CN108181812A - BP neural network-based valve positioner PI parameter setting method - Google Patents
BP neural network-based valve positioner PI parameter setting method Download PDFInfo
- Publication number
- CN108181812A CN108181812A CN201711467253.XA CN201711467253A CN108181812A CN 108181812 A CN108181812 A CN 108181812A CN 201711467253 A CN201711467253 A CN 201711467253A CN 108181812 A CN108181812 A CN 108181812A
- Authority
- CN
- China
- Prior art keywords
- neural network
- output
- parameters
- parameter
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000001105 regulatory effect Effects 0.000 claims abstract description 16
- 210000002569 neuron Anatomy 0.000 claims description 15
- 238000012549 training Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 5
- 238000004422 calculation algorithm Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 230000002596 correlated effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000011478 gradient descent method Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000001364 causal effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010219 correlation analysis Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明属于自动控制领域,涉及一种控制方法,尤其涉及一种利用BP神经网络来整定调节阀定位器PI参数的方法。The invention belongs to the field of automatic control and relates to a control method, in particular to a method for adjusting PI parameters of a regulating valve positioner by using a BP neural network.
背景技术Background technique
智能阀门定位器在工业控制领域中具有重要作用,是气动调节阀的控制核心,能够极大的改善气动阀门的动态响应和稳态特性。对于传统的PID控制器,在把其投入运行之前,要想得到较理想的控制效果,必须先整定好其三个参数:即比例系数(P)、积分(I)、微分时间(D)。而实际工控制过程往往具有非线性、时变不确定性,难以建立精确数学模型,应用常规的PID控制器难以达到理想的控效果。The intelligent valve positioner plays an important role in the field of industrial control. It is the control core of the pneumatic control valve and can greatly improve the dynamic response and steady-state characteristics of the pneumatic valve. For the traditional PID controller, before it is put into operation, in order to obtain a more ideal control effect, three parameters must be adjusted: namely, the proportional coefficient (P), the integral (I), and the differential time (D). However, the actual industrial control process often has nonlinear and time-varying uncertainties, so it is difficult to establish an accurate mathematical model, and it is difficult to achieve the ideal control effect by using a conventional PID controller.
发明内容Contents of the invention
本发明的目的是在于针对现有技术的不足,提出一种基于BP神经网络整定定位器PI参数的方法,它综合了传统PID控制理论的和神经网络理论的优点。The purpose of the present invention is to aim at the deficiencies in the prior art, propose a kind of method based on BP neural network tuning positioner PI parameter, it synthesizes the advantage of traditional PID control theory and neural network theory.
为实现上述技术的目的,达到上述技术效果,本发明通过以下技术方案实现:For realizing the purpose of above-mentioned technology, reach above-mentioned technical effect, the present invention realizes through following technical scheme:
BP神经网络是一种多层前馈神经网络,3层BP网络的拓扑结构,包括输入层、输出层和一个隐含层,各神经元与下一层所有的神经元连接,同层神经元之间无连接。BP神经网络的基本原理是采用梯度下降法调整权值和阈值,使得网络的实际输出值和期望输出值的均方误差值最小。BP neural network is a multi-layer feed-forward neural network. The topological structure of 3-layer BP network includes input layer, output layer and a hidden layer. Each neuron is connected to all neurons in the next layer. Neurons in the same layer There is no connection between them. The basic principle of BP neural network is to use the gradient descent method to adjust the weight and threshold, so that the mean square error between the actual output value and the expected output value of the network is the smallest.
标准的BP算法在修正权值时没有考虑以前时刻的梯度方向,从而使学习过程常常发生振荡,收敛缓慢。因此本发明采用Levenberg-Marquardt算法,通过优化BP神经网络的搜索方向,加快网络训练速度,提高网络训练的精度。The standard BP algorithm does not consider the gradient direction of the previous moment when modifying the weight, so that the learning process often oscillates and converges slowly. Therefore, the present invention adopts the Levenberg-Marquardt algorithm to speed up the network training speed and improve the accuracy of the network training by optimizing the search direction of the BP neural network.
Levenberg-Marquardt算法,包括如下内容:Levenberg-Marquardt algorithm, including the following:
1)设w(i)表示第i次迭代的权值和阈值所组成的向量,w(i+1)是新的权值和阈值所组成的向量,如式所示:w(i+1)=w(i)+Δw;1) Let w(i) represent the vector composed of the weight and threshold of the i-th iteration, and w(i+1) is the vector composed of the new weight and threshold, as shown in the formula: w(i+1 )=w(i)+Δw;
2)对于牛顿法,Δw的表达式为:式中E(w)2) For Newton's method, the expression of Δw is: where E(w)
设评价函数为均方误差:式中e(w)为误差(i=1,2,3,…,N),Let the evaluation function be the mean square error: Where e(w) is the error (i=1,2,3,...,N),
3)式中,J为雅可比矩阵,其形式为: 3) In the formula, J is the Jacobian matrix, and its form is:
4)对于高斯-牛顿法则有ΔE=-[JT(w)*J(W)]-1*J(w)e(w)L-M算法是其的改进,则ΔE=-[JT(w)*J(W)+μI]-1*J(w)e(w)式中,比例系数μ>0为常数,I为单位矩阵,4) For the Gauss-Newton law, there is ΔE=-[J T (w)*J(W)] -1 *J(w)e(w) LM algorithm is its improvement, then ΔE=-[J T (w) )*J(W)+μI] -1 *J(w)e(w) In the formula, the proportional coefficient μ>0 is a constant, and I is an identity matrix,
5)从上式可以看出,如果比例系数μ=0,则L-M算法变为高斯-牛顿法;如果μ取值接近于1,则L-M算法转变为梯度下降法,随着迭代成功次数增加,μ值逐渐减小,在接近误差最小时,L-M算法逐渐演变为高斯-牛顿法。因此,通过实践表明,用L-M算法可以较原来的梯度下降法提高速度几十甚至上百倍。5) It can be seen from the above formula that if the proportional coefficient μ=0, the L-M algorithm becomes the Gauss-Newton method; if the value of μ is close to 1, the L-M algorithm is transformed into the gradient descent method, and as the number of successful iterations increases, The value of μ gradually decreases, and when the error is close to the minimum, the L-M algorithm gradually evolves into the Gauss-Newton method. Therefore, it has been shown through practice that the L-M algorithm can increase the speed by dozens or even hundreds of times compared with the original gradient descent method.
神经网络输入数据的确定就是特征量(影响因子)的提取,主要考虑它是否与系统输出指标有明确的因果关系,如果网络输入数据与输出指标没有任何联系,就不能建立它们之间的联系,所以准确地分析与输出PI参数关联性强的因素,并将其作为输入量是必要的。The determination of the input data of the neural network is the extraction of feature quantities (influence factors), mainly considering whether it has a clear causal relationship with the system output indicators. If the network input data has no connection with the output indicators, the connection between them cannot be established. Therefore, it is necessary to accurately analyze the factors that are strongly correlated with the output PI parameters and use them as input quantities.
将采集的各个输入性能参数集分别与手动寻优PI参数集做相关性分析。判断变量之间的相关密切程度,需要通过一个指标来判定,这里采用的是相关系数,用r表示,相关系数的取值范围为[-1,+1],小于零表示负相关,大于零表示正相关。Correlation analysis is performed between the collected input performance parameter sets and the manually optimized PI parameter sets. Judging the closeness of the correlation between variables needs to be judged by an indicator. Here, the correlation coefficient is used, which is represented by r. The value range of the correlation coefficient is [-1, +1]. Less than zero means negative correlation, and greater than zero Indicates a positive correlation.
相关系数的计算公式为: The formula for calculating the correlation coefficient is:
相关系数判断两变量之间的线性相关程度的标准是:当|r|=0时,表示x和y完全不相关;当0<|r|<0.3时,表示x和y不相关;当0.3<|r|<0.5时,认为x和y低度相关;当0.5<|r|<0.8时,认为x和y显著相关;当0.8<|r|1时,认为x和y高度相关。The standard of the correlation coefficient to judge the degree of linear correlation between two variables is: when |r|=0, it means that x and y are completely irrelevant; when 0<|r|<0.3, it means that x and y are not related; when 0.3 When <|r|<0.5, x and y are considered to be lowly correlated; when 0.5<|r|<0.8, x and y are considered to be significantly correlated; when 0.8<|r|1, x and y are considered to be highly correlated.
由于输入变量单位不同,数量级差别也较大,而神经元的输出通常都被限制在一定的范围内。本文设计的模型采用单端S型激励函数,输出被限制在0~1之间,所以需要对原始数据进行归一化处理,以避免神经元过饱和。Due to the different units of input variables, the magnitude difference is also large, and the output of neurons is usually limited within a certain range. The model designed in this paper uses a single-ended S-type activation function, and the output is limited between 0 and 1, so the original data needs to be normalized to avoid neuron oversaturation.
归一化公式如下式所示: The normalization formula is as follows:
式中:x为位于区间[0,1]之外的系统数据;Xmax和Xmin分别为系统数据中的最大值和最小值;y为系统数据x归一化后的值。In the formula: x is the system data outside the interval [0, 1]; X max and X min are the maximum and minimum values in the system data respectively; y is the normalized value of the system data x.
BP网络训练精度的提高,可以采用一个隐含层而增加其神经元数的方法来获得,但是并不是隐含节点数越多就越好,隐含节点数取多,网络输出结果精度反而要下降。The improvement of BP network training accuracy can be obtained by using a hidden layer to increase the number of neurons, but it is not that the more hidden nodes, the better. If the number of hidden nodes is large, the accuracy of network output results will be higher. decline.
本次方法的网络采用同一输入输出样本对,网络训练最大次数设为1000次,误差设为0.0001,通过不断改变隐含层节点数来训练网络,经过多次的对比实验,隐含节点数选取为13个,此时的网络能够取得较好的精度。隐含层的传输函数选为tansig函数,输出层的传输函数选为tansig函数,输出结果在[0,1]之间。The network of this method uses the same input and output sample pair, the maximum number of network training is set to 1000 times, and the error is set to 0.0001. The network is trained by continuously changing the number of nodes in the hidden layer. After many comparison experiments, the number of hidden nodes is selected is 13, and the network at this time can achieve better accuracy. The transfer function of the hidden layer is selected as the tansig function, the transfer function of the output layer is selected as the tansig function, and the output result is between [0, 1].
对于神经网络的输出,需要进行反归一化处理,将网络在[0,1]之间的值转换为系统的实际输出值,For the output of the neural network, denormalization processing is required to convert the value of the network between [0, 1] into the actual output value of the system,
与归一化式子对应的反归一化公式如下:x=y(xmax-xmin)+xmin The denormalization formula corresponding to the normalization formula is as follows: x=y(x max -x min )+x min
式中,y为位于[0,1]之间的值;xmax和xmin分别为系统数据中的最大值和最小值;x为网络输出反归一化后的系统实际数据。In the formula, y is a value between [0, 1]; x max and x min are the maximum and minimum values in the system data respectively; x is the actual data of the system after denormalization of the network output.
在气动调节阀仿真模型上,利用闭环阶跃测试手动寻找到最优PI参数,此PI参数能够使调节阀的上升时间短,超调小。On the simulation model of the pneumatic regulating valve, the optimal PI parameters are manually found by using the closed-loop step test. This PI parameter can make the rising time of the regulating valve short and the overshoot small.
利用气动调节阀机理模型上的基础参数(行程、膜片面积、弹簧刚度、阀内件质量)来模拟出各种不同种类的调节阀,针对每种调节阀做开环实验,获取T1(全关下降时间)、T2(全开上升时间)、S1(曲线下降时与时间T1包围的面积;)、S2(为曲线上升时与时间T2包围的面积)、K,再对此种类型的调节阀做闭环实验,手动寻找最优PI参数,以此获得多组BP神经网络训练样本。Use the basic parameters (stroke, diaphragm area, spring stiffness, valve trim quality) on the mechanism model of the pneumatic control valve to simulate various types of control valves, do open-loop experiments for each control valve, and obtain T1 (full off fall time), T2 (full open rise time), S1 (area enclosed by time T1 when the curve falls;), S2 (area enclosed by time T2 when the curve rises), K, and then adjust this type Valve does closed-loop experiments and manually finds the optimal PI parameters to obtain multiple sets of BP neural network training samples.
本发明提出了基于BP神经网络的PI参数整定方法,在不建立调节阀数学模型的情况下,利用BP网络自适应学习、并行分布处理和有较强的鲁棒性和容错性等特性,使神经网络能够通过自身的学习过程了解系统的结构、参数、不确定性和非线性,并给出系统所需的控制规律。神经网络构成的控制器具有很好的调节能力和鲁棒性,极大地提高了阀门定位器的控制精度。The present invention proposes a PI parameter tuning method based on BP neural network. Without establishing a mathematical model of the regulating valve, the BP network is used for self-adaptive learning, parallel distributed processing, and strong robustness and fault tolerance. The neural network can understand the structure, parameters, uncertainty and nonlinearity of the system through its own learning process, and give the control law required by the system. The controller composed of neural network has good adjustment ability and robustness, which greatly improves the control accuracy of the valve positioner.
附图说明Description of drawings
图1是本发明所用BP神经网络调节阀闭环定位控制系统图;Fig. 1 is the closed-loop positioning control system diagram of the BP neural network regulating valve used in the present invention;
图2是本发明所用BP神经网络结构图;Fig. 2 is the used BP neural network structural diagram of the present invention;
图3是调节阀仿真模型阶跃响应图;Fig. 3 is the step response diagram of the control valve simulation model;
图4是调节阀上升局部放大图;Figure 4 is a partial enlarged view of the rise of the regulating valve;
图5是调节阀闭环控制响应图。Figure 5 is a response diagram of the closed-loop control of the regulating valve.
具体实施方式Detailed ways
下面将参考附图结合实例,来说明本发明。The present invention will be described below with reference to the accompanying drawings and examples.
参照图1所示,本发明的基于BP神经网络的阀门定位器PI参数整定方法及其构成的调节阀闭环控制系统,通过调节阀闭环系统获取BP神经网络的输入变量T1,T2,K,以及经BP神经网络训练获得的PI控制参数Kp,Ti。With reference to shown in Fig. 1, the valve positioner PI parameter tuning method based on BP neural network of the present invention and the control valve closed-loop control system of its composition, obtain the input variable T1 of BP neural network by the control valve closed-loop system, T2, K, and PI control parameters Kp, Ti obtained by BP neural network training.
BP神经网络是一种多层前馈神经网络,3层BP网络的拓扑结构如图2所示,包括输入层、输出层和一个隐含层,各神经元与下一层所有的神经元连接,同层神经元之间无连接。BP神经网络的基本原理是采用梯度下降法调整权值和阈值,使得网络的实际输出值和期望输出值的均方误差值最小。The BP neural network is a multi-layer feed-forward neural network. The topology of the 3-layer BP network is shown in Figure 2, including an input layer, an output layer, and a hidden layer. Each neuron is connected to all neurons in the next layer. , there is no connection between neurons in the same layer. The basic principle of BP neural network is to use the gradient descent method to adjust the weight and threshold, so that the mean square error between the actual output value and the expected output value of the network is the smallest.
标准的BP算法在修正权值时没有考虑以前时刻的梯度方向,从而使学习过程常常发生振荡,收敛缓慢。因此本发明采用Levenberg-Marquardt算法,通过优化BP神经网络的搜索方向,加快网络训练速度,提高网络训练的精度。The standard BP algorithm does not consider the gradient direction of the previous moment when modifying the weight, so that the learning process often oscillates and converges slowly. Therefore, the present invention adopts the Levenberg-Marquardt algorithm to speed up the network training speed and improve the accuracy of the network training by optimizing the search direction of the BP neural network.
Levenberg-Marquardt算法,包括如下内容:Levenberg-Marquardt algorithm, including the following:
1)设w(i)表示第i次迭代的权值和阈值所组成的向量,w(i+1)是新的权值和阈值所组成的向量,如式所示:w(i+1)=w(i)+Δw;1) Let w(i) represent the vector composed of the weight and threshold of the i-th iteration, and w(i+1) is the vector composed of the new weight and threshold, as shown in the formula: w(i+1 )=w(i)+Δw;
2)对于牛顿法,Δw的表达式为:式中E(w)2) For Newton's method, the expression of Δw is: where E(w)
设评价函数为均方误差:式中e(w)为误差(i=1,2,3,…,N),Let the evaluation function be the mean square error: Where e(w) is the error (i=1,2,3,...,N),
3)式中,J为雅可比矩阵,其形式为: 3) In the formula, J is the Jacobian matrix, and its form is:
4)对于高斯-牛顿法则有ΔE=-[JT(w)*J(W)]-1*J(w)e(w)L-M算法是其的改进,则ΔE=-[JT(w)*J(W)+μI]-1*J(w)e(w)式中,比例系数μ>0为常数,I为单位矩阵,4) For the Gauss-Newton law, there is ΔE=-[J T (w)*J(W)] -1 *J(w)e(w) LM algorithm is its improvement, then ΔE=-[J T (w) )*J(W)+μI] -1 *J(w)e(w) In the formula, the proportional coefficient μ>0 is a constant, and I is an identity matrix,
5)从上式可以看出,如果比例系数μ=0,则L-M算法变为高斯-牛顿法;如果μ取值接近于1,则L-M算法转变为梯度下降法,随着迭代成功次数增加,μ值逐渐减小,在接近误差最小时,L-M算法逐渐演变为高斯-牛顿法。因此,通过实践表明,用L-M算法可以较原来的梯度下降法提高速度几十甚至上百倍。5) It can be seen from the above formula that if the proportional coefficient μ=0, the L-M algorithm becomes the Gauss-Newton method; if the value of μ is close to 1, the L-M algorithm is transformed into the gradient descent method, and as the number of successful iterations increases, The value of μ gradually decreases, and when the error is close to the minimum, the L-M algorithm gradually evolves into the Gauss-Newton method. Therefore, it has been shown through practice that the L-M algorithm can increase the speed by dozens or even hundreds of times compared with the original gradient descent method.
本发明通过阶跃试验,间接获得其能够反映控制性能的参数。调节阀仿真模型的阶跃实验,如图3所示。The present invention indirectly obtains the parameters that can reflect the control performance through the step test. The step experiment of the control valve simulation model is shown in Figure 3.
针对上升时间做局部放大图,并在图上标出上升时采集性能参数,局部放大图如图4所示:从中获取BP神经网络的输入变量。Make a partial enlarged diagram for the rise time, and mark the performance parameters collected during the ascent on the diagram. The partial enlarged diagram is shown in Figure 4: the input variables of the BP neural network are obtained from it.
其中,T2为调节阀做全开全关时,阀位从0%-100%时所需时间;S2为曲线上升时与时间T2包围的面积。调节阀在充放气过程中,由于声速充气和亚声速充气之间切换,等容充气与等压充气之间,造成上升曲线会出现拐点,因此选择S2来描述此特性。t2为上升的纯延迟时间,即从输入量产生变化的瞬间开始,到输出量开始变化的瞬间为止的时间间隔。Among them, T2 is the time required for the valve position to go from 0% to 100% when the regulating valve is fully open and fully closed; S2 is the area surrounded by the time T2 when the curve rises. During the inflation and deflation process of the regulating valve, due to the switching between sonic inflation and subsonic inflation, between constant volume inflation and isobaric inflation, the rising curve will have an inflection point, so S2 is selected to describe this characteristic. t2 is the pure delay time of rising, that is, the time interval from the moment when the input quantity changes to the moment when the output quantity starts to change.
另外,图中未明确标出的还有相对应曲线下降时的数据,T1为调节阀做全开全关时,阀位从100%-0%时所需时间;S1为曲线下降时与时间T1包围的面积。t1为下降的纯延迟时间。K为调节阀放大倍数(输出阀位差与输入电流差之比)。In addition, what is not clearly marked in the figure is the data when the corresponding curve drops. T1 is the time required for the valve position to change from 100% to 0% when the regulating valve is fully open and fully closed; S1 is the time and time when the curve drops The area enclosed by T1. t1 is the pure delay time for falling. K is the magnification of the regulating valve (the ratio of the output valve position difference to the input current difference).
神经网络输入数据的确定实际上就是特征量(影响因子)的提取,主要考虑它是否与系统输出指标有明确的因果关系,如果网络输入数据与输出指标没有任何联系,就不能建立它们之间的联系,所以准确地分析与输出PI参数关联性强的因素,并将其作为输入量是必要的。The determination of the input data of the neural network is actually the extraction of the feature quantity (influencing factor), mainly considering whether it has a clear causal relationship with the system output index. If the network input data has no connection with the output index, the relationship between them cannot be established. Therefore, it is necessary to accurately analyze the factors that are strongly correlated with the output PI parameters and use them as input quantities.
将采集的各个输入性能参数集分别与手动寻优PI参数集做相关性分析。判断变量之间的相关密切程度,需要通过一个指标来判定,这里采用的是相关系数,用r表示,相关系数的取值范围为[-1,+1],小于零表示负相关,大于零表示正相关。相关系数的计算公式为: Correlation analysis is performed between the collected input performance parameter sets and the manually optimized PI parameter sets. Judging the closeness of the correlation between variables needs to be judged by an indicator. Here, the correlation coefficient is used, which is represented by r. The value range of the correlation coefficient is [-1, +1]. Less than zero means negative correlation, and greater than zero Indicates a positive correlation. The formula for calculating the correlation coefficient is:
通过相关系数判断两变量之间的线性相关程度的标准是:当|r|=0时,表示x和y完全不相关;当0<|r|<0.3时,表示x和y不相关;当0.3<|r|<0.5时,认为x和y低度相关;当0.5<|r|<0.8时,认为x和y显著相关;当0.8<|r|1时,认为x和y高度相关。The standard for judging the degree of linear correlation between two variables through the correlation coefficient is: when |r|=0, it means that x and y are completely irrelevant; when 0<|r|<0.3, it means that x and y are not related; when When 0.3<|r|<0.5, x and y are considered to be lowly correlated; when 0.5<|r|<0.8, x and y are considered to be significantly correlated; when 0.8<|r|1, x and y are considered to be highly correlated.
现在以分析输入性能主要参数与输出参数Kp、Ti的关系为例,它们之间的相关系数如下表1所示。Now take the analysis of the relationship between the main parameters of the input performance and the output parameters Kp and Ti as an example, and the correlation coefficients between them are shown in Table 1 below.
表1是输入参数与输出参数的相关系数表。Table 1 is a table of correlation coefficients between input parameters and output parameters.
从表中可以看出,依据相关程度标准发现T1、T2、S1、S2、k的相关程度最高,最终确定BP神经网络的输入变量为3个,输出变量为Kp、Ti参数。It can be seen from the table that T1, T2, S1, S2, and k have the highest correlation degree according to the correlation degree standard, and finally determine that the input variables of the BP neural network are 3, and the output variables are Kp and Ti parameters.
由于输入变量单位不同,数量级差别也较大,而神经元的输出通常都被限制在一定的范围内。本文设计的模型采用单端S型激励函数,输出被限制在0~1之间,所以需要对原始数据进行归一化处理,以避免神经元过饱和。归一化公式如式(11)所示: Due to the different units of input variables, the magnitude difference is also large, and the output of neurons is usually limited within a certain range. The model designed in this paper uses a single-ended S-type activation function, and the output is limited between 0 and 1, so the original data needs to be normalized to avoid neuron oversaturation. The normalization formula is shown in formula (11):
式中:x为位于区间[0,1]之外的系统数据;Xmax和Xmin分别为系统数据中的最大值和最小值;y为系统数据x归一化后的值。In the formula: x is the system data outside the interval [0, 1]; X max and X min are the maximum and minimum values in the system data respectively; y is the normalized value of the system data x.
BP网络训练精度的提高,可以采用一个隐含层而增加其神经元数的方法来获得,但是并不是隐含节点数越多就越好,隐含节点数取多,网络输出结果精度反而要下降。本次方法的网络采用同一输入输出样本对,网络训练最大次数设为1000次,误差设为0.0001,通过不断改变隐含层节点数来训练网络,经过多次的对比实验,隐含节点数选取为13个,此时的网络能够取得较好的精度。隐含层的传输函数选为tansig函数,输出层的传输函数选为tansig函数,输出结果在[0,1]之间。The improvement of BP network training accuracy can be obtained by using a hidden layer to increase the number of neurons, but it is not that the more hidden nodes, the better. If the number of hidden nodes is large, the accuracy of network output results will be higher. decline. The network of this method uses the same input and output sample pair, the maximum number of network training is set to 1000 times, and the error is set to 0.0001. The network is trained by continuously changing the number of nodes in the hidden layer. After many comparison experiments, the number of hidden nodes is selected is 13, and the network at this time can achieve better accuracy. The transfer function of the hidden layer is selected as the tansig function, the transfer function of the output layer is selected as the tansig function, and the output result is between [0, 1].
对于神经网络的输出,需要进行反归一化处理,将网络在[0,1]之间的值转换为系统的实际输出值,反归一化公式如下:x=y(xmax-xmin)+xmin;For the output of the neural network, denormalization processing is required to convert the value of the network between [0, 1] into the actual output value of the system. The denormalization formula is as follows: x=y(x max -x min )+ xmin ;
式中,y为位于[0,1]之间的值;Xmax和Xmin分别为系统数据中的最大值和最小值;x为网络输出反归一化后的系统实际数据。In the formula, y is a value between [0, 1]; X max and X min are the maximum and minimum values in the system data respectively; x is the actual data of the system after denormalization of the network output.
利用已经训练好的BP神经网络对气动调节阀仿真模型进行验证实验,获取到相应的PI参数,利用此参数做闭环多阶跃测试,得到的闭环响应结果如图5所示。Use the trained BP neural network to verify the simulation model of the pneumatic control valve, obtain the corresponding PI parameters, and use this parameter to do closed-loop multi-step test. The closed-loop response results are shown in Figure 5.
从图5中可以看出,测试结果较好,仿真模型的响应曲线在各阶跃下,都能够达到“快、准、稳”的控制效果。由此可以说明,在调节阀仿真模型上,基于BP神经网络的智能定位器PI参数整定设计方法准确。It can be seen from Figure 5 that the test results are good, and the response curve of the simulation model can achieve "fast, accurate and stable" control effects at each step. It can be shown that, on the control valve simulation model, the PI parameter setting design method of the intelligent positioner based on the BP neural network is accurate.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711467253.XA CN108181812A (en) | 2017-12-28 | 2017-12-28 | BP neural network-based valve positioner PI parameter setting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711467253.XA CN108181812A (en) | 2017-12-28 | 2017-12-28 | BP neural network-based valve positioner PI parameter setting method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108181812A true CN108181812A (en) | 2018-06-19 |
Family
ID=62548573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711467253.XA Pending CN108181812A (en) | 2017-12-28 | 2017-12-28 | BP neural network-based valve positioner PI parameter setting method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108181812A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109884885A (en) * | 2019-02-25 | 2019-06-14 | 常州兰陵自动化设备有限公司 | A kind of direct current drive apparatus control system and its construction method |
CN111043379A (en) * | 2019-12-26 | 2020-04-21 | 杭州电子科技大学 | Accurate control method for switch type intelligent valve positioner |
CN111508607A (en) * | 2020-04-13 | 2020-08-07 | 山东师范大学 | Obesity prediction system based on BP neural network |
CN112066355A (en) * | 2020-09-10 | 2020-12-11 | 河北工业大学 | Data-driven valve adaptive adjustment method of waste heat boiler |
CN112650062A (en) * | 2020-12-25 | 2021-04-13 | 杭州电子科技大学 | A self-learning control method for an on-off intelligent valve positioner based on the environment |
CN113597582A (en) * | 2019-03-15 | 2021-11-02 | 3M创新有限公司 | Tuning PID parameters using causal models |
CN117572770A (en) * | 2023-11-15 | 2024-02-20 | 淮阴工学院 | Control method of intelligent valve positioner and its Internet of Things system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993015448A1 (en) * | 1992-01-31 | 1993-08-05 | Honeywell Inc. | Neuro-pid controller |
CN101596338A (en) * | 2009-04-29 | 2009-12-09 | 天津大学 | A Precise Control Method of Functional Electrical Stimulation Based on BP Neural Network Tuning PID |
CN102129259A (en) * | 2010-01-20 | 2011-07-20 | 北京航空航天大学 | Neural network proportion integration (PI)-based intelligent temperature control system and method for sand dust environment test wind tunnel |
CN103195975A (en) * | 2013-04-12 | 2013-07-10 | 合肥工业大学 | Method for controlling piezoelectric valve positioner capable of changing PWM (pulse-width modulation) duty ratio |
CN104834216A (en) * | 2015-04-22 | 2015-08-12 | 上海晟矽微电子股份有限公司 | Binomial-based wireless sensor network trust management method |
CN106054610A (en) * | 2016-06-23 | 2016-10-26 | 东南大学 | Optimized PI (Proportional Integral) controller parameter engineering setting method |
CN106371483A (en) * | 2016-11-03 | 2017-02-01 | 浙江大学 | Space environment simulator heat sink temperature self-control system and method |
CN106949292A (en) * | 2016-01-07 | 2017-07-14 | 中核控制系统工程有限公司 | A kind of pneumatic control valve no-harass switch control method |
CN107015476A (en) * | 2017-03-28 | 2017-08-04 | 哈尔滨理工大学 | A kind of position and the cooperative control method of force signal to electrohydraulic servo system |
-
2017
- 2017-12-28 CN CN201711467253.XA patent/CN108181812A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993015448A1 (en) * | 1992-01-31 | 1993-08-05 | Honeywell Inc. | Neuro-pid controller |
CN101596338A (en) * | 2009-04-29 | 2009-12-09 | 天津大学 | A Precise Control Method of Functional Electrical Stimulation Based on BP Neural Network Tuning PID |
CN102129259A (en) * | 2010-01-20 | 2011-07-20 | 北京航空航天大学 | Neural network proportion integration (PI)-based intelligent temperature control system and method for sand dust environment test wind tunnel |
CN103195975A (en) * | 2013-04-12 | 2013-07-10 | 合肥工业大学 | Method for controlling piezoelectric valve positioner capable of changing PWM (pulse-width modulation) duty ratio |
CN104834216A (en) * | 2015-04-22 | 2015-08-12 | 上海晟矽微电子股份有限公司 | Binomial-based wireless sensor network trust management method |
CN106949292A (en) * | 2016-01-07 | 2017-07-14 | 中核控制系统工程有限公司 | A kind of pneumatic control valve no-harass switch control method |
CN106054610A (en) * | 2016-06-23 | 2016-10-26 | 东南大学 | Optimized PI (Proportional Integral) controller parameter engineering setting method |
CN106371483A (en) * | 2016-11-03 | 2017-02-01 | 浙江大学 | Space environment simulator heat sink temperature self-control system and method |
CN107015476A (en) * | 2017-03-28 | 2017-08-04 | 哈尔滨理工大学 | A kind of position and the cooperative control method of force signal to electrohydraulic servo system |
Non-Patent Citations (6)
Title |
---|
KENJI TAKAO,等: "A Design of PID Controllers Fused CMACS with Neural Networks", 《IFAC PROCEEDINGS VOLUMES》 * |
刘军,等: "智能阀门定位器阀位自适应控制算法研究", 《仪表技术与传感器》 * |
许国根,等: "《模式识别与智能计算的MATLAB实现 第2版》", 31 July 2017, 北京:北京航空航天大学出版社 * |
谷洋洋: "基于智能PID控制的燃气锅炉燃烧控制系统研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》 * |
邢进生: "《数据挖掘在冶金产品质量控制中的应用》", 30 June 2004, 北京:国防工业出版社 * |
闻新: "《应用MATLAB实现神经网络》", 30 June 2015, 北京:国防工业出版社 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109884885A (en) * | 2019-02-25 | 2019-06-14 | 常州兰陵自动化设备有限公司 | A kind of direct current drive apparatus control system and its construction method |
CN113597582A (en) * | 2019-03-15 | 2021-11-02 | 3M创新有限公司 | Tuning PID parameters using causal models |
CN111043379A (en) * | 2019-12-26 | 2020-04-21 | 杭州电子科技大学 | Accurate control method for switch type intelligent valve positioner |
CN111043379B (en) * | 2019-12-26 | 2021-08-03 | 杭州电子科技大学 | A kind of precise control method of switch type intelligent valve positioner |
CN111508607A (en) * | 2020-04-13 | 2020-08-07 | 山东师范大学 | Obesity prediction system based on BP neural network |
CN111508607B (en) * | 2020-04-13 | 2023-10-13 | 山东师范大学 | Obesity prediction system based on BP neural network |
CN112066355A (en) * | 2020-09-10 | 2020-12-11 | 河北工业大学 | Data-driven valve adaptive adjustment method of waste heat boiler |
CN112066355B (en) * | 2020-09-10 | 2021-04-20 | 河北工业大学 | Data-driven valve adaptive adjustment method of waste heat boiler |
CN112650062A (en) * | 2020-12-25 | 2021-04-13 | 杭州电子科技大学 | A self-learning control method for an on-off intelligent valve positioner based on the environment |
CN112650062B (en) * | 2020-12-25 | 2022-08-30 | 杭州电子科技大学 | Control method of switch type intelligent valve positioner based on environment self-learning |
CN117572770A (en) * | 2023-11-15 | 2024-02-20 | 淮阴工学院 | Control method of intelligent valve positioner and its Internet of Things system |
CN117572770B (en) * | 2023-11-15 | 2024-05-17 | 淮阴工学院 | Control method of intelligent valve positioner and Internet of Things system thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108181812A (en) | BP neural network-based valve positioner PI parameter setting method | |
CN106874581B (en) | Building air conditioner energy consumption prediction method based on BP neural network model | |
CN104834215B (en) | A kind of BP neural network pid control algorithm of mutation particle swarm optimization | |
CN102072922B (en) | Particle swarm optimization neural network model-based method for detecting moisture content of wood | |
CN111176115B (en) | Valve position control method based on fuzzy neural network and human-like intelligent control | |
CN103106535B (en) | Method for solving collaborative filtering recommendation data sparsity based on neural network | |
Ghauri et al. | System identification using LMS, NLMS and RLS | |
CN106875002A (en) | Complex value neural network training method based on gradient descent method Yu generalized inverse | |
CN104776446A (en) | Combustion optimization control method for boiler | |
CN105807632B (en) | A kind of furnace temp controller design method based on improvement dahlin algorithm | |
CN108287471A (en) | Inclined methods of self-tuning of the format Non-Model Controller based on systematic error of MIMO | |
CN101673085B (en) | Method for designing self-adaptive PID controller based on inverse dynamics model | |
CN106355330A (en) | Multi-response parameter optimization method based on radial basis function neural network prediction model | |
CN110286586A (en) | A Hybrid Modeling Method for Magnetorheological Damper | |
CN106127298A (en) | A kind of Fault Diagnosis of Hydraulic Pump method based on self adaptation PSO BP neutral net | |
CN104850531A (en) | Method and device for establishing mathematical model | |
CN103177289A (en) | Modeling method for noise-uncertainty complicated nonlinear dynamic system | |
CN102419550A (en) | Internal-module controller, internal-module control system and internal-module control method of multivariable system | |
CN112578089B (en) | Air pollutant concentration prediction method based on improved TCN | |
CN108873698B (en) | An anti-disturbance two-stage fixed-point servo control method | |
CN108628288B (en) | Performance evaluation method for first-order time-lag combined integral control system | |
CN102393645A (en) | Control method of high-speed electro-hydraulic proportional governing system | |
CN105911865A (en) | Control method of PID controller | |
CN105259754A (en) | Board thickness intelligent control method based on active learning | |
CN108446506B (en) | A Modeling Method of Uncertain System Based on Interval Feedback Neural Network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180619 |