CN108142976A - A kind of cut tobacco Drying Technology Parameter optimization method - Google Patents
A kind of cut tobacco Drying Technology Parameter optimization method Download PDFInfo
- Publication number
- CN108142976A CN108142976A CN201711228305.8A CN201711228305A CN108142976A CN 108142976 A CN108142976 A CN 108142976A CN 201711228305 A CN201711228305 A CN 201711228305A CN 108142976 A CN108142976 A CN 108142976A
- Authority
- CN
- China
- Prior art keywords
- shredded
- data
- process parameter
- drying process
- leaf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 description 41
- 238000001035 drying Methods 0.000 description 40
- 238000012549 training Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005457 optimization Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 238000012847 principal component analysis method Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- 241000748095 Hymenopappus filifolius Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B3/00—Preparing tobacco in the factory
- A24B3/10—Roasting or cooling tobacco
Landscapes
- Manufacture Of Tobacco Products (AREA)
Abstract
本发明公开了一种叶丝干燥工艺参数优化方法,本发明为叶丝干燥工艺参数的优化设置提供了方法,解决了传统方法无法建立叶丝干燥工艺函数模型、难以对工艺参数进行优化设置的问题,同时提高了预测模型的运行效率和预测精度,通过建立轻量化数据驱动预测模型构建叶丝干燥过程中各工艺参数与叶丝含水率之间的映射关系,并依据该映射关系寻求叶丝含水率的最优值和其对应的叶丝干燥最优工艺参数的组合,实现了即使当叶丝干燥工艺参数较多时也可以精确的优化叶丝干燥工艺参数和叶丝含水率。
The invention discloses a method for optimizing parameters of shredded leaf drying process. The invention provides a method for optimizing the setting of shredded leaf drying process parameters, and solves the problem that the traditional method cannot establish the process function model of shredded leaf and it is difficult to optimize the setting of technological parameters. problem, while improving the operation efficiency and prediction accuracy of the prediction model, by establishing a lightweight data-driven prediction model to construct the mapping relationship between each process parameter and the moisture content of the shredded shreds during the drying process, and based on the mapping relationship to find the The combination of the optimal value of the water content and the corresponding optimal process parameters of shredded shreds drying realizes the precise optimization of the shredded shreds drying process parameters and the moisture content of the shredded leaves even when there are many parameters of the shredded shreds drying process.
Description
技术领域technical field
本发明涉及一种叶丝干燥工艺参数优化方法,属于农副产品干燥领域。The invention relates to a process parameter optimization method for shredded leaves, belonging to the field of drying agricultural and sideline products.
背景技术Background technique
叶丝干燥是农副产品干燥过程中一道重要的工序,通过对干燥过程的工艺参数优化设置,使叶丝含水率保持稳定,以改善及控制叶丝的品质。目前,叶丝干燥工艺参数的优化设置主要依靠技术人员的经验,很难采用优化设置方法,其主要原因是由于叶丝干燥过程是一个包含物理、化学等多场多学科耦合的复杂工艺过程,其各项工艺参数与叶丝含水率之间的关系非常复杂,传统方法难以确定其函数关系。Leaf shred drying is an important process in the drying process of agricultural and sideline products. By optimizing the process parameters of the drying process, the moisture content of leaf shreds can be kept stable, so as to improve and control the quality of leaf shreds. At present, the optimal setting of shredded drying process parameters mainly depends on the experience of technicians, and it is difficult to adopt the optimal setting method. The main reason is that the shredded shredded drying process is a complex process involving multi-field and multidisciplinary coupling such as physics and chemistry. The relationship between the process parameters and the moisture content of shredded leaves is very complicated, and it is difficult to determine the functional relationship by traditional methods.
发明内容Contents of the invention
为解决传统方法无法建立叶丝干燥工艺函数模型、难以对工艺参数进行优化设置的问题等,本发明提供了一种叶丝干燥工艺参数优化方法。In order to solve the problems that the traditional method cannot establish a shredded leaf drying process function model, and it is difficult to optimize the setting of technological parameters, etc., the invention provides a shredded leaf drying process parameter optimization method.
本发明的技术方案是:一种叶丝干燥工艺参数优化方法,所述方法步骤如下:The technical scheme of the present invention is: a kind of shredded leaf drying process parameter optimization method, described method step is as follows:
步骤1、剔除叶丝干燥工艺参数数据中的异常数据和错误数据,得到待优化工艺参数数据;Step 1, removing abnormal data and error data in the shredded leaf drying process parameter data to obtain the process parameter data to be optimized;
步骤2、对待优化工艺参数数据进行降维处理,得到轻量化参数数据;Step 2. Perform dimensionality reduction processing on the process parameter data to be optimized to obtain lightweight parameter data;
步骤3、创建初始BP神经网络,将轻量化参数数据、叶丝含水率训练数据代入其中对其进行训练,得到轻量化数据驱动预测模型;Step 3. Create an initial BP neural network, substitute lightweight parameter data and silk moisture content training data into it for training, and obtain a lightweight data-driven prediction model;
步骤4、对待优化工艺参数数据进行随机筛选,得到叶丝干燥工艺参数种群;Step 4, performing random screening on the process parameter data to be optimized to obtain the silk drying process parameter population;
步骤5、对叶丝干燥工艺参数种群中的个体进行降维操作;Step 5, performing dimensionality reduction operations on individuals in the shredded leaf drying process parameter population;
步骤6、将降维后的种群个体数据代入轻量化数据驱动预测模型,获取叶丝含水率的预测值y i ;Step 6. Substituting the dimensionally reduced population individual data into the lightweight data-driven prediction model to obtain the predicted value y i of the moisture content of shredded leaves;
步骤7、收敛判断:将叶丝含水率的预测值y i 与叶丝含水率的设定值y 0作差,若差值小于或等于收敛精度e,则输出该叶丝含水率的预测值所对应的叶丝干燥工艺参数种群中的个体,否则不输出。Step 7, Convergence Judgment: Make a difference between the predicted value y i of the water content of the shredded leaf and the set value y 0 of the water content of the shredded leaf, if the difference is less than or equal to the convergence accuracy e , then output the predicted value of the water content of the shredded leaf Individuals in the population corresponding to the silk drying process parameters, otherwise not output.
所述降维处理采用主成分分析方法。The dimensionality reduction process adopts principal component analysis method.
所述步骤7中,若不输出,则更新叶丝干燥工艺参数种群,并重新进行步骤5至步骤7,直至|y i -y 0 |≤e。In the step 7, if it is not output, update the shredded leaf drying process parameter population, and repeat steps 5 to 7 until |y i - y 0 | ≤ e .
本发明的有益效果是:为叶丝干燥工艺参数的优化设置提供了方法,解决了传统方法无法建立叶丝干燥工艺函数模型、难以对工艺参数进行优化设置的问题,同时提高了预测模型的运行效率和预测精度,通过建立轻量化数据驱动预测模型构建叶丝干燥过程中各工艺参数与叶丝含水率之间的映射关系,并依据该映射关系寻求叶丝含水率的最优值和其对应的叶丝干燥最优工艺参数的组合,实现了即使当叶丝干燥工艺参数较多时也可以精确的优化叶丝干燥工艺参数和叶丝含水率。The beneficial effect of the present invention is that it provides a method for the optimal setting of the shredded drying process parameters, solves the problem that the traditional method cannot establish the shredded shredded drying process function model, and it is difficult to optimize the setting of the technological parameters, and at the same time improves the operation of the prediction model Efficiency and prediction accuracy, by establishing a lightweight data-driven prediction model to construct the mapping relationship between each process parameter and the moisture content of the shredded leaf during the drying process, and based on the mapping relationship to find the optimal value of the shredded moisture content and its corresponding The combination of the optimal process parameters for shredded shreds drying realizes the precise optimization of shredded shreds drying process parameters and moisture content of shreds even when there are many shredded shreds drying process parameters.
附图说明Description of drawings
图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.
具体实施方式Detailed ways
实施例1:如图1所示,一种叶丝干燥工艺参数优化方法,所述方法步骤如下:Embodiment 1: as shown in Figure 1, a kind of shredded leaf drying process parameter optimization method, described method step is as follows:
步骤1、剔除叶丝干燥工艺参数数据中的异常数据和错误数据,得到待优化工艺参数数据;Step 1, removing abnormal data and error data in the shredded leaf drying process parameter data to obtain the process parameter data to be optimized;
步骤2、对待优化工艺参数数据进行降维处理,得到轻量化参数数据;Step 2. Perform dimensionality reduction processing on the process parameter data to be optimized to obtain lightweight parameter data;
步骤3、创建初始BP神经网络,将轻量化参数数据、叶丝含水率训练数据代入其中对其进行训练,得到轻量化数据驱动预测模型;Step 3. Create an initial BP neural network, substitute lightweight parameter data and silk moisture content training data into it for training, and obtain a lightweight data-driven prediction model;
步骤4、对待优化工艺参数数据进行随机筛选,得到叶丝干燥工艺参数种群;Step 4, performing random screening on the process parameter data to be optimized to obtain the silk drying process parameter population;
步骤5、对叶丝干燥工艺参数种群中的个体进行降维操作;Step 5, performing dimensionality reduction operations on individuals in the shredded leaf drying process parameter population;
步骤6、将降维后的种群个体数据代入轻量化数据驱动预测模型,获取叶丝含水率的预测值y i ;Step 6. Substituting the dimensionally reduced population individual data into the lightweight data-driven prediction model to obtain the predicted value y i of the moisture content of shredded leaves;
步骤7、收敛判断:将叶丝含水率的预测值y i 与叶丝含水率的设定值y 0作差,若差值小于或等于收敛精度e,则输出该叶丝含水率的预测值所对应的叶丝干燥工艺参数种群中的个体,否则不输出。Step 7, Convergence Judgment: Make a difference between the predicted value y i of the water content of the shredded leaf and the set value y 0 of the water content of the shredded leaf, if the difference is less than or equal to the convergence accuracy e , then output the predicted value of the water content of the shredded leaf Individuals in the population corresponding to the silk drying process parameters, otherwise not output.
进一步地,可以设置所述降维处理采用主成分分析方法。Further, it may be set that the dimensionality reduction process adopts a principal component analysis method.
实施例2:如图1所示,一种叶丝干燥工艺参数优化方法,所述方法步骤如下:Embodiment 2: as shown in Figure 1, a kind of shredded leaf drying process parameter optimization method, described method step is as follows:
步骤1、剔除叶丝干燥工艺参数数据中的异常数据和错误数据,得到待优化工艺参数数据;Step 1, removing abnormal data and error data in the shredded leaf drying process parameter data to obtain the process parameter data to be optimized;
步骤2、对待优化工艺参数数据进行降维处理,得到轻量化参数数据;Step 2. Perform dimensionality reduction processing on the process parameter data to be optimized to obtain lightweight parameter data;
步骤3、创建初始BP神经网络,将轻量化参数数据、叶丝含水率训练数据代入其中对其进行训练,得到轻量化数据驱动预测模型;Step 3. Create an initial BP neural network, substitute lightweight parameter data and silk moisture content training data into it for training, and obtain a lightweight data-driven prediction model;
步骤4、对待优化工艺参数数据进行随机筛选,得到叶丝干燥工艺参数种群;Step 4, performing random screening on the process parameter data to be optimized to obtain the silk drying process parameter population;
步骤5、对叶丝干燥工艺参数种群中的个体进行降维操作;Step 5, performing dimensionality reduction operations on individuals in the shredded leaf drying process parameter population;
步骤6、将降维后的种群个体数据代入轻量化数据驱动预测模型,获取叶丝含水率的预测值y i ;Step 6. Substituting the dimensionally reduced population individual data into the lightweight data-driven prediction model to obtain the predicted value y i of the moisture content of shredded leaves;
步骤7、收敛判断:将叶丝含水率的预测值y i 与叶丝含水率的设定值y 0作差,若差值小于或等于收敛精度e,则输出该叶丝含水率的预测值所对应的叶丝干燥工艺参数种群中的个体,否则更新叶丝干燥工艺参数种群,并重新进行步骤5至步骤7,直至|y i -y 0 |≤e。Step 7, Convergence Judgment: Make a difference between the predicted value y i of the water content of the shredded leaf and the set value y 0 of the water content of the shredded leaf, if the difference is less than or equal to the convergence accuracy e , then output the predicted value of the water content of the shredded leaf Individuals in the corresponding leaf shred drying process parameter population, otherwise update the leaf shred drying process parameter population, and perform steps 5 to 7 again until |y i - y 0 | ≤ e .
进一步地,可以设置所述降维处理采用主成分分析方法。Further, it may be set that the dimensionality reduction process adopts a principal component analysis method.
实施例3:如图1所示,一种叶丝干燥工艺参数优化方法,所述方法步骤如下:Embodiment 3: as shown in Figure 1, a kind of shredded leaf drying process parameter optimization method, described method step is as follows:
步骤1,剔除叶丝干燥工艺参数数据中的异常数据和错误数据,得到待优化工艺参数数据,如表1所示:Step 1, remove the abnormal data and error data in the shredded leaf drying process parameter data, and obtain the process parameter data to be optimized, as shown in Table 1:
表1:Table 1:
表1中变量x4的数据从第8行开始不再与之前的数据发生变化,变量x8的数据从第9行开始全为0,故剔除第8行以后的数据;变量x9的数据全为0,故剔除变量x9的所有数据,得到表2所示的待优化工艺参数数据:The data of variable x 4 in Table 1 will no longer change from the previous data from the 8th row, and the data of variable x 8 will be all 0s from the 9th row, so the data after the 8th row will be removed; the data of variable x 9 All are 0, so all the data of the variable x 9 are eliminated, and the process parameter data to be optimized shown in Table 2 are obtained:
表2:Table 2:
步骤2,对待优化工艺参数数据进行降维处理,得到轻量化参数数据,如:利用主成分分析法建立如下降维公式:Step 2, perform dimension reduction processing on the process parameter data to be optimized to obtain lightweight parameter data, such as: use the principal component analysis method to establish the following dimension reduction formula:
主成分1= 0.050027*x1+0.020110*x2-0.257952*x3-0.035438*x4+0.386489*x5 Principal component 1= 0.050027*x 1 +0.020110*x 2 -0.257952*x 3 -0.035438*x 4 +0.386489*x 5
+0.443235*x6-0.000825*x7+0.144985*x8+0.014484*x10-0.004486*x11-0.027720*x12 +0.443235*x 6 -0.000825*x 7 +0.144985*x 8 +0.014484*x 10 -0.004486*x 11 -0.027720*x 12
-0.051757*x13+0.080297*x14+0.013425*x15-0.018750*x16-0.016826*x17 -0.051757*x 13 +0.080297*x 14 +0.013425*x 15 -0.018750*x 16 -0.016826*x 17
主成分2= -0.055614*x1-0.030874*x2+0.506334*x3-0.012715*x4-0.103676*x5 Principal Component 2= -0.055614*x 1 -0.030874*x 2 +0.506334*x 3 -0.012715*x 4 -0.103676*x 5
-0.210429*x6-0.052316*x7+0.222817*x8+0.015285*x10-0.015888*x11+0.029754*x12 -0.210429*x 6 -0.052316*x 7 +0.222817*x 8 +0.015285*x 10 -0.015888*x 11 +0.029754*x 12
+0.049319*x13+0.310010*x14+0.283559*x15-0.037438*x16-0.005331*x17 +0.049319*x 13 +0.310010*x 14 +0.283559*x 15 -0.037438*x 16 -0.005331*x 17
主成分3= -0.186842*x1+0.033591*x2-0.069666*x3-0.150656*x4-0.002547*x5 Principal component 3= -0.186842*x 1 +0.033591*x 2 -0.069666*x 3 -0.150656*x 4 -0.002547*x 5
+0.013832*x6+0.018056*x7-0.102104*x8+0.391237*x10-0.316293*x11-0.102645*x12 +0.013832*x 6 +0.018056*x 7 -0.102104*x 8 +0.391237*x 10 -0.316293*x 11 -0.102645*x 12
+0.029974*x13+0.073417*x14+0.137466*x15+0.094621*x16+0.404656*x17 +0.029974*x 13 +0.073417*x 14 +0.137466*x 15 +0.094621*x 16 +0.404656*x 17
将步骤1中所得待优化工艺参数x1~x17的数据(除x9)分别代入主成分1~主成分3的降维公式,得到表3所示轻量化参数数据、叶丝含水率训练数据:Substitute the data of process parameters x1~x17 to be optimized obtained in step 1 (except x9 ) into the dimensionality reduction formulas of principal components 1~principal components 3, and obtain the light weight parameter data and leaf silk moisture content training data shown in Table 3:
表3:table 3:
步骤3,创建初始BP神经网络,将轻量化参数数据、叶丝含水率训练数据代入其中对其进行训练,得到轻量化数据驱动预测模型,如:将主成分1~主成分3作为输入变量,y作为输出变量代入神经网络进行训练,其构建的主成分1~主成分3与y之间的映射关系即为轻量化数据驱动预测模型;Step 3: Create an initial BP neural network, and substitute the lightweight parameter data and leaf silk moisture content training data into it for training to obtain a lightweight data-driven prediction model, such as: use principal components 1 to 3 as input variables, y is substituted into the neural network as an output variable for training, and the mapping relationship between principal components 1~principal components 3 and y constructed by it is a lightweight data-driven prediction model;
步骤4,对待优化工艺参数数据进行随机筛选,得到叶丝干燥工艺参数种群,如:从步骤1中所得待优化工艺参数x1~x17的数据(除x9)中分别随机筛选一个数据,得到种群的一个个体,重复该筛选过程5次,得到5个个体,该5个个体组成叶丝干燥工艺参数种群,如表4所示:Step 4: Randomly screen the data of process parameters to be optimized to obtain a population of shredded drying process parameters. For example, randomly screen one data from the data of process parameters to be optimized x1~x17 (except x 9 ) obtained in step 1 to obtain a population Repeat the screening process 5 times to obtain 5 individuals. These 5 individuals form the shredded leaf drying process parameter population, as shown in Table 4:
表4:Table 4:
步骤5,对叶丝干燥工艺参数种群中的个体进行降维处理,如:将步骤4中叶丝干燥工艺参数种群的5个个体分别代入步骤2中的降维公式,结果如表5所示:Step 5, perform dimensionality reduction processing on the individuals in the cut leaf drying process parameter population, such as: Substitute five individuals in the cut leaf drying process parameter population in step 4 into the dimensionality reduction formula in step 2, and the results are shown in Table 5:
表5:table 5:
步骤6,将降维后的种群个体数据代入轻量化数据驱动预测模型,获取叶丝含水率的预测值y i;如:每输入一组主成分1~主成分3的数据,皆可获得一个叶丝含水率的预测值y i,如表6所示:Step 6. Substitute the reduced population individual data into the lightweight data-driven prediction model to obtain the predicted value y i of the moisture content of leaf shreds; for example, for each set of data input from principal component 1 to principal component 3, a The predicted value y i of moisture content of shredded leaves is shown in Table 6:
表6:Table 6:
步骤7,收敛判断。具体为将叶丝含水率的预测值y i与叶丝含水率的设定值y 0作差,若差值小于或等于收敛精度e,则得到叶丝含水率的最优值,并输出最优值对应的叶丝干燥最优工艺参数的组合,步骤结束;若差值大于收敛精度e,则更新叶丝干燥工艺参数种群,并重新进行步骤5至步骤7,直至|y i -y 0 |≤e。如:收敛精度取e=0.001,叶丝含水率的设定值取y 0= 12.7,当y i = 12.699915时,|y i -y 0 |=0.000585≤0.001,则y i = 12.699915为叶丝含水率的最优值,且其对应的个体3降维前的叶丝干燥工艺参数x1~x17的数据(除x9)即为最优工艺参数的组合,步骤结束;当|y i -y 0 |≥0.001时,没有获得叶丝含水率的最优值和最优工艺参数的组合,则利用遗传算法算理对个体1~个体5进行选择、交叉、变异操作,产生新的个体和种群,使用新个体和新种群重复进行步骤5至步骤7,直至满足收敛条件为止。Step 7, convergence judgment. Specifically, the difference between the predicted value y i of moisture content of shredded leaves and the set value y 0 of moisture content of shredded leaves is made. If the difference is less than or equal to the convergence accuracy e , the optimal value of shredded shredded moisture content is obtained, and the optimal value of shredded shredded moisture content is output. The combination of the optimal shred drying process parameters corresponding to the excellent value, the step ends; if the difference is greater than the convergence accuracy e , then update the shredded shred drying process parameter population, and repeat steps 5 to 7 until |y i - y 0 | ≤ e . For example: take e = 0.001 for the convergence accuracy, and take y 0 = 12.7 for the moisture content of the shredded leaf. When y i = 12.699915, |y i - y 0 | =0.000585≤0.001, then y i = 12.699915 is the shredded leaf The optimal value of water content, and the corresponding data of individual 3 leaf shred drying process parameters x1~x17 before dimensionality reduction (except x 9 ) is the combination of optimal process parameters, and the step ends; when |y i - y When 0 | ≥ 0.001, if the combination of the optimal value of leaf silk moisture content and optimal process parameters is not obtained, the genetic algorithm is used to perform selection, crossover, and mutation operations on individuals 1 to 5 to generate new individuals and populations , repeat steps 5 to 7 using new individuals and new populations until the convergence conditions are met.
上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。The specific implementation of the present invention has been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned implementation, within the knowledge of those of ordinary skill in the art, it can also be made without departing from the gist of the present invention. Variations.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711228305.8A CN108142976B (en) | 2017-11-29 | 2017-11-29 | Cut tobacco drying process parameter optimization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711228305.8A CN108142976B (en) | 2017-11-29 | 2017-11-29 | Cut tobacco drying process parameter optimization method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108142976A true CN108142976A (en) | 2018-06-12 |
CN108142976B CN108142976B (en) | 2020-05-15 |
Family
ID=62469221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711228305.8A Active CN108142976B (en) | 2017-11-29 | 2017-11-29 | Cut tobacco drying process parameter optimization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108142976B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109506450A (en) * | 2018-10-24 | 2019-03-22 | 浙江工业大学 | A kind of prepared slices of Chinese crude drugs automatic drying process humidity network response surface method |
CN110973686A (en) * | 2019-12-13 | 2020-04-10 | 红云红河烟草(集团)有限责任公司 | A method for establishing accurate moisture control model in silk making process |
CN112257948A (en) * | 2020-10-30 | 2021-01-22 | 红云红河烟草(集团)有限责任公司 | Method, device and equipment for predicting moisture content at the outlet of moistening leaf |
CN112380760A (en) * | 2020-10-13 | 2021-02-19 | 重庆大学 | Multi-algorithm fusion based multi-target process parameter intelligent optimization method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3983884A (en) * | 1974-05-04 | 1976-10-05 | Eduard Gerlach Gmbh | Method for manufacturing tobacco foil |
JP2003153677A (en) * | 2001-11-20 | 2003-05-27 | Japan Tobacco Inc | Manufacturing equipment for rod shaped article |
CN1525394A (en) * | 2003-02-25 | 2004-09-01 | 颐中烟草(集团)有限公司 | Neural Network Prediction Method of Cigarette Sensory Evaluation and Smoke Index |
US20050288812A1 (en) * | 2004-06-03 | 2005-12-29 | National Cheng Kung University | Quality prognostics system and method for manufacturing processes |
CN1996175A (en) * | 2006-12-30 | 2007-07-11 | 辽宁省粮食科学研究所 | Corn drying prediction control system and method based on fuzzy-neural network |
EP2100524A1 (en) * | 2006-12-11 | 2009-09-16 | Japan Tobacco Inc. | Low fire spreading cigarette, wrapping paper for the cigarette, and method of producing wrapping paper |
CN106444379A (en) * | 2016-10-10 | 2017-02-22 | 重庆科技学院 | Intelligent drying remote control method and system based on internet of things recommendation |
CN106617288A (en) * | 2016-12-28 | 2017-05-10 | 广东省金叶科技开发有限公司 | Paper cigarette filter stick and manufacturing method thereof |
-
2017
- 2017-11-29 CN CN201711228305.8A patent/CN108142976B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3983884A (en) * | 1974-05-04 | 1976-10-05 | Eduard Gerlach Gmbh | Method for manufacturing tobacco foil |
JP2003153677A (en) * | 2001-11-20 | 2003-05-27 | Japan Tobacco Inc | Manufacturing equipment for rod shaped article |
CN1525394A (en) * | 2003-02-25 | 2004-09-01 | 颐中烟草(集团)有限公司 | Neural Network Prediction Method of Cigarette Sensory Evaluation and Smoke Index |
US20050288812A1 (en) * | 2004-06-03 | 2005-12-29 | National Cheng Kung University | Quality prognostics system and method for manufacturing processes |
EP2100524A1 (en) * | 2006-12-11 | 2009-09-16 | Japan Tobacco Inc. | Low fire spreading cigarette, wrapping paper for the cigarette, and method of producing wrapping paper |
CN1996175A (en) * | 2006-12-30 | 2007-07-11 | 辽宁省粮食科学研究所 | Corn drying prediction control system and method based on fuzzy-neural network |
CN106444379A (en) * | 2016-10-10 | 2017-02-22 | 重庆科技学院 | Intelligent drying remote control method and system based on internet of things recommendation |
CN106617288A (en) * | 2016-12-28 | 2017-05-10 | 广东省金叶科技开发有限公司 | Paper cigarette filter stick and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
钟文焱等: "基于多因素分析的烘丝机入口含水率预测模型的建立与应用", 《烟草科技》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109506450A (en) * | 2018-10-24 | 2019-03-22 | 浙江工业大学 | A kind of prepared slices of Chinese crude drugs automatic drying process humidity network response surface method |
CN109506450B (en) * | 2018-10-24 | 2020-06-02 | 浙江工业大学 | A neural network predictive control method for humidity in the automatic drying process of Chinese herbal decoction pieces |
CN110973686A (en) * | 2019-12-13 | 2020-04-10 | 红云红河烟草(集团)有限责任公司 | A method for establishing accurate moisture control model in silk making process |
CN112380760A (en) * | 2020-10-13 | 2021-02-19 | 重庆大学 | Multi-algorithm fusion based multi-target process parameter intelligent optimization method |
CN112380760B (en) * | 2020-10-13 | 2023-01-31 | 重庆大学 | Multi-objective process parameter intelligent optimization method based on multi-algorithm fusion |
CN112257948A (en) * | 2020-10-30 | 2021-01-22 | 红云红河烟草(集团)有限责任公司 | Method, device and equipment for predicting moisture content at the outlet of moistening leaf |
Also Published As
Publication number | Publication date |
---|---|
CN108142976B (en) | 2020-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108142976A (en) | A kind of cut tobacco Drying Technology Parameter optimization method | |
CN103812729B (en) | Network protocol fuzz testing method and device | |
CN111045326A (en) | Tobacco shred drying process moisture prediction control method and system based on recurrent neural network | |
CN109978287B (en) | Intelligent polycrystalline silicon production method and system | |
US11037061B2 (en) | Adaptive cataclysms in genetic algorithms | |
CN109413710B (en) | Clustering method and device of wireless sensor network based on genetic algorithm optimization | |
CN109858714B (en) | Tobacco shred quality inspection index prediction method, device and system based on improved neural network | |
JPWO2017183587A1 (en) | Learning device, learning method, and learning program | |
CN112273695A (en) | Method, device and equipment for predicting water content of loose moisture regain outlet | |
CN109858631B (en) | Automated Machine Learning System and Method for Streaming Data Analysis for Concept Transfer | |
CN104268572B (en) | Feature extraction and feature selection approach towards backstage multi-source data | |
CN104820977A (en) | BP neural network image restoration algorithm based on self-adaption genetic algorithm | |
CN116611349A (en) | Method and system for optimizing process parameters of drum silk drying based on neural network | |
CN105989055A (en) | Air-conditioning environment schedule updating method | |
TW202044125A (en) | Method of training sparse connected neural network | |
CN104503382B (en) | An optimal scheduling method for raw material crystallization process in pharmaceutical and chemical production | |
CN104504441A (en) | Method and device for constructing MADALINE neural network based on sensitivity | |
CN109378036A (en) | A heuristic optimization method based on the breeding mechanism of two-line hybrid rice | |
CN104102955B (en) | A Power Line Planning Method Based on Abstract Convex Estimation and Differential Evolution Algorithm | |
CN103116805B (en) | A kind of segmentation replacement method upgrading genetic groups | |
CN113095489A (en) | Inductive multi-level graph network representation learning method | |
CN115981396A (en) | Intelligent control method and device for loose moisture regain process | |
TWI474210B (en) | A method of applying a genetic algorithm to automatically group and filter the independent variables to synchronize the regression model parameters | |
CN113554231B (en) | Job shop scheduling method and device with job group | |
CN107145964A (en) | Optimization Method of Multiple Regression Prediction Model Based on Genetic Programming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |