CN108198219A - Error compensation method for camera calibration parameters for photogrammetry - Google Patents
Error compensation method for camera calibration parameters for photogrammetry Download PDFInfo
- Publication number
- CN108198219A CN108198219A CN201711168340.5A CN201711168340A CN108198219A CN 108198219 A CN108198219 A CN 108198219A CN 201711168340 A CN201711168340 A CN 201711168340A CN 108198219 A CN108198219 A CN 108198219A
- Authority
- CN
- China
- Prior art keywords
- offset
- target
- plane
- camera
- coordinate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000008569 process Effects 0.000 claims abstract description 17
- 238000012937 correction Methods 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000012545 processing Methods 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000013178 mathematical model Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种用于摄影测量的相机标定参数的误差补偿方法,包括:S1、测量并计算出所述平面靶标特征点的z轴方向的相对基准平面的偏移量;S2、标定出未加误差补偿下相机参数的初始值;S3、根据所述初始值,得出所述平面靶标特征点的z轴方向的相对基准平面的偏移量引起所述平面靶标对应图像上对应特征点像素坐标的偏移量;S4、通过偏移量校正过程校正所述平面靶标上的特征点对应图像上的像素坐标;S5、用所述校正后的图像坐标重新进行相机参数标定。本发明技术方案相比现有技术的优点在于,高精度靶标加工费用高昂,不平整平面靶标通过本方案推导出的像素坐标误差补偿方法可以在不提高成本的情况下提高标定结果的精度。
The invention discloses an error compensation method for camera calibration parameters used in photogrammetry, comprising: S1, measuring and calculating the offset relative to the reference plane in the z-axis direction of the feature points of the plane target; S2, calibrated The initial value of the camera parameter without error compensation; S3. According to the initial value, it is obtained that the offset of the z-axis direction of the feature point of the planar target relative to the reference plane causes the corresponding feature point on the corresponding image of the planar target The offset of the pixel coordinates; S4. Correct the pixel coordinates on the image corresponding to the feature points on the planar target through the offset correction process; S5. Use the corrected image coordinates to re-calibrate the camera parameters. Compared with the prior art, the technical solution of the present invention has the advantages that the high-precision target processing costs are high, and the pixel coordinate error compensation method derived from the uneven plane target can improve the accuracy of the calibration result without increasing the cost.
Description
技术领域technical field
本发明涉及摄影测量技术领域,具体涉及一种用于摄影测量的相机标定参数的误差补偿方法。可具体应用于对平面靶标应用的平面度误差导致的相机标定参数误差进行补偿。The invention relates to the technical field of photogrammetry, in particular to an error compensation method for camera calibration parameters used in photogrammetry. It can be specifically applied to compensate the camera calibration parameter error caused by the flatness error of the planar target application.
背景技术Background technique
摄影测量技术广泛用于人工智能、视觉测量和机器人技术。相机标定是摄影测量的关键一步,标定结果的精度直接影响到测量结果的准确性。平面靶标因其加工简单标定算法稳定,应用广泛。为进一步提高标定结果的精度,考虑标定过程中各个环节存在的误差并进行误差补偿是一种提高标定结果精度的方法。其中平面标定靶标的加工精度对标定结果的影响尤为重要。因此提高靶标加工精度或者进行额外的靶标加工误差补偿是从两个角度分析提高标定结果精度的方法。Photogrammetry is widely used in artificial intelligence, vision measurement and robotics. Camera calibration is a key step in photogrammetry, and the accuracy of calibration results directly affects the accuracy of measurement results. Planar targets are widely used because of their simple processing and stable calibration algorithms. In order to further improve the accuracy of calibration results, it is a method to improve the accuracy of calibration results by considering the errors existing in each link in the calibration process and performing error compensation. Among them, the machining accuracy of the planar calibration target has a particularly important influence on the calibration results. Therefore, improving target processing accuracy or performing additional target processing error compensation are methods to improve the accuracy of calibration results from two perspectives.
目前提高平面靶标标定精度主要从提高标定靶标制造精度和提高靶标特征点提取精度两个方面进行。例如,在吴宏杰等人提交的专利申请号为CN201310140445.5的专利中提出一种对多维特征相机标定误差补偿方法,主要是通过计算特征点x轴和y轴偏差补偿光靶中心误差。这一方案并不能针对z轴偏差做出补偿。At present, improving the calibration accuracy of planar targets is mainly carried out from two aspects: improving the manufacturing accuracy of the calibration target and improving the extraction accuracy of target feature points. For example, in the patent application number CN201310140445.5 submitted by Wu Hongjie et al., a method for compensating the calibration error of multi-dimensional feature cameras is proposed, which mainly compensates the center error of the light target by calculating the x-axis and y-axis deviation of feature points. This solution cannot compensate for z-axis deviation.
另外,在周富强等人提交的专利申请号为CN201210035098.5的专利中提出一种视觉测量相机参数优化方法。该方法对特征点的图像坐标进行畸变矫正,计算连接投影中心与无畸变图像特征点的投影射线方程;将特征点在摄像机坐标系下的三维坐标与投影射线与对应靶标平面的交点比较,以二者距离作为目标函数对摄像机参数进行优化搜索。该方案并不能针对平面靶标的不平整度引起的误差进行补偿。In addition, in the patent application number CN201210035098.5 submitted by Zhou Fuqiang et al., a method for optimizing parameters of a visual measurement camera is proposed. This method corrects the distortion of the image coordinates of the feature points, calculates the projection ray equation connecting the projection center and the feature points of the undistorted image; compares the three-dimensional coordinates of the feature points in the camera coordinate system with the intersection point of the projection ray and the corresponding target plane, and uses The distance between the two is used as the objective function to optimize the camera parameters. This solution cannot compensate for the error caused by the unevenness of the planar target.
再有,在赵俭提出的专利号为CN201510408436.9的专利中提出一种图像参数的补偿方法。该方法只针对平面棋盘格标定靶标,且该方法通过将格点之间的最小间距作为标准距离,计算标定图像的相邻特征点之间的三维距离与标准距离的均方根误差,再将每幅测试图像的图像特征点反投射到靶标平面形成交点,计算其与所有空间特征点之间的距离的均方根误差。该方案只能求出均方根误差,因此误差补偿并不精确。Furthermore, in the patent No. CN201510408436.9 proposed by Zhao Jian, a compensation method for image parameters is proposed. This method only calibrates the target for the planar checkerboard, and the method calculates the root mean square error between the three-dimensional distance between the adjacent feature points of the calibration image and the standard distance by taking the minimum distance between the grid points as the standard distance, and then The image feature points of each test image are back-projected to the target plane to form an intersection point, and the root mean square error of the distance between it and all spatial feature points is calculated. This scheme can only find the root mean square error, so the error compensation is not precise.
又或者,在张福民等人提出的专利申请号为CN201610608257.4的专利中提出一种摄影系统的机器人在线误差补偿方法。该方法用二维倾角测量仪测量机器人末端两个方向角度姿态,结合机器人自身解算的精度较高的一个角度数据可实现机器人末端三维姿态的测量,并与摄影系统测量的姿态数据进行数据融合、比对后得到补偿值,控制工业机器人使误差得到补偿。该方案中直接标定出姿态数据和机器人自身解进行比较补偿,本质上也难于对平面靶标的不平整度引起的误差进行补偿。Or, in the patent application number CN201610608257.4 proposed by Zhang Fumin et al., a robot online error compensation method for a photography system is proposed. This method uses a two-dimensional inclinometer to measure the angle and attitude of the robot end in two directions, combined with an angle data with high precision calculated by the robot itself, it can realize the measurement of the three-dimensional attitude of the robot end, and perform data fusion with the attitude data measured by the camera system , After comparison, the compensation value is obtained, and the industrial robot is controlled to compensate the error. In this scheme, the posture data is directly calibrated and the robot's own solution is compared and compensated, and it is inherently difficult to compensate the error caused by the unevenness of the planar target.
由此可以看出,现有技术中仍然缺乏一种针对不平整靶标Z轴方向上的偏移量进行有效补偿的方法,亟待改进。It can be seen from this that there is still a lack of an effective compensation method for the offset in the Z-axis direction of the uneven target in the prior art, which needs to be improved urgently.
发明内容Contents of the invention
鉴于现有技术存在的上述问题,本发明的目的在于提供一种能够进一步提高相机标定结果的精度的用于摄影测量的相机标定参数的误差补偿方法。In view of the above-mentioned problems in the prior art, the object of the present invention is to provide an error compensation method for camera calibration parameters used in photogrammetry that can further improve the accuracy of camera calibration results.
为了实现上述目的,本发明实施例提供的一种用于摄影测量的相机标定参数的误差补偿方法,包括:In order to achieve the above purpose, an embodiment of the present invention provides an error compensation method for camera calibration parameters used in photogrammetry, including:
S1、测量并计算出所述平面靶标特征点的z轴方向的相对基准平面的偏移量;S1. Measure and calculate the offset relative to the reference plane in the z-axis direction of the feature points of the planar target;
S2、标定出未加误差补偿下相机参数的初始值;S2. Calibrate the initial value of the camera parameters without error compensation;
S3、根据所述初始值,得出所述平面靶标特征点的z轴方向的相对基准平面的偏移量引起所述平面靶标对应图像上对应特征点像素坐标的偏移量;S3. According to the initial value, it is obtained that the offset of the z-axis direction of the feature point of the planar target relative to the reference plane causes the offset of the pixel coordinate of the corresponding feature point on the corresponding image of the planar target;
S4、通过偏移量校正过程校正所述平面靶标上的特征点对应图像上的像素坐标;S4. Correct the pixel coordinates on the image corresponding to the feature points on the planar target through an offset correction process;
S5、用所述校正后的图像坐标重新进行相机参数标定。S5. Perform camera parameter calibration again with the corrected image coordinates.
作为优选,步骤S1,包括:首先设定所述平面靶标上任意一个所述特征点的z轴方向坐标为0,其次测量出所述平面靶标上其他所述特征点相对任意一个所述特征点的z轴方向坐标值,上述测量过程测量出的特征点坐标为(xn,yn,zn),用最小二乘法得出所述基准平面方程ax+by+z+c=0,所述偏移量Δzn=zn+(axn+byn+c)。Preferably, step S1 includes: first setting the z-axis coordinate of any one of the feature points on the planar target to be 0, and secondly measuring the relationship between the other feature points on the planar target and any one of the feature points The coordinate value of the z-axis direction of the above measurement process, the coordinates of the characteristic points measured by the above measurement process are (x n , y n , z n ), and the equation of the reference plane ax+by+z+c=0 is obtained by the least square method, so The aforementioned offset Δz n =z n +(ax n +by n +c).
作为优选,步骤S4中的所述偏移校正过程,包括:依据所述初始值和所述偏移量,得出单应性矩阵所述特征点对应的图像中的像素坐标为(un,vn),校正后的像素坐标为(u′n,v′n),其中所述像素坐标补偿公式为u′n=un-h3Δzn和v′n=vn-h7Δzn。Preferably, the offset correction process in step S4 includes: obtaining a homography matrix based on the initial value and the offset The pixel coordinates in the image corresponding to the feature points are (u n , v n ), and the corrected pixel coordinates are (u′ n , v′ n ), wherein the pixel coordinate compensation formula is u′ n =u n - h 3 Δz n and v' n = v n -h 7 Δz n .
作为优选,步骤S5之后,再重复执行S4和S5步骤n次,所述n为大于0的整数。Preferably, after step S5, steps S4 and S5 are repeated n times, and n is an integer greater than 0.
本发明技术方案相比现有技术的优点在于,高精度靶标加工费用高昂,不平整平面靶标通过本方案推导出的像素坐标误差补偿方法可以在不提高成本的情况下提高标定结果的精度。本方案在求不平整靶标z轴方向的偏移量时,用到了最小二乘法,使得偏移量的结果更加可靠,提高了图像坐标补偿过程的计算精度。本方案优化过程需要迭代,有利于进一步提高标定结果的精度,且迭代过程次数可以根据测量精度要求自行设定,算法可实用性高。Compared with the prior art, the technical solution of the present invention has the advantages that the high-precision target processing costs are high, and the pixel coordinate error compensation method derived from the uneven plane target can improve the accuracy of the calibration result without increasing the cost. This scheme uses the least square method when calculating the offset in the z-axis direction of the uneven target, which makes the result of the offset more reliable and improves the calculation accuracy of the image coordinate compensation process. The optimization process of this scheme requires iteration, which is conducive to further improving the accuracy of the calibration results, and the number of iterations can be set according to the measurement accuracy requirements, and the algorithm has high practicability.
附图说明Description of drawings
图1为本发明的用于摄影测量的相机标定参数的误差补偿方法的基本流程图;Fig. 1 is the basic flowchart of the error compensation method of the camera calibration parameter that is used for photogrammetry of the present invention;
图2为本发明的用于摄影测量的相机标定参数的误差补偿方法的一个实施例的算法流程图;Fig. 2 is the algorithm flowchart of an embodiment of the error compensation method for camera calibration parameters used in photogrammetry of the present invention;
图3为本发明的用于摄影测量的相机标定参数的误差补偿方法的图像点和空间点呈现的数学模型;Fig. 3 is the mathematical model presented by image points and spatial points of the error compensation method for camera calibration parameters used in photogrammetry of the present invention;
图4为本发明的用于摄影测量的相机标定参数的误差补偿方法的初始参数标定过程。FIG. 4 is an initial parameter calibration process of the error compensation method for camera calibration parameters used in photogrammetry according to the present invention.
具体实施方式Detailed ways
为使本领域技术人员更好的理解本发明的技术方案,下面结合附图和具体实施方式对本发明作详细说明。In order to enable those skilled in the art to better understand the technical solutions of the present invention, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
通过下面参照附图对给定为非限制性实例的实施例的优选形式的描述,本发明的这些和其它特性将会变得显而易见。These and other characteristics of the invention will become apparent from the following description of preferred forms of embodiment given as non-limiting examples with reference to the accompanying drawings.
还应当理解,尽管已经参照一些具体实例对本发明进行了描述,但本领域技术人员能够确定地实现本发明的很多其它等效形式,它们具有如权利要求所述的特征并因此都位于借此所限定的保护范围内。It should also be understood that while the invention has been described with reference to a few specific examples, those skilled in the art can certainly implement many other equivalent forms of the invention, which have the features described in the claims and thus lie within the scope of the present invention. within the limited scope of protection.
此后参照附图描述本发明的具体实施例;然而,应当理解,所发明的实施例仅仅是本发明的实例,其可采用多种方式实施。熟知和/或重复的功能和结构并未详细描述以根据用户的历史的操作,判明真实的意图,避免不必要或多余的细节使得本发明模糊不清。因此,本文所发明的具体的结构性和功能性细节并非意在限定,而是仅仅作为权利要求的基础和代表性基础用于教导本领域技术人员以实质上任意合适的详细结构多样地使用本发明。Specific embodiments of the present invention are hereinafter described with reference to the accompanying drawings; however, it should be understood that the disclosed embodiments are merely examples of the invention, which may be embodied in various ways. Well-known and/or repeated functions and structures are not described in detail to ascertain the true intention based on the user's historical operations, and to avoid obscuring the present invention with unnecessary or redundant detail. Therefore, specific structural and functional details of the invention herein are not intended to be limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any suitable detailed structure. invention.
本说明书可使用词组“在一种实施例中”、“在另一个实施例中”、“在又一实施例中”或“在其他实施例中”,其均可指代根据本发明的相同或不同实施例中的一个或多个。This specification may use the phrases "in one embodiment," "in another embodiment," "in yet another embodiment," or "in other embodiments," which may refer to the same or one or more of the different embodiments.
本发明主要目的是通过迭代的方法补偿平面靶标不平整引起对应图像上像素点的偏差来优化标定参数,首先需要标定出相机参数的初始值,然后测量出平面靶标特征点z轴方向的偏移量,用最小二乘法求出平面靶标特征点z轴方向的相对基准平面的偏移量,然后根据相机参数数学模型推导出图像上所述对应特征点像素坐标的偏移量计算公式,校正特征点像素坐标的偏移量后重新进行相机参数标定,得到新的标定结果作为初始值重重复上述步骤,n次迭代后的结果作为最终的标定结果。图1示出为本发明的基本流程图,如图所示,本发明提出的一种用于摄影测量的相机标定参数的误差补偿方法,包括:The main purpose of the present invention is to optimize the calibration parameters by compensating the deviation of the pixel points on the corresponding image caused by the unevenness of the plane target through an iterative method. First, the initial value of the camera parameters needs to be calibrated, and then the offset in the z-axis direction of the feature points of the plane target is measured. Use the least squares method to find the offset of the feature point of the plane target in the z-axis direction relative to the reference plane, and then deduce the offset calculation formula of the pixel coordinates of the corresponding feature point on the image according to the camera parameter mathematical model, and correct the feature After the offset of the pixel coordinates, re-calibrate the camera parameters, get the new calibration result as the initial value and repeat the above steps, and the result after n iterations is the final calibration result. Fig. 1 is shown as the basic flowchart of the present invention, as shown in the figure, a kind of error compensation method of the camera calibration parameter that the present invention proposes is used for photogrammetry, comprises:
S1、测量并计算出所述平面靶标特征点的z轴方向的相对基准平面的偏移量;S1. Measure and calculate the offset relative to the reference plane in the z-axis direction of the feature points of the planar target;
S2、标定出未加误差补偿下相机参数的初始值;S2. Calibrate the initial value of the camera parameters without error compensation;
S3、根据所述初始值,得出所述平面靶标特征点的z轴方向的相对基准平面的偏移量引起所述平面靶标对应图像上对应特征点像素坐标的偏移量;S3. According to the initial value, it is obtained that the offset of the z-axis direction of the feature point of the planar target relative to the reference plane causes the offset of the pixel coordinate of the corresponding feature point on the corresponding image of the planar target;
S4、通过偏移量校正过程校正所述平面靶标上的特征点对应图像上的像素坐标;S4. Correct the pixel coordinates on the image corresponding to the feature points on the planar target through an offset correction process;
S5、用所述校正后的图像坐标重新进行相机参数标定。S5. Perform camera parameter calibration again with the corrected image coordinates.
在本发明实施例中,相机参数初始值包括:相机内参数、以及不同姿态下所述平面靶标分别相对两个相机坐标系统的旋转矩阵,平移向量和比例因子。用张正友标定方法求解出初始参数。In the embodiment of the present invention, the initial values of the camera parameters include: internal camera parameters, and rotation matrices, translation vectors and scaling factors of the planar target relative to the two camera coordinate systems in different attitudes. The initial parameters are obtained by Zhang Zhengyou's calibration method.
平面靶标特征点z轴方向的相对基准平面的偏移量求解方法为:首先假设平面靶标上任意点处为坐标圆点,测量出其他点处的z轴坐标值,根据所述靶标上所述测量出的特征点坐标为(xn,yn,zn)用最小二乘法求出所述基准平面方程Ax+By+z+C=0,所述偏移量Δzn=zn+(Axn+Byn+C)。The method for solving the offset of the feature point of the planar target relative to the reference plane in the z-axis direction is as follows: firstly, assuming that any point on the planar target is a coordinate circle point, measure the z-axis coordinate values at other points, and according to the description on the target The measured feature point coordinates are (x n , y n , z n ), and the least square method is used to obtain the reference plane equation Ax+By+z+C=0, and the offset Δz n =z n +( Ax n +By n +C).
本方案推导出的图像上所述对应特征点像素坐标的偏移量求解公式为:首先根据张正友标定方法求解出标定结果的初始值,根据初始值求解出单应性矩阵The formula for solving the offset of the pixel coordinates of the corresponding feature points on the image deduced by this scheme is as follows: firstly, the initial value of the calibration result is calculated according to Zhang Zhengyou’s calibration method, and the homography matrix is calculated according to the initial value
特征点对应的图像中的像素坐标为(un,vn),校正后的像素坐标为(u′n,v′n),其中所述u′n=un-h3Δzn,所述v′n=vn-h7Δzn。 The pixel coordinates in the image corresponding to the feature points are (u n , v n ), and the corrected pixel coordinates are (u′ n , v′ n ), where u′ n = un -h 3 Δz n , so Said v' n =v n -h 7 Δz n .
把上述求解出来误差补偿后的像素坐标值作为初始已知参数结合靶标上特征点的平面坐标,张正友标定公式中求解出补偿后的相机参数。Taking the pixel coordinate value obtained from the above solution after error compensation as the initial known parameters combined with the plane coordinates of the feature points on the target, Zhang Zhengyou’s calibration formula is used to solve the compensated camera parameters.
将次补偿后的相机参数作为初始值,计算出新的单应性矩阵,按照上述图像上所述对应特征点像素坐标的偏移量求解公式结合新的单应性矩阵值求解出图像上所述对应特征点像素坐标的偏移量补偿后的像素坐标,重新标定相机参数重复n次。Calculate the new homography matrix with the second compensated camera parameters as the initial value, according to the offset calculation formula of the pixel coordinates of the corresponding feature points on the above image combined with the new homography matrix value to solve the homography matrix on the image The pixel coordinates after the offset compensation of the corresponding feature point pixel coordinates are recalibrated and the camera parameters are repeated n times.
把n次优化后的得到的相机参数作为最终校正相机参数,一般重复4次以上。The camera parameters obtained after n times of optimization are used as the final calibration camera parameters, which are generally repeated more than 4 times.
本方案相比其他方法的优点在于,高精度靶标加工费用高昂,不平整平面靶标通过本方案推导出的像素坐标误差补偿方法可以在不提高成本的情况下提高标定结果的精度。本方案在求不平整靶标z轴方向的偏移量时,用到了最小二乘法,使得偏移量的结果更加可靠,提高了图像坐标补偿过程的计算精度。本方案优化过程需要迭代,有利于进一步提高标定结果的精度,且迭代过程次数可以根据测量精度要求自行设定,算法可实用性高。The advantage of this scheme compared with other methods is that the processing cost of high-precision targets is high, and the pixel coordinate error compensation method derived from this scheme can improve the accuracy of calibration results without increasing the cost. This scheme uses the least square method when calculating the offset in the z-axis direction of the uneven target, which makes the result of the offset more reliable and improves the calculation accuracy of the image coordinate compensation process. The optimization process of this scheme requires iteration, which is conducive to further improving the accuracy of the calibration results, and the number of iterations can be set according to the measurement accuracy requirements, and the algorithm has high practicability.
另请参考图2,误差补偿算法流程图,每步具体实现方法如下。Please also refer to Figure 2, the flow chart of the error compensation algorithm, and the specific implementation method of each step is as follows.
步假设靶标上某一特征点为坐标原点,测量出其他点的z轴方向坐标值,特征点的x轴和y轴坐标是已知的。得到测量出的特征点坐标为(xn,yn,zn),代表第n个特征点的三维坐标,共有N个特征点。The first step assumes that a certain feature point on the target is the coordinate origin, and measure the z-axis coordinate values of other points. The x-axis and y-axis coordinates of the feature point are known. The measured feature point coordinates are (x n , y n , z n ), representing the three-dimensional coordinates of the nth feature point, and there are N feature points in total.
步设其基准平面方程为Ax+By+z+C=0,其中A、B、C为未知量,最小二乘法求解过程如下:Let the datum plane equation be Ax+By+z+C=0, where A, B, and C are unknown quantities, and the least square method solution process is as follows:
设ε=Ax+By+z+CLet ε=Ax+By+z+C
使得残差最小:Minimize the residual:
∑ε2=∑(Ax+By+z+C)2 1.1∑ε 2 =∑(Ax+By+z+C) 2 1.1
1.4由1.2-1.4式可知:1.4 It can be seen from formula 1.2-1.4:
把1.5式带入上1.2-1.4式可以得到:Putting formula 1.5 into formula 1.2-1.4 above can get:
N∑xz-∑x∑z=-A(∑x2-∑x∑x)-B(N∑xy-∑x∑y) 1.6N∑xz-∑x∑z=-A(∑x 2 -∑x∑x)-B(N∑xy-∑x∑y) 1.6
z′1=N∑xz-∑x∑z 1.7z′ 1 =N∑xz-∑x∑z 1.7
a1=∑x2-∑x∑x 1.8a 1 =∑x 2 -∑x∑x 1.8
b1=N∑xy-∑x∑y 1.9b 1 =N∑xy-∑x∑y 1.9
N∑yz-∑y∑z=-A(∑xy-∑x∑y)-B(N∑y2-∑y∑y) 1.10N∑yz-∑y∑z=-A(∑xy-∑x∑y)-B(N∑y 2 -∑y∑y) 1.10
z′2=N∑yz-∑y∑z 1.11z′ 2 =N∑yz-∑y∑z 1.11
a2=∑xy-∑x∑y 1.12a 2 =∑xy-∑x∑y 1.12
b2=N∑y2-∑y∑y 1.13b 2 =N∑y 2 -∑y∑y 1.13
-z′1=Aa1+Bb1 1.14-z′ 1 =Aa 1 +Bb 1 1.14
-z′2=Aa2+Bb2 1.15-z' 2 =Aa 2 +Bb 2 1.15
第三步根据求解出的基准平面Ax+By+z+C=0,计算平面靶标特征点z轴方向的偏移量Δzn为:In the third step, according to the obtained reference plane Ax+By+z+C=0, the offset Δz n in the z-axis direction of the feature point of the plane target is calculated as:
Δzn=zn+(Axn+Byn+C)。 1.19Δz n =z n +(Ax n +By n +C). 1.19
第四步通过平面棋盘格标定靶标或者圆形标志点平面靶标根据张正友标定原理在OpenCV中编写出标定程序。初始参数标定过程如图2所示,用双目相机同时拍摄平面靶标图像多幅,从图像和标定靶标上特征点位置坐标关系求解出相机初始参数。张正友方案中的反应图像像素坐标和靶标上特征点坐标之间的关系的数学模型如下:The fourth step is to calibrate the target through the plane checkerboard or the plane target of the circular mark point, and write the calibration program in OpenCV according to the calibration principle of Zhang Zhengyou. The initial parameter calibration process is shown in Figure 2. The binocular camera is used to capture multiple images of the planar target at the same time, and the initial parameters of the camera are calculated from the position coordinate relationship of the feature points on the image and the calibration target. The mathematical model of the relationship between the pixel coordinates of the reaction image and the coordinates of the feature points on the target in Zhang Zhengyou’s scheme is as follows:
根据张正友平面靶标相机参数模型可知图像上像素点的坐标(u,v)和对应空间点的坐标(x,y,z)关系为:According to Zhang Zhengyou’s plane target camera parameter model, the relationship between the coordinates (u, v) of the pixel point on the image and the coordinates (x, y, z) of the corresponding space point is:
其中s为比例因子,H为单应性矩阵,H=A[R|T]其中R为旋转矩阵,T为平移向量,A为相机内参数。假设靶标上的点在一个平面内上述公式可以转化为:Where s is a scale factor, H is a homography matrix, H=A[R|T] where R is a rotation matrix, T is a translation vector, and A is a camera intrinsic parameter. Assuming that the points on the target are in a plane, the above formula can be transformed into:
第五步设置优化迭代次数为N(N>0),N代表优化迭代的过程重复次数,用于优化程序最后判定是否完成优化输出结果。迭代次数标志位n,每进行一次迭代n自动加1,每次迭代完成后判断迭代标志位n和N的大小关系,当n大于等于初始用户设定的迭代次数N后输出迭代优化后的相机参数作为最终结果。The fifth step is to set the number of optimization iterations to N (N>0), and N represents the number of repetitions of the optimization iteration process, which is used for the optimization program to finally determine whether to complete the optimization output result. The number of iteration flag bit n is automatically incremented by 1 for each iteration. After each iteration, the size relationship between the iteration flag bit n and N is judged. When n is greater than or equal to the number of iterations N set by the initial user, the iteratively optimized camera is output. parameters as the final result.
第六步根据相机参数数学模型推导出校正后的像素坐标,具体推导过程为:The sixth step is to derive the corrected pixel coordinates according to the camera parameter mathematical model. The specific derivation process is:
另如图3所示,代表像素坐标和靶标坐标系之间的关系,张正友模型中假设靶标为平面靶标,但是实际靶标由于平面靶标不平整引起靶标z轴方向坐标值不为零,上述步骤计算出了靶标z轴方向相对基准面的偏移量。在图4中,假设平面靶标为三维坐标,靶标通过相机镜头成像投影在像平面上,根据成像模型,靶标上点和对应图像上点存在一定的数学关系。图中R、T分别代表靶标坐标系和像平面坐标系之间的旋转矩阵和平移向量。靶标上特征点A在像平面上的投影点为A′。As shown in Figure 3, it represents the relationship between the pixel coordinates and the target coordinate system. In Zhang Zhengyou’s model, the target is assumed to be a plane target, but the actual target’s z-axis coordinate value is not zero due to the unevenness of the plane target. The above steps calculate The offset of the target z-axis direction relative to the reference plane is shown. In Fig. 4, it is assumed that the planar target has three-dimensional coordinates, and the target is imaged and projected on the image plane through the camera lens. According to the imaging model, there is a certain mathematical relationship between the point on the target and the point on the corresponding image. In the figure, R and T represent the rotation matrix and translation vector between the target coordinate system and the image plane coordinate system, respectively. The projection point of the feature point A on the target on the image plane is A'.
对于不平整的平面靶标,其上特征点的坐标(x,y,z)对应的带有误差的图像上像素点的坐标(ue,ve)之间的对应关系,可以表示为为:For an uneven planar target, the correspondence between the coordinates (x, y, z) of the feature points on it and the coordinates (u e , v e ) of the pixels on the image with errors can be expressed as:
其中单应性矩阵和比例因子是通过张正友标定方法,由不平整靶标标定出来的初始值。由上1.21和1.22式可以得到:Among them, the homography matrix and scale factor are the initial values calibrated by the uneven target through Zhang Zhengyou's calibration method. From formulas 1.21 and 1.22 above, we can get:
u=h1x+h2y 1.23u=h 1 x+h 2 y 1.23
v=h5x+h6y 1.24v=h 5 x+h 6 y 1.24
ue=h1x+h2y+h3z 1.25u e =h 1 x+h 2 y+h 3 z 1.25
ve=h5x+h6y+h7z 1.26v e =h 5 x+h 6 y+h 7 z 1.26
其中z为Δzn,设第n个特征点对应的图像中的像素坐标为(un,vn),校正后的像素坐标为(u′n,v′n),由1.23-1.26式可知:Where z is Δz n , and the pixel coordinates in the image corresponding to the nth feature point are (u n , v n ), and the corrected pixel coordinates are (u′ n , v′ n ), it can be known from formulas 1.23-1.26 :
u′n=un-h3Δzn 1.27u′ n =u n -h 3 Δz n 1.27
v′n=vn-h7Δzn 1.28v' n =v n -h 7 Δz n 1.28
代入1.19式到1.27和1.28式得:Substitute 1.19 into 1.27 and 1.28 to get:
u′n=un-h3(zn+(Axn+Byn+C)) 1.29u′ n =u n -h 3 (z n +(Ax n +By n +C)) 1.29
v′n=vn-h7(zn+(Axn+Byn+C)) 1.30v′ n =v n -h 7 (z n +(Ax n +By n +C)) 1.30
第七步把校正后的像素坐标(u′n,v′n)和对应平面靶标上点的坐标(x,y)作为已知条件代入方程:In the seventh step, the corrected pixel coordinates (u′ n , v′ n ) and the coordinates (x, y) of the point on the corresponding plane target are substituted into the equation as known conditions:
按照张正友平面靶标标定方法求解出相机的内外参数,其中s为比例因子,A为内参,R为旋转矩阵,T为平移向量。According to Zhang Zhengyou's planar target calibration method, the internal and external parameters of the camera are solved, where s is the scale factor, A is the internal reference, R is the rotation matrix, and T is the translation vector.
第八步每优化求解完一次,迭代标志位n自动加一,n代表迭代优化进行了n次。In the eighth step, each time the optimization is solved, the iteration flag n is automatically incremented by one, and n represents that the iterative optimization has been performed n times.
第九步判断迭代标志位n和设置优化迭代次数为N之间的关系,若n<N把第八步得到的第n次补偿后的相机参数作为初始值带回到第六步,再次重复计算从第六步到第八步。把通过误差补偿后求解出来的相机参数作为初始值,重新代入校正后的像素坐标(u′n,v′n)和对应平面靶标上点的坐标(x,y)到上述公式中,求解出新的相机参数。然后再进行判断。这个步骤重复n次优化结果的精度会提高。直到n大于等于N,把N次优化后的结果作为最终校正相机参数。即完成对平面靶标平面度误差导致的相机标定参数误差的补偿。The ninth step is to judge the relationship between the iteration flag bit n and the number of optimization iterations set to N. If n<N, take the nth compensated camera parameters obtained in the eighth step as the initial value and return to the sixth step and repeat again. Calculate from step six to step eight. Taking the camera parameters obtained after error compensation as the initial value, resubstituting the corrected pixel coordinates (u′ n , v′ n ) and the coordinates (x, y) of the point on the corresponding plane target into the above formula, and solving New camera parameters. Then judge. Repeating this step n times will improve the precision of the optimization result. Until n is greater than or equal to N, the result after N times of optimization is used as the final calibration camera parameter. That is, the compensation of the camera calibration parameter error caused by the flatness error of the planar target is completed.
本文描述了各种操作或功能,其可以被作为软件代码或指令实现或定义为软件代码或指令。这样的内容可以是可直接执行的(“对象”或“可执行”形式)源代码或差分代码(“增量”或“补丁”代码)。本文所述的实施例的软件实现可以经由其中存储有代码或指令的制品或者经由操作通信接口以经由通信接口发送数据的方法来提供。机器或计算机可读存储介质可以使机器执行所描述的功能或操作,并且包括以可由机器(例如,计算设备、电子系统等等)访问的形式存储信息的任何机制,诸如可记录/不可记录介质(例如,只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪存设备、等等)。通信接口包括接合到硬连线、无线、光学等介质中的任何一个以与另一设备通信的任何机制,诸如存储器总线接口、处理器总线接口、互联网连接、磁盘控制器等。可以通过提供配置参数和/或发送信号来将通信接口配置成将该通信接口准备好以提供描述软件内容的数据信号。可以经由发送到通信接口的一个或更多个命令或信号来访问通信接口。Various operations or functions are described herein, which may be implemented or defined as software codes or instructions. Such content may be directly executable ("object" or "executable" form) source code or differential code ("delta" or "patch" code). A software implementation of the embodiments described herein may be provided via an article of manufacture having code or instructions stored therein, or via a method of operating a communication interface to send data via the communication interface. A machine or computer-readable storage medium can cause the machine to perform the described functions or operations and includes any mechanism for storing information in a form accessible by the machine (e.g., computing device, electronic system, etc.), such as recordable/non-recordable media (eg, read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, etc.). A communication interface includes any mechanism that interfaces to any of hardwired, wireless, optical, etc. media to communicate with another device, such as a memory bus interface, processor bus interface, Internet connection, disk controller, and the like. The communication interface may be configured by providing configuration parameters and/or sending signals to prepare the communication interface to provide data signals describing the software content. The communication interface may be accessed via one or more commands or signals sent to the communication interface.
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换以及改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711168340.5A CN108198219B (en) | 2017-11-21 | 2017-11-21 | Error compensation method for camera calibration parameters for photogrammetry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711168340.5A CN108198219B (en) | 2017-11-21 | 2017-11-21 | Error compensation method for camera calibration parameters for photogrammetry |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108198219A true CN108198219A (en) | 2018-06-22 |
CN108198219B CN108198219B (en) | 2022-05-13 |
Family
ID=62573173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711168340.5A Expired - Fee Related CN108198219B (en) | 2017-11-21 | 2017-11-21 | Error compensation method for camera calibration parameters for photogrammetry |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108198219B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110146869A (en) * | 2019-05-21 | 2019-08-20 | 北京百度网讯科技有限公司 | Determine method, apparatus, electronic equipment and the storage medium of coordinate system conversion parameter |
CN110202581A (en) * | 2019-06-28 | 2019-09-06 | 南京博蓝奇智能科技有限公司 | Compensation method, device and the electronic equipment of end effector of robot operating error |
CN112766063A (en) * | 2020-12-31 | 2021-05-07 | 沈阳康泰电子科技股份有限公司 | Micro-expression fitting method and system based on displacement compensation |
TWI742635B (en) * | 2020-04-27 | 2021-10-11 | 創博股份有限公司 | Method of triggering and counteracting for teaching position and posture |
WO2021208369A1 (en) * | 2020-04-17 | 2021-10-21 | 嘉楠明芯(北京)科技有限公司 | Image correction method and apparatus |
CN114061472A (en) * | 2021-11-03 | 2022-02-18 | 常州市建筑科学研究院集团股份有限公司 | Method for correcting measurement coordinate error based on target |
CN114565679A (en) * | 2022-02-18 | 2022-05-31 | 中国人民解放军63660部队 | Focal length, radial distortion and posture calibration method based on camera position |
CN114820787A (en) * | 2022-04-22 | 2022-07-29 | 聊城大学 | Image correction method and system for large-view-field planar vision measurement |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102270033A (en) * | 2010-04-20 | 2011-12-07 | 北京佳视互动科技股份有限公司 | Method and device for controlling controlled object to perform three-dimensional movement |
CN103364167A (en) * | 2013-07-15 | 2013-10-23 | 中国航天空气动力技术研究院 | Inspection window refraction offset correction method |
CN103530880A (en) * | 2013-10-16 | 2014-01-22 | 大连理工大学 | Camera calibration method based on projected Gaussian grid pattern |
CN103733138A (en) * | 2011-08-03 | 2014-04-16 | 株式会社V技术 | Method for correcting alignment of substrate to be exposed, and exposure device |
CN104331896A (en) * | 2014-11-21 | 2015-02-04 | 天津工业大学 | System calibration method based on depth information |
CN105066884A (en) * | 2015-09-09 | 2015-11-18 | 大族激光科技产业集团股份有限公司 | Robot tail end positioning deviation correction method and system |
CN105096317A (en) * | 2015-07-03 | 2015-11-25 | 吴晓军 | Fully automatic calibration method for high performance camera under complicated background |
US9532031B1 (en) * | 2014-04-08 | 2016-12-27 | The United States Of America As Represented By The Secretary Of The Navy | Method for extrinsic camera calibration using a laser beam |
CN106651794A (en) * | 2016-12-01 | 2017-05-10 | 北京航空航天大学 | Projection speckle correction method based on virtual camera |
CN106846408A (en) * | 2016-11-25 | 2017-06-13 | 努比亚技术有限公司 | A kind of method and apparatus for obtaining correction parameter |
-
2017
- 2017-11-21 CN CN201711168340.5A patent/CN108198219B/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102270033A (en) * | 2010-04-20 | 2011-12-07 | 北京佳视互动科技股份有限公司 | Method and device for controlling controlled object to perform three-dimensional movement |
CN103733138A (en) * | 2011-08-03 | 2014-04-16 | 株式会社V技术 | Method for correcting alignment of substrate to be exposed, and exposure device |
CN103364167A (en) * | 2013-07-15 | 2013-10-23 | 中国航天空气动力技术研究院 | Inspection window refraction offset correction method |
CN103530880A (en) * | 2013-10-16 | 2014-01-22 | 大连理工大学 | Camera calibration method based on projected Gaussian grid pattern |
US9532031B1 (en) * | 2014-04-08 | 2016-12-27 | The United States Of America As Represented By The Secretary Of The Navy | Method for extrinsic camera calibration using a laser beam |
CN104331896A (en) * | 2014-11-21 | 2015-02-04 | 天津工业大学 | System calibration method based on depth information |
CN105096317A (en) * | 2015-07-03 | 2015-11-25 | 吴晓军 | Fully automatic calibration method for high performance camera under complicated background |
CN105066884A (en) * | 2015-09-09 | 2015-11-18 | 大族激光科技产业集团股份有限公司 | Robot tail end positioning deviation correction method and system |
CN106846408A (en) * | 2016-11-25 | 2017-06-13 | 努比亚技术有限公司 | A kind of method and apparatus for obtaining correction parameter |
CN106651794A (en) * | 2016-12-01 | 2017-05-10 | 北京航空航天大学 | Projection speckle correction method based on virtual camera |
Non-Patent Citations (2)
Title |
---|
MADHUMITA PAL等: "Star camera calibration combined with independent spacecraft attitude determination", 《2009 AMERICAN CONTROL CONFERENCE》 * |
姚志生等: "基于双目视觉的快速定位与测距方法", 《安徽工业大学学报(自然科学版)》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110146869A (en) * | 2019-05-21 | 2019-08-20 | 北京百度网讯科技有限公司 | Determine method, apparatus, electronic equipment and the storage medium of coordinate system conversion parameter |
CN110202581A (en) * | 2019-06-28 | 2019-09-06 | 南京博蓝奇智能科技有限公司 | Compensation method, device and the electronic equipment of end effector of robot operating error |
CN113538252B (en) * | 2020-04-17 | 2024-03-26 | 嘉楠明芯(北京)科技有限公司 | Image correction method and device |
WO2021208369A1 (en) * | 2020-04-17 | 2021-10-21 | 嘉楠明芯(北京)科技有限公司 | Image correction method and apparatus |
CN113538252A (en) * | 2020-04-17 | 2021-10-22 | 嘉楠明芯(北京)科技有限公司 | Image correction method and device |
TWI742635B (en) * | 2020-04-27 | 2021-10-11 | 創博股份有限公司 | Method of triggering and counteracting for teaching position and posture |
CN112766063A (en) * | 2020-12-31 | 2021-05-07 | 沈阳康泰电子科技股份有限公司 | Micro-expression fitting method and system based on displacement compensation |
CN112766063B (en) * | 2020-12-31 | 2024-04-23 | 沈阳康泰电子科技股份有限公司 | Micro-expression fitting method and system based on displacement compensation |
CN114061472A (en) * | 2021-11-03 | 2022-02-18 | 常州市建筑科学研究院集团股份有限公司 | Method for correcting measurement coordinate error based on target |
CN114061472B (en) * | 2021-11-03 | 2024-03-19 | 常州市建筑科学研究院集团股份有限公司 | Method for correcting measurement coordinate error based on target |
CN114565679A (en) * | 2022-02-18 | 2022-05-31 | 中国人民解放军63660部队 | Focal length, radial distortion and posture calibration method based on camera position |
CN114565679B (en) * | 2022-02-18 | 2024-04-26 | 中国人民解放军63660部队 | Focal length, radial distortion and attitude calibration method based on camera position |
CN114820787A (en) * | 2022-04-22 | 2022-07-29 | 聊城大学 | Image correction method and system for large-view-field planar vision measurement |
CN114820787B (en) * | 2022-04-22 | 2024-05-28 | 聊城大学 | Image correction method and system for large field of view plane vision measurement |
Also Published As
Publication number | Publication date |
---|---|
CN108198219B (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108198219B (en) | Error compensation method for camera calibration parameters for photogrammetry | |
CN108489395B (en) | Vision measurement system structural parameters calibration and affine coordinate system construction method and system | |
CN110296691B (en) | IMU calibration-fused binocular stereo vision measurement method and system | |
US9858684B2 (en) | Image processing method and apparatus for calibrating depth of depth sensor | |
CN104392435B (en) | Fisheye camera scaling method and caliberating device | |
CN110345921B (en) | Stereo visual field vision measurement and vertical axis aberration and axial aberration correction method and system | |
WO2023201578A1 (en) | Extrinsic parameter calibration method and device for monocular laser speckle projection system | |
CN105486289B (en) | A kind of laser photography measuring system and camera calibration method | |
CN106457562A (en) | Method for calibrating a robot and a robot system | |
CN205333067U (en) | Laser photogrammetric survey system | |
CN113822920B (en) | Method for acquiring depth information by structured light camera, electronic equipment and storage medium | |
CN110260822B (en) | High-precision calibration method for multi-view structured light system | |
CN107967700B (en) | On-orbit geometric correction and precision verification method for large-view-field wide-working-distance binocular camera | |
CN112037285A (en) | Camera calibration method optimized by gray wolf based on Levy flight and mutation mechanism | |
CN112229323A (en) | Six degrees of freedom measurement method of checkerboard cooperation target based on monocular vision of mobile phone and its application | |
CN114926538B (en) | External parameter calibration method and device for monocular laser speckle projection system | |
CN115375773A (en) | External parameter calibration method and related device for monocular laser speckle projection system | |
CN113324538B (en) | A long-distance high-precision six-degree-of-freedom pose measurement method for cooperative targets | |
CN112729109B (en) | Point cloud data correction method and device | |
CN103258327A (en) | Single-pint calibration method based on two-degree-freedom video camera | |
CN111754584A (en) | Remote large-field-of-view camera parameter calibration system and method | |
Oniga et al. | Metric and Non-Metric Cameras Calibration for the Improvement of Real-Time Monitoring Process Results. | |
CN113822949B (en) | Calibration method and device of binocular camera and readable storage medium | |
CN117078769A (en) | Method and system for calibrating external parameters of CMS camera of electronic rearview mirror | |
CN115018922A (en) | Distortion parameter calibration method, electronic device and computer readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220513 |
|
CF01 | Termination of patent right due to non-payment of annual fee |