS-SERS基底微流控光量子物质指纹靶标,其特征是,所述第二微型温度传感器距所述金属纳米颗粒溶胶存储器的下方底部2mm~5mm;所述半导体制冷片距所述金属纳米颗粒溶胶存储器的下方底部5mm~15mm。10. The NERS-SERS substrate microfluidic photoquantum substance fingerprint target according to claim 1, wherein the second miniature temperature sensor is 2 mm to 5 mm from the bottom of the metal nanoparticle sol memory; The cooling sheet is 5 mm to 15 mm away from the bottom of the metal nanoparticle sol storage.
CN201810328541.5A 2018-04-13 2018-04-13 A NERS-SERS substrate microfluidic photon material fingerprint target Active CN108204965B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810328541.5A CN108204965B (en) 2018-04-13 2018-04-13 A NERS-SERS substrate microfluidic photon material fingerprint target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810328541.5A CN108204965B (en) 2018-04-13 2018-04-13 A NERS-SERS substrate microfluidic photon material fingerprint target

Publications (2)

Publication Number Publication Date
CN108204965A true CN108204965A (en) 2018-06-26
CN108204965B CN108204965B (en) 2025-03-21

Family

ID=62606742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810328541.5A Active CN108204965B (en) 2018-04-13 2018-04-13 A NERS-SERS substrate microfluidic photon material fingerprint target

Country Status (1)

Country Link
CN (1) CN108204965B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020019809A1 (en) * 2018-07-26 2020-01-30 Boe Technology Group Co., Ltd. Microfluidic apparatus, method of detecting substance in microfluidic apparatus, and spectrometer
CN114019762A (en) * 2021-10-27 2022-02-08 电子科技大学 Method for preparing nano array by laser evanescent wave near-field interference quantum lithography
CN115753730A (en) * 2022-11-17 2023-03-07 成都理工大学 Trace explosive detection device under multi-environment

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040191127A1 (en) * 2003-03-31 2004-09-30 Avinoam Kornblit Method and apparatus for controlling the movement of a liquid on a nanostructured or microstructured surface
US20060034729A1 (en) * 2004-05-19 2006-02-16 Vladimir Poponin Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS
US20080094621A1 (en) * 2006-10-20 2008-04-24 Zhiyong Li Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (ners)
US20100210029A1 (en) * 2007-04-27 2010-08-19 The Regents Of The University Of California Device and methods of detection of airborne agents
US20110176130A1 (en) * 2007-09-04 2011-07-21 Claire Gu Liquid core photonic crystal fiber biosensors using surface enhanced raman scattering and methods for their use
CN202329886U (en) * 2011-09-09 2012-07-11 昆明理工大学 Differential type double-optical fibre Bragg grating osmotic pressure sensor based on corrugated pipe and constant-strength cantilever beam
US20130140976A1 (en) * 2010-08-06 2013-06-06 Fujikura Ltd. Method of manufacturing microfluidic chip, microfluidic chip, and apparatus for generating surface plasmon resonant light
US20130286467A1 (en) * 2012-04-26 2013-10-31 Uchicago Argonne, Llc Multiscale light amplification structures for surface enhanced raman spectroscopy
CN103954605A (en) * 2014-04-30 2014-07-30 中国科学院物理研究所 Micro-flow detector based on SERS (Surface Enhanced Raman Scattering) principle and preparation method thereof
US20140322729A1 (en) * 2011-11-09 2014-10-30 The Regents Of The University Of Michigan Sers, fluorescence, absorption, and luminescence detection with flow-through multi-hole capillaries
CN105136769A (en) * 2015-08-12 2015-12-09 中国人民解放军总装备部军械技术研究所 Trace ammunition detector and detection method
CN105973866A (en) * 2016-05-05 2016-09-28 吉林大学 A method for preparing low-friction superhydrophobic surface-enhanced Raman substrates using micro-nanoparticle coatings
CN107075661A (en) * 2014-09-26 2017-08-18 韩国机械研究院 It is formed with substrate of multiple nano gaps and preparation method thereof
CN208140585U (en) * 2018-04-13 2018-11-23 中国人民解放军63908部队 A kind of micro-fluidic light quantum substance finger print target of NERS-SERS substrate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040191127A1 (en) * 2003-03-31 2004-09-30 Avinoam Kornblit Method and apparatus for controlling the movement of a liquid on a nanostructured or microstructured surface
US20060034729A1 (en) * 2004-05-19 2006-02-16 Vladimir Poponin Optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS
US20080094621A1 (en) * 2006-10-20 2008-04-24 Zhiyong Li Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (ners)
US20100210029A1 (en) * 2007-04-27 2010-08-19 The Regents Of The University Of California Device and methods of detection of airborne agents
US20110176130A1 (en) * 2007-09-04 2011-07-21 Claire Gu Liquid core photonic crystal fiber biosensors using surface enhanced raman scattering and methods for their use
US20130140976A1 (en) * 2010-08-06 2013-06-06 Fujikura Ltd. Method of manufacturing microfluidic chip, microfluidic chip, and apparatus for generating surface plasmon resonant light
CN202329886U (en) * 2011-09-09 2012-07-11 昆明理工大学 Differential type double-optical fibre Bragg grating osmotic pressure sensor based on corrugated pipe and constant-strength cantilever beam
US20140322729A1 (en) * 2011-11-09 2014-10-30 The Regents Of The University Of Michigan Sers, fluorescence, absorption, and luminescence detection with flow-through multi-hole capillaries
US20130286467A1 (en) * 2012-04-26 2013-10-31 Uchicago Argonne, Llc Multiscale light amplification structures for surface enhanced raman spectroscopy
CN103954605A (en) * 2014-04-30 2014-07-30 中国科学院物理研究所 Micro-flow detector based on SERS (Surface Enhanced Raman Scattering) principle and preparation method thereof
CN107075661A (en) * 2014-09-26 2017-08-18 韩国机械研究院 It is formed with substrate of multiple nano gaps and preparation method thereof
CN105136769A (en) * 2015-08-12 2015-12-09 中国人民解放军总装备部军械技术研究所 Trace ammunition detector and detection method
CN105973866A (en) * 2016-05-05 2016-09-28 吉林大学 A method for preparing low-friction superhydrophobic surface-enhanced Raman substrates using micro-nanoparticle coatings
CN208140585U (en) * 2018-04-13 2018-11-23 中国人民解放军63908部队 A kind of micro-fluidic light quantum substance finger print target of NERS-SERS substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VADIM KARAGODSKY 等: "Double-Resonant Enhancement of Surface Enhanced Raman Scattering Using High Contrast Grating Resonators", 《CLEO 2011》, 31 December 2011 (2011-12-31), pages 1 - 2 *
周莹 等: "一种简单的方法制备双共振基底用于SERS 检测", 光散射学报, vol. 26, no. 1, 31 March 2014 (2014-03-31), pages 23 - 26 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020019809A1 (en) * 2018-07-26 2020-01-30 Boe Technology Group Co., Ltd. Microfluidic apparatus, method of detecting substance in microfluidic apparatus, and spectrometer
US11344884B2 (en) 2018-07-26 2022-05-31 Boe Technology Group Co., Ltd. Microfluidic apparatus, method of detecting substance in microfluidic apparatus, and spectrometer
CN114019762A (en) * 2021-10-27 2022-02-08 电子科技大学 Method for preparing nano array by laser evanescent wave near-field interference quantum lithography
CN115753730A (en) * 2022-11-17 2023-03-07 成都理工大学 Trace explosive detection device under multi-environment

Also Published As

Publication number Publication date
CN108204965B (en) 2025-03-21

Similar Documents

Publication Publication Date Title
US10416082B2 (en) Device and methods of detection of airborne agents
US8383416B2 (en) Microbead optical sensor with layered plasmon structure for enhanced detection of chemical groups by SERS
Coppens et al. Probing and controlling photothermal heat generation in plasmonic nanostructures
US8993339B2 (en) Hybrid nanostructures for molecular analysis
TWI485389B (en) Surface enhanced raman spectroscopy sensor, system and method of sensing
CN108204965A (en) A kind of micro-fluidic light quantum substance finger print target of NERS-SERS substrates
Li et al. Surface-enhanced Raman scattering microfluidic sensor
US9448155B2 (en) System for sampling and/or analysis of particles in a gaseous environment
JP2013527921A (en) Multi-columnar structural elements for molecular analysis
Perozziello et al. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells
CN208140585U (en) A kind of micro-fluidic light quantum substance finger print target of NERS-SERS substrate
Jarrett et al. Self-powered microfluidic pump using evaporation from diatom biosilica thin films
US9829425B2 (en) Optofluidic devices and methods for sensing single particles
CN105445250A (en) Three-dimensional micro-nano structure, detection device and detection method
Zheng et al. Light-induced dynamic assembly of gold nanoparticles in a lab-on-fiber platform for surface-enhanced Raman scattering detection
Yin et al. Recent developments in optofluidic-surface-enhanced Raman scattering systems: Design, assembly, and advantages
Leiterer et al. Acoustically levitated droplets: a contactless sampling method for fluorescence studies
Foti et al. Optically induced aggregation by radiation pressure of gold nanorods on graphene for SERS detection of biomolecules
CN117723468A (en) Nanoparticle capturing method and device based on plasmon nanostructure
Shevchenko et al. Ordered substrate based on gold film over SiO2 microspheres for increasing the sensitivity of the laser-induced breakdown spectroscopy method in the study of nanoparticles
Wang et al. Key technologies for LSPR-sensing microfluidic biochip
Kumar Self-Directed Transport on Nanostructured Plasmonic Sensors
Hao et al. The Design of a Nanometer Biosensor and Its Microfluidic Integration
CN108732156A (en) A kind of detection method for forbidding phonon modes for selection rule

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant