CN108181423B - Apparatus and method for measuring velocity coupled response function of propellant first-order oscillation mode - Google Patents
Apparatus and method for measuring velocity coupled response function of propellant first-order oscillation mode Download PDFInfo
- Publication number
- CN108181423B CN108181423B CN201711161457.0A CN201711161457A CN108181423B CN 108181423 B CN108181423 B CN 108181423B CN 201711161457 A CN201711161457 A CN 201711161457A CN 108181423 B CN108181423 B CN 108181423B
- Authority
- CN
- China
- Prior art keywords
- propellant
- burner
- test
- pressure
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/12—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明公开了一种推进剂一阶振荡模态的速度耦合响应函数测量方法,选定长度为L的T型燃烧器,该T型燃烧器包括燃烧器本体,燃烧器本体内的两端分别安装有相同构型和配方的推进剂试件夹,燃烧器本体上L/2处安装有与其内部相通的喷管,燃烧器本体两端外壁均分别安装有一高频响压强传感器,燃烧器本体两端外壁上分别安装有一触发激励装置,通过在T型燃烧器上安装片状药、环状测试药,一阶声振频率下速度耦合响应函数;解决现有技术中获取的一阶频率的压强振荡特性精度低的问题。
The invention discloses a method for measuring a velocity coupling response function of a first-order oscillation mode of a propellant. A T-shaped burner with a length of L is selected. The T-shaped burner includes a burner body, and two ends in the burner body are respectively A propellant specimen holder with the same configuration and formula is installed, a nozzle connected to the inside of the burner body is installed at L/2, and a high-frequency response pressure sensor is installed on the outer walls of both ends of the burner body. A trigger excitation device is respectively installed on the outer walls of both ends. By installing the tablet medicine and the ring-shaped test medicine on the T-shaped burner, the velocity coupling response function at the first-order acoustic vibration frequency is solved; the first-order frequency obtained in the prior art is solved. The problem of low accuracy of pressure oscillation characteristics.
Description
【技术领域】【Technical field】
本发明属于固体推进剂技术领域,具体涉及推进剂一阶振荡模态的速度耦合响应函数测量装置和方法。The invention belongs to the technical field of solid propellants, in particular to a device and a method for measuring a velocity coupling response function of a first-order oscillation mode of a propellant.
【背景技术】【Background technique】
目前常采用的固体推进剂一阶振荡模态的速度耦合方法存在如下缺点:(1)实验中利用驱动药产生激励,而对于复合推进剂,其燃烧产物中含有大量的固体颗粒和粉尘,粒子阻尼比较大,很难形成自激振荡;(2)驱动药和测试药的推进剂配方不同,需要分别测量这两种药的压强耦合响应函数,而每次实验都需要测量好几次,实验次数比较多。The velocity coupling method of the first-order oscillation mode of solid propellant that is often used at present has the following shortcomings: (1) In the experiment, the driving charge is used to generate excitation, while for the composite propellant, the combustion products of the composite propellant contain a large number of solid particles and dust, particles. The damping is relatively large, and it is difficult to form self-excited oscillation; (2) the propellant formulations of the driving drug and the test drug are different, and the pressure coupling response functions of the two drugs need to be measured separately, and each experiment needs to be measured several times, the number of experiments more.
【发明内容】[Content of the invention]
本发明的目的是提供一种推进剂一阶振荡模态的速度耦合响应函数测量装置和方法,以解决现有技术中获取的一阶频率的压强振荡特性精度低的问题。The purpose of the present invention is to provide a velocity coupling response function measurement device and method for the first-order oscillation mode of propellant, so as to solve the problem of low precision of the pressure oscillation characteristic of the first-order frequency obtained in the prior art.
本发明采用以下技术方案:推进剂一阶振荡模态的速度耦合响应函数测量方法,具体包括以下步骤:The present invention adopts the following technical scheme: a method for measuring the velocity coupling response function of the first-order oscillation mode of the propellant, which specifically includes the following steps:
步骤1、根据f=a/(2L),选定长度为L的T型燃烧器,其中,f为压强振荡基频,a为推进剂燃烧温度下的理论声速;该T型燃烧器包括燃烧器本体,燃烧器本体内的两端分别安装有推进剂试件夹,燃烧器本体上L/2处安装有与其内部相通的喷管,燃烧器本体两端外壁分别安装有一高频响压强传感器,每个压强传感器均用于测量燃烧器本体内的压强振荡信号;燃烧器本体两端外壁上分别安装有一触发激励装置,每个触发激励装置3均用于在燃烧器本体内产生压强振荡;
步骤2、通过在T型燃烧器上安装测试用片状药、环状药,进行测试,并通过测试结果得出一阶声振频率下速度耦合响应函数:
其中,γ为比热比;为平均压强;SC为通道面积;SB为推进剂燃面面积;r为推进剂燃速;ρp为推进剂密度;αV(L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5、且将测试用环状药安装于T型燃烧器内L/4位置时的速度耦合项;αV(3L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5、且将测试用环状药安装于T型燃烧器内3L/4位置时的速度耦合项。Among them, γ is the specific heat ratio; is the average pressure; S C is the channel area; S B is the propellant burning surface area; r is the propellant burning rate; ρ p is the propellant density; α V (L/4) is the test tablet propellant installed The velocity coupling term when the
进一步地,步骤2具体方法为:Further, the specific method of
步骤2.1、将测试用片状药推进剂安装于T型燃烧器两端的推进剂试件夹上,打开数据采集系统,启动压强传感器,同时启动两个推进剂试件夹的点火开关,使两端的测试推进剂同时点火;Step 2.1. Install the test tablet propellant on the propellant specimen clips at both ends of the T-type burner, turn on the data acquisition system, activate the pressure sensor, and simultaneously activate the ignition switches of the two propellant specimen clips, so that the two The test propellant at the end is ignited at the same time;
点火后t1时间,触发其中的一个触发激励装置,形成第一路触发激励,由压强传感器测量燃烧器本体内工作压强振荡衰减系数α1;At time t1 after ignition, one of the trigger excitation devices is triggered to form the first trigger excitation, and the pressure sensor measures the oscillation attenuation coefficient α 1 of the working pressure in the burner body;
在第一路触发激励成功后,延迟t2时间,触发另一个触发激励装置,形成第二路触发激励,由压强传感器测量燃烧器本体内工作压强振荡衰减系数α2;After the first triggering excitation is successful, delay time t2 , trigger another triggering excitation device to form the second triggering excitation, and measure the working pressure oscillation attenuation coefficient α2 in the burner body by the pressure sensor;
其中,t1=t/2,t为推进剂总燃烧时间;t2=t-t1+t3,当两端放置的推进剂为杯状药时,t3=10ms;当推进剂为片状药时,t3=0ms;Among them, t 1 =t/2, t is the total combustion time of the propellant; t 2 =tt 1 +t 3 , when the propellant placed at both ends is a cup-shaped charge, t 3 =10ms; when the propellant is a sheet-shaped charge During medicine, t 3 =0ms;
根据工作压强衰减系数α1和α2,得出推进剂燃烧产生的声压净增长率αG=αc0=α1-α2,αc0为推进剂试件在两端位置处的燃面增益,并根据压强耦合响应函数表达式得出振荡频率为f的响应函数值;According to the working pressure attenuation coefficients α 1 and α 2 , the net sound pressure growth rate α G =α c0 =α 1 -α 2 produced by propellant combustion is obtained, where α c0 is the combustion surface of the propellant specimen at both ends gain, and according to the pressure coupling response function expression, the response function value with the oscillation frequency f is obtained;
其中,为测得的平均燃速;a为推进剂燃烧温度下的理论声速;am为实测声速,am=2fL;in, is the measured average burning speed; a is the theoretical sound speed at the combustion temperature of the propellant; a m is the measured sound speed, a m = 2fL;
步骤2.2、将测试用片状药推进剂安装于T型燃烧器两端的推进剂试件夹上,且将测试用环状药安装于T型燃烧器内L/4位置处,按照步骤2.1中方法进行点火和两次触发激励,通过压强传感器4的记录数据,得出推进剂燃烧产生的声压净增长率αG(L/4)=αc0+αc(L/4)+αV(L/4);Step 2.2. Install the test tablet propellant on the propellant specimen clips at both ends of the T-type burner, and install the test ring-shaped charge at the L/4 position in the T-type burner. Follow the steps in step 2.1. The method performs ignition and two trigger excitations, and through the recorded data of the pressure sensor 4, the net sound pressure growth rate α G(L/4) = α c0 +α c(L/4) + α V generated by the propellant combustion is obtained. (L/4) ;
其中,αc(L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹上、且将测试用环状药安装于T型燃烧器内L/4位置时的压强耦合项,且有Among them, α c(L/4) is the pressure coupling when the test tablet propellant is installed on the propellant reagent clips at both ends, and the test ring is installed at the L/4 position in the T-type burner item, and have
其中,此时x=L/4,为测试用环状药与燃烧室端部的距离;Wherein, at this time x=L/4, is the distance between the annular drug for testing and the end of the combustion chamber;
步骤2.3、将测试用片状药推进剂安装于T型燃烧器两端的推进剂试件夹5上,且将测试用环状药安装于T型燃烧器内3L/4位置处,按照步骤2.1中方法进行点火和两次触发激励,通过压强传感器的记录数据,得出推进剂燃烧产生的声压净增长率αG(3L/4)=αc0+αc(3L/4)+αV(3L/4);Step 2.3. Install the test tablet propellant on the
其中,αc(3L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹上、且将测试用环状药安装于T型燃烧器内3L/4位置时的压强耦合项;Among them, α c (3L/4) is the pressure coupling when the test tablet propellant is installed on the propellant reagent clips at both ends, and the test ring drug is installed at the 3L/4 position in the T-type burner item;
其中,此时x=3L/4,为测试用环状药与燃烧室端部的距离;Among them, at this time x=3L/4, which is the distance between the annular drug for testing and the end of the combustion chamber;
步骤2.4、根据步骤2.2得出的αV(L/4)和步骤2.3得出的αV(3L/4),得出一阶声振频率f下速度耦合响应函数:Step 2.4. According to α V(L/4) obtained in step 2.2 and α V(3L/4) obtained in step 2.3, the velocity coupling response function at the first-order acoustic vibration frequency f is obtained:
进一步地,步骤2具体方法为:Further, the specific method of
步骤2.1’、将测试用片状药推进剂安装于T型燃烧器两端的推进剂试件夹上,且将两块相同的测试用环状药分别安装于T型燃烧器内L/4和3L/4位置处,打开数据采集系统,启动压强传感器,同时启动两个推进剂试件夹的点火开关,使两端的测试推进剂同时点火;Step 2.1', install the test tablet propellant on the propellant specimen clips at both ends of the T-type burner, and install two identical test ring-shaped powders in the T-type burner L/4 and At the 3L/4 position, turn on the data acquisition system, activate the pressure sensor, and activate the ignition switches of the two propellant specimen clips at the same time, so that the test propellants at both ends are ignited at the same time;
点火后t1时间,触发其中的一个触发激励装置,形成第一路触发激励;在第一路触发激励成功后,再延迟t2时间,触发另一个触发激励装置,形成第二路触发激励;其中,t1=t/2,t为推进剂总燃烧时间;t2=t-t1+t3,当两端放置的推进剂为杯状药时,t3=10ms;当推进剂为片状药时,t3=0ms;At t1 time after ignition, one of the triggering excitation devices is triggered to form the first triggering excitation; after the first triggering excitation is successful, the other triggering excitation device is triggered with a delay of t2 time to form the second triggering excitation; Among them, t 1 =t/2, t is the total combustion time of the propellant; t 2 =tt 1 +t 3 , when the propellant placed at both ends is a cup-shaped charge, t 3 =10ms; when the propellant is a sheet-shaped charge During medicine, t 3 =0ms;
通过压强传感器的记录数据,得出声压增长率The sound pressure growth rate is obtained from the recorded data of the pressure sensor
αG(L/4+3L/4)=αc0+αc(L/4)+αV(L/4)+αc(3L/4)+αV(3L/4);α G(L/4+3L/4) =α c0 +α c(L/4) +α V(L/4) +α c(3L/4) +α V(3L/4) ;
其中,αc0为推进剂试件在两端位置处的燃面增益,αc(L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹上、且将测试用环状药安装于T型燃烧器内L/4位置的压强耦合项;αc(3L/4)将测试用片状药推进剂安装于两端的推进剂试剂夹上、且将测试用环状药安装于T型燃烧器内3L/4位置时的压强耦合项;Among them, α c0 is the combustion surface gain of the propellant sample at both ends, α c(L/4) is the test tablet propellant installed on the propellant reagent clips at both ends, and the test ring α c(3L/4) installs the test tablet propellant on the propellant reagent clips at both ends, and attaches the test ring drug The pressure coupling term when installed in the 3L/4 position in the T-type burner;
步骤2.2’、将测试用片状药推进剂安装于T型燃烧器两端的推进剂试件夹上,且将测试用环状药安装于T型燃烧器L/4位置处,按照步骤2.1’中方法进行点火和两次触发激励,通过压强传感器的记录数据,得出推进剂燃烧产生的声压净增长率αG(L/4)=αc0+αc(L/4)+αV(L/4);且有Step 2.2', install the test tablet propellant on the propellant specimen clips at both ends of the T-type burner, and install the test ring-shaped drug at the L/4 position of the T-type burner, follow step 2.1' Ignition and two trigger excitations are carried out in the middle method, and through the recorded data of the pressure sensor, the net sound pressure growth rate α G(L/4) = α c0 +α c(L/4) + α V generated by the propellant combustion is obtained. (L/4) ; and there is
其中,此时x=L/4,为测试用环状药与燃烧室端部的距离;Wherein, at this time x=L/4, is the distance between the annular drug for testing and the end of the combustion chamber;
步骤2.3’、将测试用片状药推进剂安装于T型燃烧器两端的推进剂试件夹上,且将测试用环状药安装于T型燃烧器内3L/4位置处,按照步骤2.1’中方法进行点火和两次触发激励,通过压强传感器的记录数据,得出推进剂燃烧产生的声压净增长率αG(3L/4)=αc0+αc(3L/4)+αV(3L/4);Step 2.3', install the test tablet propellant on the propellant specimen clips at both ends of the T-type burner, and install the test ring-shaped drug at the 3L/4 position in the T-type burner, follow step 2.1 'In the method of ignition and two trigger excitations, through the recorded data of the pressure sensor, the net growth rate of sound pressure generated by propellant combustion α G(3L/4) = α c0 +α c(3L/4) +α V(3L/4) ;
其中,αc(3L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹上、且将测试用环状药安装于T型燃烧器内3L/4位置时的压强耦合项;Among them, α c (3L/4) is the pressure coupling when the test tablet propellant is installed on the propellant reagent clips at both ends, and the test ring drug is installed at the 3L/4 position in the T-type burner item;
其中,此时x=3L/4,为测试用环状药与燃烧室端部的距离;Among them, at this time x=3L/4, which is the distance between the annular drug for testing and the end of the combustion chamber;
步骤2.4’、根据步骤2.1’、步骤2.2’、步骤2.3’得出αc0=α1-α2,α1、α2分别为将测试用片状药推进剂安装于T型燃烧器两端的推进剂试件夹上时,第一路触发激励和第二路触发激励后燃烧器本体内工作压强振荡衰减系数;Step 2.4', according to step 2.1', step 2.2', and step 2.3', α c0 =α 1 -α 2 is obtained, where α 1 and α 2 are respectively the test tablet propellants installed on both ends of the T-type burner. When the propellant specimen is clamped on, the working pressure oscillation attenuation coefficient in the burner body after the first trigger excitation and the second trigger excitation;
且得出响应函数值Rp(f):And the response function value R p (f) is obtained:
其中,为测得的平均燃速;a为推进剂燃烧温度下的理论声速;am为实测声速,am=2fL;in, is the measured average burning speed; a is the theoretical sound speed at the combustion temperature of the propellant; a m is the measured sound speed, a m = 2fL;
步骤2.5’、根据步骤2.4’得出一阶声振频率下速度耦合响应函数:Step 2.5', according to step 2.4', obtain the velocity coupling response function at the first-order acoustic vibration frequency:
进一步地,测试用环状药的厚度小于等于3%L。Further, the thickness of the test ring medicine is less than or equal to 3%L.
本发明的另一种技术方案为:推进剂一阶振荡模态的速度耦合响应函数测量方法使用的测量装置,包括长度为L的T型燃烧器,该T型燃烧器包括燃烧器本体,燃烧器本体内的两端安装有相同构型和相同配方的推进剂试件夹,且在燃烧器本体两端的外壁上分别安装有一触发激励装置,用于在燃烧器本体内产生压强振荡;燃烧器本体的两端的外壁上还分别安装有高频响压强传感器,用于测量燃烧器本体内的压强振荡信号;Another technical solution of the present invention is: the measuring device used in the method for measuring the velocity coupling response function of the first-order oscillation mode of the propellant includes a T-shaped burner with a length of L, the T-shaped burner includes a burner body, and the combustion The two ends of the burner body are installed with propellant specimen clips of the same configuration and the same formula, and a trigger excitation device is respectively installed on the outer walls of the two ends of the burner body to generate pressure oscillations in the burner body; the burner The outer walls of the two ends of the body are also respectively equipped with high-frequency response pressure sensors, which are used to measure the pressure oscillation signal in the burner body;
还包括数据采集系统和点火时序控制系统,数据采集系统分别与压强传感器、触发激励装置相连接;触发激励装置和推进剂试件夹均与点火时序控制系统相连接。It also includes a data acquisition system and an ignition sequence control system. The data acquisition system is respectively connected with the pressure sensor and the triggering excitation device; the triggering excitation device and the propellant test piece holder are both connected with the ignition sequence control system.
本发明的有益效果是:本发明能够准确的获得一阶声振荡频率作用下的固体推进剂速度耦合响应函数特性,从而为精确的分析固体火箭发动机非线性燃烧不稳定振荡环境下的推进剂速度耦合响应特性奠定了实验基础。通过外部触发激励,使T型燃烧器工作过程中产生精确可控单一的一阶频率压强振荡现象,从而在精确的外部触发激励控制下,得出固体推进剂速度耦合响应函数。The beneficial effects of the present invention are: the present invention can accurately obtain the velocity coupling response function characteristics of the solid propellant under the action of the first-order acoustic oscillation frequency, so as to accurately analyze the propellant velocity in the non-linear combustion unstable oscillation environment of the solid rocket motor The coupled response characteristics lay the foundation for the experiment. Through the external trigger excitation, a precise and controllable single first-order frequency pressure oscillation phenomenon occurs during the working process of the T-type burner, so that the solid propellant velocity coupling response function can be obtained under the precise external trigger excitation control.
【附图说明】【Description of drawings】
图1为本发明中T型燃烧器的结构示意图;Fig. 1 is the structural representation of T-type burner in the present invention;
图2为本发明中测试用片状药和环状药的示意图;Fig. 2 is the schematic diagram of sheet-like medicine and annular medicine for testing in the present invention;
图3为本发明中的测试结果曲线图;Fig. 3 is the test result graph among the present invention;
图4为本发明中一阶振型的声压和声振速度分布图。FIG. 4 is a distribution diagram of sound pressure and sound vibration velocity of the first-order mode shape in the present invention.
其中:1.T型燃烧器;2.燃烧器本体;3.触发激励装置;4.压强传感器;5.推进剂试件夹;6.数据采集系统;7.点火时序控制系统;8.环状测试药试件夹;9.喷管。Among them: 1. T-type burner; 2. Burner body; 3. Trigger excitation device; 4. Pressure sensor; 5. Propellant specimen holder; 6. Data acquisition system; 7. Ignition sequence control system; 9. Nozzle.
【具体实施方式】【Detailed ways】
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
本发明公开了一种推进剂一阶振荡模态的速度耦合响应函数测量方法,如图1、图2、图3、图4所示,根据f=a/(2L),选定长度为L的T型燃烧器1,其中,f为压强振荡基频,a为推进剂燃烧温度下的理论声速。在T型燃烧器1长度L(振荡基频f)保持不变的前提下,采用两路激励触发的方式进行触发,为保证只产生单一的一阶振荡频率(f=f1),触发激励装置3需安放在T型燃烧器1两端位置处,并且为保证一阶声能损失最小喷管需放置L/2位置,即一阶振荡模态的波节点。试验测量采用二次触发激励法,分别在固体推进剂在T型燃烧器1内燃烧中间时刻和刚刚结束时刻进行触发激励,获得单一阶压强振荡衰减数据,采用迦辽金方法分别获得两次触发后压强振荡衰减系数,从而获得一阶振荡频率作用下的速度耦合响应函数值,具体包括以下步骤:The invention discloses a method for measuring the velocity coupling response function of the first-order oscillation mode of propellant. The T-
步骤1、根据压强振荡基频f,选定长度为L的T型燃烧器1。
如图1所示,根据f=a/(2L),选定长度为L的T型燃烧器1,该T型燃烧器1包括燃烧器本体2,燃烧器本体2内的两端分别安装有相同构型和配方的推进剂试件夹5,燃烧器本体2上L/2处安装有与其内部相通的喷管9,燃烧器本体2两端外壁分别安装有一高频响压强传感器4,每个压强传感器4均用于测量燃烧器本体2内的压强振荡信号。燃烧器本体2两端外壁上分别安装有一触发激励装置3,每个触发激励装置3均用于在燃烧器本体2内产生压强振荡。As shown in Figure 1, according to f=a/(2L), a T-shaped
步骤2、通过在T型燃烧器1内安装测试用片状药、环状药,片状药和环状药如图2所示,进行测试,并通过测试结果得出一阶声振频率下速度耦合响应函数:
其中,γ为比热比;为平均压强;SC为通道面积;SB为推进剂燃面面积;r为推进剂燃速;ρp为推进剂密度;αV(L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5、且将测试用环状药安装于T型燃烧器1内L/4位置时的速度耦合项;αV(3L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5、且将测试用环状药安装于T型燃烧器1内3L/4位置时的速度耦合项。Among them, γ is the specific heat ratio; is the average pressure; S C is the channel area; S B is the propellant burning surface area; r is the propellant burning rate; ρ p is the propellant density; α V (L/4) is the test tablet propellant installed The velocity coupling term when the
步骤2可采用两种方法实现,其第一种方法为:
步骤2.1、将测试用片状药推进剂安装于T型燃烧器1两端的推进剂试件夹5上,打开数据采集系统6,启动压强传感器4,采用多通道点火时序控制装置,同时启动两个推进剂试件夹5的点火开关,使两端的测试推进剂同时点火;Step 2.1. Install the test tablet propellant on the propellant specimen clips 5 at both ends of the T-
点火后t1时间,触发其中的一个触发激励装置3,形成第一路触发激励,由压强传感器4测量燃烧器本体2内工作压强振荡衰减系数α1;At time t1 after ignition, one of the
在第一路触发激励成功后,延迟t2时间,触发另一个触发激励装置3,形成第二路触发激励,由压强传感器4测量燃烧器本体2内工作压强振荡衰减系数α2;After the first path triggering excitation is successful, delay time t2 to trigger another triggering
其中,t1=t/2,t为推进剂总燃烧时间;t2=t-t1+t3,当推进剂为杯状药时,t3=10ms;当推进剂为片状药时,t3=0ms;Among them, t 1 =t/2, t is the total combustion time of the propellant; t 2 =tt 1 +t 3 , when the propellant is a cup-shaped drug, t 3 =10ms; when the propellant is a tablet-shaped drug, t 3 = 0ms;
根据工作压强振荡衰减系数α1和α2得出推进剂燃烧产生的声压净增长率αG=αc0=α1-α2,αc0为推进剂试件在两端位置处的燃面增益,并根据压强耦合响应函数表达式得出振荡频率为f的响应函数值;According to the oscillation attenuation coefficients α 1 and α 2 of the working pressure, the net sound pressure growth rate α G =α c0 =α 1 -α 2 can be obtained from the propellant combustion, where α c0 is the combustion surface of the propellant specimen at both ends gain, and according to the pressure coupling response function expression, the response function value with the oscillation frequency f is obtained;
其中,为测得的平均燃速;a为推进剂燃烧温度下的理论声速;am为实测声速,am=2fL;in, is the measured average burning speed; a is the theoretical sound speed at the combustion temperature of the propellant; a m is the measured sound speed, a m = 2fL;
步骤2.2、将测试用片状药推进剂安装于T型燃烧器1两端的推进剂试件夹5上,且将测试用环状药安装于T型燃烧器1内L/4位置处,按照步骤2.1中方法进行点火和两次触发激励,通过压强传感器4的记录数据,得出推进剂燃烧产生的声压净增长率αG(L/4)=αc0+αc(L/4)+αV(L/4);Step 2.2. Install the test tablet propellant on the propellant specimen clips 5 at both ends of the T-
其中,αc(L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5上、且将测试用环状药安装于T型燃烧器1内L/4位置时的压强耦合项,且有Among them, α c (L/4) is the time when the test tablet propellant is installed on the
其中,此时x=L/4,为测试用环状药与燃烧室端部的距离。Among them, at this time x=L/4, which is the distance between the annular drug for testing and the end of the combustion chamber.
步骤2.3、将测试用片状药推进剂安装于T型燃烧器1两端的推进剂试件夹5上,且将测试用环状药安装于T型燃烧器1内3L/4位置处,按照步骤2.1中方法进行点火和两次触发激励,通过压强传感器4的记录数据,得出推进剂燃烧产生的声压净增长率αG(3L/4)=αc0+αc(3L/4)+αV(3L/4);Step 2.3. Install the test tablet propellant on the propellant specimen clips 5 at both ends of the T-
其中,αc(3L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5上、且将测试用环状药安装于T型燃烧器1内3L/4位置时的压强耦合项;Among them, α c (3L/4) is when the test tablet propellant is installed on the
其中,此时x=3L/4,为测试用环状药与燃烧室端部的距离。Among them, at this time x=3L/4, which is the distance between the annular drug for testing and the end of the combustion chamber.
步骤2.4、根据步骤2.2得出的αV(L/4)和步骤2.3得出的αV(3L/4),得出一阶声振频率下速度耦合响应函数:Step 2.4. According to α V(L/4) obtained in step 2.2 and α V(3L/4) obtained in step 2.3, the velocity coupling response function at the first-order acoustic vibration frequency is obtained:
步骤2可采用的第二种具体方法为:The second specific method that can be used in
步骤2.1’、将测试用片状药推进剂安装于T型燃烧器1两端的推进剂试件夹5上,且将两块相同的测试用环状药分别安装于T型燃烧器1内L/4和3L/4位置处,打开数据采集系统6,启动压强传感器4,同时启动两个推进剂试件夹5的点火开关,使两端的测试推进剂同时点火;Step 2.1', install the tablet propellant for testing on the propellant specimen clips 5 at both ends of the T-
点火后t1时间,触发其中的一个触发激励装置3,形成第一路触发激励;在第一路触发激励成功后,再延迟t2时间,触发另一个触发激励装置3,形成第二路触发激励;其中,t1=t/2,t为推进剂总燃烧时间;t2=t-t1+t3,当两端放置的推进剂为杯状药时,t3=10ms;当推进剂为片状药时,t3=0ms;At t1 time after ignition, one of the triggering excitation devices 3 is triggered to form the first triggering excitation; after the first triggering excitation is successful, the other triggering
通过压强传感器4的记录数据,得出声压增长率Through the recorded data of the pressure sensor 4, the sound pressure growth rate is obtained
αG(L/4+3L/4)=αc0+αc(L/4)+αV(L/4)+αc(3L/4)+αV(3L/4);α G(L/4+3L/4) =α c0 +α c(L/4) +α V(L/4) +α c(3L/4) +α V(3L/4) ;
其中,αc0为推进剂试件在两端位置处的燃面增益,αc(L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5上、且将测试用环状药安装于T型燃烧器1内L/4位置的压强耦合项;αc(3L/4)将测试用片状药推进剂安装于两端的推进剂试剂夹5、且将测试用环状药安装于T型燃烧器1内3L/4位置时的压强耦合项;Among them, α c0 is the combustion surface gain of the propellant sample at both ends, α c(L/4) is the test tablet propellant installed on the
步骤2.2’、将测试用片状药推进剂安装于T型燃烧器1两端的推进剂试件夹5上,且将测试用环状药安装于T型燃烧器1内L/4位置处,按照步骤2.1’中方法进行点火和两次触发激励,通过压强传感器4的记录数据,得出推进剂燃烧产生的声压净增长率αG(L/4)=αc0+αc(L/4)+αV(L/4);且有Step 2.2', install the tablet propellant for testing on the propellant sample clips 5 at both ends of the T-
其中,此时x=L/4,为测试用环状药与燃烧室端部的距离。Among them, at this time x=L/4, which is the distance between the annular drug for testing and the end of the combustion chamber.
步骤2.3’、将测试用片状药推进剂安装于T型燃烧器1两端的推进剂试件夹5上,且将测试用环状药安装于T型燃烧器1内3L/4位置处,按照步骤2.1’中方法进行点火和两次触发激励,通过压强传感器4的记录数据,得出推进剂燃烧产生的声压净增长率αG(3L/4)=αc0+αc(3L/4)+αV(3L/4);Step 2.3', install the tablet propellant for testing on the
其中,αc(3L/4)为将测试用片状药推进剂安装于两端的推进剂试剂夹5上、且将测试用环状药安装于T型燃烧器1内3L/4位置时的压强耦合项;Among them, α c (3L/4) is when the test tablet propellant is installed on the
其中,此时x=3L/4,为测试用环状药与燃烧室端部的距离。Among them, at this time x=3L/4, which is the distance between the annular drug for testing and the end of the combustion chamber.
步骤2.4’、根据步骤2.1’、步骤2.2’、步骤2.3’得出αc0=α1-α2,α1、α2分别为将测试用片状药推进剂安装于T型燃烧器1两端的推进剂试件夹5上时,第一路触发激励和第二路触发激励后燃烧器本体2内工作压强振荡衰减系数;In step 2.4', according to step 2.1', step 2.2', and step 2.3 ', α c0 = α 1 -α 2 is obtained. When the
且得出响应函数值Rp(f):And the response function value R p (f) is obtained:
其中,为测得的平均燃速;a为推进剂燃烧温度下的理论声速;am为实测声速,am=2fL;in, is the measured average burning speed; a is the theoretical sound speed at the combustion temperature of the propellant; a m is the measured sound speed, a m = 2fL;
步骤2.5’、根据步骤2.4’得出一阶声振频率下速度耦合响应函数:Step 2.5', according to step 2.4', obtain the velocity coupling response function at the first-order acoustic vibration frequency:
以上两种方法的每个步骤的测试用环状药的厚度小于等于3%L。The thickness of the test ring drug in each step of the above two methods is less than or equal to 3%L.
本发明还公开了一种推进剂一阶振荡模态的速度耦合响应函数测量方法使用的测量装置,包括长度为L的T型燃烧器1,该T型燃烧器1包括燃烧器本体2,燃烧器本体2内的两端安装有相同构型和相同配方的推进剂试件夹5,且在燃烧器本体2两端的外壁上分别安装有一触发激励装置3,用于在燃烧器本体2内产生压强振荡;燃烧器本体2的两端的外壁上还分别安装有高频响压强传感器4,用于测量燃烧器本体2内的压强振荡信号;The invention also discloses a measuring device used in the method for measuring the velocity coupling response function of the first-order oscillation mode of the propellant. The two ends of the
还包括数据采集系统6和点火时序控制系统7,数据采集系统6分别与压强传感器4、触发激励装置3相连接;触发激励装置3和推进剂试件夹5均与点火时序控制系统7相连接。It also includes a
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711161457.0A CN108181423B (en) | 2017-11-21 | 2017-11-21 | Apparatus and method for measuring velocity coupled response function of propellant first-order oscillation mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711161457.0A CN108181423B (en) | 2017-11-21 | 2017-11-21 | Apparatus and method for measuring velocity coupled response function of propellant first-order oscillation mode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108181423A CN108181423A (en) | 2018-06-19 |
CN108181423B true CN108181423B (en) | 2020-06-02 |
Family
ID=62545080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711161457.0A Active CN108181423B (en) | 2017-11-21 | 2017-11-21 | Apparatus and method for measuring velocity coupled response function of propellant first-order oscillation mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108181423B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111751110B (en) * | 2020-07-04 | 2021-05-14 | 西北工业大学 | Carbon fiber heat release sound production device for oscillation combustion of solid propellant |
CN113530716B (en) * | 2021-07-05 | 2022-08-12 | 上海机电工程研究所 | Solid propellant fluctuation combustion pressure coupling response function measuring device and method |
CN114354201A (en) * | 2022-01-04 | 2022-04-15 | 中国航发贵阳发动机设计研究所 | A method for obtaining modal parameters of aero-engine nozzle experiment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5366371A (en) * | 1991-11-18 | 1994-11-22 | Manufacturing And Technology Conversion International, Inc. | Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries |
GB2496092A (en) * | 2011-07-07 | 2013-05-08 | John Montgomery | Water treatment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289123A (en) * | 2000-04-03 | 2001-10-19 | Natl Space Development Agency Of Japan | Pressure reducing device for high-altitude test |
CN103018397A (en) * | 2012-11-19 | 2013-04-03 | 苏万兴 | Secondary pulsating pressure coupling response measuring method |
CN103075270B (en) * | 2013-01-15 | 2015-01-28 | 西北工业大学 | High-pressure-intensity external pulse excitation device for T-shaped burner |
CN103122807B (en) * | 2013-01-16 | 2014-11-12 | 西北工业大学 | Multichannel solid rocket engine ignition sequence control method |
-
2017
- 2017-11-21 CN CN201711161457.0A patent/CN108181423B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5366371A (en) * | 1991-11-18 | 1994-11-22 | Manufacturing And Technology Conversion International, Inc. | Process and apparatus utilizing an improved pulse combustor for atomizing liquids and slurries |
GB2496092A (en) * | 2011-07-07 | 2013-05-08 | John Montgomery | Water treatment |
Non-Patent Citations (13)
Title |
---|
Effect of Pressure and Velocity coupling on Low-Frequency Instability;E .E.Stepp;《AIAA Journal》;19670531;第5卷(第5期);全文 * |
Erosion Mechanism for Nonlinear Instability in the Axial Modes of Solid Propellant Rocket Motors;F. T. McCLURE;《ARS JOURNAL》;20130724;全文 * |
Finite Acoustic Oscillations and Erosive Burning in Solid Fuel Rockets;J. F. BIRD;《AIAA JOURNAL》;19651231;第3卷(第12期);全文 * |
J. F. BIRD.Finite Acoustic Oscillations and Erosive Burning in Solid Fuel Rockets.《AIAA JOURNAL》.1965,第3卷(第12期),全文. * |
Nonlinear Heterogeneous Model of Composite Solid-Propellant Combustion;B. Rasmussen;《JOURNAL OF PROPULSION AND POWER》;20021231;第18卷(第5期);全文 * |
Solid Propellant Combustion in a High-Velocity Cross-Flow of Gases (Review);V. A. Arkhipov;《Combustion, Explosion, and Shock Waves》;20161231;第52卷(第5期);全文 * |
SOLID-PROPELLANT COMBUSTION II?JSTABILITY AND THE ROLE OF VELOCITY COUPLING;Louis A. Povinelli;《NATIONAL AERONAUTICS AND SPACE ADMINISTRATION》;19691231;全文 * |
T-Burner Data and Combustion Instability in Solid Propellant Rockets;F. E. c. CULICK;《AIAA JOURNAL》;19690630;第7卷(第6期);全文 * |
THEORY OF ACOUSTIC INSTABILITY IN SOLID-PROPELLANT ROCKET COMBUSTION;R. W. HART;《Tenth Symposium (International) on Combustion》;19651231;全文 * |
Velocity Coupling Experiments of Solid Propellant Acoustic Oscillating Combustion;Lu Zhen-Zhong;《AIAA/SAE/ASME 20th Joint Propulsion Conference》;19840611;全文 * |
Velocity-Coupled Flow Oscillations in a Simulated Solid-Propellant Rocket Environment;V. Yang;《AlAA 26th Aerospace Sciences Meeting》;19880111;全文 * |
固体推进剂速度藕合响应函数研究;王明雄;《固体火箭技术》;19920331(第1期);全文 * |
固体火箭发动机不稳定燃烧的速度祸合模型的研究;吕振中;《推进技术》;19951231(第6期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108181423A (en) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108181423B (en) | Apparatus and method for measuring velocity coupled response function of propellant first-order oscillation mode | |
CN103122807A (en) | Multichannel solid rocket engine ignition sequence control method | |
CN108131217B (en) | Method for measuring nonlinear pressure coupling response function of solid propellant | |
CN102253244B (en) | Traceability calibration device and method for shock sensitivity of high-g-value accelerometer | |
US2582232A (en) | Temperature-sensing and/or sound velocity-measuring device | |
CN102353813B (en) | Calibration device and method for frequency response characteristics of broadband high-range accelerometer | |
CN101458263A (en) | High-impact acceleration sensor dynamic characteristic tracing calibrating method | |
Edwards et al. | The location of the Chapman-Jouguet surface in a multiheaded detonation wave | |
CN108181424A (en) | The speed coupling response function measurement device and method of propellant order Oscillating mode | |
CN104457457B (en) | Testing delay of detonator delay element new method | |
Edwards | A piezo-electric pressure bar gauge | |
Vandersall et al. | Shock desensitization experiments and reactive flow modeling on self-sustaining LX-17 detonation waves | |
Yonezu et al. | Micro-scale damage characterization in porous ceramics by an acoustic emission technique | |
Hoskin et al. | The motion of plates and cylinders driven by detonation waves at tangential incidence | |
CN203688227U (en) | Fast-response dynamic-thrust test bench for impulse engine | |
Fan et al. | Application of polyvinylidene fluoride for pressure measurements in an underwater explosion of aluminized explosives | |
CN113686580B (en) | Standing wave oscillation experimental device for simulating nonlinear acoustic vibration mode of engine combustion chamber | |
CN102927862A (en) | Method for rapidly measuring detonator delay precision | |
Benedick | Nitroguanidine Explosive Plane‐Wave Generator for Producing Low Amplitude Shock Waves | |
CN115013187B (en) | Solid propellant pressure coupling response function measurement method and mold | |
KR101609677B1 (en) | Calorific value measuring device of natural gas using resonance frequency | |
Schiewer et al. | Single-transducer acoustic levitator with equidistant vertical positioning capability | |
CN110398449A (en) | Rock core holder and rock physical parameter testing device | |
Zakusylo et al. | Regularity of low-speed detonation processes in the shock-tubes. | |
Dadd | Acoustic thermometry in gases using pulse techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |