CN108197605A - Yak personal identification method based on deep learning - Google Patents
Yak personal identification method based on deep learning Download PDFInfo
- Publication number
- CN108197605A CN108197605A CN201810094183.6A CN201810094183A CN108197605A CN 108197605 A CN108197605 A CN 108197605A CN 201810094183 A CN201810094183 A CN 201810094183A CN 108197605 A CN108197605 A CN 108197605A
- Authority
- CN
- China
- Prior art keywords
- yak
- face
- picture
- feature vector
- similarity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000013135 deep learning Methods 0.000 title claims abstract description 14
- 239000013598 vector Substances 0.000 claims abstract description 30
- 238000000605 extraction Methods 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000011176 pooling Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims 1
- 241000283690 Bos taurus Species 0.000 description 42
- 238000013527 convolutional neural network Methods 0.000 description 7
- 238000012549 training Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/08—Insurance
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于深度学习的牦牛身份识别方法,包括以下步骤:S1、采集牦牛图片和视频,将视频解码为图片;S2、通过目标检测网络Faster R‑CNN对图片进行分类回归和位置回归,得到牛脸在图片上的像素位置和其置信度;然后将得到的牛脸像素位置进行裁剪,截取出牛脸;S3、将步骤S2得到的牛脸输入特征提取网络,对牛脸进行特征提取,并输出对应的特征向量;S4、将步骤S3提取出的特征向量和数据库中的牛脸特征向量进行匹配,计算牛脸的相似度,输出数据库中和该牦牛的相似度最高的一张牦牛图片,完成牦牛识别。本发明避免了传统的识别方法中人工提取特征的不确定性及耳标识别方式的局限性,有效的提高了牦牛身份识别的效率,能够降低保险欺诈的风险。
The invention discloses a yak identity recognition method based on deep learning, comprising the following steps: S1, collecting yak pictures and videos, and decoding the videos into pictures; S2, performing classification regression and position on the pictures through the target detection network Faster R-CNN Regression, obtain the pixel position of the cow face on the picture and its confidence degree; Then the obtained cow face pixel position is cut out, and the cow face is intercepted; S3, the cow face obtained in step S2 is input into the feature extraction network, and the cow face is processed Feature extraction, and output the corresponding feature vector; S4, match the feature vector extracted in step S3 with the cow face feature vector in the database, calculate the similarity of the cow face, and output the one with the highest similarity with the yak in the database A picture of a yak to complete the yak identification. The invention avoids the uncertainty of manual feature extraction and the limitation of the ear tag identification method in the traditional identification method, effectively improves the efficiency of yak identification, and can reduce the risk of insurance fraud.
Description
技术领域technical field
本发明属于深度学习图像处理领域和牦牛身份识别领域,特别涉及一种基于深度学习的牦牛身份识别方法。The invention belongs to the field of deep learning image processing and the field of yak identification, and in particular relates to a yak identification method based on deep learning.
背景技术Background technique
随着科技的进步和社会的发展,家畜保险的情况越来越普遍。牦牛,作为高原地区牧民的主要收入来源,在该地区被广泛饲养。然而牧民们抵御自然灾害和疫情风险的能力低下,牦牛养殖业面临着巨大的风险。因此,牦牛保险也在牦牛养殖业中积极的推行,这就带来了保险欺诈的风险,当前保险欺诈在国内呈现蔓延态势。With the advancement of science and technology and the development of society, the situation of livestock insurance is becoming more and more common. Yaks, as the main source of income for herdsmen in the plateau area, are widely raised in this area. However, the ability of herdsmen to resist natural disasters and epidemic risks is low, and the yak breeding industry is facing huge risks. Therefore, yak insurance is also actively promoted in the yak breeding industry, which brings the risk of insurance fraud. Currently, insurance fraud is spreading in China.
传统的牦牛识别采用给牦牛打耳标的方式来实现。该方法的缺点很多,首先,耳标的可复制性很强,不会存在生物差别;其次,耳标可以重复利用,不能杜绝牦牛死后耳标的重复利用。因此,需要一种更加准确有效的牦牛身份识别方法。Traditional yak identification is achieved by earmarking the yak. This method has many disadvantages. First, the ear tags are highly reproducible and there will be no biological differences. Second, the ear tags can be reused, which cannot prevent the reuse of ear tags after death of yaks. Therefore, a more accurate and effective yak identification method is needed.
发明内容Contents of the invention
本发明的目的在于克服现有识别方法中人工提取特征的不确定性及耳标识别方式的局限性,提供一种能够有效提高牦牛身份识别的效率,降低保险欺诈的风险的基于深度学习的牦牛身份识别方法。The purpose of the present invention is to overcome the uncertainty of manual feature extraction and the limitations of ear tag identification methods in the existing identification methods, and provide a yak based on deep learning that can effectively improve the efficiency of yak identification and reduce the risk of insurance fraud. Identification method.
本发明的目的是通过以下技术方案来实现的:基于深度学习的牦牛身份识别方法,包括以下步骤:The object of the present invention is achieved through the following technical solutions: the yak identification method based on deep learning comprises the following steps:
S1、采集牦牛图片和视频,将视频解码为图片;S1, collecting yak pictures and videos, and decoding the videos into pictures;
S2、将采集到的牦牛图片通过目标检测网络Faster R-CNN进行分类回归和位置回归,得到牛脸在图片上的像素位置和其置信度;然后将得到的牛脸像素位置进行裁剪,截取出牛脸;S2. Perform classification regression and position regression on the collected yak picture through the target detection network Faster R-CNN to obtain the pixel position and confidence of the cow face on the picture; then crop the obtained cow face pixel position and intercept it cow face;
S3、将步骤S2得到的牛脸输入特征提取网络,对牛脸进行特征提取,并输出对应的特征向量;S3. Input the cow face obtained in step S2 into the feature extraction network, perform feature extraction on the cow face, and output the corresponding feature vector;
S4、将步骤S3提取出的特征向量和数据库中的牛脸特征向量进行匹配,计算牛脸的相似度,输出数据库中和该牦牛的相似度最高的一张牦牛图片,完成牦牛识别。S4. Match the feature vector extracted in step S3 with the cow face feature vector in the database, calculate the similarity of the cow face, output a yak picture in the database with the highest similarity with the yak, and complete the yak recognition.
进一步地,所述步骤S2包括以下子步骤:Further, the step S2 includes the following sub-steps:
S21、将图片归一化到224*224大小;S21. Normalize the image to a size of 224*224;
S22、通过13个卷积层,5次下采样,得到512个大小14*14的特征图;S22. Through 13 convolutional layers and 5 times of downsampling, 512 feature maps with a size of 14*14 are obtained;
S23、对每一个特征图进行如下处理:通过3*3大小的卷积核在特征图上滑动,分别以每一个卷积核中心作为一个基准点,然后围绕基准点选取3个不同面积大小和3种不同尺寸比例,生成9个候选区域;S23. Perform the following processing on each feature map: slide on the feature map through a convolution kernel of 3*3 size, use the center of each convolution kernel as a reference point, and then select 3 different area sizes and sizes around the reference point. 3 different size ratios, generating 9 candidate regions;
S24、去掉候选区域中映射到原图中超过原图边界的候选框;S24, remove the candidate frame mapped to the original image beyond the boundary of the original image in the candidate area;
S25、将候选区域映射到网络最后一层卷积的特征图上,通过ROI pooling层使每个候选区域生成固定尺寸的特征图,对生成的特征图进行分类和位置精修,结合步骤S1生成的图片大小进行计算,得到牛脸存在于图片上的像素位置和其置信程度;S25. Map the candidate area to the feature map of the last layer of network convolution, generate a fixed-size feature map for each candidate area through the ROI pooling layer, classify and refine the position of the generated feature map, and generate in combination with step S1 The size of the picture is calculated to obtain the pixel position of the cow face on the picture and its confidence level;
S26、对得到的牛脸像素位置进行裁剪,截取出牛脸。S26. Cut out the obtained cow face pixel position, and intercept the cow face.
进一步地,所述步骤S3包括以下子步骤:Further, the step S3 includes the following sub-steps:
S31、将牛脸图片调整到224*224大小,然后输入特征提取网络进行特征提取;S31. Adjust the cow face picture to a size of 224*224, and then input the feature extraction network for feature extraction;
S32、特征提取网络经过卷积层、池化层和全连接层,输出一个4096维的特征向量。S32. The feature extraction network outputs a 4096-dimensional feature vector through a convolutional layer, a pooling layer, and a fully connected layer.
进一步地,所述步骤S4包括以下子步骤:Further, the step S4 includes the following sub-steps:
S41、将步骤S3提取的特征向量和牛脸库中的数据进行比较,计算相似度,其中相似度计算采用cos夹角的方式:S41, compare the feature vector extracted in step S3 with the data in the cow face library, and calculate the similarity, wherein the similarity calculation adopts the method of cos angle:
其中,cosθ表示两特征向量的夹角的余弦,a、b分别表示S2提取的特征向量和牛脸数据库中的特征向量;Among them, cosθ represents the cosine of the angle between the two feature vectors, and a and b respectively represent the feature vector extracted by S2 and the feature vector in the cow face database;
S42、输出两张牦牛的cosθ夹角值作为相似度,并输出在数据库中与待识别牦牛相似度最大的牦牛对应的编号作为牦牛身份识别结果。S42. Output the cosθ angle value of the two yaks as the similarity, and output the serial number corresponding to the yak with the greatest similarity with the yak to be identified in the database as the yak identification result.
本发明的有益效果是:本发明通过基于深度学习的方法对牦牛进行牛脸检测,然后用卷积神经网络自动的提取牛脸特征,最后采用cos夹角计算两张牛脸的相似度,输出相似度最高的牦牛编号作为匹配结果,可以达到比较高的准确率。避免了传统的识别方法中人工提取特征的不确定性及耳标识别方式的局限性,有效的提高了牦牛身份识别的效率,能够降低保险欺诈的风险。The beneficial effects of the present invention are: the present invention detects the cow face of yaks through the method based on deep learning, then automatically extracts the features of the cow face with a convolutional neural network, and finally calculates the similarity between two cow faces by using the cos angle, and outputs The yak number with the highest similarity is used as the matching result, which can achieve a relatively high accuracy rate. It avoids the uncertainty of manual feature extraction in traditional identification methods and the limitations of ear tag identification methods, effectively improves the efficiency of yak identification, and can reduce the risk of insurance fraud.
附图说明Description of drawings
图1为本发明的基于深度学习的牦牛身份识别方法的流程图;Fig. 1 is the flowchart of the yak identification method based on deep learning of the present invention;
图2为本实施例中采集到的牛脸图片;Fig. 2 is the cow face picture collected in the present embodiment;
图3为本实施例中截取出的牛脸图片;Fig. 3 is the bull's face picture that cuts out in the present embodiment;
图4为本实施例中牛脸识别输出结果图片。FIG. 4 is a picture of the output result of cow face recognition in this embodiment.
具体实施方式Detailed ways
下面结合附图进一步说明本发明的技术方案。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings.
如图1所示,基于深度学习的牦牛身份识别方法,包括以下步骤:As shown in Figure 1, the yak identification method based on deep learning includes the following steps:
S1、采集牦牛图片和视频,将视频解码为图片;S1, collecting yak pictures and videos, and decoding the videos into pictures;
S2、将采集到的牦牛图片通过目标检测网络Faster R-CNN进行分类回归和位置回归,得到牛脸在图片上的像素位置和其置信度;然后将得到的牛脸像素位置进行裁剪,截取出牛脸;具体包括以下子步骤:S2. Perform classification regression and position regression on the collected yak picture through the target detection network Faster R-CNN to obtain the pixel position and confidence of the cow face on the picture; then crop the obtained cow face pixel position and intercept it Cow face; specifically includes the following sub-steps:
S21、将图片归一化到224*224大小;S21. Normalize the image to a size of 224*224;
S22、通过13个卷积层,5次下采样,得到512个大小14*14的特征图;S22. Through 13 convolutional layers and 5 times of downsampling, 512 feature maps with a size of 14*14 are obtained;
S23、对每一个特征图进行如下处理:通过3*3大小的卷积核在特征图上滑动,设置一种锚定(anchor)机制,即分别以每一个卷积核中心作为一个基准点,然后围绕基准点选取3个不同面积大小(128、256、512,对应到特征图分别为3、6、12)和3种不同尺寸比例(1:1、1:2和2:1),生成9个候选区域;S23. Perform the following processing on each feature map: slide a 3*3 convolution kernel on the feature map, set an anchor mechanism, that is, use the center of each convolution kernel as a reference point, Then select 3 different area sizes around the reference point (128, 256, 512, corresponding to feature maps are 3, 6, 12) and 3 different size ratios (1:1, 1:2 and 2:1), generate 9 candidate areas;
S24、去掉候选区域中映射到原图中超过原图边界的候选框;S24, remove the candidate frame mapped to the original image beyond the boundary of the original image in the candidate area;
S25、将候选区域映射到网络最后一层卷积的特征图上,通过ROI pooling层使每个候选区域生成固定尺寸的特征图,对生成的特征图进行分类和位置精修,结合步骤S1生成的图片大小进行计算,得到牛脸存在于图片上的像素位置和其置信程度;S25. Map the candidate area to the feature map of the last layer of network convolution, generate a fixed-size feature map for each candidate area through the ROI pooling layer, classify and refine the position of the generated feature map, and generate in combination with step S1 The size of the picture is calculated to obtain the pixel position of the cow face on the picture and its confidence level;
S26、对得到的牛脸像素位置进行裁剪,截取出牛脸。S26. Cut out the obtained cow face pixel position, and intercept the cow face.
S3、将步骤S2得到的牛脸输入特征提取网络,对牛脸进行特征提取,并输出对应的特征向量;包括以下子步骤:S3. Input the cow face obtained in step S2 into the feature extraction network, perform feature extraction on the cow face, and output the corresponding feature vector; including the following substeps:
S31、将牛脸图片调整到224*224大小,然后输入特征提取网络进行特征提取;S31. Adjust the cow face picture to a size of 224*224, and then input the feature extraction network for feature extraction;
S32、特征提取网络经过卷积层、池化层和全连接层,输出一个4096维的特征向量。S32. The feature extraction network outputs a 4096-dimensional feature vector through a convolutional layer, a pooling layer, and a fully connected layer.
S4、将步骤S3提取出的特征向量和数据库中的牛脸特征向量进行匹配,计算牛脸的相似度,输出数据库中和该牦牛的相似度最高的一张牦牛图片,完成牦牛识别;具体包括以下子步骤:S4, match the feature vector extracted in step S3 with the cow face feature vector in the database, calculate the similarity of the cow face, output a yak picture with the highest similarity with the yak in the database, and complete the yak recognition; specifically include The following substeps:
S41、将步骤S2提取的特征向量和牛脸库中的数据进行比较,计算相似度,其中相似度计算采用cos夹角的方式:S41, compare the feature vector extracted in step S2 with the data in the cow face database, and calculate the similarity, wherein the similarity calculation adopts the method of cos angle:
其中,cosθ表示两特征向量的夹角的余弦,a、b分别表示S2提取的特征向量和牛脸数据库中的特征向量;Among them, cosθ represents the cosine of the angle between the two feature vectors, and a and b respectively represent the feature vector extracted by S2 and the feature vector in the cow face database;
S42、输出两张牦牛的cosθ夹角值作为相似度,并输出在数据库中与待识别牦牛相似度最大的牦牛对应的编号作为牦牛身份识别结果。S42. Output the cosθ angle value of the two yaks as the similarity, and output the serial number corresponding to the yak with the greatest similarity with the yak to be identified in the database as the yak identification result.
应用实例:Applications:
1、样本制作:本实施例采集牦牛图片共计3988张。随机选取2900张作为模型训练样本。制作目标检测样本采用标注工具标记出图片中所有牛脸的位置。1. Sample making: A total of 3988 yak pictures were collected in this embodiment. 2900 images are randomly selected as model training samples. Make a target detection sample and use the annotation tool to mark the positions of all cow faces in the picture.
2、训练阶段:2. Training stage:
(1)设计基于深度卷积网络VGG16-Net的目标检测模型Faster R-CNN,用选取的2900张图片作为训练样本训练模型,共计迭代60000次;目标检测模型Faster R-CNN为本领域常用的一种目标检测模型,其具体训练过程不再赘述。(1) Design the target detection model Faster R-CNN based on the deep convolutional network VGG16-Net, and use the selected 2900 pictures as training samples to train the model, with a total of 60,000 iterations; the target detection model Faster R-CNN is commonly used in this field A target detection model, the specific training process of which will not be repeated here.
(2)设计深度卷积网络VGG16-Net,用裁剪出来的牛脸训练模型,共计迭代100000次。(2) Design the deep convolutional network VGG16-Net, and use the cropped cow face training model for a total of 100,000 iterations.
3、测试阶段:3. Testing phase:
(1)制作一个包含315头牦牛的牦牛数据库,然后随机挑选了455张牦牛样本,进行准确度和相似度检测;(1) Make a yak database containing 315 yaks, and then randomly select 455 yak samples for accuracy and similarity testing;
(2)将455张牦牛样本输入训练完成的Faster R-CNN网络模型,输出检测出来的牛脸图片,如图2所示。根据目标检测输出的牛脸坐标,裁剪出对应的牛脸,如图3所示;(2) Input 455 yak samples into the trained Faster R-CNN network model, and output the detected cow face pictures, as shown in Figure 2. According to the coordinates of the cow face output by the target detection, the corresponding cow face is cut out, as shown in Figure 3;
(3)将裁剪出的牛脸输入牛脸特征提取模型,输出一个4096维的特征向量;(3) input the cow face feature extraction model with the cropped cow face, and output a 4096-dimensional feature vector;
(4)根据(3)中输出的特征向量和数据库中的牦牛数据进行相似度检测,最后输出该牦牛的编号作为识别结果,如图4所示,分别为测试图片和数据库中与之相似度最高(0.923420)的牛脸图片。此次测试样本共计416张,其中,识别出错的牦牛图片有31张,识别准确率为0.92548。(4) Perform similarity detection according to the eigenvector output in (3) and the yak data in the database, and finally output the number of the yak as the recognition result, as shown in Figure 4, which are the similarity between the test picture and the database The highest (0.923420) cow face image. There were 416 test samples in total, of which 31 were erroneously recognized yak pictures, and the recognition accuracy rate was 0.92548.
综上所述,可见本发明通过基于深度学习的方法首先对牦牛进行牛脸检测,然后用卷积神经网络自动的提取牛脸特征,最后采用cos夹角计算两张牛脸的相似度,输出相似度最高的牦牛编号作为匹配结果,可以达到比较高的准确率。避免了传统的识别方法中人工提取特征的不确定性,及牦牛识别采用耳标方式的局限性,有效的提高了牦牛身份识别的效率。In summary, it can be seen that the present invention firstly detects the cow face of the yak through the method based on deep learning, then uses the convolutional neural network to automatically extract the cow face features, and finally uses the cos angle to calculate the similarity of the two cow faces, and outputs The yak number with the highest similarity is used as the matching result, which can achieve a relatively high accuracy rate. It avoids the uncertainty of manually extracting features in the traditional identification method, and the limitation of using ear tags for yak identification, and effectively improves the efficiency of yak identification.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810094183.6A CN108197605A (en) | 2018-01-31 | 2018-01-31 | Yak personal identification method based on deep learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810094183.6A CN108197605A (en) | 2018-01-31 | 2018-01-31 | Yak personal identification method based on deep learning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108197605A true CN108197605A (en) | 2018-06-22 |
Family
ID=62591464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810094183.6A Pending CN108197605A (en) | 2018-01-31 | 2018-01-31 | Yak personal identification method based on deep learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108197605A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109063589A (en) * | 2018-07-12 | 2018-12-21 | 杭州电子科技大学 | Instrument and equipment on-line monitoring method neural network based and system |
CN109190477A (en) * | 2018-08-02 | 2019-01-11 | 平安科技(深圳)有限公司 | Settlement of insurance claim method, apparatus, computer equipment and storage medium based on the identification of ox face |
CN109508907A (en) * | 2018-12-24 | 2019-03-22 | 中国科学院合肥物质科学研究院 | Milk cow body condition intelligent scoring system based on deep learning and long-distance video |
CN110795980A (en) * | 2019-05-10 | 2020-02-14 | 深圳市睿策者科技有限公司 | Network video-based evasion identification method, equipment, storage medium and device |
CN111291683A (en) * | 2020-02-08 | 2020-06-16 | 内蒙古大学 | A dairy cow individual identification system and identification method based on deep learning |
CN111368766A (en) * | 2020-03-09 | 2020-07-03 | 云南安华防灾减灾科技有限责任公司 | Cattle face detection and identification method based on deep learning |
CN111881906A (en) * | 2020-06-18 | 2020-11-03 | 广州万维创新科技有限公司 | LOGO identification method based on attention mechanism image retrieval |
CN112001324A (en) * | 2020-08-25 | 2020-11-27 | 北京影谱科技股份有限公司 | Method, device and equipment for identifying actions of players of basketball game video |
CN112101333A (en) * | 2020-11-23 | 2020-12-18 | 四川圣点世纪科技有限公司 | Smart cattle farm monitoring and identifying method and device based on deep learning |
CN112183332A (en) * | 2020-09-28 | 2021-01-05 | 成都希盟泰克科技发展有限公司 | Yak face identification method based on transfer learning |
CN112766404A (en) * | 2021-01-29 | 2021-05-07 | 安徽工大信息技术有限公司 | Chinese mitten crab authenticity identification method and system based on deep learning |
CN113780207A (en) * | 2021-09-16 | 2021-12-10 | 中国农业科学院草原研究所 | System and method for goat face recognition |
CN114022688A (en) * | 2021-09-27 | 2022-02-08 | 四川雪月天佑农牧科技有限公司 | Real-time livestock identity recognition method |
CN114255382A (en) * | 2021-12-28 | 2022-03-29 | 中通服公众信息产业股份有限公司 | Epidemic prevention ear tag identification method based on neural network |
CN114283366A (en) * | 2021-12-24 | 2022-04-05 | 东北农业大学 | Method and device for individual identification of dairy cows, and storage medium |
CN115457593A (en) * | 2022-07-26 | 2022-12-09 | 南京清湛人工智能研究院有限公司 | Cow face identification method, system, storage medium and electronic equipment |
CN117975562A (en) * | 2024-02-02 | 2024-05-03 | 四川农业大学 | A real-time continuous monitoring and management method for yak individual behavior based on video processing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160078283A1 (en) * | 2014-09-16 | 2016-03-17 | Samsung Electronics Co., Ltd. | Method of extracting feature of input image based on example pyramid, and facial recognition apparatus |
CN106845432A (en) * | 2017-02-07 | 2017-06-13 | 深圳市深网视界科技有限公司 | The method and apparatus that a kind of face is detected jointly with human body |
CN107066990A (en) * | 2017-05-04 | 2017-08-18 | 厦门美图之家科技有限公司 | A kind of method for tracking target and mobile device |
CN107292298A (en) * | 2017-08-09 | 2017-10-24 | 北方民族大学 | Ox face recognition method based on convolutional neural networks and sorter model |
-
2018
- 2018-01-31 CN CN201810094183.6A patent/CN108197605A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160078283A1 (en) * | 2014-09-16 | 2016-03-17 | Samsung Electronics Co., Ltd. | Method of extracting feature of input image based on example pyramid, and facial recognition apparatus |
CN106845432A (en) * | 2017-02-07 | 2017-06-13 | 深圳市深网视界科技有限公司 | The method and apparatus that a kind of face is detected jointly with human body |
CN107066990A (en) * | 2017-05-04 | 2017-08-18 | 厦门美图之家科技有限公司 | A kind of method for tracking target and mobile device |
CN107292298A (en) * | 2017-08-09 | 2017-10-24 | 北方民族大学 | Ox face recognition method based on convolutional neural networks and sorter model |
Non-Patent Citations (1)
Title |
---|
董兰芳 等: "基于Faster R-CNN的人脸检测方法", 《计算机系统应用》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109063589A (en) * | 2018-07-12 | 2018-12-21 | 杭州电子科技大学 | Instrument and equipment on-line monitoring method neural network based and system |
CN109190477A (en) * | 2018-08-02 | 2019-01-11 | 平安科技(深圳)有限公司 | Settlement of insurance claim method, apparatus, computer equipment and storage medium based on the identification of ox face |
CN109508907A (en) * | 2018-12-24 | 2019-03-22 | 中国科学院合肥物质科学研究院 | Milk cow body condition intelligent scoring system based on deep learning and long-distance video |
CN110795980A (en) * | 2019-05-10 | 2020-02-14 | 深圳市睿策者科技有限公司 | Network video-based evasion identification method, equipment, storage medium and device |
CN111291683A (en) * | 2020-02-08 | 2020-06-16 | 内蒙古大学 | A dairy cow individual identification system and identification method based on deep learning |
CN111291683B (en) * | 2020-02-08 | 2023-04-18 | 内蒙古大学 | Dairy cow individual identification system based on deep learning and identification method thereof |
CN111368766A (en) * | 2020-03-09 | 2020-07-03 | 云南安华防灾减灾科技有限责任公司 | Cattle face detection and identification method based on deep learning |
CN111368766B (en) * | 2020-03-09 | 2023-08-18 | 云南安华防灾减灾科技有限责任公司 | Deep learning-based cow face detection and recognition method |
CN111881906A (en) * | 2020-06-18 | 2020-11-03 | 广州万维创新科技有限公司 | LOGO identification method based on attention mechanism image retrieval |
CN112001324B (en) * | 2020-08-25 | 2024-04-05 | 北京影谱科技股份有限公司 | Method, device and equipment for identifying player actions of basketball game video |
CN112001324A (en) * | 2020-08-25 | 2020-11-27 | 北京影谱科技股份有限公司 | Method, device and equipment for identifying actions of players of basketball game video |
CN112183332A (en) * | 2020-09-28 | 2021-01-05 | 成都希盟泰克科技发展有限公司 | Yak face identification method based on transfer learning |
CN112101333A (en) * | 2020-11-23 | 2020-12-18 | 四川圣点世纪科技有限公司 | Smart cattle farm monitoring and identifying method and device based on deep learning |
CN112766404A (en) * | 2021-01-29 | 2021-05-07 | 安徽工大信息技术有限公司 | Chinese mitten crab authenticity identification method and system based on deep learning |
CN113780207A (en) * | 2021-09-16 | 2021-12-10 | 中国农业科学院草原研究所 | System and method for goat face recognition |
CN114022688A (en) * | 2021-09-27 | 2022-02-08 | 四川雪月天佑农牧科技有限公司 | Real-time livestock identity recognition method |
CN114283366A (en) * | 2021-12-24 | 2022-04-05 | 东北农业大学 | Method and device for individual identification of dairy cows, and storage medium |
CN114255382A (en) * | 2021-12-28 | 2022-03-29 | 中通服公众信息产业股份有限公司 | Epidemic prevention ear tag identification method based on neural network |
CN114255382B (en) * | 2021-12-28 | 2024-11-08 | 中通服公众信息产业股份有限公司 | A method for identifying ear tags for epidemic prevention based on neural network |
CN115457593A (en) * | 2022-07-26 | 2022-12-09 | 南京清湛人工智能研究院有限公司 | Cow face identification method, system, storage medium and electronic equipment |
CN117975562A (en) * | 2024-02-02 | 2024-05-03 | 四川农业大学 | A real-time continuous monitoring and management method for yak individual behavior based on video processing |
CN117975562B (en) * | 2024-02-02 | 2024-08-20 | 四川农业大学 | Video processing-based real-time continuous monitoring and management method for individual behavior of yaks |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108197605A (en) | Yak personal identification method based on deep learning | |
CN109858435B (en) | A method for individual identification of red panda based on face image | |
CN103400384B (en) | The wide-angle image matching process of calmodulin binding domain CaM coupling and some coupling | |
CN108805076B (en) | Method and system for extracting table characters of environmental impact evaluation report | |
Jian et al. | The OUC-vision large-scale underwater image database | |
CN110363047A (en) | Method, device, electronic device and storage medium for face recognition | |
CN104966081B (en) | Spine Image Recognition Method | |
KR102027878B1 (en) | Method for recognizing art objects in video combining deep learning technology and image feature extraction technology | |
CN107301414B (en) | Chinese positioning, segmenting and identifying method in natural scene image | |
CN111104813A (en) | Two-dimensional code image key point detection method, device, electronic device and storage medium | |
CN105160686B (en) | A kind of low latitude various visual angles Remote Sensing Images Matching Method based on improvement SIFT operators | |
CN105069809A (en) | Camera positioning method and system based on planar mixed marker | |
He et al. | Distinguishing individual red pandas from their faces | |
CN108446699A (en) | Identity card pictorial information identifying system under a kind of complex scene | |
Bao et al. | An improved DenseNet model to classify the damage caused by cotton aphid | |
CN106845384A (en) | A kind of gesture identification method based on recursive models | |
WO2017156864A1 (en) | Method, apparatus, and device for image recognition, and nonvolatile computer storage medium | |
CN105488541A (en) | Natural feature point identification method based on machine learning in augmented reality system | |
CN103903017B (en) | A kind of face identification method based on adaptive soft histogram local binary patterns | |
Manh et al. | Small object segmentation based on visual saliency in natural images | |
Potje et al. | Extracting deformation-aware local features by learning to deform | |
CN103824067B (en) | The location of a kind of image main target and recognition methods | |
Hu et al. | Building extraction using mask scoring R-Cnn network | |
CN114627534B (en) | Living body discriminating method, electronic apparatus, and storage medium | |
Ma et al. | ApLeafis: an android-based plant leaf identification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180622 |