CN108183157B - Light-emitting diode and preparation method thereof - Google Patents
Light-emitting diode and preparation method thereof Download PDFInfo
- Publication number
- CN108183157B CN108183157B CN201711241467.5A CN201711241467A CN108183157B CN 108183157 B CN108183157 B CN 108183157B CN 201711241467 A CN201711241467 A CN 201711241467A CN 108183157 B CN108183157 B CN 108183157B
- Authority
- CN
- China
- Prior art keywords
- layer
- refractive index
- index layer
- substrate
- convex lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 64
- 238000002161 passivation Methods 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 230000005693 optoelectronics Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000000605 extraction Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical class [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/034—Manufacture or treatment of coatings
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种发光二极管及制备方法,属于光电子制造技术领域。本发明包括衬底、n型GaN层、有源层、p型GaN层、透明导电层、p电极、n电极、钝化层、布拉格反射层,透明导电层层叠在p型GaN层上,p电极设置在透明导电层上,钝化层在以上结构与衬底相反的表面外露处,布拉格反射层在钝化层之上,通过将钝化层设置为第一折射率层、第二折射率层、第三折射率层,第二折射率层包括多个凸透镜单元,并且第二折射率层的折射率大于第一折射率层与第三折射率层的结构,使得原本应大角度入射到布拉格反射层结构上的光线,在经过凸透镜单元后以较为垂直的角度入射到布拉格反射层上,提高了二极管的取光效率。
The invention discloses a light emitting diode and a preparation method, belonging to the field of optoelectronic manufacturing technology. The invention comprises a substrate, an n-type GaN layer, an active layer, a p-type GaN layer, a transparent conductive layer, a p-electrode, an n-electrode, a passivation layer, and a Bragg reflection layer, wherein the transparent conductive layer is stacked on the p-type GaN layer, the p-electrode is arranged on the transparent conductive layer, the passivation layer is exposed at the surface opposite to the substrate of the above structure, the Bragg reflection layer is on the passivation layer, and the passivation layer is arranged as a first refractive index layer, a second refractive index layer, and a third refractive index layer, wherein the second refractive index layer comprises a plurality of convex lens units, and the refractive index of the second refractive index layer is greater than that of the first refractive index layer and the third refractive index layer, so that the light that should be incident on the Bragg reflection layer structure at a large angle is incident on the Bragg reflection layer at a relatively vertical angle after passing through the convex lens unit, thereby improving the light collection efficiency of the diode.
Description
技术领域technical field
本发明涉及光电子制造技术领域,特别涉及一种发光二极管及制备方法。The invention relates to the field of optoelectronic manufacturing technology, in particular to a light emitting diode and a preparation method.
背景技术Background technique
LED(Light Emitting Diode,发光二极管)具有体积小、寿命长、功耗低等优点,目前被广泛应用于汽车信号灯、交通信号灯、显示屏以及照明设备。LED (Light Emitting Diode, Light Emitting Diode) has the advantages of small size, long life, low power consumption, etc., and is currently widely used in automobile signal lights, traffic signal lights, display screens and lighting equipment.
现有的一种LED芯片主要包括衬底和生长在衬底上的外延层,外延层上形成有p型一次电极和n型一次电极,在外延层上还覆盖有一层钝化层,钝化层上设置有布拉格反射层,布拉格反射层上设置有p型二次电极和n型二次电极,p型二次电极和n型二次电极分别通过过孔与p型一次电极和n型一次电极连接。布拉格反射层包括交替层叠的高折射率材料层和低折射率材料层,布拉格反射层对于特定波长的光线具有较高的反射率,从而可以将光线向衬底一侧反射,提高LED的发光效率。An existing LED chip mainly includes a substrate and an epitaxial layer grown on the substrate. A p-type primary electrode and an n-type primary electrode are formed on the epitaxial layer, and a passivation layer is also covered on the epitaxial layer. A Bragg reflective layer is set on the Bragg reflective layer, and a p-type secondary electrode and an n-type secondary electrode are set on the Bragg reflective layer. The p-type secondary electrode and the n-type secondary electrode are respectively connected to the p-type primary electrode and the n-type primary Electrode connection. The Bragg reflective layer includes alternately stacked high-refractive index material layers and low-refractive index material layers. The Bragg reflective layer has a high reflectivity for light of a specific wavelength, so that it can reflect the light to the substrate side and improve the luminous efficiency of the LED. .
由于LED芯片发出的光是朝向各个方向的,因此当光线入射布拉格反射层时,有的光线的入射角度很小,有的光线的入射角度则很大。布拉格反射层对于不同入射角度的光线的反射率也是不同的,布拉格反射层可以较好的反射入射角度小的光线,对于入射角度较大的光写反射率则较低,因此现有的布拉格反射层对LED的出光率的提高程度有限。Since the light emitted by the LED chip is directed in all directions, when the light is incident on the Bragg reflective layer, the incident angle of some light is very small, while the incident angle of some light is very large. The reflectivity of the Bragg reflective layer for light rays at different incident angles is also different. The Bragg reflective layer can better reflect light with a small incident angle, and the reflectivity for light with a larger incident angle is relatively low. Therefore, the existing Bragg reflective The degree to which the layer improves the light extraction rate of the LED is limited.
发明内容Contents of the invention
为了提高LED的发光效率,本发明实施例提供了一种发光二极管及制备方法。所述技术方案如下:In order to improve the luminous efficiency of LEDs, embodiments of the present invention provide a light emitting diode and a preparation method thereof. Described technical scheme is as follows:
一种发光二极管,所述发光二极管包括衬底、形成在所述衬底上的外延层、形成在所述外延层上的n型一次电极和p型一次电极、覆盖在所述外延层上的钝化层、覆盖在所述钝化层上的布拉格反射层、形成在所述布拉格反射层上的n型二次电极和p型二次电极,所述n型二次电极通过过孔与所述n型一次电极连接,所述p型二次电极通过过孔与所述p型一次电极连接,A light emitting diode, the light emitting diode comprises a substrate, an epitaxial layer formed on the substrate, an n-type primary electrode and a p-type primary electrode formed on the epitaxial layer, an a passivation layer, a Bragg reflection layer covering the passivation layer, an n-type secondary electrode and a p-type secondary electrode formed on the Bragg reflection layer, and the n-type secondary electrode communicates with the The n-type primary electrode is connected, the p-type secondary electrode is connected to the p-type primary electrode through a via hole,
其特征在于,所述钝化层包括依次层叠在所述外延层上的第一折射率层、第二折射率层以及第三折射率层,所述第二折射率层的折射率大于所述第一折射率层与所述第三折射率层的折射率,所述第二折射率层包括同层布置的多个凸透镜单元,每个所述凸透镜单元的靠近所述第一折射率层的表面和靠近所述第三折射率层的表面为球冠面,每个所述凸透镜单元在所述衬底上的正投影均呈圆形,在平行于衬底的方向上,每个所述凸透镜单元从中间向边缘厚度逐渐变薄。It is characterized in that the passivation layer includes a first refractive index layer, a second refractive index layer and a third refractive index layer stacked on the epitaxial layer in sequence, and the refractive index of the second refractive index layer is higher than that of the The refractive index of the first refractive index layer and the third refractive index layer, the second refractive index layer includes a plurality of convex lens units arranged in the same layer, each of the convex lens units close to the first refractive index layer The surface and the surface close to the third refractive index layer are spherical crown surfaces, the orthographic projection of each of the convex lens units on the substrate is circular, and in a direction parallel to the substrate, each of the convex lens units The thickness of the convex lens unit gradually becomes thinner from the middle to the edge.
可选地,所述第二折射率层采用Ti3O5、TiO2、ZrO2、HfO2中的任一种制成。Optionally, the second refractive index layer is made of any one of Ti 3 O 5 , TiO 2 , ZrO 2 , and HfO 2 .
可选地,所述第二折射率层的的折射率为2.2~2.6,所述第一折射率层的折射率为1.4~1.7,所述第三折射率层的折射率为1.4~1.7。Optionally, the refractive index of the second refractive index layer is 2.2-2.6, the refractive index of the first refractive index layer is 1.4-1.7, and the refractive index of the third refractive index layer is 1.4-1.7.
可选地,所述凸透镜单元在所述衬底上的正投影的半径与所述球冠面的半径的比值为0.50~0.97。Optionally, the ratio of the radius of the orthographic projection of the convex lens unit on the substrate to the radius of the spherical crown surface is 0.50-0.97.
可选地,所述凸透镜单元在所述衬底上的正投影的直径为4μm~12μm。Optionally, the diameter of the orthographic projection of the convex lens unit on the substrate is 4 μm˜12 μm.
可选地,相邻的所述凸透镜单元的边缘之间的间距为5μm~10μm。Optionally, the distance between the edges of adjacent convex lens units is 5 μm˜10 μm.
可选地,所述第二折射率层的厚度为30~100nm。Optionally, the thickness of the second refractive index layer is 30-100 nm.
可选地,所述钝化层的远离所述衬底的表面在所述衬底上的正投影位于所述衬底内,所述布拉格反射层覆盖在所述钝化层的远离所述衬底的表面和所述钝化层的多个侧面上。Optionally, the orthographic projection of the surface of the passivation layer far away from the substrate on the substrate is located in the substrate, and the Bragg reflection layer covers the surface of the passivation layer far away from the substrate. bottom surface and multiple sides of the passivation layer.
一种发光二极管的制备方法,所述方法包括:A method for preparing a light-emitting diode, the method comprising:
提供一衬底;providing a substrate;
在所述衬底上生长外延层;growing an epitaxial layer on said substrate;
在所述外延层上制作n型一次电极和p型一次电极;making an n-type primary electrode and a p-type primary electrode on the epitaxial layer;
在所述外延层上形成钝化层;forming a passivation layer on the epitaxial layer;
在所述钝化层上形成布拉格反射层;forming a Bragg reflection layer on the passivation layer;
在所述布拉格反射层上形成n型二次电极和p型二次电极,forming an n-type secondary electrode and a p-type secondary electrode on the Bragg reflection layer,
其中,所述n型二次电极通过过孔与所述n型一次电极连接,所述p型二次电极通过过孔与所述p型一次电极连接,所述钝化层包括依次层叠在所述外延层上的第一折射率层、第二折射率层以及第三折射率层,所述第二折射率层的折射率大于所述第一折射率层与所述第三折射率层的折射率,所述第二折射率层包括同层布置的多个凸透镜单元,所述凸透镜单元在所述衬底上的正投影呈圆形,在平行于衬底的方向上,每个所述凸透镜单元从中间向边缘厚度逐渐变薄。Wherein, the n-type secondary electrode is connected to the n-type primary electrode through a via hole, the p-type secondary electrode is connected to the p-type primary electrode through a via hole, and the passivation layer includes layers sequentially stacked on the A first refractive index layer, a second refractive index layer, and a third refractive index layer on the epitaxial layer, the refractive index of the second refractive index layer is greater than that of the first refractive index layer and the third refractive index layer Refractive index, the second refractive index layer includes a plurality of convex lens units arranged in the same layer, the orthographic projection of the convex lens units on the substrate is circular, and in a direction parallel to the substrate, each of the The thickness of the convex lens unit gradually becomes thinner from the middle to the edge.
可选地,在所述外延层上形成钝化层,包括:Optionally, forming a passivation layer on the epitaxial layer includes:
在所述外延层上形成第一折射率层;forming a first refractive index layer on the epitaxial layer;
对所述第一折射率层进行图形化处理,以在所述第一折射率层上形成第一图形,所述第一图形包括阵列布置的多个圆弧面凹槽;performing patterning on the first refractive index layer to form a first pattern on the first refractive index layer, the first pattern including a plurality of arc-shaped grooves arranged in an array;
在所述第一折射率层上形成第二折射率层;forming a second refractive index layer on the first refractive index layer;
对所述第二折射率层进行图形化处理,以在所述第二折射率层上形成第二图形,所述第二图形包括阵列布置的多个圆弧面凸起,所述圆弧面凸起与所述圆弧面凹槽一一对应布置;Patterning the second refractive index layer to form a second pattern on the second refractive index layer, the second pattern includes a plurality of arc-shaped protrusions arranged in an array, and the arc-shaped surface The protrusions are arranged in one-to-one correspondence with the arc-shaped grooves;
在所述第二折射率层上形成第三折射率层。A third refractive index layer is formed on the second refractive index layer.
本发明实施例提供的技术方案带来的有益效果是:通过将钝化层设置为层叠的第一折射率层、第二折射率层以及第三折射率层,其中第二折射率层的折射率大于第一折射率层与第三折射率层的折射率,第二折射率层包括同层布置的多个凸透镜单元,凸透镜单元在衬底上的正投影呈圆形,在平行于衬底的方向上,每个凸透镜单元从中间向边缘厚度逐渐变薄,每个凸透镜单元相当于一个凸透镜,可以对射向布拉格反射层的光线进行汇聚,使更多的光线以较小的入射角射向布拉格反射层,以使布拉格反射层能够反射更多的光线,从而提高发光二极管的发光效率。The beneficial effect brought by the technical solution provided by the embodiment of the present invention is: by setting the passivation layer as a stacked first refractive index layer, a second refractive index layer and a third refractive index layer, wherein the refractive index of the second refractive index layer The refractive index is greater than the refractive index of the first refractive index layer and the third refractive index layer. The second refractive index layer includes a plurality of convex lens units arranged in the same layer. The orthographic projection of the convex lens units on the substrate is circular. In the direction of , the thickness of each convex lens unit gradually becomes thinner from the middle to the edge, and each convex lens unit is equivalent to a convex lens, which can converge the light rays directed to the Bragg reflective layer, so that more light rays can be incident at a smaller incident angle To the Bragg reflective layer, so that the Bragg reflective layer can reflect more light, thereby improving the luminous efficiency of the light-emitting diode.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1是本发明实施例提供的一种发光二极管的结构图;Fig. 1 is a structural diagram of a light emitting diode provided by an embodiment of the present invention;
图2是本发明实施例提供的凸透镜单元与衬底的空间位置关系图;Fig. 2 is a diagram of the spatial position relationship between the convex lens unit and the substrate provided by the embodiment of the present invention;
图3是本发明实施例提供的另一种发光二极管的结构示意图;Fig. 3 is a schematic structural diagram of another light-emitting diode provided by an embodiment of the present invention;
图4是本发明实施例提供的凸透镜单元的光路图;Fig. 4 is an optical path diagram of a convex lens unit provided by an embodiment of the present invention;
图5是本发明实施例提供的一种发光二极管的制备流程图;Fig. 5 is a flow chart of the preparation of a light-emitting diode provided by an embodiment of the present invention;
图6~7是本发明实施例提供的发光二极管的制备过程示意图;6-7 are schematic diagrams of the preparation process of the light-emitting diode provided by the embodiment of the present invention;
图8是本发明实施例提供的一种钝化层的制备流程图;Fig. 8 is a flow chart of the preparation of a passivation layer provided by an embodiment of the present invention;
图9是本发明实施例提供的一种第一折射率层的刻蚀过程示意图;FIG. 9 is a schematic diagram of an etching process of a first refractive index layer provided by an embodiment of the present invention;
图10是本发明实施例提供的一种用于刻蚀第一折射率层的掩膜的结构示意图;Fig. 10 is a schematic structural diagram of a mask for etching a first refractive index layer provided by an embodiment of the present invention;
图11是本发明实施例提供的一种第二折射率层的制备过程示意图;Fig. 11 is a schematic diagram of the preparation process of a second refractive index layer provided by an embodiment of the present invention;
图12是本发明实施例提供的一种用于刻蚀第二折射率层的掩膜的结构示意图;Fig. 12 is a schematic structural diagram of a mask for etching a second refractive index layer provided by an embodiment of the present invention;
图13是本发明实施例提供的一种第二折射率层的刻蚀过程示意图;Fig. 13 is a schematic diagram of an etching process of a second refractive index layer provided by an embodiment of the present invention;
图14是本发明实施例提供的一种制备完成的钝化层的结构示意图;Fig. 14 is a schematic structural view of a prepared passivation layer provided by an embodiment of the present invention;
图15~17是本发明实施例提供的一种发光二极管的制备过程示意图。15 to 17 are schematic diagrams of a manufacturing process of a light emitting diode provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.
图1是本发明实施例提供的一种发光二极管的结构图。如图1所示,发光二极管包括衬底1、形成在衬底1上的外延层20、形成在外延层20上的n型一次电极8和p型一次电极7、覆盖在外延层20上的钝化层9、覆盖在钝化层9上的布拉格反射层10、形成在布拉格反射层10上的n型二次电极11和p型二次电极14,n型二次电极11通过过孔与n型一次电极8连接,p型二次电极14通过过孔与p型一次电极7连接。Fig. 1 is a structural diagram of a light emitting diode provided by an embodiment of the present invention. As shown in FIG. 1 , a light-emitting diode includes a substrate 1, an epitaxial layer 20 formed on the substrate 1, an n-type primary electrode 8 and a p-type primary electrode 7 formed on the epitaxial layer 20, and an The passivation layer 9, the Bragg reflection layer 10 covered on the passivation layer 9, the n-type secondary electrode 11 and the p-type secondary electrode 14 formed on the Bragg reflection layer 10, the n-type secondary electrode 11 and the The n-type primary electrode 8 is connected, and the p-type secondary electrode 14 is connected to the p-type primary electrode 7 through a via hole.
钝化层9包括依次层叠在外延层20上的第一折射率层91、第二折射率层92以及第三折射率层93,第二折射率层92的折射率大于第一折射率层91与第三折射率层93的折射率。第二折射率层92包括同层布置的多个凸透镜单元92a,每个凸透镜单元92a的靠近第一折射率层91的表面(如图1中所示的球冠面92b)和靠近第三折射率层93的表面(如图1中所示的球冠面92c)为球冠面,每个凸透镜单元92a在衬底1上的正投影均呈圆形,在平行于衬底1的方向上,每个凸透镜单元92a从中间向边缘厚度逐渐变薄。The passivation layer 9 includes a first refractive index layer 91, a second refractive index layer 92 and a third refractive index layer 93 sequentially stacked on the epitaxial layer 20, the second refractive index layer 92 has a higher refractive index than the first refractive index layer 91 and the refractive index of the third refractive index layer 93 . The second refractive index layer 92 includes a plurality of convex lens units 92a arranged in the same layer, and the surface of each convex lens unit 92a close to the first refractive index layer 91 (the spherical crown surface 92b as shown in FIG. 1 ) and the surface close to the third refractive index The surface of the ratio layer 93 (the spherical crown surface 92c as shown in Figure 1) is a spherical crown surface, and the orthographic projection of each convex lens unit 92a on the substrate 1 is circular, and in the direction parallel to the substrate 1 , the thickness of each convex lens unit 92a gradually becomes thinner from the middle to the edge.
通过将发光二极管设置为包括衬底、形成在衬底上的外延层、形成在外延层上的一次电极、覆盖在外延层上的钝化层、覆盖在钝化层上的布拉格反射层以及形成在布拉格反射层上的二次电极,二次电极通过过孔与一次电极连接。其中,钝化层包括依次层叠在外延层上的第一折射率层、第二折射率层以及第三折射率层,使得第二折射率层的折射率大于第一折射率层与第三折射率层的折射率,并且第二折射率层包括同层布置的多个凸透镜单元,使得原本应大角度入射到布拉格反射层结构上的光线,在经过凸透镜单元时发生光路偏移,能够以较为垂直的角度入射到布拉格反射层上,从而使得布拉格反射层能够反射这一部分光线,提高了二极管的取光效率。By setting the light emitting diode to include a substrate, an epitaxial layer formed on the substrate, a primary electrode formed on the epitaxial layer, a passivation layer covering the epitaxial layer, a Bragg reflection layer covering the passivation layer, and forming The secondary electrode on the Bragg reflection layer is connected to the primary electrode through a via hole. Wherein, the passivation layer includes a first refraction index layer, a second refraction index layer and a third refraction index layer stacked on the epitaxial layer in sequence, so that the refraction index of the second refraction index layer is greater than that of the first refraction index layer and the third refraction index layer. The refractive index of the index layer, and the second refractive index layer includes a plurality of convex lens units arranged in the same layer, so that the light that should be incident on the structure of the Bragg reflection layer at a large angle, when passing through the convex lens unit, the optical path shifts, which can be relatively A perpendicular angle is incident on the Bragg reflective layer, so that the Bragg reflective layer can reflect this part of the light, improving the light extraction efficiency of the diode.
如图1所示,外延层20可以包括依次生长在衬底1上的n型GaN层2、有源层3、p型GaN层4及透明导电层6,n型GaN层2、有源层3、p型GaN层4以及透明导电层6,n型一次电极8设置在n型GaN层上,p型一次电极7设置在透明导电层6上。As shown in FIG. 1, the epitaxial layer 20 may include an n-type GaN layer 2, an active layer 3, a p-type GaN layer 4, and a transparent conductive layer 6 grown sequentially on a substrate 1. The n-type GaN layer 2, the active layer 3. The p-type GaN layer 4 and the transparent conductive layer 6 , the n-type primary electrode 8 is disposed on the n-type GaN layer, and the p-type primary electrode 7 is disposed on the transparent conductive layer 6 .
如图1所示,本实施例中,有源层3可以为多量子阱结构,有源层3包括交替层叠的InGaN层31和GaN层32,InGaN层31和GaN层32交替层叠的周期数可以为6-15,InGaN层31的厚度可以为2-5nm。As shown in Figure 1, in this embodiment, the active layer 3 can be a multi-quantum well structure, the active layer 3 includes alternately stacked InGaN layers 31 and GaN layers 32, and the number of cycles of the alternately stacked InGaN layers 31 and GaN layers 32 It can be 6-15 nm, and the thickness of the InGaN layer 31 can be 2-5 nm.
需要说明的是,图1中所示的有源层3的结构仅为示意,并不用以限制有源层3中InGaN层31和GaN层32的层数。It should be noted that the structure of the active layer 3 shown in FIG. 1 is only for illustration and is not intended to limit the number of layers of the InGaN layer 31 and the GaN layer 32 in the active layer 3 .
可选地,第二折射率层92采用Ti3O5、TiO2、ZrO2、HfO2中的任一种制成,这几种材料均有较高的折射率,能满足第二折射率层对高折射率的要求。Optionally, the second refractive index layer 92 is made of any one of Ti 3 O 5 , TiO 2 , ZrO 2 , and HfO 2 . layer requires high refractive index.
优选地,第二折射率层92采用Ti3O5或者TiO2制成。Preferably, the second refractive index layer 92 is made of Ti 3 O 5 or TiO 2 .
可选地,第一折射率层91可以采用SiO2、MgO、Al2O3中的任一种制成,第三折射率层93可以采用SiO2、MgO、Al2O3中的任一种制成。这几种材料有较好的抗氧化作用,能对发光二极管内部结构起到保护作用。优选地,第一折射率层91和第三折射率层93采用相同的材料制成。选用相同的材料制作第一折射率层与第二折射率层可减少二极管的制作成本。Optionally, the first refractive index layer 91 can be made of any one of SiO 2 , MgO, and Al 2 O 3 , and the third refractive index layer 93 can be made of any one of SiO 2 , MgO, and Al 2 O 3 made. These kinds of materials have good anti-oxidation effect and can protect the internal structure of light-emitting diodes. Preferably, the first refractive index layer 91 and the third refractive index layer 93 are made of the same material. Choosing the same material to make the first refractive index layer and the second refractive index layer can reduce the manufacturing cost of the diode.
优选地,第一折射率层91和第三折射率层93均可采用SiO2制成。Preferably, both the first refractive index layer 91 and the third refractive index layer 93 are made of SiO 2 .
可选地,第二折射率层92的的折射率为2.2~2.6,第一折射率层91的折射率为1.4~1.7,第三折射率层93的折射率为1.4~1.7。通过将第二折射率层的折射率设置为2.2~2.6,第一折射率层与第三折射率层的折射率均设置为1.4~1.7,第二折射率层与第一折射率层以及第三折射率层之间相互配合,以达到更好的聚光效果。Optionally, the refractive index of the second refractive index layer 92 is 2.2-2.6, the refractive index of the first refractive index layer 91 is 1.4-1.7, and the refractive index of the third refractive index layer 93 is 1.4-1.7. By setting the refractive index of the second refractive index layer to 2.2-2.6, and setting the refractive indices of the first refractive index layer and the third refractive index layer to 1.4-1.7, the second refractive index layer and the first refractive index layer and the second refractive index layer The three refractive index layers cooperate with each other to achieve better light-gathering effect.
可选地,在本发明实施例中,第一折射率层91的折射率与第三折射率层93的折射率可以相同。Optionally, in the embodiment of the present invention, the refractive index of the first refractive index layer 91 and the refractive index of the third refractive index layer 93 may be the same.
可选地,第二折射率层92的厚度为30~100nm。将第二折射率层的厚度设置为此范围能够使第二折射率层的光提取效果最好。如果第二折射率层的厚度小于30~100nm,刻蚀后的凸透镜单元的球冠面会过小,不利于光的汇聚,如果第二折射率层的厚度过厚,又会带来较大的材料的本征吸收,不利于光的取出。Optionally, the thickness of the second refractive index layer 92 is 30-100 nm. Setting the thickness of the second refractive index layer within this range can maximize the light extraction effect of the second refractive index layer. If the thickness of the second refractive index layer is less than 30-100nm, the spherical crown surface of the etched convex lens unit will be too small, which is not conducive to light convergence; The intrinsic absorption of the material is not conducive to the extraction of light.
在本实施例中,第二折射率层92的厚度为凸透镜单元92a上厚度最大处的厚度值。In this embodiment, the thickness of the second refractive index layer 92 is the thickness value of the maximum thickness on the convex lens unit 92a.
可选地,凸透镜单元92a在衬底1上的正投影的直径可以为4μm~12μm。以便于凸透镜单元的制作。凸透镜单元是通过对光刻胶进行后烘,使得光刻胶平行衬底表面的侧面发生坡度变化,从而得到所需的对应凸透镜单元的球冠面的刻蚀曲面。若凸透镜单元的直径过小,会难以通过光刻技术实现凸透镜单元的制作。若直径过大,则难以在光刻胶上形成凸透镜单元的球冠面所需要的表面弧度。Optionally, the diameter of the orthographic projection of the convex lens unit 92a on the substrate 1 may be 4 μm˜12 μm. In order to facilitate the production of the convex lens unit. For the convex lens unit, after-baking the photoresist makes the side of the photoresist parallel to the surface of the substrate change in slope, so as to obtain the desired etched curved surface corresponding to the spherical crown surface of the convex lens unit. If the diameter of the convex lens unit is too small, it will be difficult to realize the fabrication of the convex lens unit by photolithography. If the diameter is too large, it will be difficult to form the surface curvature required by the spherical crown surface of the convex lens unit on the photoresist.
可选地,相邻的凸透镜单元92a的边缘之间的间距为5μm~10μm。在凸透镜单元92a的大小一定的情况下,将相邻的凸透镜单元92a的边缘的间距设置为5μm~10μm以便于凸透镜单元的制作。相邻的凸透镜单元的边缘的间距过大会导致凸透镜单元的密度低,减少对光的提取,相邻的凸透镜单元的边缘的间距过小,凸透镜单元与凸透镜单元之间又会发生干涉,影响凸透镜单元对光线的提取。Optionally, the distance between the edges of adjacent convex lens units 92a is 5 μm˜10 μm. When the size of the convex lens units 92a is constant, the distance between the edges of adjacent convex lens units 92a is set to 5 μm˜10 μm to facilitate the production of the convex lens units. If the distance between the edges of adjacent convex lens units is too large, the density of the convex lens units will be low, reducing the extraction of light. If the distance between the edges of adjacent convex lens units is too small, interference will occur between the convex lens units and the convex lens will be affected. The extraction of rays by the unit.
可选地,钝化层9的远离衬底的表面在衬底上的正投影位于衬底内,布拉格反射层10覆盖在钝化层9的远离衬底1的表面和钝化层9的多个侧面上。通过将布拉格反射层覆盖在钝化层的远离衬底1的表面和钝化层的多个侧面上,使得布拉格反射层能够反射光线的范围更大。Optionally, the orthographic projection of the surface of the passivation layer 9 far away from the substrate on the substrate is located in the substrate, and the Bragg reflection layer 10 covers the surface of the passivation layer 9 far away from the substrate 1 and much of the passivation layer 9. on one side. By covering the surface of the passivation layer far away from the substrate 1 and the multiple sides of the passivation layer with the Bragg reflection layer, the range in which the Bragg reflection layer can reflect light is larger.
此外,外延层20的侧壁20a与衬底1的夹角θ大于90°,这样可以使得从外延层的侧壁射出的光更好的照射到布拉格反射层上进行反射。In addition, the included angle θ between the sidewall 20a of the epitaxial layer 20 and the substrate 1 is larger than 90°, so that the light emitted from the sidewall of the epitaxial layer can be better irradiated on the Bragg reflection layer for reflection.
可选地,透明导电层6材料为ITO(Indium Tin Oxides,氧化铟锡),ITO具有较高的光透过率和良好的导电性能,可以减少对光线的吸收,有利于提高发光效率。Optionally, the material of the transparent conductive layer 6 is ITO (Indium Tin Oxides, indium tin oxide). ITO has high light transmittance and good electrical conductivity, can reduce light absorption, and is beneficial to improve luminous efficiency.
在本实施例中,布拉格反射层10包括交替生长的高折射率材料层和低折射率材料层,每层高折射率材料层和每层低折射率材料层的光学厚度均为有源层所发出光线波长的1/4。In this embodiment, the Bragg reflection layer 10 includes alternately grown high-refractive-index material layers and low-refractive-index material layers, and the optical thickness of each high-refractive-index material layer and each low-refractive-index material layer is set by the active layer. emits 1/4 of the wavelength of light.
可选地,图2是本发明实施例提供的凸透镜单元与衬底的空间位置关系图,如图2所示,凸透镜单元92a在衬底1上的正投影的半径r与球冠面92b的半径R的比值为0.50~0.97。将凸透镜单元在衬底上的正投影的半径与球冠面的半径的比值设置为0.50~0.97,便于凸透镜单元的制作的同时也能够达到较好的聚光效果。Optionally, FIG. 2 is a diagram of the spatial position relationship between the convex lens unit and the substrate provided by the embodiment of the present invention. As shown in FIG. 2 , the radius r of the orthographic projection of the convex lens unit 92a on the substrate 1 and the The ratio of the radius R is 0.50-0.97. The ratio of the radius of the orthographic projection of the convex lens unit on the substrate to the radius of the spherical crown surface is set to 0.50-0.97, which facilitates the production of the convex lens unit and can also achieve a better light-gathering effect.
图3是本发明实施例提供的另一种发光二极管的结构示意图,如图3所示,p型GaN层4与透明导电层6之间还设置有电流阻挡层5,电流阻挡层5有利于电流的横向扩展。Fig. 3 is a schematic structural view of another light-emitting diode provided by an embodiment of the present invention. As shown in Fig. 3, a current blocking layer 5 is also provided between the p-type GaN layer 4 and the transparent conductive layer 6, and the current blocking layer 5 is beneficial to The horizontal expansion of the current.
图4是本发明实施例提供的凸透镜单元的光路图,如图4所示,原本应大角度入射到布拉格反射层结构上的光线,在经过凸透镜单元92a时发生偏移,能够以近似垂直的角度入射布拉格反射层。Fig. 4 is the optical path diagram of the convex lens unit provided by the embodiment of the present invention. As shown in Fig. 4, the light that should be incident on the Bragg reflection layer structure at a large angle is offset when passing through the convex lens unit 92a, and can be approximately vertical Angle of incidence on the Bragg reflector.
图5是本发明实施例提供的一种发光二极管的制备流程图。如图5所示,该制备方法包括:Fig. 5 is a flow chart of manufacturing a light emitting diode provided by an embodiment of the present invention. As shown in Figure 5, the preparation method comprises:
S1:提供一衬底。S1: Provide a substrate.
本实施例中,衬底1为蓝宝石衬底。In this embodiment, the substrate 1 is a sapphire substrate.
S2:在衬底上生长外延层。S2: growing an epitaxial layer on the substrate.
S3:在外延层上制作n型一次电极和p型一次电极。S3: Fabricate an n-type primary electrode and a p-type primary electrode on the epitaxial layer.
S4:在外延层上形成钝化层。S4: forming a passivation layer on the epitaxial layer.
S5:在钝化层上形成布拉格反射层。S5: forming a Bragg reflection layer on the passivation layer.
S6:在布拉格反射层上形成n型二次电极和p型二次电极。S6: forming an n-type secondary electrode and a p-type secondary electrode on the Bragg reflection layer.
其中,n型二次电极通过过孔与n型一次电极连接,p型二次电极通过过孔与p型一次电极连接,钝化层包括依次层叠在外延层上的第一折射率层、第二折射率层以及第三折射率层,第二折射率层的折射率大于第一折射率层与第三折射率层的折射率,第二折射率层包括同层布置的多个凸透镜单元,凸透镜单元在衬底上的正投影呈圆形,在平行于衬底的方向上,每个凸透镜单元从中间向边缘厚度逐渐变薄。Wherein, the n-type secondary electrode is connected to the n-type primary electrode through the via hole, and the p-type secondary electrode is connected to the p-type primary electrode through the via hole. The passivation layer includes a first refractive index layer, a second Two refractive index layers and a third refractive index layer, the refractive index of the second refractive index layer is greater than the refractive index of the first refractive index layer and the third refractive index layer, the second refractive index layer includes a plurality of convex lens units arranged in the same layer, The orthographic projection of the convex lens unit on the substrate is circular, and in a direction parallel to the substrate, the thickness of each convex lens unit gradually becomes thinner from the middle to the edge.
通过将发光二极管设置为包括衬底、形成在衬底上的外延层、形成在外延层上的一次电极、覆盖在外延层上的钝化层、覆盖在钝化层上的布拉格反射层以及形成在布拉格反射层上的二次电极,二次电极通过过孔与一次电极连接。其中,钝化层包括依次层叠在外延层上的第一折射率层、第二折射率层以及第三折射率层,使得第二折射率层的折射率大于第一折射率层与第三折射率层的折射率,并且第二折射率层包括同层布置的多个凸透镜单元,使得原本应大角度入射到布拉格反射层结构上的光线,在经过凸透镜单元时发生光路偏移,能够以较为垂直的角度入射到布拉格反射层上,从而使得布拉格反射层能够反射这一部分光线,提高了二极管的取光效率。By setting the light emitting diode to include a substrate, an epitaxial layer formed on the substrate, a primary electrode formed on the epitaxial layer, a passivation layer covering the epitaxial layer, a Bragg reflection layer covering the passivation layer, and forming The secondary electrode on the Bragg reflection layer is connected to the primary electrode through a via hole. Wherein, the passivation layer includes a first refraction index layer, a second refraction index layer and a third refraction index layer stacked on the epitaxial layer in sequence, so that the refraction index of the second refraction index layer is greater than that of the first refraction index layer and the third refraction index layer. The refractive index of the index layer, and the second refractive index layer includes a plurality of convex lens units arranged in the same layer, so that the light that should be incident on the structure of the Bragg reflection layer at a large angle, when passing through the convex lens unit, the optical path shifts, which can be relatively A perpendicular angle is incident on the Bragg reflective layer, so that the Bragg reflective layer can reflect this part of the light, improving the light extraction efficiency of the diode.
图6~7是本发明实施例提供的发光二极管的制备过程示意图。6-7 are schematic diagrams of the preparation process of the light emitting diode provided by the embodiment of the present invention.
具体地,步骤S2可以包括:Specifically, step S2 may include:
在衬底上生长外延层。An epitaxial layer is grown on the substrate.
如图6所示,在衬底1上生长外延层20,外延层20包括依次生长在衬底1上的n型GaN层2、有源层3、p型GaN层4及透明导电层6。As shown in FIG. 6 , an epitaxial layer 20 is grown on the substrate 1 , and the epitaxial layer 20 includes an n-type GaN layer 2 , an active layer 3 , a p-type GaN layer 4 and a transparent conductive layer 6 grown on the substrate 1 in sequence.
此外,在p型GaN层4及透明导电层6之间还可以生长有电流阻挡层5。In addition, a current blocking layer 5 may also be grown between the p-type GaN layer 4 and the transparent conductive layer 6 .
步骤S3可以包括:Step S3 may include:
在外延层上制作凹槽。Grooves are made on the epitaxial layer.
在透明导电层上制作p型一次电极,在凹槽内的n型GaN层上制作n型一次电极。A p-type primary electrode is fabricated on the transparent conductive layer, and an n-type primary electrode is fabricated on the n-type GaN layer in the groove.
如图7所示,在外延层20上制作有凹槽17,以露出n型GaN层2,n型一次电极8设置在n型GaN层2上,p型一次电极7设置在透明导电层6上。As shown in Figure 7, a groove 17 is made on the epitaxial layer 20 to expose the n-type GaN layer 2, the n-type primary electrode 8 is arranged on the n-type GaN layer 2, and the p-type primary electrode 7 is arranged on the transparent conductive layer 6 superior.
图8是本发明实施例提供的一种钝化层的制备流程图,图9~13是本发明实施例提供的钝化层结构制作过程示意图。结合图9~13可知步骤S4可以包括:FIG. 8 is a flow chart for preparing a passivation layer provided by an embodiment of the present invention, and FIGS. 9 to 13 are schematic diagrams of the manufacturing process of a passivation layer structure provided by an embodiment of the present invention. In combination with FIGS. 9-13, it can be seen that step S4 may include:
S41:在外延层上形成第一折射率层。S41: forming a first refractive index layer on the epitaxial layer.
图9是本发明实施例提供的一种第一折射率层的刻蚀过程示意图,如图9所示,外延层20上形成有第一折射率层911,第一折射率层911可以采用沉积的方式形成在外延层20上。9 is a schematic diagram of an etching process of a first refractive index layer provided by an embodiment of the present invention. As shown in FIG. 9 , a first refractive index layer 911 is formed on the epitaxial layer 20, and the first refractive index layer 911 can be deposited formed on the epitaxial layer 20 in a manner.
S42:对第一折射率层911进行图形化处理,以在第一折射率层911上形成第一图形。S42: Perform patterning processing on the first refractive index layer 911 to form a first pattern on the first refractive index layer 911 .
其中,第一图形包括阵列布置的多个圆弧面凹槽911a。Wherein, the first pattern includes a plurality of arc surface grooves 911a arranged in an array.
具体可以在第一折射率层上涂覆光刻胶12,采用图10所示的掩膜15对光刻胶12进行曝光,对光刻胶12显影后,再通过刻蚀工艺在第一折射率层911上形成圆弧面凹槽911a。可选地,光刻胶12为正光刻胶。Specifically, a photoresist 12 can be coated on the first refractive index layer, and the photoresist 12 is exposed using the mask 15 shown in FIG. An arc-shaped groove 911a is formed on the layer 911 . Optionally, the photoresist 12 is a positive photoresist.
S43:在第一折射率层911上形成第二折射率层921。S43 : forming the second refractive index layer 921 on the first refractive index layer 911 .
如图11所示,第一折射率层911上形成有第二折射率层921。As shown in FIG. 11 , a second refractive index layer 921 is formed on the first refractive index layer 911 .
第二折射率层921可以通过沉积的方式形成。The second refractive index layer 921 can be formed by deposition.
S44:对第二折射率层921进行图形化处理,以在第二折射率层921上形成第二图形。S44: Perform patterning processing on the second refractive index layer 921 to form a second pattern on the second refractive index layer 921 .
其中,第二图形包括阵列布置的多个圆弧面凸起921a,圆弧面凸起921a与圆弧面凹槽911a一一对应布置。Wherein, the second figure includes a plurality of arc surface protrusions 921a arranged in an array, and the arc surface protrusions 921a are arranged in one-to-one correspondence with the arc surface grooves 911a.
具体可以在第二折射率层上涂覆光刻胶13,采用图12所示的掩膜16对光刻胶13进行曝光,对光刻胶13显影后,再通过刻蚀工艺在第二折射率层921上形成圆弧面凸起921a。如图13所示。Specifically, a photoresist 13 can be coated on the second refractive index layer, and the photoresist 13 is exposed using the mask 16 shown in FIG. The arc surface protrusion 921a is formed on the rate layer 921 . As shown in Figure 13.
可选地,光刻胶13为负光刻胶。Optionally, the photoresist 13 is a negative photoresist.
S45:在第二折射率层921上形成第三折射率层931。S45: forming the third refractive index layer 931 on the second refractive index layer 921 .
如图14所示,第二折射率层921上形成有第三折射率层931。As shown in FIG. 14 , a third refractive index layer 931 is formed on the second refractive index layer 921 .
第三折射率层931可以通过沉积的方式形成。The third refractive index layer 931 can be formed by deposition.
制作钝化层后的发光二极管的结构如图15所示。The structure of the light emitting diode after the passivation layer is fabricated is shown in FIG. 15 .
图15~17是本发明实施例提供的一种发光二极管的制备过程示意图。15 to 17 are schematic diagrams of a manufacturing process of a light emitting diode provided by an embodiment of the present invention.
如图16所示,在完整钝化层的制作后,在钝化层9上形成布拉格反射层10。As shown in FIG. 16 , a Bragg reflection layer 10 is formed on the passivation layer 9 after the complete passivation layer is fabricated.
在执行步骤S6之前可以在布拉格反射层上制作过孔,以使得n型二次电极14和p型二次电极11可以通过过孔分别与n型一次电极8以及p型一次电极8连接。Before step S6 is performed, via holes can be made on the Bragg reflective layer, so that the n-type secondary electrode 14 and the p-type secondary electrode 11 can be connected to the n-type primary electrode 8 and the p-type primary electrode 8 respectively through the via holes.
制作完n型二次电极14和p型二次电极11后,即可得到如图17所示的发光二极管。After the n-type secondary electrode 14 and the p-type secondary electrode 11 are fabricated, a light emitting diode as shown in FIG. 17 can be obtained.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711241467.5A CN108183157B (en) | 2017-11-30 | 2017-11-30 | Light-emitting diode and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711241467.5A CN108183157B (en) | 2017-11-30 | 2017-11-30 | Light-emitting diode and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108183157A CN108183157A (en) | 2018-06-19 |
CN108183157B true CN108183157B (en) | 2019-11-12 |
Family
ID=62545398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711241467.5A Active CN108183157B (en) | 2017-11-30 | 2017-11-30 | Light-emitting diode and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108183157B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109671829A (en) * | 2018-12-13 | 2019-04-23 | 合肥彩虹蓝光科技有限公司 | A kind of flip-over type light-emitting diode chip for backlight unit preparation method |
CN109659415A (en) * | 2018-12-28 | 2019-04-19 | 映瑞光电科技(上海)有限公司 | A kind of vertical LED chip and preparation method thereof |
CN110034220B (en) * | 2019-04-16 | 2024-06-25 | 佛山市国星半导体技术有限公司 | A flip-chip LED chip and its manufacturing method |
CN114093997B (en) * | 2021-09-23 | 2023-06-09 | 华灿光电(浙江)有限公司 | Large-opening-angle light-emitting diode chip and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103035812A (en) * | 2011-09-29 | 2013-04-10 | 新世纪光电股份有限公司 | Substrate |
CN103915533A (en) * | 2014-04-10 | 2014-07-09 | 杭州士兰明芯科技有限公司 | Graphical substrate and inverted LED chip and manufacturing method thereof |
CN105529343A (en) * | 2010-07-22 | 2016-04-27 | 首尔伟傲世有限公司 | led |
CN105957928A (en) * | 2016-05-31 | 2016-09-21 | 华灿光电股份有限公司 | Resonant cavity light-emitting diode and manufacturing method therefor |
CN106257696A (en) * | 2015-06-17 | 2016-12-28 | 三星电子株式会社 | Semiconductor light-emitting apparatus |
CN106469776A (en) * | 2016-10-26 | 2017-03-01 | 友达光电股份有限公司 | Electronic device and manufacturing method thereof |
CN106784362A (en) * | 2015-09-23 | 2017-05-31 | 乐金显示有限公司 | Organic light-emitting display device |
-
2017
- 2017-11-30 CN CN201711241467.5A patent/CN108183157B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105529343A (en) * | 2010-07-22 | 2016-04-27 | 首尔伟傲世有限公司 | led |
CN103035812A (en) * | 2011-09-29 | 2013-04-10 | 新世纪光电股份有限公司 | Substrate |
CN103915533A (en) * | 2014-04-10 | 2014-07-09 | 杭州士兰明芯科技有限公司 | Graphical substrate and inverted LED chip and manufacturing method thereof |
CN106257696A (en) * | 2015-06-17 | 2016-12-28 | 三星电子株式会社 | Semiconductor light-emitting apparatus |
CN106784362A (en) * | 2015-09-23 | 2017-05-31 | 乐金显示有限公司 | Organic light-emitting display device |
CN105957928A (en) * | 2016-05-31 | 2016-09-21 | 华灿光电股份有限公司 | Resonant cavity light-emitting diode and manufacturing method therefor |
CN106469776A (en) * | 2016-10-26 | 2017-03-01 | 友达光电股份有限公司 | Electronic device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108183157A (en) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108183157B (en) | Light-emitting diode and preparation method thereof | |
TWI636582B (en) | Illuminating device | |
CN113394351A (en) | Display panel and display device | |
CN204271086U (en) | A display body with a light extraction structure | |
US20240006465A1 (en) | Micro light-emitting diode chip, manufacturing method therefor, and electronic device | |
CN102738338B (en) | Group III nitride semiconductor light-emitting device | |
CN104868028B (en) | Light emitting diode chip | |
WO2021244967A1 (en) | Enhanced colour conversion and collimation of micro-led devices | |
CN104576857A (en) | Flip LED chip structure with high reflection layer and manufacturing method of flip LED chip structure | |
CN102082216B (en) | Light emitting diode chip and manufacturing method thereof | |
CN111668390B (en) | Organic light-emitting display panel | |
CN111092168B (en) | A display panel and a display device | |
CN116344719A (en) | Micro-LED structure with small light emitting angle | |
CN103700749A (en) | Light-emitting diode and manufacturing method thereof | |
KR101145891B1 (en) | Led with retroreflector and the manufacturing method thereof | |
WO2025112412A1 (en) | Display panel and display apparatus | |
CN114927602A (en) | Miniature light-emitting diode chip and preparation method thereof | |
CN107634129A (en) | Semiconductor luminous chip, semiconductor light emitting module, display device and terminal device | |
CN114068786A (en) | Light-emitting diodes and light-emitting devices | |
CN111668235A (en) | Display panel and method of making the same | |
JP6493773B2 (en) | Light emitting device | |
CN110034220A (en) | A kind of flip LED chips and preparation method thereof | |
CN114093997B (en) | Large-opening-angle light-emitting diode chip and manufacturing method thereof | |
CN214474067U (en) | High-efficient light conversion glass diffuser plate | |
CN201898145U (en) | GaN-based light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |