CN108179222B - Nucleotide sequence of chorismate mutase related to high yield of rice and application thereof - Google Patents
Nucleotide sequence of chorismate mutase related to high yield of rice and application thereof Download PDFInfo
- Publication number
- CN108179222B CN108179222B CN201810234477.4A CN201810234477A CN108179222B CN 108179222 B CN108179222 B CN 108179222B CN 201810234477 A CN201810234477 A CN 201810234477A CN 108179222 B CN108179222 B CN 108179222B
- Authority
- CN
- China
- Prior art keywords
- rice
- oscm3
- sequence
- genotype
- primer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y504/00—Intramolecular transferases (5.4)
- C12Y504/99—Intramolecular transferases (5.4) transferring other groups (5.4.99)
- C12Y504/99005—Chorismate mutase (5.4.99.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种与水稻高产相关的分支酸变位酶核苷酸序列及其应用。本发明所提供的筛选具有不同产量性状的水稻的方法,可包括如下步骤:(1)检测待测水稻基于特异基因片段的基因型;所述特异基因片段位于水稻基因组中,为OSCM3,存在OSCM3_a和OSCM3_b两种等位形式,所述OSCM3_a如序列表的序列1所示,所述OSCM3_b如序列表的序列2所示;(2)进行如下判定:在毗邻生长条件下比较两个基因型,为OSCM3_b纯合型的水稻群体的平均产量高于基因型为OSCM3_a纯合型的水稻群体的平均产量。实验证明,本发明提供的方法可有效筛选具有不同单株产量性状的水稻,且操作简单,准确率高,在水稻育种中具有重要的应用价值。The invention discloses a chorismate mutase nucleotide sequence related to high yield of rice and its application. The method for screening rice with different yield traits provided by the present invention may include the following steps: (1) detecting the genotype of the rice to be tested based on a specific gene fragment; the specific gene fragment is located in the rice genome, is OSCM3, and has OSCM3_a and OSCM3_b two allelic forms, the OSCM3_a is shown in the sequence 1 of the sequence listing, and the OSCM3_b is shown in the sequence 2 of the sequence listing; (2) the following judgments are made: the two genotypes are compared under adjacent growth conditions, The average yield of rice populations homozygous for OSCM3_b was higher than that of rice populations homozygous for OSCM3_a. Experiments show that the method provided by the present invention can effectively screen rice with different yield traits per plant, and has simple operation and high accuracy, and has important application value in rice breeding.
Description
技术领域technical field
本发明涉及生物技术领域,尤其涉及一种与水稻高产相关的分支酸变位酶核苷酸序列及其应用。The invention relates to the field of biotechnology, in particular to a chorismate mutase nucleotide sequence related to high yield of rice and its application.
背景技术Background technique
随着全球人口的增长,培育高产作物的需求与日俱增。水稻(Oryza sativa L.)是地球上多数人依赖的主食来源之一。在水稻中寻找影响高产的基因组片段,并建立有效评估该基因组片段对产量影响的具体方法,对分子育种的发展有重要推动作用。育种过程中有针对性地选取亲本材料对最终培育出具高产性状的水稻品种有重要的价值。目前科学和技术的发展已经为获得水稻中影响高产性状的基因组成分、深度利用水稻基因的自然变异提供了可能。As the global population grows, the need to cultivate high-yielding crops increases. Rice (Oryza sativa L.) is one of the staple food sources on which most people on earth depend. Finding genomic fragments that affect high yield in rice and establishing a specific method to effectively evaluate the impact of this genomic fragment on yield will play an important role in promoting the development of molecular breeding. Targeted selection of parental materials in the breeding process is of great value for the ultimate cultivation of rice varieties with high-yielding traits. At present, the development of science and technology has made it possible to obtain the genomic components that affect high-yield traits in rice and to make deep use of the natural variation of rice genes.
在实践中,育种方法大多依赖可见性状或/和分子标记。对与产量相关基因的鉴定目前大多局限于对突变体的分析等手段。由于影响水稻产量性状的因子较为复杂,多种基因的作用和环境对它们的影响均可能使有效评价基因组片段对产量的影响变得困难。显然对产量而言,分子育种的一个制约因素是在大田条件下采取有效的实验设计,以便确定哪些基因或分子片段适合作为选择条件。结合水稻在大田的表现与其功能基因的定量研究对农业育种可以起到指导作用。In practice, breeding methods mostly rely on visible traits or/and molecular markers. The identification of yield-related genes is currently mostly limited to the analysis of mutants. Due to the complexity of factors affecting rice yield traits, the roles of multiple genes and environmental influences on them can make it difficult to effectively evaluate the impact of genomic segments on yield. Clearly, a limiting factor in molecular breeding in terms of yield is an efficient experimental design under field conditions in order to determine which genes or molecular fragments are suitable as selection conditions. Combining the performance of rice in the field and the quantitative study of its functional genes can play a guiding role in agricultural breeding.
发明内容SUMMARY OF THE INVENTION
本发明提供了一个被证明可以增加水稻产量的基因序列及其专用特异引物对,并以此为例建立了一个有效评价基因序列影响产量的方法。The present invention provides a gene sequence which is proved to increase rice yield and its dedicated specific primer pair, and takes this as an example to establish an effective method for evaluating the influence of gene sequence on yield.
本发明所提供的筛选方法适于选择高产的水稻(方法甲),包括如下步骤:The screening method provided by the present invention is suitable for selecting high-yield rice (method A), comprising the steps of:
(1)检测待测水稻基于特异基因片段的基因型;所述特异基因片段位于水稻基因组中,存在至少OSCM3_a和OSCM3_b两种等位形式,所述OSCM3_a如序列表的序列1所示,所述OSCM3_b如序列表的序列2所示;(1) Detecting the genotype of the rice to be tested based on a specific gene fragment; the specific gene fragment is located in the rice genome, and there are at least two allelic forms of OSCM3_a and OSCM3_b, and the OSCM3_a is shown in Sequence 1 of the Sequence Listing, and the OSCM3_b is shown in sequence 2 of the sequence listing;
(2)进行如下判定:在邻近生长条件下,基因型为OSCM3_b纯合型的水稻群体的平均产量高于基因型为OSCM3_a纯合型的水稻群体的平均产量。(2) The following determination is made: under adjacent growth conditions, the average yield of the rice population homozygous for the OSCM3_b genotype is higher than the average yield of the rice population homozygous for the OSCM3_a genotype.
所述邻近生长条件为同一地理区域内相邻且同等生长条件。The adjacent growth conditions are adjacent and equal growth conditions within the same geographic area.
本发明所提供的筛选方法适于选择高产的水稻(方法乙),可包括如下步骤:The screening method provided by the present invention is suitable for selecting high-yield rice (method B), and may include the following steps:
(1)以待测水稻的基因组DNA为模板,采用下述特异引物对进行PCR扩增;如果PCR扩增产物只有一种且如序列表中序列1所示,则待测水稻的基因型为OSCM3_a纯合型;如果PCR扩增产物只有一种且如序列表中序列2所示,则待测水稻的基因型为OSCM3_b纯合型;(1) Take the genomic DNA of the rice to be tested as a template, and use the following specific primer pairs to carry out PCR amplification; if there is only one PCR amplification product and as shown in sequence 1 in the sequence table, the genotype of the rice to be tested is OSCM3_a homozygous; if there is only one PCR amplification product and as shown in sequence 2 in the sequence table, the genotype of the rice to be tested is OSCM3_b homozygous;
(2)进行如下判定:在邻近生长条件下,基因型为OSCM3_b纯合型的水稻群体的平均产量高于基因型为OSCM3_a纯合型的水稻群体的平均产量。(2) The following determination is made: under adjacent growth conditions, the average yield of the rice population homozygous for the OSCM3_b genotype is higher than the average yield of the rice population homozygous for the OSCM3_a genotype.
本发明还可以提供一种高产水稻的筛选方法,为方法A或方法B;The present invention can also provide a screening method for high-yield rice, which is method A or method B;
所述方法A包括如下步骤:The method A includes the following steps:
(1)检测待测水稻基于特异基因片段的基因型;所述特异基因片段位于水稻基因组中,为OsCM3,存在OsCM3_a和OsCM3_b两种等位形式,所述OsCM3_a如序列表的序列1所示,所述OsCM3_b如序列表的序列2所示;(1) detecting the genotype of the rice to be tested based on a specific gene fragment; the specific gene fragment is located in the rice genome, is OsCM3, and has two allelic forms of OsCM3_a and OsCM3_b, and the OsCM3_a is shown in Sequence 1 of the Sequence Listing, The OsCM3_b is shown in sequence 2 of the sequence listing;
(2)进行如下判定:同等生长条件下,基因型为OsCM3_b纯合型的水稻群体的平均产量均高于基因型为OsCM3_a纯合型的水稻群体的平均产量;(2) carry out the following judgment: under the same growth conditions, the average yield of the rice population whose genotype is OsCM3_b homozygous is higher than the average yield of the rice population whose genotype is OsCM3_a homozygous;
所述方法B包括如下步骤:The method B includes the following steps:
(1)以待测水稻的基因组DNA为模板,采用权利要求4所述特异引物对进行PCR扩增;如果PCR扩增产物只有一种且如序列表中序列1所示,则待测水稻的基因型为OsCM3_a纯合型;如果PCR扩增产物只有一种且如序列表中序列2所示,则待测水稻的基因型为OsCM3_b纯合型;(1) Take the genomic DNA of the rice to be tested as a template, and use the specific primer pair described in claim 4 to carry out PCR amplification; if there is only one PCR amplification product and as shown in sequence 1 in the sequence table, then the The genotype is OsCM3_a homozygous; if there is only one PCR amplification product and as shown in sequence 2 in the sequence table, the genotype of the rice to be tested is OsCM3_b homozygous;
(2)进行如下判定:同等生长条件下,基因型为OsCM3_b纯合型的水稻群体的平均产量均高于基因型为OsCM3_a纯合型的水稻群体的平均产量。(2) The following determination was made: under the same growth conditions, the average yield of the rice population with homozygous OsCM3_b genotype was higher than that of the rice population with homozygous OsCM3_a genotype.
上述同等生长条件可以为相同地理区域的同等生长条件或不同地理区域的同等生长条件。The above-mentioned equivalent growth conditions may be equivalent growth conditions in the same geographical area or equivalent growth conditions in different geographical areas.
生长条件指自然环境(土壤、温度、湿度和养分等)和人工管理(施肥、农药使用、驱鸟和驱病虫害等)。Growth conditions refer to the natural environment (soil, temperature, humidity and nutrients, etc.) and artificial management (fertilization, pesticide use, bird and pest control, etc.).
本发明还提供了一种水稻选育方法(方法丙),可包括如下步骤:The present invention also provides a rice breeding method (method C), which may include the following steps:
(1)检测待测水稻基于特异基因片段的基因型;所述特异基因片段位于水稻基因组中,为OSCM3,存在OSCM3_a和OSCM3_b两种等位形式,所述OSCM3_a如序列表的序列1所示,所述OSCM3_b如序列表的序列2所示;(1) detect the genotype of the rice to be tested based on a specific gene fragment; the specific gene fragment is located in the rice genome, is OSCM3, and has two allelic forms of OSCM3_a and OSCM3_b, and the OSCM3_a is shown in sequence 1 of the sequence table, The OSCM3_b is shown in sequence 2 of the sequence listing;
(2)基因型为OSCM3_b纯合型的水稻为选育的目的水稻。(2) Rice whose genotype is OSCM3_b homozygous is the target rice for selection.
本发明还提供了一种水稻选育方法(方法丁),可包括如下步骤:The present invention also provides a rice breeding method (method D), which may include the following steps:
(1)以待测水稻的基因组DNA为模板,采用下述特异引物对进行PCR扩增;如果PCR扩增产物只有一种且如序列表中序列1所示,则待测水稻的基因型为OSCM3_a纯合型;如果PCR扩增产物只有一种且如序列表中序列2所示,则待测水稻的基因型为OSCM3_b纯合型;(1) Take the genomic DNA of the rice to be tested as a template, and use the following specific primer pairs to carry out PCR amplification; if there is only one PCR amplification product and as shown in sequence 1 in the sequence table, the genotype of the rice to be tested is OSCM3_a homozygous; if there is only one PCR amplification product and as shown in sequence 2 in the sequence table, the genotype of the rice to be tested is OSCM3_b homozygous;
(2)基因型为OSCM3_b纯合型的水稻为选育的目的水稻。(2) Rice whose genotype is OSCM3_b homozygous is the target rice for selection.
所述目的水稻为产量高的水稻。The target rice is high-yield rice.
本发明还保护一种DNA片段,为OsCM3_b;The present invention also protects a DNA fragment, which is OsCM3_b;
所述OsCM3_b可为如下(d1)或(d2):The OsCM3_b can be (d1) or (d2) as follows:
(d1)序列表的序列2所示的DNA分子;(d1) the DNA molecule shown in Sequence 2 of the Sequence Listing;
(d2)将序列2经过一个或几个核苷酸的取代和/或缺失和/或添加且与序列2具有相同功能的DNA分子。(d2) A DNA molecule having the same function as the sequence 2 through the substitution and/or deletion and/or addition of one or several nucleotides in sequence 2.
OsCM3_a基因和OsCM3_b基因为等位基因。OsCM3_a gene and OsCM3_b gene are alleles.
上述中的,“取代和/或缺失和/或添加”发生的位置位于序列表的序列1所示的OsCM3_a基因与序列表的序列2之间的差异以外的区域。In the above, "substitution and/or deletion and/or addition" occurs in a region other than the difference between the OsCM3_a gene shown in Sequence 1 of the Sequence Listing and Sequence 2 of the Sequence Listing.
本发明所提供的用于扩增上述DNA片段的引物对,由引物1和引物2组成;The primer pair for amplifying the above-mentioned DNA fragment provided by the present invention consists of primer 1 and primer 2;
所述引物1可为如下(a1)或(a2):The primer 1 can be as follows (a1) or (a2):
(a1)序列表的序列3所示的单链DNA分子;(a1) the single-stranded DNA molecule shown in Sequence 3 of the Sequence Listing;
(a2)将序列3经过一个或几个核苷酸的取代和/或缺失和/或添加且与序列3具有相同功能的单链DNA分子;(a2) a single-stranded DNA molecule having the same function as sequence 3 by substitution and/or deletion and/or addition of one or several nucleotides in sequence 3;
所述引物2可为如下(b1)或(b2):The primer 2 can be (b1) or (b2) as follows:
(b1)序列表的序列4所示的单链DNA;(b1) the single-stranded DNA shown in Sequence 4 of the Sequence Listing;
(b2)将序列4经过一个或几个核苷酸的取代和/或缺失和/或添加且与序列4具有相同功能的单链DNA分子。(b2) A single-stranded DNA molecule with sequence 4 subjected to substitution and/or deletion and/or addition of one or several nucleotides and having the same function as sequence 4.
上述DNA片段或上述特异引物对的应用也是本发明保护的范围,为如下(e1)或(e2)或(e3)或(e4):The application of the above-mentioned DNA fragment or the above-mentioned specific primer pair is also within the protection scope of the present invention, which is as follows (e1) or (e2) or (e3) or (e4):
(e1)筛选高产水稻;(e1) screening high-yield rice;
(e2)筛选具有不同产量性状的水稻;(e2) screening rice with different yield traits;
(e3)鉴定或辅助鉴定水稻的产量性状;(e3) identifying or assisting the identification of yield traits of rice;
(e4)鉴定或辅助鉴定具有不同产量性状的水稻。(e4) Identifying or assisting in identifying rice with different yield traits.
为解决上述技术问题,本发明还提供了一种试剂盒,包括所述特异引物对。所述试剂盒中还可包括用于提取水稻基因组DNA的常规试剂和/或用于进行PCR扩增的常规试剂和/或用于进行测序的常规试剂。In order to solve the above technical problems, the present invention also provides a kit including the specific primer pair. The kit may further include conventional reagents for extracting rice genomic DNA and/or conventional reagents for PCR amplification and/or conventional reagents for sequencing.
所述试剂盒的用途为如下(e1)或(e2)或(e3)或(e4):The use of the kit is as follows (e1) or (e2) or (e3) or (e4):
(e1)筛选高产水稻;(e1) screening high-yield rice;
(e2)筛选具有不同产量性状的水稻;(e2) screening rice with different yield traits;
(e3)鉴定或辅助鉴定水稻的产量性状;(e3) identifying or assisting the identification of yield traits of rice;
(e4)鉴定或辅助鉴定具有不同产量性状的水稻。(e4) Identifying or assisting in identifying rice with different yield traits.
所述试剂盒的制备方法也属于本发明的保护范围。所述试剂盒的制备方法包括将所述试剂盒中各条引物分别单独包装的步骤。The preparation method of the kit also belongs to the protection scope of the present invention. The preparation method of the kit includes the step of packaging each primer in the kit separately.
所述DNA片段、所述特异引物对、所述试剂盒或以上任一所述方法在水稻育种中的应用也属于本发明的保护范围。所述水稻育种的育种目标为获得产量高的水稻。The application of the DNA fragment, the specific primer pair, the kit or any one of the above methods in rice breeding also falls within the protection scope of the present invention. The breeding goal of the rice breeding is to obtain rice with high yield.
上述任一所述产量可为单株产量。上述任一所述产量可为籽粒产量。Any of the above-mentioned yields may be yield per plant. Any of the yields described above may be grain yields.
本发明还提供一种鉴定优势等位基因的方法,包括如下步骤:通过比较不同群体的生物性状差异,确定具有优势性状的等位基因;所述不同群体中,每个群体均由所述等位基因纯合的个体组成。The present invention also provides a method for identifying a dominant allele, comprising the steps of: determining an allele having a dominant trait by comparing the differences in biological traits of different populations; in the different populations, each population is composed of the The composition of individuals who are homozygous for the allele.
所述生物可为有性繁殖生物,具体可为植物,更具体可为水稻。The organism may be a sexually reproduced organism, specifically a plant, and more specifically, rice.
所述性状可为可测量性状,具体可为产量性状,更具体可为籽粒产量性状。The trait may be a measurable trait, specifically a yield trait, more specifically a grain yield trait.
实验证明,利用本发明提供的方法可筛选具有不同单株产量性状的水稻,操作简单,准确率高,在水稻育种中具有重要的应用价值。Experiments show that the method provided by the invention can be used to screen rice with different yield traits per plant, the operation is simple, the accuracy rate is high, and the method has important application value in rice breeding.
具体实施方式Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。The present invention will be further described in detail below with reference to the specific embodiments, and the given examples are only for illustrating the present invention, rather than for limiting the scope of the present invention.
实施例1、引物的设计与合成Example 1. Design and synthesis of primers
分支酸是水稻体内的重要中间物质。在水稻基因组中,已经有若干个基因被注释为编码分支酸变位酶(EC5.4.99.5)。如编码分支酸变位酶3(chorismate mutase 3,CT829390.1;OSCM3)的基因(以下简称为OSCM3基因)。位于水稻的第一号染色体上。通过大量预实验和序列比对,本发明的发明人发现OSCM3基因中存在两种等位基因片段(一种等位基因片段如序列表的序列1所示,命名为等位基因片段OSCM3_a;另一种等位基因片段如序列表的序列2所示,命名为等位基因片段OSCM3_b),它们和水稻单株产量具有相关性。Chromic acid is an important intermediate substance in rice. In the rice genome, several genes have been annotated as encoding chorismate mutase (EC5.4.99.5). For example, the gene encoding chorismate mutase 3 (CT829390.1; OSCM3) (hereinafter referred to as OSCM3 gene). Located on the first chromosome of rice. Through a large number of preliminary experiments and sequence comparison, the inventors of the present invention found that there are two allelic fragments in the OSCM3 gene (one allelic fragment is shown in Sequence 1 of the sequence table, named as the allelic fragment OSCM3_a; the other An allelic fragment is shown in SEQ ID NO: 2 of the sequence listing, named as the allelic fragment OSCM3_b), which is related to the yield per plant of rice.
根据上述两种等位基因片段设计特异引物对,由引物1和引物2组成。Design specific primer pairs based on the above two allele fragments, consisting of primer 1 and primer 2.
引物1(序列表中序列3):5’-CTGTTGCCACCTCTCCAGT-3’;Primer 1 (sequence 3 in the sequence listing): 5'-CTGTTGCCACCTCTCCAGT-3';
引物2(序列表中序列4):5’-TCTCCTCAGCAAGTAGGCTACT-3’。Primer 2 (sequence 4 in the sequence listing): 5'-TCTCCTCAGCAAGTAGGCTACT-3'.
实施例2、水稻中基于所述等位基因片段的分型方法的建立Example 2. The establishment of a typing method based on the allelic fragment in rice
建立的方法如下:The method of establishment is as follows:
1、以待测水稻的基因组DNA(约10~100ng)为模板,采用引物1和引物2组成的特异引物对进行PCR扩增,得到PCR扩增产物。1. Using the genomic DNA (about 10-100 ng) of the rice to be tested as a template, a specific primer pair consisting of primer 1 and primer 2 is used for PCR amplification to obtain a PCR amplification product.
PCR扩增的反应程序:95℃5分钟;95℃30秒、60℃1分钟、72℃1分钟,35个循环;72℃8分钟。The reaction program of PCR amplification: 95°C for 5 minutes; 95°C for 30 seconds, 60°C for 1 minute, 72°C for 1 minute, 35 cycles; 72°C for 8 minutes.
2、完成步骤1后,对PCR扩增产物进行测序,根据测序结果进行如下判定:如果PCR扩增产物只有一种,且如序列表中序列1所示,则待测水稻的基因型为OSCM3_a纯合型;如果PCR扩增产物只有一种,且如序列表中序列2所示,则待测水稻的基因型为OSCM3_b纯合型;如果PCR扩增产物为两种,一种如序列表中序列1所示,另一种如序列表中序列2所示,则待测水稻的基因型为OSCM3_a/OSCM3_b杂合型。2. After completing step 1, the PCR amplification product is sequenced, and the following determination is made according to the sequencing result: if there is only one PCR amplification product, and as shown in sequence 1 in the sequence table, the genotype of the rice to be tested is OSCM3_a Homozygous type; if there is only one PCR amplification product, and as shown in sequence 2 in the sequence table, the genotype of the rice to be tested is OSCM3_b homozygous type; if there are two PCR amplification products, one is as shown in the sequence table. The genotype of the rice to be tested is OSCM3_a/OSCM3_b heterozygous.
由于水稻品种均为栽培种或农家种,因此基因型为纯合型的个体比例高。Since all rice varieties are cultivated or farmed, the proportion of individuals with homozygous genotype is high.
实施例3、水稻中基于所述等位基因片段的基因型与水稻单株产量的关联分析Example 3. Association analysis between the genotypes based on the allele fragment and the yield per plant in rice
一、按照实施例2建立的分型方法,检测各试用水稻品种的基因型(结果见表1、表2和表3,第4列)。1. According to the typing method established in Example 2, detect the genotype of each trial rice variety (see Table 1, Table 2 and Table 3, the fourth column for the results).
表1Table 1
二、统计不同水稻品种的单株产量2. Statistics on the yield per plant of different rice varieties
于2017年在北京市香山地区分别种植多个水稻品种(具体见表1,水稻品种名称见第2列,水稻品种的产地见第3列)。待水稻成熟后,水稻植株按单株收种,重复至少三次,称量,取平均值,得到该品种的单株产量(结果见表1、第5列)。In 2017, a number of rice varieties were planted in the Xiangshan area of Beijing (see Table 1 for details, the name of the rice variety in the second column, and the origin of the rice variety in the third column). After the rice is mature, the rice plants are harvested per plant, repeated at least three times, weighed, and averaged to obtain the yield per plant of the variety (see Table 1, column 5 for the results).
表1的结果显示:37个水稻品种中17个品种的基因型为OSCM3_a纯合型,这17个品种的平均单株产量为26.23±2.17克;37个水稻品种中20个品种的基因型为OSCM3_b纯合型,这20个品种的平均单株产量为31.75±2.18克;两种纯和型的平均显著性检验P=0.03;成对t-测试显著度P=0.019(N=12)。The results in Table 1 show that the genotype of 17 of the 37 rice cultivars is OSCM3_a homozygous, and the average yield per plant of these 17 cultivars is 26.23±2.17 g; the genotype of 20 of the 37 rice cultivars is For OSCM3_b homozygous type, the average yield per plant of these 20 varieties was 31.75±2.18 g; the mean significance test of the two homozygous types was P=0.03; the paired t-test significance P=0.019 (N=12).
三、建立筛选具有不同单株产量性状的水稻的方法3. Establish a method for screening rice with different yield traits per plant
筛选具有不同单株产量性状的水稻的方法为:The method for screening rice with different yield traits per plant is as follows:
(1)检测待测水稻基于特异基因片段的基因型;所述特异基因片段位于水稻基因组中,为OSCM3,存在OSCM3_a(AP003239.3)和OSCM3_b(CP018157.1)两种等位形式,所述OSCM3_a如序列表的序列1所示,所述OSCM3_b如序列表的序列2所示;(1) Detecting the genotype of the rice to be tested based on a specific gene fragment; the specific gene fragment is located in the rice genome and is OSCM3, and there are two allelic forms of OSCM3_a (AP003239.3) and OSCM3_b (CP018157.1). OSCM3_a is shown in sequence 1 of the sequence listing, and OSCM3_b is shown in sequence 2 of the sequence listing;
(2)进行如下判定:在邻近生长条件下,基因型为OSCM3_b纯合型的水稻群体的平均单株产量高于基因型为OSCM3_a纯合型的水稻群体的平均单株产量。(2) The following determination is made: under adjacent growth conditions, the average yield per plant of the rice population homozygous for OSCM3_b is higher than the average yield per plant for the rice population homozygous for OSCM3_a genotype.
序列表sequence listing
<110>中国科学院植物研究所<110> Institute of Botany, Chinese Academy of Sciences
<120>与水稻高产相关的分支酸变位酶核苷酸序列及其应用<120> Nucleotide sequence of chorismate mutase related to high yield of rice and its application
<160> 4<160> 4
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 1393<211> 1393
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<220><220>
<223><223>
<400> 1<400> 1
ctgttgccac ctctccagta tccaaaggta atgcataaac tcgtgttctt agacatctag 60ctgttgccac ctctccagta tccaaaggta atgcataaac tcgtgttctt agacatctag 60
ttcttctctg taggctttca gcattccttt tgttagtata ggcaaacata gtccttcatt 120ttcttctctg taggctttca gcattccttt tgttagtata ggcaaacata gtccttcatt 120
gactaatcac taatatatca ggttttatta tttgggttta tgcttgcctc tctctcccta 180gactaatcac taatatatca ggttttatta tttgggttta tgcttgcctc tctctcccta 180
tctctctctc tgaactgaca gtagatgaat tggttatgca tcttatgtat tcgtagatgt 240tctctctctc tgaactgaca gtagatgaat tggttatgca tcttatgtat tcgtagatgt 240
tgaattcttc tgtgtgggct tgcgtagctt cttttgtcag tgaaggcaag catgtacctt 300tgaattcttc tgtgtgggct tgcgtagctt cttttgtcag tgaaggcaag catgtacctt 300
tgttgactga ccactagtat atcggttctg tggtgggata tcgtgcttac tgtccacctg 360tgttgactga ccactagtat atcggttctg tggtgggata tcgtgcttac tgtccacctg 360
caacataata caacttttga tacgaagtgg agtaccatct attgagactc acattgctaa 420caacataata caacttttga tacgaagtgg agtaccatct attgagactc acattgctaa 420
ttgattactg tgctgttgta ttgttataag taaatttgga taaaattcat atttttgttc 480ttgattactg tgctgttgta ttgttataag taaatttgga taaaattcat atttttgttc 480
ttgtcttttc taggttttgc atcctattgc tgattctatt aatatcaaca aggagatttg 540ttgtcttttc taggttttgc atcctattgc tgattctatt aatatcaaca aggagatttg 540
gaaaatgtat tttgatgagc ttcttccaag attagtgaaa gaaggaagtg atggtaatta 600gaaaatgtat tttgatgagc ttcttccaag attagtgaaa gaaggaagtg atggtaatta 600
tggatccagt gctctttgtg acacgatctg cttgcaggta ctacagttag tataccaaat 660tggatccagt gctctttgtg acacgatctg cttgcaggta ctacagttag tataccaaat 660
gttctaataa tctggcctcg tactgcttct ggctactgtg ctgtagcttt catttgctca 720gttctaataa tctggcctcg tactgcttct ggctactgtg ctgtagcttt catttgctca 720
aaataattta gcattagcaa aataattctt gtaaaaccat ttcttgttgt agtattgctt 780aaataattta gcattagcaa aataattctt gtaaaaccat ttcttgttgt agtattgctt 780
caagatgttc tgctgccaga attttcacca gatgtcattt tcatagtatt agtactatac 840caagatgttc tgctgccaga attttcacca gatgtcattt tcatagtatt agtactatac 840
tgttgttcac tggtgactcg tgcaattagg catttttata ttgggaaatt atgctcacct 900tgttgttcac tggtgactcg tgcaattagg catttttata ttgggaaatt atgctcacct 900
gttcttgttt tcctgttcta tcatccaggc gctctccaaa agaattcact atggtaagtt 960gttcttgttt tcctgttcta tcatccaggc gctctccaaa agaattcact atggtaagtt 960
tgtggcagag gctaagtttc aagagtctcc tgaagcttac atgcctgcga taatagcaca 1020tgtggcagag gctaagtttc aagagtctcc tgaagcttac atgcctgcga taatagcaca 1020
ggtttgtgtt ctgttttgct gtataatctg tctttatcat gggaagcaaa taaattccat 1080ggtttgtgtt ctgttttgct gtataatctg tctttatcat gggaagcaaa taaattccat 1080
gtgttttctt gtacattact ttaggtacat atcaaagttg agtctattat gcaagcggct 1140gtgttttctt gtacattact ttaggtacat atcaaagttg agtctattat gcaagcggct 1140
aattattttt atctgggaat ttcaggactg cgatcaacta atgcacctcc tcacctatga 1200aattattttt atctgggaat ttcaggactg cgatcaacta atgcacctcc tcacctatga 1200
aacggtggag cgtgctattg aacatagggt ggaagctaag gctaagatct ttggacagga 1260aacggtggag cgtgctattg aacatagggt ggaagctaag gctaagatct ttggacagga 1260
ggtggattta ggcgctgaag acaacggcgc tccaccaatg tacaagataa ggcccagttt 1320ggtggattta ggcgctgaag acaacggcgc tccaccaatg tacaagataa ggcccagttt 1320
ggtggctgaa ctgtacagct acaggatcat gccgctaacc aaggaggttc aagtagccta 1380ggtggctgaa ctgtacagct acaggatcat gccgctaacc aaggaggttc aagtagccta 1380
cttgctgagg aga 1393cttgctgagg aga 1393
<210> 2<210> 2
<211> 1396<211> 1396
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<220><220>
<223><223>
<400> 2<400> 2
ctgttgccac ctctccagta tccaaaggta atgcataaac tcgtgttctt agacatctag 60ctgttgccac ctctccagta tccaaaggta atgcataaac tcgtgttctt agacatctag 60
ttcttctctg taggctttca gcattccttt tgttagtata ggcaaacata gtccttcatt 120ttcttctctg taggctttca gcattccttt tgttagtata ggcaaacata gtccttcatt 120
gactaatcac taatatatca ggttttatta ttatttgggt ttatgcttgc ctctctctcc 180gactaatcac taatatatca ggttttatta ttatttgggt ttatgcttgc ctctctctcc 180
ctatctctct ctctgaactg acagtagatg aattggttat gcatcttatg tattcgtaga 240ctatctctct ctctgaactg acagtagatg aattggttat gcatcttatg tattcgtaga 240
tgttgaattc ttctgtgtgg gcttgcgtag cttcttttgt cagtgaaggc aagcatgtac 300tgttgaattc ttctgtgtgg gcttgcgtag cttcttttgt cagtgaaggc aagcatgtac 300
ctttgttgac tgaccactag tatatcggtt ctgtggtggg atatcgtgct tactgtccac 360ctttgttgac tgaccactag tatatcggtt ctgtggtggg atatcgtgct tactgtccac 360
ctgcaacata atacaacttt tgatacgaag tggagtacca tctattgaga ctcacattgc 420ctgcaacata atacaacttt tgatacgaag tggagtacca tctattgaga ctcacattgc 420
taattgatta ctgtgctgtt gtattgttat aagtaaattt ggataaaatt catatttttg 480taattgatta ctgtgctgtt gtattgttat aagtaaattt ggataaaatt catatttttg 480
ttcttgtctt ttctaggttt tgcatcctat tgctgattct attaatatca acaaggagat 540ttcttgtctt ttctaggttt tgcatcctat tgctgattct attaatatca acaaggagat 540
ttggaaaatg tattttgatg agcttcttcc aagattagtg aaagaaggaa gtgatggtaa 600ttggaaaatg tattttgatg agcttcttcc aagattagtg aaagaaggaa gtgatggtaa 600
ttatggatcc agtgctcttt gtgacacaat ctgcttgcag gtactacagt tagtatacca 660ttatggatcc agtgctcttt gtgacacaat ctgcttgcag gtactacagt tagtatacca 660
aatgttctaa taatctggcc tcgtactgct tctggctact gtgctgtagc tttcatttgc 720aatgttctaa taatctggcc tcgtactgct tctggctact gtgctgtagc tttcatttgc 720
tcaaaataat ttagcattag caaaataatt cttgtaaaac catttcttgt tgtagtattg 780tcaaaataat ttagcattag caaaataatt cttgtaaaac catttcttgt tgtagtattg 780
cttcaagatg ttctgctgcc agaattttca ccagatgtca ttttcatagt attagtacta 840cttcaagatg ttctgctgcc agaattttca ccagatgtca ttttcatagt attagtacta 840
tactgttgtt cactggtgac tcatgcaatt aggcattttt atattgggaa attatgctca 900tactgttgtt cactggtgac tcatgcaatt aggcattttt atattgggaa attatgctca 900
cctgttcttg ttttcctgtt ctatcatcca ggcgctctcc aaaagaattc actatggtaa 960cctgttcttg ttttcctgtt ctatcatcca ggcgctctcc aaaagaattc actatggtaa 960
gtttgtggca gaggctaagt ttcaagagtc tcctgaagct tacatgcctg cgataatagc 1020gtttgtggca gaggctaagt ttcaagagtc tcctgaagct tacatgcctg cgataatagc 1020
acaggtttgt gttctgtttt gctgtataat ctgtctttat catgggaagc aaataaattc 1080acaggtttgt gttctgtttt gctgtataat ctgtctttat catgggaagc aaataaattc 1080
catgtgtttt cttgtacatt actttaggta catatcaaag ttgagtctat tatgcaagcg 1140catgtgtttt cttgtacatt actttaggta catatcaaag ttgagtctat tatgcaagcg 1140
gctaattatt tttatctggg aatttcagga ctgcgatcaa ctaatgcacc tcctcaccta 1200gctaattatt tttatctggg aatttcagga ctgcgatcaa ctaatgcacc tcctcaccta 1200
tgaaacggtg gagcgtgcta ttgaacatag ggtggaagct aaggctaaga tctttggaca 1260tgaaacggtg gagcgtgcta ttgaacatag ggtggaagct aaggctaaga tctttggaca 1260
ggaggtggat ttaggcgctg aagacaacgg cgctccacca atgtacaaga taaggcccag 1320ggaggtggat ttaggcgctg aagacaacgg cgctccacca atgtacaaga taaggcccag 1320
tttggtcgct gaactgtaca gctacaggat catgccgcta accaaggagg ttcaagtagc 1380tttggtcgct gaactgtaca gctacaggat catgccgcta accaaggagg ttcaagtagc 1380
ctacttgctg aggaga 1396ctacttgctg aggaga 1396
<210> 3<210> 3
<211> 19<211> 19
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<220><220>
<223><223>
<400> 3<400> 3
ctgttgccac ctctccagt 19ctgttgccac ctctccagt 19
<210> 4<210> 4
<211> 22<211> 22
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<220><220>
<223><223>
<400> 4<400> 4
tctcctcagc aagtaggcta ct 22tctcctcagc aagtaggcta ct 22
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810234477.4A CN108179222B (en) | 2018-03-21 | 2018-03-21 | Nucleotide sequence of chorismate mutase related to high yield of rice and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810234477.4A CN108179222B (en) | 2018-03-21 | 2018-03-21 | Nucleotide sequence of chorismate mutase related to high yield of rice and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108179222A CN108179222A (en) | 2018-06-19 |
CN108179222B true CN108179222B (en) | 2020-07-24 |
Family
ID=62553838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810234477.4A Active CN108179222B (en) | 2018-03-21 | 2018-03-21 | Nucleotide sequence of chorismate mutase related to high yield of rice and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108179222B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110499382B (en) * | 2019-08-30 | 2020-12-01 | 中国科学院植物研究所 | A pyruvate kinase allele fragment for increasing rice yield and its application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1995357A (en) * | 2006-01-05 | 2007-07-11 | 华中农业大学 | Gene for controlling rice ear sprouting period and its uses |
CN103695459A (en) * | 2007-09-18 | 2014-04-02 | 巴斯夫植物科学有限公司 | Plants with increased yield |
-
2018
- 2018-03-21 CN CN201810234477.4A patent/CN108179222B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1995357A (en) * | 2006-01-05 | 2007-07-11 | 华中农业大学 | Gene for controlling rice ear sprouting period and its uses |
CN103695459A (en) * | 2007-09-18 | 2014-04-02 | 巴斯夫植物科学有限公司 | Plants with increased yield |
Non-Patent Citations (3)
Title |
---|
Differential induction of chorismate mutase isoforms by elicitors in oat leaves;Tetsuya Matsukawa等;《Plant Physiol. Biochem.》;20021231;第40卷;795-802 * |
GenBank:CP018157.1;Liang,C.等;《NCBI》;20170504;1-9 * |
不同类型杂交水稻组合及其亲本苗期同工酶位点分析;陈学峰等;《武汉植物学研究》;20011231;第19卷(第3期);181-186 * |
Also Published As
Publication number | Publication date |
---|---|
CN108179222A (en) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110241248B (en) | KASP marker related to wheat grain weight under salt stress condition and application thereof | |
Beena et al. | Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces | |
CN108998562A (en) | Based on grain length genetic marker and application under 895 genetic background of wheat in wheat breed | |
CN111961747A (en) | Method for assisting in identifying sugar content of watermelon fruit, SNP marker and KASP marker | |
CN106755475A (en) | A kind of method of early 39 rice blast resistance genes in identification super early rice | |
Qing et al. | Development of molecular marker and introgression of Bph3 into elite rice cultivars by marker-assisted selection | |
CN103642803A (en) | Function specific molecular markers of rice blast resistance gene Pi63 as well as method and application of function specific molecular markers | |
CN109735648A (en) | A method for screening wheat with different thousand-grain weights and its special kit | |
CN111719008A (en) | A SNP co-isolated with wheat powdery mildew resistance gene Pm5e and its application | |
WO2015192566A1 (en) | Cucumber target leaf spot resistance gene cca as well as linked molecular markers and applications thereof | |
CN114480698B (en) | Molecular marker related to wheat set spike number and/or grain hardness characteristics and application | |
CN111334597A (en) | SNP (Single nucleotide polymorphism) site and KASP (Kaempferi protein) marker for detecting powdery mildew resistance of watermelon and application thereof | |
CN118166157B (en) | KASP molecular markers related to low nitrogen tolerance in watermelon and their applications | |
CN106755465B (en) | Molecular marker closely linked with wheat flag leaf length QTL QFLL | |
CN108179222B (en) | Nucleotide sequence of chorismate mutase related to high yield of rice and application thereof | |
CN118531157A (en) | SNP (Single nucleotide polymorphism) marker method for detecting tomato neck rot and root rot resistance gene and application thereof | |
CN108251552B (en) | Phosphoglycoside-oleate mutase gene fragment for increasing rice yield and application thereof | |
CN106701751A (en) | Molecular marker closely linked with wheat flag leaf length QTL QFll.sicau-4D and application thereof | |
CN108424954B (en) | An anthranilate synthase allele fragment for increasing rice yield and its application | |
CN108239673A (en) | A kind of method for cultivating high-yield crop and its special specific gene pack section and special primer pair | |
CN108866227A (en) | Two specific molecular markers of corn florescence gene ZCN8 and its application | |
CN103789431B (en) | Assisting sifting and cultivate the primer special of stripe rust resisting wheat new lines, reagent and test kit and selection thereof | |
CN104313143B (en) | One and the closely linked molecule marker of common kidney bean anti-anthrax gene locus and detection method thereof | |
Wu et al. | Cytogenetic and genomic characterization of a novel wheat-tetraploid Thinopyrum elongatum 1BS⋅ 1EL translocation line with stripe rust resistance | |
Wu et al. | Identification and molecular mapping of the gene YrFL in wheat cultivar Flanders with durable resistance to stripe rust |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |