[go: up one dir, main page]

CN108189754B - A kind of automobile anti-collision method of multipoint mode active probe - Google Patents

A kind of automobile anti-collision method of multipoint mode active probe Download PDF

Info

Publication number
CN108189754B
CN108189754B CN201711410008.5A CN201711410008A CN108189754B CN 108189754 B CN108189754 B CN 108189754B CN 201711410008 A CN201711410008 A CN 201711410008A CN 108189754 B CN108189754 B CN 108189754B
Authority
CN
China
Prior art keywords
radar detector
effective radar
point
azimuth
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711410008.5A
Other languages
Chinese (zh)
Other versions
CN108189754A (en
Inventor
龚云
赵智博
孙成
张小宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201711410008.5A priority Critical patent/CN108189754B/en
Publication of CN108189754A publication Critical patent/CN108189754A/en
Application granted granted Critical
Publication of CN108189754B publication Critical patent/CN108189754B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种多点式主动探测的汽车防撞方法,包括步骤:一、建立多点式主动探测的汽车防撞系统;二、构建基于车身的独立坐标系;三、获取运动障碍物实时位置;四、拟合并预测运动障碍物轨迹;五、运动障碍物轨迹显示及预警。本发明利用汽车四侧面板上均不少于三个的雷达探测器实时主动的探测运动障碍物,对运动障碍物进行静态、动态物体的辨识、侦测与追踪,利用运动障碍物与汽车本体的距离以及位于汽车本体的方位角获取运动障碍物的坐标,通过多次计算取均值的方式提高运动障碍物的坐标精度,采用曲线拟合的方式获取运动障碍物轨迹,从而预先让驾驶者察觉到可能发生的危险。

The invention discloses a multi-point active detection automobile anti-collision method, comprising the steps of: 1. establishing a multi-point active detection automobile anti-collision system; 2. constructing an independent coordinate system based on the vehicle body; 3. acquiring moving obstacles Real-time position; 4. Fit and predict the trajectory of moving obstacles; 5. Display and early warning of moving obstacle trajectories. The present invention utilizes no less than three radar detectors on the four side panels of the automobile to actively detect moving obstacles in real time, and performs identification, detection and tracking of static and dynamic objects on the moving obstacles, and utilizes the moving obstacles and the car body The distance and the azimuth of the car body are used to obtain the coordinates of the moving obstacle, and the coordinate accuracy of the moving obstacle is improved by taking the average value of multiple calculations, and the trajectory of the moving obstacle is obtained by curve fitting, so that the driver can be aware of it in advance. to possible dangers.

Description

一种多点式主动探测的汽车防撞方法A Multi-point Active Detection Vehicle Collision Avoidance Method

技术领域technical field

本发明属于汽车防撞技术领域,具体涉及一种多点式主动探测的汽车防撞方法。The invention belongs to the technical field of automobile anti-collision, and in particular relates to a multi-point active detection automobile anti-collision method.

背景技术Background technique

就目前汽车技术发展而言,驾驶视线盲区还是无法避免的,车内后视镜和左右后视镜视角有限,即便装上倒车影像和倒车雷达,也只能起到辅助作用,特别是对于新手,驾驶经验不足,只能借助于后视镜、倒车影像和雷达,无法准确判断盲区的情况,存在极大的安全隐患,现有的交通路况越来越复杂,意外情况时有发生,单点式雷达探测方式无法满足汽车周围任何方向带来的安全隐患;因此,现如今缺少一种设计合理,步骤简单的多点式主动探测的汽车防撞方法,利用汽车四侧面板上均不少于三个的雷达探测器实时主动的探测运动障碍物,对运动障碍物进行静态、动态物体的辨识、侦测与追踪,从而预先让驾驶者察觉到可能发生的危险。As far as the current development of automobile technology is concerned, blind spots in driving vision are still unavoidable. The angle of view of the interior rearview mirror and left and right rearview mirrors is limited. Even if reversing images and reversing sensors are installed, they can only play an auxiliary role, especially for novices. , Inexperienced driving, can only rely on rearview mirrors, reversing images and radar, unable to accurately judge the situation in blind spots, there is a great potential safety hazard, the existing traffic conditions are becoming more and more complicated, accidents happen from time to time, single point The traditional radar detection method cannot meet the potential safety hazards brought by any direction around the car; therefore, there is a lack of a car collision avoidance method with reasonable design and simple steps. The three radar detectors actively detect moving obstacles in real time, and identify, detect and track static and dynamic objects for moving obstacles, so as to let the driver be aware of possible dangers in advance.

发明内容Contents of the invention

本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种多点式主动探测的汽车防撞方法,利用汽车四侧面板上均不少于三个的雷达探测器实时主动的探测运动障碍物,对运动障碍物进行静态、动态物体的辨识、侦测与追踪,利用运动障碍物与汽车本体的距离以及位于汽车本体的方位角获取运动障碍物的坐标,通过多次计算取均值的方式提高运动障碍物的坐标精度,采用曲线拟合的方式获取运动障碍物轨迹,从而预先让驾驶者察觉到可能发生的危险,便于推广使用。The technical problem to be solved by the present invention is to provide a multi-point active detection automobile collision avoidance method for the deficiencies in the above-mentioned prior art. Detect moving obstacles, identify, detect and track static and dynamic objects for moving obstacles, use the distance between moving obstacles and the car body and the azimuth angle of the car body to obtain the coordinates of moving obstacles, and obtain them through multiple calculations The average method improves the coordinate accuracy of moving obstacles, and the trajectory of moving obstacles is obtained by curve fitting, so that drivers can be aware of possible dangers in advance, which is convenient for popularization and use.

为解决上述技术问题,本发明采用的技术方案是:一种多点式主动探测的汽车防撞方法,其特征在于,该方法包括以下步骤:In order to solve the above-mentioned technical problems, the technical solution adopted by the present invention is: a multi-point active detection automobile collision avoidance method, characterized in that the method comprises the following steps:

步骤一、建立多点式主动探测的汽车防撞系统:在汽车车体的前侧面板、后侧面板、左侧面板和右侧面板上分别安装不少于三个用于主动探测运动障碍物位置的雷达探测器,同时建立用于对每个雷达探测器探测到的数据进行处理的汽车防撞子系统,所述汽车防撞子系统与雷达探测器组成多点式主动探测的汽车防撞系统;所述汽车防撞子系统包括车载控制器和安装在汽车车体的底盘上安装用于检测汽车车体竖直角的电子竖直角测量仪,以及均与车载控制器的输出端相接的显示屏和用于提示司机避开运动障碍物的报警器,电子竖直角测量仪和雷达探测器均与车载控制器的输入端相接;Step 1. Establish a multi-point active detection automobile collision avoidance system: install no less than three points on the front side panel, rear side panel, left side panel and right side panel of the car body for active detection of moving obstacles. position radar detectors, and establish a vehicle anti-collision subsystem for processing the data detected by each radar detector. The vehicle anti-collision subsystem and radar detectors form a multi-point active detection vehicle anti-collision system system; the automobile anti-collision subsystem includes a vehicle-mounted controller and an electronic vertical angle measuring instrument installed on the chassis of the automobile body for detecting the vertical angle of the automobile body, and is connected with the output terminal of the vehicle-mounted controller The connected display screen and the alarm for prompting the driver to avoid moving obstacles, the electronic vertical angle measuring instrument and the radar detector are all connected with the input end of the on-board controller;

汽车车体的前侧面板、后侧面板、左侧面板和右侧面板上安装的雷达探测器均位于同一平面上;The radar detectors installed on the front side panel, rear side panel, left side panel and right side panel of the car body are all located on the same plane;

步骤二、构建基于车身的独立坐标系:以位于同一平面上的多个雷达探测器所在平面的几何中心位置为坐标原点O,以汽车车体直线前进行驶的正前方为Y轴正方向,以水平垂直于Y轴且由左侧面板指向右侧面板的方向为X轴正方向,以竖直垂直于Y轴且由汽车车体的底盘指向汽车车体顶板的方向为Z轴正方向建立基于车身的独立坐标系O-XYZ;Step 2. Build an independent coordinate system based on the body: take the geometric center position of the plane where multiple radar detectors on the same plane are located as the coordinate origin O, take the front of the car body moving straight ahead as the positive direction of the Y axis, and take The direction perpendicular to the Y axis and pointing from the left side panel to the right side panel is the positive direction of the X axis, and the direction vertically perpendicular to the Y axis and pointing from the chassis of the car body to the roof of the car body is the positive direction of the Z axis. The independent coordinate system O-XYZ of the body;

步骤三、获取运动障碍物实时位置,过程如下:Step 3. Obtain the real-time position of the moving obstacle, the process is as follows:

步骤301、确定有效雷达探测器:利用多个雷达探测器同时探测运动障碍物分别距离多个雷达探测器的距离,并将多个距离数据实时传输至车载控制器,车载控制器对多个距离数据进行从小到大排序,设定排序后的前三个距离数据所对应的雷达探测器均为有效雷达探测器,三个有效雷达探测器为三个连续的雷达探测器,该三个连续的雷达探测器依次为第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C,设定运动障碍物的位置为点P;Step 301, determine effective radar detectors: use multiple radar detectors to simultaneously detect the distances of moving obstacles from multiple radar detectors, and transmit multiple distance data to the on-board controller in real time, and the on-board controller calculates the distance between multiple distances The data is sorted from small to large, and the radar detectors corresponding to the first three distance data after sorting are set to be effective radar detectors, and the three effective radar detectors are three consecutive radar detectors. The radar detectors are the first effective radar detector A, the second effective radar detector B and the third effective radar detector C in turn, and the position of the moving obstacle is set as point P;

步骤302、根据公式计算第二有效雷达探测器B与第一有效雷达探测器A的基准方位角其中,XA为第一有效雷达探测器A的X轴坐标,YA为第一有效雷达探测器A的Y轴坐标,XB为第二有效雷达探测器B的X轴坐标,YB为第二有效雷达探测器B的Y轴坐标, Step 302, according to the formula Calculate the reference azimuth angle between the second effective radar detector B and the first effective radar detector A Among them, X A is the X-axis coordinate of the first effective radar detector A, Y A is the Y-axis coordinate of the first effective radar detector A, X B is the X-axis coordinate of the second effective radar detector B, and Y B is The Y-axis coordinate of the second effective radar detector B,

根据公式计算第三有效雷达探测器C与第二有效雷达探测器B的基准方位角其中,XC为第三有效雷达探测器C的X轴坐标,YC为第三有效雷达探测器C的Y轴坐标, According to the formula Calculate the reference azimuth angle between the third effective radar detector C and the second effective radar detector B Wherein, X C is the X-axis coordinate of the third effective radar detector C, and Y C is the Y-axis coordinate of the third effective radar detector C,

步骤303、确定第二有效雷达探测器B与第一有效雷达探测器A的方位角αBAStep 303. Determine the azimuth α BA between the second effective radar detector B and the first effective radar detector A:

当XA-XB>0且YA-YB>0时,方位角 When X A -X B >0 and Y A -Y B >0, the azimuth

当XA-XB<0且YA-YB>0时,方位角 When X A -X B <0 and Y A -Y B >0, the azimuth

当XA-XB<0且YA-YB<0时,方位角 When X A -X B <0 and Y A -Y B <0, the azimuth

当XA-XB>0且YA-YB<0时,方位角 When X A -X B >0 and Y A -Y B <0, the azimuth

确定第三有效雷达探测器C与第二有效雷达探测器B的方位角αCBDetermine the azimuth α CB between the third effective radar detector C and the second effective radar detector B:

当XB-XC>0且YB-YC>0时,方位角 When X B -X C >0 and Y B -Y C >0, the azimuth

当XB-XC<0且YB-YC>0时,方位角 When X B -X C <0 and Y B -Y C >0, the azimuth

当XB-XC<0且YB-YC<0时,方位角 When X B -X C <0 and Y B -Y C <0, the azimuth

当XB-XC>0且YB-YC<0时,方位角 When X B -X C >0 and Y B -Y C <0, the azimuth

步骤304、根据公式计算第一有效雷达探测器A与点P的方位角αAP和第二有效雷达探测器B与点P的初始方位角α'BP,其中,∠BAP为LBA与LAP的夹角且∠ABP为LBA与LBP的夹角且LBA为第二有效雷达探测器B至第一有效雷达探测器A的线段,LAP为第一有效雷达探测器A至点P的线段,LBP为第二有效雷达探测器B至点P的线段,αAB为第一有效雷达探测器A至第二有效雷达探测器B的方位角;Step 304, according to the formula Calculate the azimuth α AP between the first effective radar detector A and point P and the initial azimuth α' BP between the second effective radar detector B and point P, where ∠BAP is the angle between L BA and L AP and ∠ABP is the angle between L BA and L BP and L BA is the line segment from the second effective radar detector B to the first effective radar detector A, L AP is the line segment from the first effective radar detector A to point P, and L BP is the line segment from the second effective radar detector B to point P , α AB is the azimuth angle from the first effective radar detector A to the second effective radar detector B;

根据公式计算第二有效雷达探测器B与点P的更新方位角α'B'P和第三有效雷达探测器C与点P的方位角αCP,其中,∠CBP为LCB与LBP的夹角且∠BCP为LCB与LCP的夹角且LCB为第三有效雷达探测器C至第二有效雷达探测器B的线段,LCP为第三有效雷达探测器C至点P的线段,αBC为第二有效雷达探测器B至第三有效雷达探测器C的方位角;According to the formula Calculate the updated azimuth α' B ' P between the second effective radar detector B and point P and the azimuth α CP between the third effective radar detector C and point P, where ∠CBP is the angle between L CB and L BP and ∠BCP is the angle between L CB and L CP and L CB is the line segment from the third effective radar detector C to the second effective radar detector B, L CP is the line segment from the third effective radar detector C to point P, α BC is the line segment from the second effective radar detector B to the third the azimuth of the effective radar detector C;

根据公式计算第二有效雷达探测器B与点P的方位角αBPAccording to the formula Calculate the azimuth α BP between the second effective radar detector B and the point P;

步骤305、根据公式计算LAP的方向角βAPStep 305, according to the formula Calculate the orientation angle β AP of L AP ;

根据公式计算LBP的方向角βBPAccording to the formula Calculate the orientation angle β BP of L BP ;

根据公式计算LCP的方向角βCPAccording to the formula Calculate the orientation angle β CP of L CP ;

步骤306、根据公式计算第一有效雷达探测器A和点P在X轴向的方向余弦γAPx、第一有效雷达探测器A和点P在Y轴向的方向余弦γAPy、第一有效雷达探测器A和点P在Z轴向的方向余弦γAPz,其中,V为电子竖直角测量仪测量的汽车车体的竖直角;Step 306, according to the formula Calculate the direction cosine γ APx of the first effective radar detector A and point P on the X axis, the direction cosine γ APy of the first effective radar detector A and point P on the Y axis, the first effective radar detector A and point P The direction cosine γ APz of P in the Z axis, wherein, V is the vertical angle of the automobile body measured by the electronic vertical angle measuring instrument;

根据公式计算第二有效雷达探测器B和点P在X轴向的方向余弦γBPx、第二有效雷达探测器B和点P在Y轴向的方向余弦γBPy、第二有效雷达探测器B和点P在Z轴向的方向余弦γBPzAccording to the formula Calculate the direction cosine γ BPx of the second effective radar detector B and point P on the X axis, the direction cosine γ BPy of the second effective radar detector B and point P on the Y axis, the second effective radar detector B and point P The direction cosine γ BPz of P in the Z axis;

根据公式计算第三有效雷达探测器C和点P在X轴向的方向余弦γCPx、第三有效雷达探测器C和点P在Y轴向的方向余弦γCPy、第三有效雷达探测器C和点P在Z轴向的方向余弦γCPzAccording to the formula Calculate the direction cosine γ CPx of the third effective radar detector C and point P on the X axis, the direction cosine γ CPy of the third effective radar detector C and point P on the Y axis, the third effective radar detector C and point P The direction cosine γ CPz of P in the Z axis;

步骤307、根据公式计算点P的初始第一坐标(XAP,YAP,ZAP),其中,ΔXAP为LAP在X轴的分量且ΔXAP=LAPAPx,ΔYAP为LAP在Y轴的分量且ΔYAP=LAPAPy,ΔZAP为LAP在Z轴的分量且ΔZAP=LAPAPzStep 307, according to the formula Calculate the initial first coordinates (X AP , Y AP , Z AP ) of point P, where ΔX AP is the component of L AP on the X axis and ΔX AP = L APAPx , and ΔY AP is the component of L AP on the Y axis Component and ΔY AP =L APAPy , ΔZ AP is the component of L AP on the Z axis and ΔZ AP =L APAPz ;

根据公式计算点P的初始第二坐标(XBP,YBP,ZBP),其中,ΔXBP为LBP在X轴的分量且ΔXBP=LBPBPx,ΔYBP为LBP在Y轴的分量且ΔYBP=LBPBPy,ΔZBP为LBP在Z轴的分量且ΔZBP=LBPBPzAccording to the formula Calculate the initial second coordinates (X BP , Y BP , Z BP ) of point P, where ΔX BP is the component of L BP on the X axis and ΔX BP =L BPBPx , ΔY BP is the component of L BP on the Y axis Component and ΔY BP =L BPBPy , ΔZ BP is the component of L BP on the Z axis and ΔZ BP =L BPBPz ;

根据公式计算点P的初始第三坐标(XCP,YCP,ZCP),其中,ΔXCP为LCP在X轴的分量且ΔXCP=LCPCPx,ΔYCP为LCP在Y轴的分量且ΔYCP=LCPCPy,ΔZCP为LCP在Z轴的分量且ΔZCP=LCPCPzAccording to the formula Calculate the initial third coordinate (X CP , Y CP , Z CP ) of point P, where ΔX CP is the component of L CP on the X axis and ΔX CP =L CPCPx , ΔY CP is the component of L CP on the Y axis Component and ΔY CP =L CPCPy , ΔZ CP is the component of L CP on the Z axis and ΔZ CP =L CPCPz ;

步骤308、根据公式计算点P的更新坐标(XP,YP,ZP);Step 308, according to the formula Calculate the updated coordinates (X P , Y P , Z P ) of point P;

步骤309、n次利用第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C主动探测运动障碍物距离,并n次循环步骤304至步骤308,得到n次不同时刻的点P的更新坐标,获取运动障碍物的实时位置,n次不同时刻的点P的更新坐标构成观测数据集合Q={(x1,y1,z1),(x2,y2,z2),...,(xi,yi,zi),...,(xn,yn,zn)},其中,n为不小于4的正整数,i为有效雷达探测器探测次数编号且1≤i≤n,(xi,yi,zi)为车载控制器第i次计算的点P的更新坐标;Step 309, use the first effective radar detector A, the second effective radar detector B and the third effective radar detector C to actively detect the moving obstacle distance n times, and loop steps 304 to 308 for n times to obtain n times different The updated coordinates of point P at each time, to obtain the real-time position of moving obstacles, and the updated coordinates of point P at n times at different times constitute the observation data set Q={(x 1 ,y 1 ,z 1 ),(x 2 ,y 2 ,z 2 ),...,( xi ,y i , zi ),...,(x n ,y n ,z n )}, where n is a positive integer not less than 4, and i is a valid The detection times of the radar detector are numbered and 1≤i≤n, ( xi , y, zi ) is the update coordinate of the point P calculated by the on-board controller for the ith time;

步骤四、拟合并预测运动障碍物轨迹,过程如下:Step 4. Fitting and predicting the trajectory of moving obstacles, the process is as follows:

步骤401、获取有效观测数据集合Q':利用车载控制器对观测数据集合Q={(x1,y1,z1),(x2,y2,z2),...,(xi,yi,zi),...,(xn,yn,zn)}做降维处理,选取点P的更新坐标的X轴坐标值和Y轴坐标值构成有效观测数据集合Q',有效观测数据集合Q'={(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)};Step 401, Obtain the effective observation data set Q': use the on-board controller to obtain the observation data set Q={(x 1 ,y 1 ,z 1 ),(x 2 ,y 2 ,z 2 ),...,(x i ,y i ,z i ),...,(x n ,y n ,z n )} do dimension reduction processing, select the X-axis coordinate value and Y-axis coordinate value of the update coordinates of point P to form an effective observation data set Q', effective observation data set Q'={(x 1 ,y 1 ),(x 2 ,y 2 ),...,( xi ,y i ),...,(x n ,y n ) };

步骤402、确定基函数族并构建二次多项式:车载控制器设定基函数族,所述基函数族包括δ0(x)=1、δ1(x)=x和δ2(x)=x2,车载控制器构建二次多项式s(x)=a0δ0(x)+a1δ1(x)+a2δ2(x),其中,a0为二次多项式s(x)中δ0(x)的系数,a1为二次多项式s(x)中δ1(x)的系数,a2为二次多项式s(x)中δ2(x)的系数;Step 402, determine the basis function family and construct the quadratic polynomial: the on-board controller sets the basis function family, and the basis function family includes δ 0 (x)=1, δ 1 (x)=x and δ 2 (x)= x 2 , the on-board controller constructs the quadratic polynomial s(x)=a 0 δ 0 (x)+a 1 δ 1 (x)+a 2 δ 2 (x), where a 0 is the quadratic polynomial s(x ), a 1 is the coefficient of δ 1 ( x ) in the quadratic polynomial s(x), a 2 is the coefficient of δ 2 (x) in the quadratic polynomial s(x);

步骤403、根据公式计算二次多项式s(x)的系数矩阵并带入二次多项式s(x)=a0+a1x+a2x2,车载控制器获得拟合曲线,实现运动障碍物轨迹的预测,其中,δ0为由δ0(x)=1组成的n维向量且δ0=[1,1,L,1,L,1]T,δ1为由δ1(x)=x组成的n维向量且δ1=[x1,x2,L,xi,L,xn]T,δ2为由δ2(x)=x2组成的n维向量且 Step 403, according to the formula Compute the coefficient matrix of the quadratic polynomial s(x) And into the quadratic polynomial s(x)=a 0 +a 1 x+a 2 x 2 , the on-board controller obtains the fitting curve to realize the prediction of the trajectory of moving obstacles, where δ 0 is defined by δ 0 (x) = n-dimensional vector composed of 1 and δ 0 =[1,1,L,1,L,1] T , δ 1 is an n-dimensional vector composed of δ 1 (x)=x and δ 1 =[x 1 , x 2 ,L, xi ,L,x n ] T , δ 2 is an n-dimensional vector composed of δ 2 (x)=x 2 and

步骤五、运动障碍物轨迹显示及预警:利用显示屏实时显示运动障碍物的运动轨迹,通过车载控制器设定运动障碍物距离汽车车体的安全距离阈值,当运动障碍物与汽车车体的距离不大于安全距离阈值时,车载控制器控制报警器预警。Step 5. Track display and early warning of moving obstacles: Use the display screen to display the moving tracks of moving obstacles in real time, and set the safety distance threshold between moving obstacles and the car body through the on-board controller. When the distance is not greater than the safety distance threshold, the on-board controller controls the alarm to give an early warning.

上述的一种多点式主动探测的汽车防撞方法,其特征在于:步骤304中根据公式计算第一有效雷达探测器A与第二有效雷达探测器B的基准方位角确定第一有效雷达探测器A与第二有效雷达探测器B的方位角αABThe automobile collision avoidance method of above-mentioned a kind of multi-point type active detection is characterized in that: in step 304, according to the formula Calculate the reference azimuth angle between the first effective radar detector A and the second effective radar detector B Determine the azimuth α AB of the first effective radar detector A and the second effective radar detector B:

当XB-XA>0且YB-YA>0时,方位角 When X B -X A >0 and Y B -Y A >0, the azimuth

当XB-XA<0且YB-YA>0时,方位角 When X B -X A <0 and Y B -Y A >0, the azimuth

当XB-XA<0且YB-YA<0时,方位角 When X B -X A <0 and Y B -Y A <0, the azimuth

当XB-XA>0且YB-YA<0时,方位角 When X B -X A >0 and Y B -Y A <0, the azimuth

步骤304中根据公式计算第二有效雷达探测器B与第三有效雷达探测器C的基准方位角确定第二有效雷达探测器B与第三有效雷达探测器C的方位角αBCIn step 304 according to the formula Calculate the reference azimuth angle of the second effective radar detector B and the third effective radar detector C Determine the azimuth α BC of the second effective radar detector B and the third effective radar detector C:

当XC-XB>0且YC-YB>0时,方位角 When X C -X B >0 and Y C -Y B >0, the azimuth

当XC-XB<0且YC-YB>0时,方位角 When X C -X B <0 and Y C -Y B >0, the azimuth

当XC-XB<0且YC-YB<0时,方位角 When X C -X B <0 and Y C -Y B <0, the azimuth

当XC-XB>0且YC-YB<0时,方位角 When X C -X B >0 and Y C -Y B <0, the azimuth

上述的一种多点式主动探测的汽车防撞方法,其特征在于:所述报警器包括语音提示器和LED爆闪灯,所述语音提示器和所述LED爆闪灯均与车载控制器的输出端相接。The above-mentioned a kind of multi-point type active detection automobile anti-collision method is characterized in that: the alarm includes a voice prompter and an LED flashing light, and the voice prompter and the LED flashing light are all connected to the vehicle-mounted controller The output terminals are connected.

上述的一种多点式主动探测的汽车防撞方法,其特征在于:所述安全距离阈值为0.5m~1m。The above-mentioned multi-point active detection vehicle collision avoidance method is characterized in that: the safety distance threshold is 0.5m-1m.

本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:

1、本发明通过在汽车车体的前侧面板、后侧面板、左侧面板和右侧面板上分别安装不少于三个雷达探测器,主动探测运动障碍物位置,满足汽车周围任何方向上运动障碍物带来的安全隐患,减少汽车盲区无法准确识别运动障碍物的情况,便于推广使用。1. The present invention actively detects the position of moving obstacles by installing no less than three radar detectors on the front side panel, rear side panel, left side panel and right side panel of the automobile body, and satisfies the requirements of the vehicle in any direction around the vehicle. The potential safety hazards caused by moving obstacles can reduce the situation that the blind spots of cars cannot accurately identify moving obstacles, which is convenient for popularization and use.

2、本发明利用车载控制器对多个距离数据进行从小到大排序,设定排序后的前三个距离数据所对应的雷达探测器均为有效雷达探测器,利用三个雷达探测器中相邻的两个雷达探测器与运动障碍物组成三角形关系,获取运动障碍物的坐标,利用计算坐标取平均的方式获取运动障碍物的更新坐标,进而得到运动障碍物的实时位置,可靠稳定,使用效果好。2. The present invention uses the vehicle-mounted controller to sort a plurality of distance data from small to large, and sets the radar detectors corresponding to the first three distance data after sorting to be effective radar detectors. The two adjacent radar detectors form a triangle relationship with the moving obstacle, obtain the coordinates of the moving obstacle, use the method of calculating the average of the coordinates to obtain the updated coordinates of the moving obstacle, and then obtain the real-time position of the moving obstacle, which is reliable and stable. The effect is good.

3、本发明方法步骤简单,利用多点拟合曲线的方式对运动障碍物的更新坐标进行曲线拟合,得到运动障碍物的轨迹以及预测运动障碍物的轨迹,实现运动障碍物的侦测与追踪,从而预先让驾驶者察觉到可能发生的危险,便于推广使用。3. The steps of the method of the present invention are simple, and the update coordinates of the moving obstacles are curve-fitted by means of multi-point fitting curves, so as to obtain the trajectory of the moving obstacles and predict the trajectory of the moving obstacles, and realize the detection and monitoring of the moving obstacles. Tracking, so that drivers can be aware of possible dangers in advance, which is convenient for popularization.

综上所述,本发明利用汽车四侧面板上均不少于三个的雷达探测器实时主动的探测运动障碍物,对运动障碍物进行静态、动态物体的辨识、侦测与追踪,利用运动障碍物与汽车本体的距离以及位于汽车本体的方位角获取运动障碍物的坐标,通过多次计算取均值的方式提高运动障碍物的坐标精度,采用曲线拟合的方式获取运动障碍物轨迹,从而预先让驾驶者察觉到可能发生的危险,便于推广使用。To sum up, the present invention utilizes no less than three radar detectors on the four side panels of the automobile to actively detect moving obstacles in real time, to identify, detect and track static and dynamic objects on moving obstacles, and utilize moving The distance between the obstacle and the car body and the azimuth angle of the car body are used to obtain the coordinates of the moving obstacle, and the coordinate accuracy of the moving obstacle is improved by means of multiple calculations and average values, and the trajectory of the moving obstacle is obtained by curve fitting, so that Let drivers be aware of possible dangers in advance, which is convenient for promotion and use.

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.

附图说明Description of drawings

图1为本发明汽车车体、雷达探测器和运动障碍物在基于车身的独立坐标系O-XYZ中的俯视位置关系示意图。Fig. 1 is a schematic diagram of the top view positional relationship among the vehicle body, the radar detector and the moving obstacle in the independent coordinate system O-XYZ based on the vehicle body of the present invention.

图2为本发明多点式主动探测的汽车防撞系统的电路原理框图。Fig. 2 is a circuit block diagram of the multi-point active detection automobile collision avoidance system of the present invention.

图3为本发明的方法流程框图。Fig. 3 is a flow chart of the method of the present invention.

附图标记说明:Explanation of reference signs:

1—雷达探测器; 2—车载控制器; 3—显示屏;1—radar detector; 2—vehicle controller; 3—display screen;

4—报警器; 5—汽车车体; 6—运动障碍物;4—alarm; 5—car body; 6—moving obstacles;

7—电子竖直角测量仪。7—Electronic vertical angle measuring instrument.

具体实施方式Detailed ways

如图1、图2和图3所示的一种多点式主动探测的汽车防撞方法,包括以下步骤:A kind of automobile anti-collision method of multi-point active detection as shown in Fig. 1, Fig. 2 and Fig. 3, comprises the following steps:

步骤一、建立多点式主动探测的汽车防撞系统:在汽车车体5的前侧面板、后侧面板、左侧面板和右侧面板上分别安装不少于三个用于主动探测运动障碍物6位置的雷达探测器1,同时建立用于对每个雷达探测器1探测到的数据进行处理的汽车防撞子系统,所述汽车防撞子系统与雷达探测器1组成多点式主动探测的汽车防撞系统;所述汽车防撞子系统包括车载控制器2和安装在汽车车体5的底盘上安装用于检测汽车车体5竖直角的电子竖直角测量仪7,以及均与车载控制器2的输出端相接的显示屏3和用于提示司机避开运动障碍物6的报警器4,电子竖直角测量仪7和雷达探测器1均与车载控制器2的输入端相接;Step 1. Establish a multi-point active detection automobile collision avoidance system: install no less than three points on the front side panel, rear side panel, left side panel and right side panel of the car body 5 for actively detecting movement obstacles. The radar detector 1 at the position of the object 6, and establishes the automobile anti-collision subsystem for processing the data detected by each radar detector 1 at the same time, and the automobile anti-collision subsystem and the radar detector 1 form a multi-point active The automobile anti-collision system of detection; Described automobile anti-collision subsystem comprises vehicle-mounted controller 2 and is installed on the chassis of automobile body 5 and is installed on the chassis of automobile body 5 and is used to detect the electronic vertical angle measuring instrument 7 of automobile body 5 vertical angles, and The display screen 3 that is all connected with the output terminal of the vehicle-mounted controller 2 and the alarm 4 that is used to prompt the driver to avoid the moving obstacle 6, the electronic vertical angle measuring instrument 7 and the radar detector 1 are all connected with the vehicle-mounted controller 2. The input terminals are connected;

汽车车体5的前侧面板、后侧面板、左侧面板和右侧面板上安装的雷达探测器1均位于同一平面上;The radar detectors 1 installed on the front side panel, rear side panel, left side panel and right side panel of the automobile body 5 are all located on the same plane;

需要说明的是,在汽车车体5的前侧面板、后侧面板、左侧面板和右侧面板上分别安装不少于三个雷达探测器1,主动探测运动障碍物6位置的目的是实现汽车周围任何方向上运动障碍物带来的安全隐患,减少汽车盲区无法准确识别运动障碍物的情况,实现多点式主动探测的模式,利用车载控制器2对雷达探测器1探测的数据进行处理,采用显示屏3可实时显示汽车车体5与运动障碍物6的位置关系,便于驾驶员查看,直观可靠,利用报警器4可有效提示驾驶员或运动障碍物6上的人,尽量的保持安全距离,使用效果好;汽车车体5的前侧面板、后侧面板、左侧面板和右侧面板上安装的雷达探测器1均位于同一平面上的便于建立基于车身的独立坐标系,提高雷达探测器1的探测精度,简化计算过程。It should be noted that no less than three radar detectors 1 are respectively installed on the front side panel, rear side panel, left side panel and right side panel of the automobile body 5, and the purpose of actively detecting the position of the moving obstacle 6 is to realize Potential safety hazards caused by moving obstacles in any direction around the car, reduce the situation that the blind spot of the car cannot accurately identify moving obstacles, realize the multi-point active detection mode, and use the on-board controller 2 to process the data detected by the radar detector 1 , the display screen 3 can be used to display the positional relationship between the car body 5 and the moving obstacle 6 in real time, which is convenient for the driver to check, intuitive and reliable, and the alarm 4 can be used to effectively prompt the driver or the people on the moving obstacle 6 to keep Safe distance, good use effect; the radar detector 1 installed on the front side panel, the rear side panel, the left side panel and the right side panel of the automobile body 5 is all located on the same plane, which is convenient to establish an independent coordinate system based on the vehicle body, and improves The detection accuracy of the radar detector 1 simplifies the calculation process.

步骤二、构建基于车身的独立坐标系:以位于同一平面上的多个雷达探测器1所在平面的几何中心位置为坐标原点O,以汽车车体5直线前进行驶的正前方为Y轴正方向,以水平垂直于Y轴且由左侧面板指向右侧面板的方向为X轴正方向,以竖直垂直于Y轴且由汽车车体5的底盘指向汽车车体5顶板的方向为Z轴正方向建立基于车身的独立坐标系O-XYZ;Step 2. Build an independent coordinate system based on the body: take the geometric center position of the plane where multiple radar detectors 1 are located on the same plane as the coordinate origin O, and take the straight ahead of the car body 5 as the positive direction of the Y axis , take the direction perpendicular to the Y axis and pointing from the left panel to the right panel as the positive direction of the X axis, and take the direction perpendicular to the Y axis and pointing from the chassis of the automobile body 5 to the top plate of the automobile body 5 as the Z axis Establish an independent coordinate system O-XYZ based on the body in the positive direction;

步骤三、获取运动障碍物实时位置,过程如下:Step 3. Obtain the real-time position of the moving obstacle, the process is as follows:

步骤301、确定有效雷达探测器:利用多个雷达探测器1同时探测运动障碍物6分别距离多个雷达探测器1的距离,并将多个距离数据实时传输至车载控制器2,车载控制器2对多个距离数据进行从小到大排序,设定排序后的前三个距离数据所对应的雷达探测器1均为有效雷达探测器,三个有效雷达探测器为三个连续的雷达探测器1,该三个连续的雷达探测器1依次为第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C,设定运动障碍物6的位置为点P;Step 301, determine the effective radar detector: use multiple radar detectors 1 to simultaneously detect the distances of the moving obstacles 6 from the multiple radar detectors 1, and transmit the multiple distance data to the on-board controller 2 in real time, and the on-board controller 2 Sorting multiple distance data from small to large, setting the radar detectors corresponding to the first three distance data after sorting are all effective radar detectors, and the three effective radar detectors are three consecutive radar detectors 1. The three continuous radar detectors 1 are the first effective radar detector A, the second effective radar detector B and the third effective radar detector C in turn, and the position of the moving obstacle 6 is set as point P;

需要说明的是,车载控制器2对多个距离数据进行从小到大排序,设定排序后的前三个距离数据所对应的雷达探测器1均为有效雷达探测器的目的是简化计算过程,位于同一侧汽车面板上的雷达探测器1探测的运动障碍物6数据接近,选择前三个距离最小的数据一是为了提高抗干扰性,避免一次计算获取的运动障碍物6坐标存在误差,二是为了简化计算,避免大量的数据给车载控制器2造成计算负荷大,造成数据运算速度慢,满足数据获取精度,实际使用中,三个有效雷达探测器为三个连续的雷达探测器1,将三个连续的雷达探测器1分别依次命名为第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C,对任何选出的三个有效雷达探测器按照在汽车车体5安装的位置连续性依次命名为第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C。It should be noted that the on-board controller 2 sorts multiple distance data from small to large, and the purpose of setting the radar detectors 1 corresponding to the first three distance data after sorting to be effective radar detectors is to simplify the calculation process. The data of the moving obstacle 6 detected by the radar detector 1 on the same side of the car panel are close, and the first three data with the smallest distances are selected. It is to simplify the calculation and avoid a large amount of data from causing a large calculation load to the on-board controller 2, resulting in slow data calculation speed and satisfying the accuracy of data acquisition. In actual use, the three effective radar detectors are three consecutive radar detectors 1, Three consecutive radar detectors 1 are respectively named as the first effective radar detector A, the second effective radar detector B and the third effective radar detector C, for any selected three effective radar detectors according to the The locations where the automobile body 5 is installed are sequentially named as the first effective radar detector A, the second effective radar detector B and the third effective radar detector C.

步骤302、根据公式计算第二有效雷达探测器B与第一有效雷达探测器A的基准方位角其中,XA为第一有效雷达探测器A的X轴坐标,YA为第一有效雷达探测器A的Y轴坐标,XB为第二有效雷达探测器B的X轴坐标,YB为第二有效雷达探测器B的Y轴坐标, Step 302, according to the formula Calculate the reference azimuth angle between the second effective radar detector B and the first effective radar detector A Among them, X A is the X-axis coordinate of the first effective radar detector A, Y A is the Y-axis coordinate of the first effective radar detector A, X B is the X-axis coordinate of the second effective radar detector B, and Y B is The Y-axis coordinate of the second effective radar detector B,

根据公式计算第三有效雷达探测器C与第二有效雷达探测器B的基准方位角其中,XC为第三有效雷达探测器C的X轴坐标,YC为第三有效雷达探测器C的Y轴坐标, According to the formula Calculate the reference azimuth angle between the third effective radar detector C and the second effective radar detector B Wherein, X C is the X-axis coordinate of the third effective radar detector C, and Y C is the Y-axis coordinate of the third effective radar detector C,

步骤303、确定第二有效雷达探测器B与第一有效雷达探测器A的方位角αBAStep 303. Determine the azimuth α BA between the second effective radar detector B and the first effective radar detector A:

当XA-XB>0且YA-YB>0时,方位角 When X A -X B >0 and Y A -Y B >0, the azimuth

当XA-XB<0且YA-YB>0时,方位角 When X A -X B <0 and Y A -Y B >0, the azimuth

当XA-XB<0且YA-YB<0时,方位角 When X A -X B <0 and Y A -Y B <0, the azimuth

当XA-XB>0且YA-YB<0时,方位角 When X A -X B >0 and Y A -Y B <0, the azimuth

确定第三有效雷达探测器C与第二有效雷达探测器B的方位角αCBDetermine the azimuth α CB between the third effective radar detector C and the second effective radar detector B:

当XB-XC>0且YB-YC>0时,方位角 When X B -X C >0 and Y B -Y C >0, the azimuth

当XB-XC<0且YB-YC>0时,方位角 When X B -X C <0 and Y B -Y C >0, the azimuth

当XB-XC<0且YB-YC<0时,方位角 When X B -X C <0 and Y B -Y C <0, the azimuth

当XB-XC>0且YB-YC<0时,方位角 When X B -X C >0 and Y B -Y C <0, the azimuth

需要说明的是,由于第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C在汽车车体5安装的位置固定,第二有效雷达探测器B与第一有效雷达探测器A的方位角即为确定值,第三有效雷达探测器C与第二有效雷达探测器B的方位角即为确定值。It should be noted that since the first effective radar detector A, the second effective radar detector B and the third effective radar detector C are fixed at the positions installed on the vehicle body 5, the second effective radar detector B is the same as the first effective radar detector. The azimuth angle of the radar detector A is a definite value, and the azimuth angles of the third effective radar detector C and the second effective radar detector B are definite values.

步骤304、根据公式计算第一有效雷达探测器A与点P的方位角αAP和第二有效雷达探测器B与点P的初始方位角α'BP,其中,∠BAP为LBA与LAP的夹角且∠ABP为LBA与LBP的夹角且LBA为第二有效雷达探测器B至第一有效雷达探测器A的线段,LAP为第一有效雷达探测器A至点P的线段,LBP为第二有效雷达探测器B至点P的线段,αAB为第一有效雷达探测器A至第二有效雷达探测器B的方位角;Step 304, according to the formula Calculate the azimuth α AP between the first effective radar detector A and point P and the initial azimuth α' BP between the second effective radar detector B and point P, where ∠BAP is the angle between L BA and L AP and ∠ABP is the angle between L BA and L BP and L BA is the line segment from the second effective radar detector B to the first effective radar detector A, L AP is the line segment from the first effective radar detector A to point P, and L BP is the line segment from the second effective radar detector B to point P , α AB is the azimuth angle from the first effective radar detector A to the second effective radar detector B;

步骤304中根据公式计算第一有效雷达探测器A与第二有效雷达探测器B的基准方位角确定第一有效雷达探测器A与第二有效雷达探测器B的方位角αABIn step 304 according to the formula Calculate the reference azimuth angle between the first effective radar detector A and the second effective radar detector B Determine the azimuth α AB of the first effective radar detector A and the second effective radar detector B:

当XB-XA>0且YB-YA>0时,方位角 When X B -X A >0 and Y B -Y A >0, the azimuth

当XB-XA<0且YB-YA>0时,方位角 When X B -X A <0 and Y B -Y A >0, the azimuth

当XB-XA<0且YB-YA<0时,方位角 When X B -X A <0 and Y B -Y A <0, the azimuth

当XB-XA>0且YB-YA<0时,方位角 When X B -X A >0 and Y B -Y A <0, the azimuth

根据公式计算第二有效雷达探测器B与点P的更新方位角α'B'P和第三有效雷达探测器C与点P的方位角αCP,其中,∠CBP为LCB与LBP的夹角且∠BCP为LCB与LCP的夹角且LCB为第三有效雷达探测器C至第二有效雷达探测器B的线段,LCP为第三有效雷达探测器C至点P的线段,αBC为第二有效雷达探测器B至第三有效雷达探测器C的方位角;According to the formula Calculate the updated azimuth α' B ' P between the second effective radar detector B and point P and the azimuth α CP between the third effective radar detector C and point P, where ∠CBP is the angle between L CB and L BP and ∠BCP is the angle between L CB and L CP and L CB is the line segment from the third effective radar detector C to the second effective radar detector B, L CP is the line segment from the third effective radar detector C to point P, α BC is the line segment from the second effective radar detector B to the third the azimuth of the effective radar detector C;

步骤304中根据公式计算第二有效雷达探测器B与第三有效雷达探测器C的基准方位角确定第二有效雷达探测器B与第三有效雷达探测器C的方位角αBCIn step 304 according to the formula Calculate the reference azimuth angle of the second effective radar detector B and the third effective radar detector C Determine the azimuth α BC of the second effective radar detector B and the third effective radar detector C:

当XC-XB>0且YC-YB>0时,方位角 When X C -X B >0 and Y C -Y B >0, the azimuth

当XC-XB<0且YC-YB>0时,方位角 When X C -X B <0 and Y C -Y B >0, the azimuth

当XC-XB<0且YC-YB<0时,方位角 When X C -X B <0 and Y C -Y B <0, the azimuth

当XC-XB>0且YC-YB<0时,方位角 When X C -X B >0 and Y C -Y B <0, the azimuth

根据公式计算第二有效雷达探测器B与点P的方位角αBPAccording to the formula Calculate the azimuth α BP between the second effective radar detector B and the point P;

需要说明的是,由于第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C在汽车车体5安装的位置固定,第一有效雷达探测器A和第二有效雷达探测器B相邻,第二有效雷达探测器B和第三有效雷达探测器C相邻,因此选取第一有效雷达探测器A、第二有效雷达探测器B和点P构成一个三角形结构,选取第二有效雷达探测器B、第三有效雷达探测器C和点P构成另一个三角形结构,而第一有效雷达探测器A和第三有效雷达探测器C距离相对较远,因此,为了提高计算精度,减少数据干扰,舍弃第一有效雷达探测器A、第三有效雷达探测器C和点P构成的三角形结构。It should be noted that since the first effective radar detector A, the second effective radar detector B and the third effective radar detector C are fixed at the positions installed on the vehicle body 5, the first effective radar detector A and the second effective radar detector The radar detector B is adjacent, and the second effective radar detector B is adjacent to the third effective radar detector C, so the first effective radar detector A, the second effective radar detector B and point P are selected to form a triangle structure, The second effective radar detector B, the third effective radar detector C and point P are selected to form another triangle structure, and the distance between the first effective radar detector A and the third effective radar detector C is relatively far away. Therefore, in order to improve Calculating accuracy, reducing data interference, discarding the triangle structure formed by the first effective radar detector A, the third effective radar detector C and point P.

步骤305、根据公式计算LAP的方向角βAPStep 305, according to the formula Calculate the orientation angle β AP of L AP ;

根据公式计算LBP的方向角βBPAccording to the formula Calculate the orientation angle β BP of L BP ;

根据公式计算LCP的方向角βCPAccording to the formula Calculate the orientation angle β CP of L CP ;

步骤306、根据公式计算第一有效雷达探测器A和点P在X轴向的方向余弦γAPx、第一有效雷达探测器A和点P在Y轴向的方向余弦γAPy、第一有效雷达探测器A和点P在Z轴向的方向余弦γAPz,其中,V为电子竖直角测量仪7测量的汽车车体的竖直角;Step 306, according to the formula Calculate the direction cosine γ APx of the first effective radar detector A and point P on the X axis, the direction cosine γ APy of the first effective radar detector A and point P on the Y axis, the first effective radar detector A and point P The direction cosine γ APz of P in the Z axis, wherein, V is the vertical angle of the automobile body measured by the electronic vertical angle measuring instrument 7;

根据公式计算第二有效雷达探测器B和点P在X轴向的方向余弦γBPx、第二有效雷达探测器B和点P在Y轴向的方向余弦γBPy、第二有效雷达探测器B和点P在Z轴向的方向余弦γBPzAccording to the formula Calculate the direction cosine γ BPx of the second effective radar detector B and point P on the X axis, the direction cosine γ BPy of the second effective radar detector B and point P on the Y axis, the second effective radar detector B and point P The direction cosine γ BPz of P in the Z axis;

根据公式计算第三有效雷达探测器C和点P在X轴向的方向余弦γCPx、第三有效雷达探测器C和点P在Y轴向的方向余弦γCPy、第三有效雷达探测器C和点P在Z轴向的方向余弦γCPzAccording to the formula Calculate the direction cosine γ CPx of the third effective radar detector C and point P on the X axis, the direction cosine γ CPy of the third effective radar detector C and point P on the Y axis, the third effective radar detector C and point P The direction cosine γ CPz of P in the Z axis;

需要说明的是,由于电子竖直角测量仪7安装在汽车车体5的底盘上,与汽车车体5同步移动,雷达探测器1安装在汽车车体5上,电子竖直角测量仪7测量的汽车车体5的竖直角与雷达探测器1的竖直角为同一个竖直角,利用电子竖直角测量仪7测量汽车车体5的竖直角,计算点P当前坐标,汽车车体5移动时,雷达探测器1与运动障碍物6的位置发生变化,汽车车体5随着位置的变化而竖直角变化,采用电子竖直角测量仪7测量的当前竖直角与雷达探测器1探测数据同步。It should be noted that since the electronic vertical angle measuring instrument 7 is installed on the chassis of the automobile body 5 and moves synchronously with the automobile body 5, the radar detector 1 is installed on the automobile body 5, and the electronic vertical angle measuring instrument 7 The vertical angle of the measured automobile body 5 and the vertical angle of the radar detector 1 are the same vertical angle, utilize the electronic vertical angle measuring instrument 7 to measure the vertical angle of the automobile body 5, calculate the current coordinates of the point P, When the automobile body 5 moves, the position of the radar detector 1 and the moving obstacle 6 changes, and the vertical angle of the automobile body 5 changes along with the change of the position, and the current vertical angle measured by the electronic vertical angle measuring instrument 7 is Synchronized with radar detector 1 detection data.

步骤307、根据公式计算点P的初始第一坐标(XAP,YAP,ZAP),其中,ΔXAP为LAP在X轴的分量且ΔXAP=LAPAPx,ΔYAP为LAP在Y轴的分量且ΔYAP=LAPAPy,ΔZAP为LAP在Z轴的分量且ΔZAP=LAPAPzStep 307, according to the formula Calculate the initial first coordinates (X AP , Y AP , Z AP ) of point P, where ΔX AP is the component of L AP on the X axis and ΔX AP = L APAPx , and ΔY AP is the component of L AP on the Y axis Component and ΔY AP =L APAPy , ΔZ AP is the component of L AP on the Z axis and ΔZ AP =L APAPz ;

根据公式计算点P的初始第二坐标(XBP,YBP,ZBP),其中,ΔXBP为LBP在X轴的分量且ΔXBP=LBPBPx,ΔYBP为LBP在Y轴的分量且ΔYBP=LBPBPy,ΔZBP为LBP在Z轴的分量且ΔZBP=LBPBPzAccording to the formula Calculate the initial second coordinates (X BP , Y BP , Z BP ) of point P, where ΔX BP is the component of L BP on the X axis and ΔX BP =L BPBPx , ΔY BP is the component of L BP on the Y axis Component and ΔY BP =L BPBPy , ΔZ BP is the component of L BP on the Z axis and ΔZ BP =L BPBPz ;

根据公式计算点P的初始第三坐标(XCP,YCP,ZCP),其中,ΔXCP为LCP在X轴的分量且ΔXCP=LCPCPx,ΔYCP为LCP在Y轴的分量且ΔYCP=LCPCPy,ΔZCP为LCP在Z轴的分量且ΔZCP=LCPCPzAccording to the formula Calculate the initial third coordinate (X CP , Y CP , Z CP ) of point P, where ΔX CP is the component of L CP on the X axis and ΔX CP =L CPCPx , ΔY CP is the component of L CP on the Y axis Component and ΔY CP =L CPCPy , ΔZ CP is the component of L CP on the Z axis and ΔZ CP =L CPCPz ;

需要说明的是,利用第一有效雷达探测器A和点P的位置关系计算一次点P的坐标,利用第二有效雷达探测器B和点P的位置关系再计算一次点P的坐标,利用第三有效雷达探测器C和点P的位置关系第三次计算点P的坐标,避免单次计算存在的干扰误差。It should be noted that the coordinates of point P are calculated once using the positional relationship between the first effective radar detector A and point P, and the coordinates of point P are calculated again using the positional relationship between the second effective radar detector B and point P. The positional relationship between the three effective radar detectors C and the point P is calculated for the third time to avoid the interference error in the single calculation.

步骤308、根据公式计算点P的更新坐标(XP,YP,ZP);Step 308, according to the formula Calculate the updated coordinates (X P , Y P , Z P ) of point P;

需要说明的是,利用三次计算的P的初始坐标的均值作为点P的更新坐标,数据精度高,计算可靠性好。It should be noted that using the average value of the initial coordinates of P calculated three times as the updated coordinates of point P has high data accuracy and good calculation reliability.

步骤309、n次利用第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C主动探测运动障碍物6距离,并n次循环步骤304至步骤308,得到n次不同时刻的点P的更新坐标,获取运动障碍物6的实时位置,n次不同时刻的点P的更新坐标构成观测数据集合Q={(x1,y1,z1),(x2,y2,z2),...,(xi,yi,zi),...,(xn,yn,zn)},其中,n为不小于4的正整数,i为有效雷达探测器探测次数编号且1≤i≤n,(xi,yi,zi)为车载控制器2第i次计算的点P的更新坐标;Step 309, use the first effective radar detector A, the second effective radar detector B and the third effective radar detector C to actively detect the distance of the moving obstacle 6 n times, and loop steps 304 to 308 n times to obtain n times The updated coordinates of point P at different times obtain the real-time position of the moving obstacle 6, and the updated coordinates of point P at n times at different times constitute the observation data set Q={(x 1 ,y 1 ,z 1 ),(x 2 , y 2 ,z 2 ),...,( xi ,y i , zi ),...,(x n ,y n ,z n )}, where n is a positive integer not less than 4, i is the detection number of effective radar detectors and 1≤i≤n, ( xi , y, zi ) is the updated coordinates of point P calculated by the on-board controller 2 for the ith time;

需要说明的是,n次利用第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C主动探测运动障碍物6距离,并不断的计算不同时刻的点P的更新坐标可获取n个点P的离散点,得到运动障碍物6的实时位置。It should be noted that the first effective radar detector A, the second effective radar detector B and the third effective radar detector C are used to actively detect the distance of the moving obstacle 6 n times, and the update of the point P at different times is continuously calculated The coordinates can obtain discrete points of n points P to obtain the real-time position of the moving obstacle 6 .

步骤四、拟合并预测运动障碍物轨迹,过程如下:Step 4. Fitting and predicting the trajectory of moving obstacles, the process is as follows:

步骤401、获取有效观测数据集合Q':利用车载控制器2对观测数据集合Q={(x1,y1,z1),(x2,y2,z2),...,(xi,yi,zi),...,(xn,yn,zn)}做降维处理,选取点P的更新坐标的X轴坐标值和Y轴坐标值构成有效观测数据集合Q',有效观测数据集合Q'={(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)};Step 401, Obtain the effective observation data set Q': use the on-board controller 2 to pair the observation data set Q={(x 1 ,y 1 ,z 1 ),(x 2 ,y 2 ,z 2 ),...,( x i ,y i , zi ),...,(x n ,y n ,z n )} do dimension reduction processing, select the X-axis coordinate value and Y-axis coordinate value of the update coordinates of point P to form effective observation data Set Q', effective observation data set Q'={(x 1 ,y 1 ),(x 2 ,y 2 ),...,( xi ,y i ),...,(x n ,y n )};

实际使用中,由于汽车车体5和运动障碍物6均为位于地面移动的立体物体,运动障碍物6与雷达探测器1等高的Z轴值不影响运动障碍物6前进后退的轨迹变化,因此,仅采用点P的更新坐标的X轴坐标值和Y轴坐标值拟合轨迹。In actual use, since the vehicle body 5 and the moving obstacle 6 are three-dimensional objects moving on the ground, the Z-axis value of the moving obstacle 6 and the radar detector 1 at the same height will not affect the trajectory change of the moving obstacle 6 moving forward and backward. Therefore, only the X-axis coordinates and Y-axis coordinates of the updated coordinates of the point P are used to fit the trajectory.

步骤402、确定基函数族并构建二次多项式:车载控制器2设定基函数族,所述基函数族包括δ0(x)=1、δ1(x)=x和δ2(x)=x2,车载控制器2构建二次多项式s(x)=a0δ0(x)+a1δ1(x)+a2δ2(x),其中,a0为二次多项式s(x)中δ0(x)的系数,a1为二次多项式s(x)中δ1(x)的系数,a2为二次多项式s(x)中δ2(x)的系数;Step 402, determine the basis function family and construct the quadratic polynomial: the on-board controller 2 sets the basis function family, and the basis function family includes δ 0 (x)=1, δ 1 (x)=x and δ 2 (x) = x 2 , the on-board controller 2 constructs a quadratic polynomial s(x)=a 0 δ 0 (x)+a 1 δ 1 (x)+a 2 δ 2 (x), where a 0 is the quadratic polynomial s (x) is the coefficient of δ 0 (x), a 1 is the coefficient of δ 1 (x) in the quadratic polynomial s(x), a 2 is the coefficient of δ 2 (x) in the quadratic polynomial s(x);

步骤403、根据公式计算二次多项式s(x)的系数矩阵并带入二次多项式s(x)=a0+a1x+a2x2,车载控制器2获得拟合曲线,实现运动障碍物6轨迹的预测,其中,δ0为由δ0(x)=1组成的n维向量且δ0=[1,1,L,1,L,1]T,δ1为由δ1(x)=x组成的n维向量且δ1=[x1,x2,L,xi,L,xn]T,δ2为由δ2(x)=x2组成的n维向量且 Step 403, according to the formula Compute the coefficient matrix of the quadratic polynomial s(x) And bring in the quadratic polynomial s(x)=a 0 +a 1 x+a 2 x 2 , the on-board controller 2 obtains the fitting curve, and realizes the prediction of the trajectory of the moving obstacle 6, wherein, δ 0 is determined by δ 0 ( x)=1 is an n-dimensional vector composed of δ 0 =[1,1,L,1,L,1] T , δ 1 is an n-dimensional vector composed of δ 1 (x)=x and δ 1 =[x 1 ,x 2 ,L, xi ,L,x n ] T , δ 2 is an n-dimensional vector composed of δ 2 (x)=x 2 and

需要说明的是,利用步骤三中不同时刻的点P的更新坐标只能获取运动障碍物6的当前位置,无法预知运动障碍物6下一时刻的位置,因此,本步骤的目的是利用已知点采用二次多项式拟合曲线的方式获取运动障碍物6的运动轨迹,实现运动障碍物6下一时刻的位置的预知,从而预先让驾驶者察觉到可能发生的危险,且根据点P的更新坐标的不断获取及时矫正运动障碍物6轨迹,实际计算中,运动障碍物6轨迹均是相对于基于车身的独立坐标系,实时性与相对性好。It should be noted that using the updated coordinates of point P at different times in step 3 can only obtain the current position of the moving obstacle 6, and the position of the moving obstacle 6 at the next moment cannot be predicted. Therefore, the purpose of this step is to use the known The point uses the quadratic polynomial fitting curve to obtain the movement trajectory of the moving obstacle 6, and realizes the prediction of the position of the moving obstacle 6 at the next moment, so that the driver can be aware of the possible danger in advance, and according to the update of the point P The continuous acquisition of coordinates corrects the trajectory of the moving obstacle 6 in time. In actual calculation, the trajectory of the moving obstacle 6 is relative to the independent coordinate system based on the vehicle body, and the real-time performance and relativity are good.

步骤五、运动障碍物轨迹显示及预警:利用显示屏3实时显示运动障碍物6的运动轨迹,通过车载控制器2设定运动障碍物6距离汽车车体5的安全距离阈值,当运动障碍物6与汽车车体5的距离不大于安全距离阈值时,车载控制器2控制报警器4预警。Step 5, track display and early warning of moving obstacles: use the display screen 3 to display the moving track of moving obstacles 6 in real time, set the safety distance threshold between moving obstacles 6 and car body 5 through on-board controller 2, when moving obstacles 6. When the distance from the vehicle body 5 is not greater than the safety distance threshold, the on-board controller 2 controls the alarm 4 to give an early warning.

本实施例中,所述报警器4包括语音提示器和LED爆闪灯,所述语音提示器和所述LED爆闪灯均与车载控制器2的输出端相接。In this embodiment, the alarm device 4 includes a voice prompter and an LED flashing light, and both the voice prompter and the LED flashing light are connected to the output end of the vehicle controller 2 .

本实施例中,所述安全距离阈值为0.5m~1m。In this embodiment, the safety distance threshold is 0.5m˜1m.

需要说明的是,利用显示屏3实时显示运动障碍物6的运动轨迹,当有运动障碍物6接近安全距离阈值时,报警器4可通过语音提示器提示驾驶员危险,同时可通过LED爆闪灯发出强烈的提示信号,提示运动障碍物6的人注意行驶方向和行驶速度,多方面的起到安全防护作用。It should be noted that the display screen 3 is used to display the movement track of the moving obstacle 6 in real time. When there is a moving obstacle 6 approaching the safety distance threshold, the alarm 4 can prompt the driver to be dangerous through the voice prompter, and at the same time, the LED can flash The lamp sends a strong prompting signal, prompting the people of the moving obstacle 6 to pay attention to the driving direction and driving speed, and plays a safety protection role in many aspects.

以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technical aspects of the present invention. within the scope of protection of the scheme.

Claims (4)

1.一种多点式主动探测的汽车防撞方法,其特征在于,该方法包括以下步骤:1. a kind of automobile anti-collision method of multi-point active detection, it is characterized in that, the method comprises the following steps: 步骤一、建立多点式主动探测的汽车防撞系统:在汽车车体(5)的前侧面板、后侧面板、左侧面板和右侧面板上分别安装不少于三个用于主动探测运动障碍物(6)位置的雷达探测器(1),同时建立用于对每个雷达探测器(1)探测到的数据进行处理的汽车防撞子系统,所述汽车防撞子系统与雷达探测器(1)组成多点式主动探测的汽车防撞系统;所述汽车防撞子系统包括车载控制器(2)和安装在汽车车体(5)的底盘上安装用于检测汽车车体(5)竖直角的电子竖直角测量仪(7),以及均与车载控制器(2)的输出端相接的显示屏(3)和用于提示司机避开运动障碍物(6)的报警器(4),电子竖直角测量仪(7)和雷达探测器(1)均与车载控制器(2)的输入端相接;Step 1. Establish a multi-point active detection automobile collision avoidance system: install no less than three points for active detection on the front side panel, rear side panel, left side panel and right side panel of the car body (5). A radar detector (1) at the position of the moving obstacle (6), and an automobile anti-collision subsystem for processing the data detected by each radar detector (1) is established at the same time, and the automobile anti-collision subsystem is connected with the radar The detector (1) forms a multi-point active detection automobile anti-collision system; the automobile anti-collision subsystem includes an on-board controller (2) and is installed on the chassis of the automobile body (5) for detecting (5) the electronic vertical angle measuring instrument (7) of vertical angle, and the display screen (3) that all connects with the output end of vehicle-mounted controller (2) and be used for prompting driver to avoid moving obstacle (6) The alarm (4), the electronic vertical angle measuring instrument (7) and the radar detector (1) are all connected with the input end of the vehicle-mounted controller (2); 汽车车体(5)的前侧面板、后侧面板、左侧面板和右侧面板上安装的雷达探测器(1)均位于同一平面上;The radar detectors (1) installed on the front side panel, rear side panel, left side panel and right side panel of the automobile body (5) are all located on the same plane; 步骤二、构建基于车身的独立坐标系:以位于同一平面上的多个雷达探测器(1)所在平面的几何中心位置为坐标原点O,以汽车车体(5)直线前进行驶的正前方为Y轴正方向,以水平垂直于Y轴且由左侧面板指向右侧面板的方向为X轴正方向,以竖直垂直于Y轴且由汽车车体(5)的底盘指向汽车车体(5)顶板的方向为Z轴正方向建立基于车身的独立坐标系O-XYZ;Step 2. Build an independent coordinate system based on the vehicle body: take the geometric center position of the plane where multiple radar detectors (1) on the same plane are located as the coordinate origin O, and take the straight ahead of the vehicle body (5) as The positive direction of the Y-axis is the positive direction of the X-axis with the direction perpendicular to the Y-axis and directed to the right panel by the left side panel, and the positive direction of the Y-axis is vertically perpendicular to the Y-axis and directed to the car body ( 5) The direction of the top plate is the positive direction of the Z-axis to establish an independent coordinate system O-XYZ based on the body; 步骤三、获取运动障碍物实时位置,过程如下:Step 3. Obtain the real-time position of the moving obstacle, the process is as follows: 步骤301、确定有效雷达探测器:利用多个雷达探测器(1)同时探测运动障碍物(6)分别距离多个雷达探测器(1)的距离,并将多个距离数据实时传输至车载控制器(2),车载控制器(2)对多个距离数据进行从小到大排序,设定排序后的前三个距离数据所对应的雷达探测器(1)均为有效雷达探测器,三个有效雷达探测器为三个连续的雷达探测器(1),该三个连续的雷达探测器(1)依次为第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C,设定运动障碍物(6)的位置为点P;Step 301, determine effective radar detectors: use multiple radar detectors (1) to simultaneously detect the distances of moving obstacles (6) from multiple radar detectors (1), and transmit multiple distance data to the vehicle control in real time device (2), the on-board controller (2) sorts multiple distance data from small to large, and sets the radar detectors (1) corresponding to the first three distance data after sorting to be effective radar detectors, and the three The effective radar detectors are three consecutive radar detectors (1), and the three consecutive radar detectors (1) are successively the first effective radar detector A, the second effective radar detector B and the third effective radar detector Device C, set the position of moving obstacle (6) as point P; 步骤302、根据公式计算第二有效雷达探测器B与第一有效雷达探测器A的基准方位角其中,XA为第一有效雷达探测器A的X轴坐标,YA为第一有效雷达探测器A的Y轴坐标,XB为第二有效雷达探测器B的X轴坐标,YB为第二有效雷达探测器B的Y轴坐标, Step 302, according to the formula Calculate the reference azimuth angle between the second effective radar detector B and the first effective radar detector A Among them, X A is the X-axis coordinate of the first effective radar detector A, Y A is the Y-axis coordinate of the first effective radar detector A, X B is the X-axis coordinate of the second effective radar detector B, and Y B is The Y-axis coordinate of the second effective radar detector B, 根据公式计算第三有效雷达探测器C与第二有效雷达探测器B的基准方位角其中,XC为第三有效雷达探测器C的X轴坐标,YC为第三有效雷达探测器C的Y轴坐标, According to the formula Calculate the reference azimuth angle between the third effective radar detector C and the second effective radar detector B Wherein, X C is the X-axis coordinate of the third effective radar detector C, and Y C is the Y-axis coordinate of the third effective radar detector C, 步骤303、确定第二有效雷达探测器B与第一有效雷达探测器A的方位角αBAStep 303. Determine the azimuth α BA between the second effective radar detector B and the first effective radar detector A: 当XA-XB>0且YA-YB>0时,方位角 When X A -X B >0 and Y A -Y B >0, the azimuth 当XA-XB<0且YA-YB>0时,方位角 When X A -X B <0 and Y A -Y B >0, the azimuth 当XA-XB<0且YA-YB<0时,方位角 When X A -X B <0 and Y A -Y B <0, the azimuth 当XA-XB>0且YA-YB<0时,方位角 When X A -X B >0 and Y A -Y B <0, the azimuth 确定第三有效雷达探测器C与第二有效雷达探测器B的方位角αCBDetermine the azimuth α CB between the third effective radar detector C and the second effective radar detector B: 当XB-XC>0且YB-YC>0时,方位角 When X B -X C >0 and Y B -Y C >0, the azimuth 当XB-XC<0且YB-YC>0时,方位角 When X B -X C <0 and Y B -Y C >0, the azimuth 当XB-XC<0且YB-YC<0时,方位角 When X B -X C <0 and Y B -Y C <0, the azimuth 当XB-XC>0且YB-YC<0时,方位角 When X B -X C >0 and Y B -Y C <0, the azimuth 步骤304、根据公式计算第一有效雷达探测器A与点P的方位角αAP和第二有效雷达探测器B与点P的初始方位角α'BP,其中,∠BAP为LBA与LAP的夹角且∠ABP为LBA与LBP的夹角且LBA为第二有效雷达探测器B至第一有效雷达探测器A的线段,LAP为第一有效雷达探测器A至点P的线段,LBP为第二有效雷达探测器B至点P的线段,αAB为第一有效雷达探测器A至第二有效雷达探测器B的方位角;Step 304, according to the formula Calculate the azimuth α AP between the first effective radar detector A and point P and the initial azimuth α' BP between the second effective radar detector B and point P, where ∠BAP is the angle between L BA and L AP and ∠ABP is the angle between L BA and L BP and L BA is the line segment from the second effective radar detector B to the first effective radar detector A, L AP is the line segment from the first effective radar detector A to point P, and L BP is the line segment from the second effective radar detector B to point P , α AB is the azimuth angle from the first effective radar detector A to the second effective radar detector B; 根据公式计算第二有效雷达探测器B与点P的更新方位角α″BP和第三有效雷达探测器C与点P的方位角αCP,其中,∠CBP为LCB与LBP的夹角且∠BCP为LCB与LCP的夹角且LCB为第三有效雷达探测器C至第二有效雷达探测器B的线段,LCP为第三有效雷达探测器C至点P的线段,αBC为第二有效雷达探测器B至第三有效雷达探测器C的方位角;According to the formula Calculate the updated azimuth α″ BP between the second effective radar detector B and point P and the azimuth α CP between the third effective radar detector C and point P, where ∠CBP is the angle between L CB and L BP and ∠BCP is the angle between L CB and L CP and L CB is the line segment from the third effective radar detector C to the second effective radar detector B, L CP is the line segment from the third effective radar detector C to point P, α BC is the line segment from the second effective radar detector B to the third the azimuth of the effective radar detector C; 根据公式计算第二有效雷达探测器B与点P的方位角αBPAccording to the formula Calculate the azimuth α BP between the second effective radar detector B and the point P; 步骤305、根据公式计算LAP的方向角βAPStep 305, according to the formula Calculate the orientation angle β AP of L AP ; 根据公式计算LBP的方向角βBPAccording to the formula Calculate the orientation angle β BP of L BP ; 根据公式计算LCP的方向角βCPAccording to the formula Calculate the orientation angle β CP of L CP ; 步骤306、根据公式计算第一有效雷达探测器A和点P在X轴向的方向余弦γAPx、第一有效雷达探测器A和点P在Y轴向的方向余弦γAPy、第一有效雷达探测器A和点P在Z轴向的方向余弦γAPz,其中,V为电子竖直角测量仪(7)测量的汽车车体(5)的竖直角;Step 306, according to the formula Calculate the direction cosine γ APx of the first effective radar detector A and point P on the X axis, the direction cosine γ APy of the first effective radar detector A and point P on the Y axis, the first effective radar detector A and point P The direction cosine γ APz of P in Z axial direction, wherein, V is the vertical angle of the automobile body (5) that electronic vertical angle measuring instrument (7) measures; 根据公式计算第二有效雷达探测器B和点P在X轴向的方向余弦γBPx、第二有效雷达探测器B和点P在Y轴向的方向余弦γBPy、第二有效雷达探测器B和点P在Z轴向的方向余弦γBPzAccording to the formula Calculate the direction cosine γ BPx of the second effective radar detector B and point P on the X axis, the direction cosine γ BPy of the second effective radar detector B and point P on the Y axis, the second effective radar detector B and point P The direction cosine γ BPz of P in the Z axis; 根据公式计算第三有效雷达探测器C和点P在X轴向的方向余弦γCPx、第三有效雷达探测器C和点P在Y轴向的方向余弦γCPy、第三有效雷达探测器C和点P在Z轴向的方向余弦γCPzAccording to the formula Calculate the direction cosine γ CPx of the third effective radar detector C and point P on the X axis, the direction cosine γ CPy of the third effective radar detector C and point P on the Y axis, the third effective radar detector C and point P The direction cosine γ CPz of P in the Z axis; 步骤307、根据公式计算点P的初始第一坐标(XAP,YAP,ZAP),其中,ΔXAP为LAP在X轴的分量且ΔXAP=LAPAPx,ΔYAP为LAP在Y轴的分量且ΔYAP=LAPAPy,ΔZAP为LAP在Z轴的分量且ΔZAP=LAPAPzStep 307, according to the formula Calculate the initial first coordinates (X AP , Y AP , Z AP ) of point P, where ΔX AP is the component of L AP on the X axis and ΔX AP = L APAPx , and ΔY AP is the component of L AP on the Y axis Component and ΔY AP =L APAPy , ΔZ AP is the component of L AP on the Z axis and ΔZ AP =L APAPz ; 根据公式计算点P的初始第二坐标(XBP,YBP,ZBP),其中,ΔXBP为LBP在X轴的分量且ΔXBP=LBPBPx,ΔYBP为LBP在Y轴的分量且ΔYBP=LBPBPy,ΔZBP为LBP在Z轴的分量且ΔZBP=LBPBPzAccording to the formula Calculate the initial second coordinates (X BP , Y BP , Z BP ) of point P, where ΔX BP is the component of L BP on the X axis and ΔX BP =L BPBPx , ΔY BP is the component of L BP on the Y axis Component and ΔY BP =L BPBPy , ΔZ BP is the component of L BP on the Z axis and ΔZ BP =L BPBPz ; 根据公式计算点P的初始第三坐标(XCP,YCP,ZCP),其中,ΔXCP为LCP在X轴的分量且ΔXCP=LCPCPx,ΔYCP为LCP在Y轴的分量且ΔYCP=LCPCPy,ΔZCP为LCP在Z轴的分量且ΔZCP=LCPCPzAccording to the formula Calculate the initial third coordinate (X CP , Y CP , Z CP ) of point P, where ΔX CP is the component of L CP on the X axis and ΔX CP =L CPCPx , ΔY CP is the component of L CP on the Y axis Component and ΔY CP =L CPCPy , ΔZ CP is the component of L CP on the Z axis and ΔZ CP =L CPCPz ; 步骤308、根据公式计算点P的更新坐标(XP,YP,ZP);Step 308, according to the formula Calculate the updated coordinates (X P , Y P , Z P ) of point P; 步骤309、n次利用第一有效雷达探测器A、第二有效雷达探测器B和第三有效雷达探测器C主动探测运动障碍物(6)距离,并n次循环步骤304至步骤308,得到n次不同时刻的点P的更新坐标,获取运动障碍物(6)的实时位置,n次不同时刻的点P的更新坐标构成观测数据集合Q={(x1,y1,z1),(x2,y2,z2),...,(xi,yi,zi),...,(xn,yn,zn)},其中,n为不小于4的正整数,i为有效雷达探测器探测次数编号且1≤i≤n,(xi,yi,zi)为车载控制器(2)第i次计算的点P的更新坐标;Step 309, n times utilize the first effective radar detector A, the second effective radar detector B and the third effective radar detector C to actively detect the distance of the moving obstacle (6), and loop step 304 to step 308 n times to obtain The updated coordinates of point P at n times at different times obtain the real-time position of the moving obstacle (6), and the updated coordinates of point P at n times at different times constitute the observation data set Q={(x 1 , y 1 , z 1 ), (x 2 ,y 2 ,z 2 ),...,( xi ,y i , zi ),...,(x n ,y n ,z n )}, where n is not less than 4 Positive integer, i is the detection number of valid radar detectors and 1≤i≤n, (x i , y i , z i ) is the updated coordinates of point P calculated by the on-board controller (2) for the ith time; 步骤四、拟合并预测运动障碍物轨迹,过程如下:Step 4. Fitting and predicting the trajectory of moving obstacles, the process is as follows: 步骤401、获取有效观测数据集合Q':利用车载控制器(2)对观测数据集合Q={(x1,y1,z1),(x2,y2,z2),...,(xi,yi,zi),...,(xn,yn,zn)}做降维处理,选取点P的更新坐标的X轴坐标值和Y轴坐标值构成有效观测数据集合Q',有效观测数据集合Q'={(x1,y1),(x2,y2),...,(xi,yi),...,(xn,yn)};Step 401. Acquire effective observation data set Q': use the on-board controller (2) to obtain observation data set Q={(x 1 ,y 1 ,z 1 ),(x 2 ,y 2 ,z 2 ),... ,(x i ,y i , zi ),...,(x n ,y n ,z n )} is used for dimension reduction processing, and the X-axis coordinate value and Y-axis coordinate value of the update coordinates of point P are selected to form a valid Observation data set Q', effective observation data set Q'={(x 1 ,y 1 ),(x 2 ,y 2 ),...,( xi ,y i ),...,(x n , y n )}; 步骤402、确定基函数族并构建二次多项式:车载控制器(2)设定基函数族,所述基函数族包括δ0(x)=1、δ1(x)=x和δ2(x)=x2,车载控制器(2)构建二次多项式s(x)=a0δ0(x)+a1δ1(x)+a2δ2(x),其中,a0为二次多项式s(x)中δ0(x)的系数,a1为二次多项式s(x)中δ1(x)的系数,a2为二次多项式s(x)中δ2(x)的系数;Step 402, determine the basis function family and construct the quadratic polynomial: the on-board controller (2) sets the basis function family, and the basis function family includes δ 0 (x)=1, δ 1 (x)=x and δ 2 ( x)=x 2 , the on-board controller (2) constructs a quadratic polynomial s(x)=a 0 δ 0 (x)+a 1 δ 1 (x)+a 2 δ 2 (x), where a 0 is The coefficient of δ 0 (x) in the quadratic polynomial s(x), a 1 is the coefficient of δ 1 (x) in the quadratic polynomial s(x), a 2 is the coefficient of δ 2 (x) in the quadratic polynomial s(x) ) coefficient; 步骤403、根据公式计算二次多项式s(x)的系数矩阵并带入二次多项式s(x)=a0+a1x+a2x2,车载控制器(2)获得拟合曲线,实现运动障碍物(6)轨迹的预测,其中,δ0为由δ0(x)=1组成的n维向量且δ0=[1,1,L,1,L,1]T,δ1为由δ1(x)=x组成的n维向量且δ1=[x1,x2,L,xi,L,xn]T,δ2为由δ2(x)=x2组成的n维向量且 Step 403, according to the formula Compute the coefficient matrix of the quadratic polynomial s(x) And bring in the quadratic polynomial s(x)=a 0 +a 1 x+a 2 x 2 , the on-board controller (2) obtains the fitting curve, and realizes the prediction of the trajectory of the moving obstacle (6), wherein, δ 0 is An n-dimensional vector composed of δ 0 (x)=1 and δ 0 =[1,1,L,1,L,1] T , δ 1 is an n-dimensional vector composed of δ 1 (x)=x and δ 1 =[x 1 ,x 2 ,L, xi ,L,x n ] T , δ 2 is an n-dimensional vector composed of δ 2 (x)=x 2 and 步骤五、运动障碍物轨迹显示及预警:利用显示屏(3)实时显示运动障碍物(6)的运动轨迹,通过车载控制器(2)设定运动障碍物(6)距离汽车车体(5)的安全距离阈值,当运动障碍物(6)与汽车车体(5)的距离不大于安全距离阈值时,车载控制器(2)控制报警器(4)预警。Step 5. Track display and early warning of the moving obstacle: use the display screen (3) to display the moving track of the moving obstacle (6) in real time, and set the distance between the moving obstacle (6) and the vehicle body (5) through the on-board controller (2). ), when the distance between the moving obstacle (6) and the vehicle body (5) is not greater than the safe distance threshold, the vehicle-mounted controller (2) controls the alarm (4) to give an early warning. 2.按照权利要求1所述的一种多点式主动探测的汽车防撞方法,其特征在于:步骤304中根据公式计算第一有效雷达探测器A与第二有效雷达探测器B的基准方位角确定第一有效雷达探测器A与第二有效雷达探测器B的方位角αAB2. according to the automobile collision avoidance method of a kind of multi-point type active detection described in claim 1, it is characterized in that: in step 304, according to the formula Calculate the reference azimuth angle between the first effective radar detector A and the second effective radar detector B Determine the azimuth α AB of the first effective radar detector A and the second effective radar detector B: 当XB-XA>0且YB-YA>0时,方位角 When X B -X A >0 and Y B -Y A >0, the azimuth 当XB-XA<0且YB-YA>0时,方位角 When X B -X A <0 and Y B -Y A >0, the azimuth 当XB-XA<0且YB-YA<0时,方位角 When X B -X A <0 and Y B -Y A <0, the azimuth 当XB-XA>0且YB-YA<0时,方位角 When X B -X A >0 and Y B -Y A <0, the azimuth 步骤304中根据公式计算第二有效雷达探测器B与第三有效雷达探测器C的基准方位角确定第二有效雷达探测器B与第三有效雷达探测器C的方位角αBCIn step 304 according to the formula Calculate the reference azimuth angle of the second effective radar detector B and the third effective radar detector C Determine the azimuth α BC of the second effective radar detector B and the third effective radar detector C: 当XC-XB>0且YC-YB>0时,方位角 When X C -X B >0 and Y C -Y B >0, the azimuth 当XC-XB<0且YC-YB>0时,方位角 When X C -X B <0 and Y C -Y B >0, the azimuth 当XC-XB<0且YC-YB<0时,方位角 When X C -X B <0 and Y C -Y B <0, the azimuth 当XC-XB>0且YC-YB<0时,方位角 When X C -X B >0 and Y C -Y B <0, the azimuth 3.按照权利要求1所述的一种多点式主动探测的汽车防撞方法,其特征在于:所述报警器(4)包括语音提示器和LED爆闪灯,所述语音提示器和所述LED爆闪灯均与车载控制器(2)的输出端相接。3. according to the automobile anti-collision method of a kind of multi-point type active detection described in claim 1, it is characterized in that: described alarm (4) comprises voice prompter and LED strobe light, and described voice prompter and all The above-mentioned LED flashing lights are all connected with the output terminals of the vehicle-mounted controller (2). 4.按照权利要求1所述的一种多点式主动探测的汽车防撞方法,其特征在于:所述安全距离阈值为0.5m~1m。4 . The multi-point active detection vehicle collision avoidance method according to claim 1 , wherein the safety distance threshold is 0.5m˜1m.
CN201711410008.5A 2017-12-23 2017-12-23 A kind of automobile anti-collision method of multipoint mode active probe Expired - Fee Related CN108189754B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711410008.5A CN108189754B (en) 2017-12-23 2017-12-23 A kind of automobile anti-collision method of multipoint mode active probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711410008.5A CN108189754B (en) 2017-12-23 2017-12-23 A kind of automobile anti-collision method of multipoint mode active probe

Publications (2)

Publication Number Publication Date
CN108189754A CN108189754A (en) 2018-06-22
CN108189754B true CN108189754B (en) 2018-12-18

Family

ID=62583526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711410008.5A Expired - Fee Related CN108189754B (en) 2017-12-23 2017-12-23 A kind of automobile anti-collision method of multipoint mode active probe

Country Status (1)

Country Link
CN (1) CN108189754B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109398232A (en) * 2018-09-30 2019-03-01 北京长城华冠汽车科技股份有限公司 A kind of reversing display methods and system
CN109407097B (en) * 2018-10-30 2020-09-29 北京润科通用技术有限公司 Method and device for detecting vehicle travelable area
CN110103824A (en) * 2019-05-27 2019-08-09 王黎明 A kind of auxiliary early warning system shown based on real time panoramic and its method for early warning
CN110988885B (en) * 2019-12-24 2021-12-03 深圳南方德尔汽车电子有限公司 Method, device and system for monitoring surrounding environment of automobile and storage medium
CN111899306A (en) * 2020-07-23 2020-11-06 欧菲影像技术(广州)有限公司 Camera module calibration method and device and computer storage medium
CN112462371A (en) * 2020-11-02 2021-03-09 东风汽车集团有限公司 Obstacle detection method based on virtual reversing radar and storage medium
CN112799045A (en) * 2020-12-30 2021-05-14 神华黄骅港务有限责任公司 Method, device and system for curve fitting of anti-collision distance of chute of ship loader
CN119395689A (en) * 2024-12-25 2025-02-07 中国船舶集团有限公司第七二四研究所 Multi-unmanned ship surrounding method based on double radar positioning and exploration excitation functions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4371115B2 (en) * 2006-03-01 2009-11-25 トヨタ自動車株式会社 Object detection device
JP6149846B2 (en) * 2014-11-14 2017-06-21 トヨタ自動車株式会社 Warning device
JP6511938B2 (en) * 2015-04-24 2019-05-15 日産自動車株式会社 Traveling control system
CN105857171B (en) * 2016-03-04 2018-02-16 鲁东大学 A kind of automobile anti-collision method based on multisensor
JP6500820B2 (en) * 2016-03-18 2019-04-17 株式会社デンソー In-vehicle device

Also Published As

Publication number Publication date
CN108189754A (en) 2018-06-22

Similar Documents

Publication Publication Date Title
CN108189754B (en) A kind of automobile anti-collision method of multipoint mode active probe
CN111554124B (en) Right-turn collision avoidance warning system and warning method for large trucks at intersections
US11738744B2 (en) Driving support apparatus
RU2666010C2 (en) Method and device for determining traffic density using electronic controller installed in vehicle
CN105109484B (en) Target disorders object determines method and device
US20190113926A1 (en) Autonomous cruise control apparatus and method
CN108928343A (en) A kind of panorama fusion automated parking system and method
US10733889B2 (en) Method and device for parking assistance
CN104290753A (en) Tracking and predicting device of motion state of front vehicle and predicating method thereof
CN106255997A (en) Auxiliary device for moving
CN105121246A (en) Method and device for an overtaking assistance system
CN101870293A (en) Vehicle driving state evaluation method based on lane-cutting behavior detection
CN103661097A (en) Vehicle-mounted device and method for sharing pedestrian emergence information
CN109001743A (en) Tramcar anti-collision system
CN111469764A (en) Prediction control method based on mathematical model
CN114312698A (en) Vehicle braking method, device, device and readable storage medium
JP2019067116A (en) Three-dimensional object ground judgment device
CN108437983A (en) A kind of intelligent vehicle obstacle avoidance system based on prediction safety
CN104637345A (en) Method and device for detecting whether a vehicle can drive through
KR20140076866A (en) Measurement Method and Apparatus for Measuring Curvature of Lane Using Behavior of Preceding Vehicle
CN106428003A (en) Lane departure forewarning device and method for vehicle on highway under adverse weather
KR20120018614A (en) Vehicle and method for changing traffic line of automotive vehicle
CN208847836U (en) Streetcar Collision Avoidance System
CN102812326A (en) Method for controlling a measuring system and measuring system for carrying out the method
CN113655486B (en) Automatic parking method based on single rearview camera and multiple radars

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181218

Termination date: 20191223

CF01 Termination of patent right due to non-payment of annual fee