CN108204848A - A kind of water level and run-off Data collection and precessing system and method - Google Patents
A kind of water level and run-off Data collection and precessing system and method Download PDFInfo
- Publication number
- CN108204848A CN108204848A CN201711395658.7A CN201711395658A CN108204848A CN 108204848 A CN108204848 A CN 108204848A CN 201711395658 A CN201711395658 A CN 201711395658A CN 108204848 A CN108204848 A CN 108204848A
- Authority
- CN
- China
- Prior art keywords
- data
- water level
- run
- water
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/663—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
本发明公开了一种水位和径流量数据采集和处理系统及方法,该系统包括水位和径流量数据采集终端和数据中心,所述水位和径流量数据采集终端和数据中心之间为无线通信链路;所述水位数据采集终端包括雷达水位传感器和超声波多普勒流速传感器、控制电路、数据采集电路、电流转换电路、GPS模块和GPRS无线通信模块,所述控制电路分别与数据采集电路、电流转换电路、GPRS无线通信模块连接,所述电流转换电路与雷达水位传感器连接,所述数据采集电路和超声波多普勒流速传感器、GPS模块连接,所述电流转换电路、数据采集电路、GPRS无线通信模块依次连接。本发明操作简单、使用方便、成本低廉、效益良好。
The invention discloses a water level and runoff data acquisition and processing system and method. The system includes a water level and runoff data acquisition terminal and a data center, and a wireless communication link is used between the water level and runoff data acquisition terminal and the data center. Road; the water level data acquisition terminal includes a radar water level sensor and an ultrasonic Doppler velocity sensor, a control circuit, a data acquisition circuit, a current conversion circuit, a GPS module and a GPRS wireless communication module, and the control circuit is respectively connected with the data acquisition circuit, the current The conversion circuit and the GPRS wireless communication module are connected, the current conversion circuit is connected with the radar water level sensor, the data acquisition circuit is connected with the ultrasonic Doppler flow velocity sensor and the GPS module, the current conversion circuit, the data acquisition circuit, and the GPRS wireless communication Modules are connected sequentially. The invention has the advantages of simple operation, convenient use, low cost and good benefit.
Description
技术领域technical field
本发明属于水利工程技术领域,涉及一种水位和径流量数据采集和处理系统及方法。The invention belongs to the technical field of water conservancy engineering, and relates to a water level and runoff data collection and processing system and method.
背景技术Background technique
全球气候变化背景下的水文变化已成为研究热点,全球水资源日益短缺,日益频繁的洪水和干旱迫使研究人员与决策者获取实时且高精度的水文观测数据,以满足研究人员与决策者对水资源优化调度及生态决策的制定的需要。Hydrological change under the background of global climate change has become a research hotspot. The increasing shortage of global water resources, increasingly frequent floods and droughts force researchers and decision makers to obtain real-time and high-precision hydrological observation data to meet the needs of researchers and decision makers for water. The need for resource optimization scheduling and ecological decision-making.
基于以上对数据采集与决策的迫切需求,需要加强对关注热点区域的水文和气候变化规律,并结合空间范围尺度进行精确定量化研究。因此,亟待探索一种适用于不同观测区域和不同气象条件下的可便捷的、准确的采集与处理水位和径流量数据的技术。Based on the above urgent needs for data collection and decision-making, it is necessary to strengthen the hydrological and climate change laws of hotspot areas of concern, and conduct accurate quantitative research in combination with spatial scales. Therefore, it is urgent to explore a convenient and accurate technology for collecting and processing water level and runoff data that is suitable for different observation areas and different meteorological conditions.
发明内容Contents of the invention
本发明的目的在于提供一种水位和径流量数据采集和处理系统及方法。达到以下目的:The object of the present invention is to provide a water level and runoff data acquisition and processing system and method. To achieve the following goals:
(1)实现对于水库、湖泊、河流水位数据和河流径流量数据的实时准确采集和计算,测量范围0-35m(雷达水位传感器探头到水面距离,注:实际水位=雷达水位传感器探头到水底距离-雷达水位传感器探头到水面距离),测量精度±3mm;(2)实现对于水库、湖泊和河流水位数据,河流径流量数据及相关数据(参见附录表2水位观测数据表)的采集、编码和无线数据传输;(3)在数据中心数据库服务器实现水库、湖泊、河流水位数据和河流径流量数据的接收和存储;(4)实现对存储在数据中心的水位数据和河流径流量数据的共享和发布。(1) To achieve real-time and accurate collection and calculation of reservoir, lake, river water level data and river runoff data, the measurement range is 0-35m (the distance from the radar water level sensor probe to the water surface, Note: actual water level = the distance from the radar water level sensor probe to the bottom of the water - The distance from the radar water level sensor probe to the water surface), the measurement accuracy is ±3mm; (2) to realize the collection, coding and Wireless data transmission; (3) Realize the reception and storage of reservoir, lake, river water level data and river runoff data in the data center database server; (4) Realize the sharing and sharing of water level data and river runoff data stored in the data center release.
其具体技术方案为:Its specific technical plan is:
一种水位和径流量数据采集和处理系统,包括水位和径流量数据采集终端和数据中心,所述水位和径流量数据采集终端和数据中心之间为无线通信链路;所述水位数据和河流流速采集终端包括雷达水位传感器、超声波多普勒流速传感器、控制电路、数据采集电路、电流转换电路、GPS模块和GPRS无线通信模块,所述控制电路分别与数据采集计算电路、电流转换电路、GPRS无线通信模块连接,所述电流转换电路与雷达水位传感器、超声波多普勒流速传感器连接,所述数据采集电路和GPS模块连接,所述电流转换电路、数据采集电路、GPRS无线通信模块依次连接;所述数据中心包括实时通信服务器、数据库服务器、WebGIS服务器、局域网、Web服务器、Internet网络、便携电脑、PDA;A water level and runoff data collection and processing system, comprising a water level and runoff data collection terminal and a data center, a wireless communication link between the water level and runoff data collection terminal and the data center; the water level data and the river The flow rate acquisition terminal includes a radar water level sensor, an ultrasonic Doppler flow rate sensor, a control circuit, a data acquisition circuit, a current conversion circuit, a GPS module and a GPRS wireless communication module. The wireless communication module is connected, the current conversion circuit is connected with the radar water level sensor and the ultrasonic Doppler velocity sensor, the data acquisition circuit is connected with the GPS module, and the current conversion circuit, the data acquisition circuit, and the GPRS wireless communication module are connected in sequence; Described data center comprises real-time communication server, database server, WebGIS server, local area network, Web server, Internet network, portable computer, PDA;
所述水位和径流量数据采集终端通过雷达水位传感器、超声波多普勒流速传感器自动观测河流水位和流速,采集计算水位和流量数据,通过观测装置控制电路内置嵌入式软件自动根据水位、流速和河流断面积计算河流径流量。所述雷达水位传感器位于水面上方,所述控制电路定时启动雷达水位传感器准确测量超声波传感器探头到水面距离,结合超声波探头到水底距离得到水位数据,其中水位=超声波探头到水底距离-探头到水面距离;采用非接触式激光多普勒流速测量仪远程测量河流流速,径流量=河流断面积×流速,公式:Q=A×V,其中Q为径流量,A为河流断面面积,V为流速。河流断面积A由观测装置控制电路内置嵌入式软件通过河流观测位置河流水位和径流量关系表查表计算得出。所述控制电路通过GPS模块得到数据采集时间和观测位置经纬度;The water level and runoff data acquisition terminal automatically observes the river water level and flow velocity through the radar water level sensor and the ultrasonic Doppler flow velocity sensor, collects and calculates the water level and flow data, and uses the built-in embedded software in the control circuit of the observation device to automatically observe the water level, flow velocity and river flow rate. Basal area to calculate river runoff. The radar water level sensor is located above the water surface, and the control circuit regularly starts the radar water level sensor to accurately measure the distance from the ultrasonic sensor probe to the water surface, and obtains water level data in combination with the distance from the ultrasonic probe to the bottom of the water, where water level=distance from the ultrasonic probe to the bottom of the water−distance from the probe to the water surface ; Use non-contact laser Doppler flow velocity measuring instrument to measure river velocity remotely, runoff = river sectional area × velocity, formula: Q = A × V, where Q is runoff, A is river sectional area, and V is velocity. The basal area A of the river is calculated by the embedded software built into the control circuit of the observation device through the table look-up of the relationship between the river water level and the runoff at the river observation location. The control circuit obtains the data acquisition time and the latitude and longitude of the observation position through the GPS module;
所述数据采集电路采用UDP无线通信协议,通过GPRS无线通信模块对16进制编码水文数据进行远程无线数据传输;The data acquisition circuit adopts the UDP wireless communication protocol, and carries out remote wireless data transmission to the hexadecimal coded hydrological data through the GPRS wireless communication module;
所述数据服务器通过连接网络的实时通信服务器接收并解析数据采集电路通过GPRS无线通信模块传输的16进制数据;The data server receives and parses the hexadecimal data that the data acquisition circuit transmits through the GPRS wireless communication module by the real-time communication server connected to the network;
所述远程控制计算机通过实时通信服务器向水位和径流量数据采集终端发送指令读取终端工作状态并设置数据采集频率;The remote control computer sends instructions to the water level and runoff data collection terminal through the real-time communication server to read the terminal working state and set the data collection frequency;
所述Web服务器自动扫描水文数据库并通过Web服务器发布水位和径流量数据。The web server automatically scans the hydrological database and releases water level and runoff data through the web server.
所述WebGIS服务器根据观测点的经纬度在电子地图上显示观测点的空间地理位置和水位和径流量数据。The WebGIS server displays the spatial geographic location, water level and runoff data of the observation point on the electronic map according to the latitude and longitude of the observation point.
进一步,所述控制电路中设有SD卡,所述SD卡自动保存水位和径流量数据、采集时间和观测位置经纬度。Further, an SD card is provided in the control circuit, and the SD card automatically saves the water level and runoff data, collection time and latitude and longitude of the observation location.
进一步,所述数据中心的数据库服务器设有数据处理模块,将水位和径流量数据、采集时间和观测位置经纬度自动存储在数据服务器的水文数据库中。Further, the database server of the data center is equipped with a data processing module, which automatically stores the water level and runoff data, collection time and observation location latitude and longitude in the hydrological database of the data server.
进一步,所述数据中心的数据库服务器设有数据分析模块,根据水文数据库观测水位和径流量的时间序列计算出水位和径流量随时间和季节和气象变化情况并自动给出统计分析结果。Further, the database server of the data center is equipped with a data analysis module, which calculates the water level and runoff with time, seasonal and meteorological changes according to the time series of the observed water level and runoff in the hydrological database, and automatically gives statistical analysis results.
进一步,所述数据中心的数据库服务器设有数据分析模块,通过水位、径流量数据和气象数据建立洪水或干旱预警系统,当水位和径流量达到洪水水位和径流量阈值时发布洪水预警信息,连续观测降至干旱水位和径流量阈值时启动干旱缺水预警或枯水预警信息。Further, the database server of the data center is equipped with a data analysis module, which establishes a flood or drought early warning system through water level, runoff data and meteorological data, and releases flood warning information when the water level and runoff reach the threshold of flood water level and runoff, and continuously When the observation drops to the drought water level and runoff threshold, the drought and water shortage warning or low water warning information will be activated.
一种水位和径流量数据采集和处理方法,包括如下步骤:A method for collecting and processing water level and runoff data, comprising the steps of:
步骤(1)、确定观测位置,架设雷达水位传感器和超声波多普勒流速传感器,测量雷达水位传感器探头与水底距离dwb,从测量的稳定度和精准度考虑,在雷达水位传感器探头正下方水面安放圆形浮标;Step (1), determine the observation position, set up the radar water level sensor and the ultrasonic Doppler flow velocity sensor, measure the distance dwb between the radar water level sensor probe and the bottom of the water, and consider the stability and accuracy of the measurement, place it on the water surface directly below the radar water level sensor probe circular buoy;
步骤(2)、接通电源给雷达水位传感器和超声波多普勒流速传感器供电,雷达水位传感器输出为4-20mA电流信号,通过电流转换电路和控制电路,将雷达水位传感器输出电流信号转换为采用RS485串行数据通信协议的16进制编码串行数据,超声波多普勒流速传感输出RS485通信协议数据;Step (2), turn on the power to supply power to the radar water level sensor and the ultrasonic Doppler velocity sensor, the output of the radar water level sensor is a 4-20mA current signal, through the current conversion circuit and the control circuit, the output current signal of the radar water level sensor is converted into The hexadecimal coded serial data of RS485 serial data communication protocol, the ultrasonic Doppler flow velocity sensor outputs RS485 communication protocol data;
步骤(3)、数据采集电路通过GPRS无线数据传输模块采用UDP协议向数据中心无线传输16进制编码并采用CRC循环冗余校验算法附加校验位的水位和径流量数据;Step (3), the data acquisition circuit adopts the UDP protocol to wirelessly transmit the hexadecimal code to the data center through the GPRS wireless data transmission module and adopts the water level and the runoff data of the additional check digit of the CRC cyclic redundancy check algorithm;
步骤(4)、连接Internet并具有固定IP的数据中心服务器通过自动运行的数据接收程序自动接收并解析16进制编码的水位和径流量数据;数据处理程序根据dwb和dws计算出水位数据并存储于水位数据库中;Step (4), the data center server connected to the Internet and having a fixed IP automatically receives and parses the water level and runoff data of the hexadecimal code through the automatically running data receiving program; the data processing program calculates and stores the water level data according to dwb and dws in the water level database;
步骤(5)、数据发布程序定时自动扫描数据库并通过Web服务器向访问水位数据的授权用户实时按照数据表格式发布水位数据。或者根据用户端查询条件给出符合查询要求的水位和径流量数据;WebGIS服务器根据观测点的经纬度在电子地图上显示观测点的空间地理位置,授权用户可以通过鼠标单击电子地图上观测点的图标弹出窗口动态数据,主要包括观测点水位和径流量数据、雷达水位传感器信息、流速仪信息、观测点图片。数据中心服务器数据分析程序可自动根据水位数据库观测水位和径流量的时间序列计算出水位和径流量随时间和季节和气象变化情况并自动给出统计分析结果。输出要素为年、月、季度、日水位最大值、最小值均值和年、月、季度、日累计径流量。根据气象观测数据和水位数据进行水位、降水及气温的相关性分析和评估;Step (5), the data release program automatically scans the database at regular intervals and releases the water level data in real time to the authorized users accessing the water level data in the form of a data table through the Web server. Or provide the water level and runoff data that meet the query requirements according to the query conditions of the client; the WebGIS server displays the spatial geographic location of the observation point on the electronic map according to the longitude and latitude of the observation point, and the authorized user can click the observation point on the electronic map through the mouse Dynamic data in the icon pop-up window, mainly including observation point water level and runoff data, radar water level sensor information, current meter information, and observation point pictures. The data analysis program of the data center server can automatically calculate the water level and runoff with time, seasonal and meteorological changes according to the time series of water level and runoff observed in the water level database, and automatically give statistical analysis results. The output elements are annual, monthly, quarterly, and daily water level maximum, minimum average and annual, monthly, quarterly, and daily cumulative runoff. Correlation analysis and evaluation of water level, precipitation and temperature based on meteorological observation data and water level data;
步骤(6)、在步骤(5)分析的基础上通过水位、径流量数据和气象数据建立洪水或干旱预警系统,当水位和径流量达到洪水水位阈值时发布洪水预警信息,连续观测降至干旱水位和径流量时启动干旱缺水预警或枯水预警信息。Step (6), on the basis of the analysis in step (5), establish a flood or drought early warning system through water level, runoff data and meteorological data, and issue flood warning information when the water level and runoff reach the flood level threshold, continuous observation down to drought Start drought and water shortage warning or low water warning information at the time of water level and runoff.
进一步,步骤(2)中,将雷达水位传感器输出电流信号转换为采用RS485串行数据通信协议的16进制编码串行数据的具体转换过程为:首先数据采集电路通过雷达水位传感器输出电流计算传感器距离水面浮标距离dws(distance of water surface)并将其转换为RS485数据,传感器探头距离水面距离dws=(雷达水位传感器输出电流值-4mA)×雷达水位传感器量/(20mA-4mA)。在试验中所用传感器量程0-35m,那么dws=(雷达水位传感器输出电流值-4mA)×35/(20mA-4mA)=2.1875×(雷达水位传感器输出电流值-4mA)。如果雷达水位传感器输出电流值为4mA,那么根据以上计算公式计算得到dws=0,通过水位标尺测量的传感器探头至水底距离dwb(distance of water bottom),那么传感器探头距离水面距离dws=0m,水位dw(depth of water)=dwb-dws=dwb-0=dwb,如果雷达水位传感器电流值=20mA,那么传感器探头距离水面距离dws=35m,水位dw=dwb-35。水位计算在数据中心服务器上根据dwb、dws、水位传感器量程和计算公式自动完成。径流量Q=河流断面积A×流速V,观测装置控制电路内置嵌入式软件对串行RS485水位数据进行16进制编码并应用CRC循环冗余校验算法生成数据的校验位。Further, in step (2), the specific conversion process of converting the output current signal of the radar water level sensor into the hexadecimal coded serial data using the RS485 serial data communication protocol is as follows: first, the data acquisition circuit calculates the sensor output current through the radar water level sensor The distance from the water surface buoy dws (distance of water surface) and convert it into RS485 data, the distance between the sensor probe and the water surface dws = (radar water level sensor output current value - 4mA) × radar water level sensor volume / (20mA-4mA). The range of the sensor used in the test is 0-35m, then dws=(the output current value of the radar water level sensor-4mA)×35/(20mA-4mA)=2.1875×(the output current value of the radar water level sensor-4mA). If the output current value of the radar water level sensor is 4mA, then according to the above calculation formula, dws=0, and the distance from the sensor probe to the bottom of the water dwb (distance of water bottom) measured by the water level scale, then the distance between the sensor probe and the water surface is dws=0m, and the water level dw (depth of water) = dwb-dws = dwb-0 = dwb, if the current value of the radar water level sensor = 20mA, then the distance between the sensor probe and the water surface is dws = 35m, and the water level dw = dwb-35. The water level calculation is automatically completed on the data center server according to dwb, dws, water level sensor range and calculation formula. Runoff Q = river sectional area A × flow velocity V, the embedded software in the control circuit of the observation device performs hexadecimal encoding on the serial RS485 water level data and applies the CRC cyclic redundancy check algorithm to generate the check digit of the data.
进一步,步骤(5)中,符合查询要求的水位和径流量数据为某一时段所有观测量的水位和径流量数据或某一观测点的所有时间序列的水位和径流量数据。Further, in step (5), the water level and runoff data that meet the query requirements are the water level and runoff data of all observations in a certain period of time or the water level and runoff data of all time series at a certain observation point.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
本发明操作简单、使用方便、成本低廉、效益良好。The invention has the advantages of simple operation, convenient use, low cost and good benefit.
附图说明Description of drawings
图1为水位和径流量数据采集和处理系统的原理图;Figure 1 is a schematic diagram of the water level and runoff data acquisition and processing system;
图2为数据采集电路、电流转换电路和控制电路原理图,其中,图2A为数据采集电路,图2B为电流转换电路,图2C为控制电路。Fig. 2 is a schematic diagram of a data acquisition circuit, a current conversion circuit and a control circuit, wherein Fig. 2A is a data acquisition circuit, Fig. 2B is a current conversion circuit, and Fig. 2C is a control circuit.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明的技术方案作进一步详细地说明。The technical solution of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1-图2所示,一种水位和径流量数据采集和处理系统,包括水位数据采集终端和数据中心,所述水位和径流量数据采集终端和数据中心之间为无线通信链路;所述水位和径流量数据采集终端包括雷达水位传感器、超声波多普勒流速传感器、控制电路、数据采集电路、电流转换电路、GPS模块和GPRS无线通信模块,所述控制电路分别与数据采集电路、电流转换电路、GPRS无线通信模块连接,所述电流转换电路与雷达水位传感器和流速连接,所述数据采集电路和GPS模块连接,所述电流转换电路、数据采集电路、GPRS无线通信模块依次连接;所述数据中心包括实时通信服务器、数据库服务器、WebGIS服务器、局域网、Web服务器、Internet网络、便携电脑、PDA;As shown in Figures 1-2, a water level and runoff data acquisition and processing system includes a water level data acquisition terminal and a data center, and a wireless communication link is between the water level and runoff data acquisition terminal and the data center; The water level and runoff data acquisition terminal includes a radar water level sensor, an ultrasonic Doppler velocity sensor, a control circuit, a data acquisition circuit, a current conversion circuit, a GPS module and a GPRS wireless communication module, and the control circuit is respectively connected to the data acquisition circuit, The current conversion circuit and the GPRS wireless communication module are connected, the current conversion circuit is connected with the radar water level sensor and the flow rate, the data acquisition circuit is connected with the GPS module, and the current conversion circuit, the data acquisition circuit, and the GPRS wireless communication module are connected in sequence; Described data center comprises real-time communication server, database server, WebGIS server, local area network, Web server, Internet network, portable computer, PDA;
所述水位和径流量数据采集终端自动观测河流水位和流速,通过实时采集的水位和流速数据应用径流量计算方法计算得到河流的水位和径流量数据,所述雷达水位传感器位于水面上方,所述控制电路定时启动雷达水位传感器准确测量超声波传感器探头到水面距离,结合超声波探头到水底距离得到水位数据,其中水位=超声波探头到水底距离-探头到到水面距离;所述控制电路通过GPS模块得到数据采集时间和观测位置经纬度;The water level and runoff data acquisition terminal automatically observes the river water level and flow velocity, and calculates the water level and runoff flow data of the river through the real-time collected water level and flow velocity data using the runoff calculation method. The radar water level sensor is located above the water surface. The control circuit regularly starts the radar water level sensor to accurately measure the distance from the ultrasonic sensor probe to the water surface, and obtains water level data in combination with the distance from the ultrasonic probe to the bottom of the water, where water level = distance from the ultrasonic probe to the bottom of the water - distance from the probe to the water surface; the control circuit obtains data through the GPS module Acquisition time and observation location latitude and longitude;
所述数据采集电路采用UDP无线通信协议,通过GPRS无线通信模块对16进制编码数据进行无线数据传输;Described data collection circuit adopts UDP wireless communication protocol, carries out wireless data transmission to hexadecimal coded data by GPRS wireless communication module;
所述数据服务器通过连接网络的实时通信服务器接收并解析数据采集电路通过GPRS无线通信模块传输的16进制数据;The data server receives and parses the hexadecimal data that the data acquisition circuit transmits through the GPRS wireless communication module by the real-time communication server connected to the network;
所述远程控制计算机通过实时通信服务器向水位和径流量数据采集终端发送指令读取终端工作状态并设置数据采集频率;The remote control computer sends instructions to the water level and runoff data collection terminal through the real-time communication server to read the terminal working state and set the data collection frequency;
所述Web服务器自动扫描水文数据库并通过Web服务器发布水位和径流量数据。The web server automatically scans the hydrological database and releases water level and runoff data through the web server.
所述WebGIS服务器根据观测点的经纬度在电子地图上显示观测点的空间地理位置和水位及径流量数据。The WebGIS server displays the spatial geographic location, water level and runoff data of the observation point on the electronic map according to the latitude and longitude of the observation point.
所述控制电路中设有SD卡,所述SD卡自动保存水位和径流量数据、采集时间和观测位置经纬度。The control circuit is provided with an SD card, and the SD card automatically saves the water level and runoff data, collection time, and the latitude and longitude of the observation location.
所述数据中心的数据库服务器设有数据处理模块,将水位和径流量数据、采集时间和观测位置经纬度自动存储在数据服务器的水文数据库中。The database server of the data center is equipped with a data processing module, which automatically stores the water level and runoff data, collection time and observation location latitude and longitude in the hydrological database of the data server.
所述数据中心的数据库服务器设有数据分析模块,根据水位和径流量数据库观测水位和径流量的时间序列计算出水位和径流量随时间和季节和气象变化情况并自动给出统计分析结果。The database server of the data center is equipped with a data analysis module, which calculates the water level and runoff with time, seasonal and meteorological changes according to the time series of water level and runoff database observations of water level and runoff, and automatically provides statistical analysis results.
所述数据中心的数据库服务器设有数据分析模块,通过水位、径流量数据和气象数据建立洪水或干旱预警系统,当水位和径流量达到洪水水位阈值时发布洪水预警信息,连续观测降至干旱水位和径流量阈值时启动干旱缺水预警或枯水预警信息。The database server of the data center is provided with a data analysis module, which establishes a flood or drought early warning system through water level, runoff data and meteorological data. Start drought and water shortage warning or low water warning information when the threshold value of runoff and runoff is reached.
一种水位和径流量数据采集和处理方法,包括如下步骤:(1)确定观测位置并架设雷达水位传感器和超声波多普勒流速传感器;(2)将雷达水位传感器输出的电流信号转换为RS485数据;(3)利用GPRS模块向数据中心传输数据;(4)数据中心接收数据、解析数据并存储在水位和径流量数据库中(表2);(5)数据发布程序访问并以B/S模式通过计算机网络发布水文数据库中的水位和径流量数据。A water level and runoff data acquisition and processing method, comprising the following steps: (1) determining the observation position and setting up a radar water level sensor and an ultrasonic Doppler flow velocity sensor; (2) converting the current signal output by the radar water level sensor into RS485 data ; (3) Utilize GPRS module to transmit data to data center; (4) Data center receives data, parses data and stores in water level and runoff database (Table 2); (5) Data publishing program accesses and uses B/S mode Publish the water level and runoff data in the hydrological database through the computer network.
实施例1Example 1
以河流水位和径流量测量为例,具体方法如下:(1)首先确定观测位置和所用雷达水位传感器型号、测量范围、测量精度、工作温度、输出信号和工作电压。选用测量精度较高,满足测量要求的SEBAPULS30雷达水位传感器和超声波多普勒流速传感器。(2)在观测位置按照安装规范安放和架设雷达水位传感器、浮标和超声波多普勒流速传感器,测量雷达水位传感器距水底距离dwb(观测位置固定和雷达水位传感器固定后,雷达水位传感器探头距离水底距离dwb为常数);(3)接通蓄电池12VDC电源,通过电流信号转换电路将雷达水位传感器输出电流信号、观测点经纬度数据、转换为RS485数据;超声波多普勒流速传感器运用多普勒原理,采用遥距测量的方式,测量水的流速;(4)电路对RS485数据进行16进制编码,采用CRC循环冗余校验算法以补充校验位保障无线数据传输的可靠性。(5)电路通过GPRS无线通信模块和Internet将编码后的水位和径流量数据无线传输至数据中心数据库服务器。(6)数据中心数据库服务器接收、解析采集端发送的水位和径流量数据并将按照附录中表2水位观测数据表格式在数据库中存储水位和径流量数据。(7)数据中心通过WebGIS服务器发布水位和径流量数据WebServices,授权用户通过可实时监控雷达水位传感器的工作情况并可访问发布的水位和径流量数据。(8)重复前面步骤。Taking the measurement of river water level and runoff as an example, the specific methods are as follows: (1) First determine the observation location and the type of radar water level sensor used, measurement range, measurement accuracy, working temperature, output signal and working voltage. Select SEBAPULS30 radar water level sensor and ultrasonic Doppler flow velocity sensor with high measurement accuracy and meet the measurement requirements. (2) Place and erect radar water level sensors, buoys and ultrasonic Doppler velocity sensors at the observation position according to the installation specifications, and measure the distance dwb between the radar water level sensor and the bottom of the water (after the observation position is fixed and the radar water level sensor is fixed, the distance between the radar water level sensor probe and the bottom The distance dwb is a constant); (3) Connect the 12VDC power supply of the battery, and convert the current signal output by the radar water level sensor, the latitude and longitude data of the observation point into RS485 data through the current signal conversion circuit; the ultrasonic Doppler flow velocity sensor uses the Doppler principle, The flow rate of water is measured by means of remote measurement; (4) The circuit encodes the RS485 data in hexadecimal, and uses the CRC cyclic redundancy check algorithm to supplement the check digit to ensure the reliability of wireless data transmission. (5) The circuit wirelessly transmits the coded water level and runoff data to the data center database server through the GPRS wireless communication module and the Internet. (6) The database server of the data center receives and analyzes the water level and runoff data sent by the collection terminal and stores the water level and runoff data in the database according to the table format of water level observation data in Table 2 in the appendix. (7) The data center publishes water level and runoff data WebServices through the WebGIS server, and authorized users can monitor the working conditions of the radar water level sensor in real time and access the published water level and runoff data. (8) Repeat the previous steps.
表1 SEBAPULS30雷达水位传感器技术参数Table 1 Technical parameters of SEBAPULS30 radar water level sensor
(SEBAPULS系列雷达水位传感器原理:SEBAPULS系列雷达水位传感器是利用微波脉冲通过天线发射并接受。雷达水位传感器雷达波以光速运行,运行时间可以通过高速电路被转换为水位信号。SEBAPULS系列雷达水位传感器测量不受温度、湿度、风速、降雨等环境因素影响。雷达水位传感器以非接触方式测量水位,不受水体影响。雷达波的测距精度为毫米级,水位计通过内部波浪滤波功能,SEBAPULS30雷达水位传感器实测水位精度可达1至2厘米,量程范围最大可达35米(雷达探头到水面的距离)。SEBAPULS系列雷达水位传感器输出信号为电流:4-20mA)(SEBAPULS series radar water level sensor principle: SEBAPULS series radar water level sensor uses microwave pulses to transmit and receive through the antenna. The radar wave of the radar water level sensor runs at the speed of light, and the running time can be converted into a water level signal through a high-speed circuit. The SEBAPULS series radar water level sensor measures Not affected by environmental factors such as temperature, humidity, wind speed, rainfall, etc. The radar water level sensor measures the water level in a non-contact manner, and is not affected by the water body. The ranging accuracy of the radar wave is millimeter-level, and the water level gauge passes the internal wave filtering function. SEBAPULS30 radar water level The accuracy of the water level measured by the sensor can reach 1 to 2 cm, and the range can reach up to 35 meters (the distance from the radar probe to the water surface). The output signal of the SEBAPULS series radar water level sensor is current: 4-20mA)
表2超声波多普勒流量传感器技术参数Table 2 Ultrasonic Doppler flow sensor technical parameters
表3水位和径流量数据表Table 3 Water level and runoff data table
(注:表3中数据dws:(distance of water surface)雷达水位传感器探头距离水面距离;dwb:(distance of water bottom)雷达水位传感器探头至水底距离;水位dw:(depth of water),dw=dwb-dws;A:河流断面积)(Note: the data in Table 3 dws: (distance of water surface) the distance from the radar water level sensor probe to the water surface; dwb: (distance of water bottom) the distance from the radar water level sensor probe to the bottom; water level dw: (depth of water), dw= dwb-dws; A: river basal area)
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。The above is only a preferred specific embodiment of the present invention, and the scope of protection of the present invention is not limited thereto. Any person familiar with the technical field within the technical scope disclosed in the present invention can obviously obtain the simplicity of the technical solution. Changes or equivalent replacements all fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711395658.7A CN108204848A (en) | 2017-12-21 | 2017-12-21 | A kind of water level and run-off Data collection and precessing system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711395658.7A CN108204848A (en) | 2017-12-21 | 2017-12-21 | A kind of water level and run-off Data collection and precessing system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108204848A true CN108204848A (en) | 2018-06-26 |
Family
ID=62605857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711395658.7A Pending CN108204848A (en) | 2017-12-21 | 2017-12-21 | A kind of water level and run-off Data collection and precessing system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108204848A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108682076A (en) * | 2018-07-03 | 2018-10-19 | 上海电器科学研究所(集团)有限公司 | A kind of mobile interchange operational system and method for charging pile |
CN109540257A (en) * | 2018-11-08 | 2019-03-29 | 青海中水数易信息科技有限责任公司 | A kind of virtual ground Hydrologic monitoring station |
CN109800988A (en) * | 2019-01-18 | 2019-05-24 | 三峡大学 | A kind of suitable drought-resistant ability analysis method based on benefit-cost-ratio function |
CN109975578A (en) * | 2019-04-09 | 2019-07-05 | 武汉新烽光电股份有限公司 | Runoff velocity method for real-time measurement, system and control device |
CN110738358A (en) * | 2019-09-23 | 2020-01-31 | 中国水利水电科学研究院 | Ecological flow guaranteeing method and device based on land utilization mode optimization |
CN111101477A (en) * | 2019-12-30 | 2020-05-05 | 长江大学 | Method for determining low water flow during supplement testing of data-free design basin |
CN111141261A (en) * | 2019-12-19 | 2020-05-12 | 紫光云技术有限公司 | Hydrologic monitoring data acquisition and transmission method |
CN113254878A (en) * | 2021-05-19 | 2021-08-13 | 中国电建集团昆明勘测设计研究院有限公司 | Method for judging water temperature structure of reservoir in hydraulic and hydroelectric engineering |
CN116136428A (en) * | 2023-04-20 | 2023-05-19 | 中国铁塔股份有限公司湖北省分公司 | River water level measuring system, method and readable storage medium |
CN118623951A (en) * | 2024-04-28 | 2024-09-10 | 广西珠委南宁勘测设计院有限公司 | Canal water resources self-regulation flow detection agency |
CN118670365A (en) * | 2024-08-23 | 2024-09-20 | 杭州鸿鹄电子科技有限公司 | Intelligent police column |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111375A (en) * | 1998-10-06 | 2000-04-18 | Kansai Electric Power Co Inc:The | Devices for continuously observing flow rate, turbidity of water, and hydraulic information |
EP2132536A1 (en) * | 2007-03-22 | 2009-12-16 | Siemens Milltronics Process Instruments Inc. | A level sensing device |
CN202304910U (en) * | 2011-11-04 | 2012-07-04 | 王慧斌 | Hydrological cableway testing system of suspended acoustical Doppler velocity meter |
CN103512560A (en) * | 2012-06-19 | 2014-01-15 | 廖翊钧 | Multifunctional river hydrology automatic measurement system and riverbed elevation measurement method |
CN104748785A (en) * | 2013-12-30 | 2015-07-01 | 南京理工大学常熟研究院有限公司 | Remote automatic hydrology and water quality monitoring system platform |
CN107202570A (en) * | 2017-07-14 | 2017-09-26 | 珠江水利委员会珠江水利科学研究院 | Water level flow rate monitoring integration device, monitoring system and monitoring method |
-
2017
- 2017-12-21 CN CN201711395658.7A patent/CN108204848A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111375A (en) * | 1998-10-06 | 2000-04-18 | Kansai Electric Power Co Inc:The | Devices for continuously observing flow rate, turbidity of water, and hydraulic information |
EP2132536A1 (en) * | 2007-03-22 | 2009-12-16 | Siemens Milltronics Process Instruments Inc. | A level sensing device |
CN202304910U (en) * | 2011-11-04 | 2012-07-04 | 王慧斌 | Hydrological cableway testing system of suspended acoustical Doppler velocity meter |
CN103512560A (en) * | 2012-06-19 | 2014-01-15 | 廖翊钧 | Multifunctional river hydrology automatic measurement system and riverbed elevation measurement method |
CN104748785A (en) * | 2013-12-30 | 2015-07-01 | 南京理工大学常熟研究院有限公司 | Remote automatic hydrology and water quality monitoring system platform |
CN107202570A (en) * | 2017-07-14 | 2017-09-26 | 珠江水利委员会珠江水利科学研究院 | Water level flow rate monitoring integration device, monitoring system and monitoring method |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108682076A (en) * | 2018-07-03 | 2018-10-19 | 上海电器科学研究所(集团)有限公司 | A kind of mobile interchange operational system and method for charging pile |
CN109540257A (en) * | 2018-11-08 | 2019-03-29 | 青海中水数易信息科技有限责任公司 | A kind of virtual ground Hydrologic monitoring station |
CN109800988A (en) * | 2019-01-18 | 2019-05-24 | 三峡大学 | A kind of suitable drought-resistant ability analysis method based on benefit-cost-ratio function |
CN109975578B (en) * | 2019-04-09 | 2021-12-31 | 武汉新烽光电股份有限公司 | Runoff flow velocity real-time measuring method, system and control device |
CN109975578A (en) * | 2019-04-09 | 2019-07-05 | 武汉新烽光电股份有限公司 | Runoff velocity method for real-time measurement, system and control device |
CN110738358A (en) * | 2019-09-23 | 2020-01-31 | 中国水利水电科学研究院 | Ecological flow guaranteeing method and device based on land utilization mode optimization |
CN110738358B (en) * | 2019-09-23 | 2020-08-28 | 中国水利水电科学研究院 | Ecological flow guarantee method and device based on land use optimization |
CN111141261A (en) * | 2019-12-19 | 2020-05-12 | 紫光云技术有限公司 | Hydrologic monitoring data acquisition and transmission method |
CN111101477A (en) * | 2019-12-30 | 2020-05-05 | 长江大学 | Method for determining low water flow during supplement testing of data-free design basin |
CN113254878A (en) * | 2021-05-19 | 2021-08-13 | 中国电建集团昆明勘测设计研究院有限公司 | Method for judging water temperature structure of reservoir in hydraulic and hydroelectric engineering |
CN113254878B (en) * | 2021-05-19 | 2022-05-17 | 中国电建集团昆明勘测设计研究院有限公司 | Method for judging water temperature structure of reservoir in hydraulic and hydroelectric engineering |
CN116136428A (en) * | 2023-04-20 | 2023-05-19 | 中国铁塔股份有限公司湖北省分公司 | River water level measuring system, method and readable storage medium |
CN116136428B (en) * | 2023-04-20 | 2023-08-08 | 中国铁塔股份有限公司湖北省分公司 | River water level measuring system, method and readable storage medium |
CN118623951A (en) * | 2024-04-28 | 2024-09-10 | 广西珠委南宁勘测设计院有限公司 | Canal water resources self-regulation flow detection agency |
CN118670365A (en) * | 2024-08-23 | 2024-09-20 | 杭州鸿鹄电子科技有限公司 | Intelligent police column |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108204848A (en) | A kind of water level and run-off Data collection and precessing system and method | |
CN111693672B (en) | Drainage basin pollutant monitoring system and monitoring method thereof | |
CN202501869U (en) | Online safety monitoring system for tailings pond based on Internet of Things | |
CN101672647A (en) | Ultrasonic open channel flow rate comprehensive monitoring instrument and measuring method thereof | |
CN104239959A (en) | Geographical disaster prediction system | |
CN108267801A (en) | A kind of shared wind speed and direction pressure monitoring system | |
CN106908044A (en) | A kind of full marine site tidal observation system and tidal observation method based on the Big Dipper | |
CN115544785A (en) | Data-free cascade reservoir basin hydrological simulation method and system | |
CN104457912A (en) | GPS ultrasonic fuel quantity detector for vehicle and data processing method of detector | |
CN206074039U (en) | A kind of runoff monitoring device | |
CN105487096A (en) | Power communication working site multi-mode positioning method | |
CN110398524A (en) | A smart pile for measuring soil moisture parameters | |
CN109444993A (en) | An ultrasonic rain gauge and rainfall measurement method based on MSP single chip microcomputer | |
Devi et al. | Live demonstration on smart water quality monitoring system using wireless sensor networks | |
Xie et al. | Sensing wind for environmental and energy applications | |
CN217637480U (en) | Channel flow measurement system based on singlechip | |
CN116823579B (en) | Method and system for predicting water quantity change of mountain glacier lake | |
CN106597573B (en) | One kind simulation sonde and sounding instrument apparatus | |
CN104808261A (en) | Rainfall measuring sensor without mechanical structure | |
Dublin et al. | A Novel Cost-Effective Pressure Sensor Based Flood Monitoring System with IoT | |
CN203313408U (en) | Telemetry-type water level detection terminal | |
CN115854853A (en) | Seawall micro-deformation monitoring method based on Beidou foundation enhancement station | |
CN115421220A (en) | A multi-factor local precipitation indication method and system based on deep learning | |
CN106707367A (en) | Coastal tourism resort hydrometeorological monitoring method and system | |
Montesa et al. | Design and installation of coastal flood monitoring device using ultrasonic sensors and LoRa-based technology for real-time data collection and storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180626 |
|
RJ01 | Rejection of invention patent application after publication |