[go: up one dir, main page]

CN108140291A - Mist detecting device, method and image processing equipment - Google Patents

Mist detecting device, method and image processing equipment Download PDF

Info

Publication number
CN108140291A
CN108140291A CN201580084015.3A CN201580084015A CN108140291A CN 108140291 A CN108140291 A CN 108140291A CN 201580084015 A CN201580084015 A CN 201580084015A CN 108140291 A CN108140291 A CN 108140291A
Authority
CN
China
Prior art keywords
image
smoke
candidate area
current
smoke detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580084015.3A
Other languages
Chinese (zh)
Inventor
白向晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN108140291A publication Critical patent/CN108140291A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/251Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • G06V10/435Computation of moments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Computing Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Image Analysis (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)

Abstract

一种烟雾检测装置、方法以及图像处理设备。该烟雾检测方法包括:对当前图像进行背景图像建模以获取当前图像的前景图像和背景图像(101);基于前景图像获取当前图像中用于检测运动物体的一个或多个候选区域(102);计算某一候选区域对应于当前图像和/或背景图像的属性信息(103);以及根据该属性信息确定该候选区域中是否存在烟雾(104)。由此,不仅能够通过视频图像快速准确地对烟雾进行检测,而且可以提高基于视频的烟雾检测在光照变化以及复杂环境下的检测精度。

A smoke detection device, method and image processing equipment. The smoke detection method includes: performing background image modeling on the current image to obtain a foreground image and a background image of the current image (101); obtaining one or more candidate regions for detecting moving objects in the current image based on the foreground image (102) ; calculating attribute information (103) of a candidate area corresponding to the current image and/or background image; and determining whether there is smoke in the candidate area according to the attribute information (104). Therefore, not only can smoke be detected quickly and accurately through video images, but also the detection accuracy of smoke detection based on video under illumination changes and complex environments can be improved.

Description

烟雾检测装置、方法以及图像处理设备Smoke detection device, method and image processing device 技术领域technical field

本发明涉及图形图像技术领域,特别涉及一种烟雾检测装置、方法以及图像处理设备。The invention relates to the technical field of graphics and images, in particular to a smoke detection device, method and image processing equipment.

背景技术Background technique

目前,在视频监控中需要对烟雾进行检测。例如当大楼的某一处发生火灾时,如果能通过视频图像自动检测出该区域出现烟雾,则可以尽快进行火灾报警,减少火灾带来的损失。Currently, smoke detection is required in video surveillance. For example, when a fire breaks out in a certain part of the building, if the smoke in this area can be automatically detected through the video image, the fire alarm can be issued as soon as possible to reduce the loss caused by the fire.

但是,由于烟雾运动具有弥漫性的特点,基于视频图像对烟雾进行准确的检测比较困难。现有技术中对视频图像进行检测来判断是否存在烟雾的技术方案均存在检测准确性不高、不能快速准确地进行检测的问题。However, due to the diffuse nature of smoke motion, it is difficult to accurately detect smoke based on video images. In the prior art, the technical solutions for detecting the presence of smoke by detecting video images all have the problems of low detection accuracy and incapable of fast and accurate detection.

应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。It should be noted that the above introduction of the technical background is only for the convenience of a clear and complete description of the technical solution of the present invention, and for the convenience of understanding by those skilled in the art. It cannot be considered that the above technical solutions are known to those skilled in the art just because these solutions are described in the background of the present invention.

发明内容Contents of the invention

本发明实施例提供一种烟雾检测装置、方法以及图像处理设备,能够通过视频图像快速准确地对烟雾进行检测,提高基于视频的烟雾检测在光照变化以及复杂环境下的检测精度。Embodiments of the present invention provide a smoke detection device, method, and image processing equipment, which can quickly and accurately detect smoke through video images, and improve the detection accuracy of video-based smoke detection under illumination changes and complex environments.

根据本发明实施例的第一个方面,提供一种烟雾检测装置,其中,所述烟雾检测装置包括:According to a first aspect of an embodiment of the present invention, a smoke detection device is provided, wherein the smoke detection device includes:

背景图像建模单元,对当前图像进行背景图像建模以获取所述当前图像的前景图像和背景图像;a background image modeling unit, performing background image modeling on the current image to obtain a foreground image and a background image of the current image;

候选区域获取单元,基于所述前景图像获取所述当前图像中用于检测运动物体的一个或多个候选区域;A candidate area acquiring unit, based on the foreground image, acquires one or more candidate areas for detecting moving objects in the current image;

属性信息计算单元,计算某一候选区域对应于所述当前图像和/或所述背景图像的属性信息;以及 an attribute information calculation unit, which calculates the attribute information of a candidate area corresponding to the current image and/or the background image; and

烟雾确定确定单元,根据所述属性信息确定所述某一候选区域中是否存在烟雾。The smoke determination unit is configured to determine whether there is smoke in the certain candidate area according to the attribute information.

根据本发明实施例的第二个方面,提供一种烟雾检测方法,其中,所述烟雾检测方法包括:According to a second aspect of an embodiment of the present invention, a smoke detection method is provided, wherein the smoke detection method includes:

对当前图像进行背景图像建模以获取所述当前图像的前景图像和背景图像;performing background image modeling on the current image to obtain a foreground image and a background image of the current image;

基于所述前景图像获取所述当前图像中用于检测运动物体的一个或多个候选区域;Acquiring one or more candidate regions for detecting moving objects in the current image based on the foreground image;

计算某一候选区域对应于所述当前图像和/或所述背景图像的属性信息;以及calculating attribute information of a candidate area corresponding to the current image and/or the background image; and

根据所述属性信息确定所述某一候选区域中是否存在烟雾。Determine whether there is smoke in the certain candidate area according to the attribute information.

根据本发明实施例的第三个方面,提供一种图像处理设备,其中,所述图像处理设备包括如上所述的烟雾检测装置。According to a third aspect of the embodiments of the present invention, there is provided an image processing device, wherein the image processing device includes the above-mentioned smoke detection device.

根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在图像处理设备中执行所述程序时,所述程序使得计算机在所述图像处理设备中执行如上所述的烟雾检测方法。According to yet another aspect of an embodiment of the present invention, there is provided a computer-readable program, wherein when the program is executed in an image processing device, the program causes a computer to perform smoke detection as described above in the image processing device method.

根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在图像处理设备中执行如上所述的烟雾检测方法。According to yet another aspect of the embodiments of the present invention, there is provided a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the above smoke detection method in an image processing device.

本发明实施例的有益效果在于,基于前景图像获取一个或多个候选区域,计算某一候选区域对应于当前图像和/或背景图像的属性信息,以及根据该属性信息确定该候选区域中是否存在烟雾。由此,不仅能够通过视频图像快速准确地对烟雾进行检测,而且可以提高基于视频的烟雾检测在光照变化以及复杂环境下的检测精度。The beneficial effect of the embodiment of the present invention is that one or more candidate areas are acquired based on the foreground image, the attribute information of a certain candidate area corresponding to the current image and/or the background image is calculated, and it is determined according to the attribute information whether there is smoke. Therefore, not only can the smoke be detected quickly and accurately through video images, but also the detection accuracy of video-based smoke detection under illumination changes and complex environments can be improved.

参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。With reference to the following description and accompanying drawings, there are disclosed in detail specific embodiments of the invention, indicating the manner in which the principles of the invention may be employed. It should be understood that embodiments of the invention are not limited thereby in scope. Embodiments of the invention encompass many changes, modifications and equivalents within the spirit and scope of the appended claims.

针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。Features described and/or illustrated with respect to one embodiment can be used in the same or similar manner in one or more other embodiments, in combination with, or instead of features in other embodiments .

应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。 It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, integer, step or component, but does not exclude the presence or addition of one or more other features, integers, steps or components.

附图说明Description of drawings

参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大或缩小。Many aspects of the invention can be better understood with reference to the following figures. The components in the figures are not drawn to scale, merely illustrating the principles of the invention. In order to facilitate illustration and description of some parts of the present invention, corresponding parts in the drawings may be exaggerated or reduced.

在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。Elements and features described in one drawing or one embodiment of the present invention may be combined with elements and features shown in one or more other drawings or embodiments. Furthermore, in the drawings, like numerals indicate corresponding parts in the several figures and may be used to indicate corresponding parts used in more than one embodiment.

图1是本发明实施例1的烟雾检测方法的一示意图;Fig. 1 is a schematic diagram of the smoke detection method of embodiment 1 of the present invention;

图2是本发明实施例1的提取出连通域的一示意图;Fig. 2 is a schematic diagram of the extracted connected domain in Embodiment 1 of the present invention;

图3是本发明实施例1的烟雾检测方法的另一示意图;Fig. 3 is another schematic diagram of the smoke detection method of Embodiment 1 of the present invention;

图4是本发明实施例1的获取连续运动区域的一示意图;Fig. 4 is a schematic diagram of acquiring a continuous motion area in Embodiment 1 of the present invention;

图5是本发明实施例1的对某一候选区域进行烟雾检测的一示意图;Fig. 5 is a schematic diagram of smoke detection for a certain candidate area according to Embodiment 1 of the present invention;

图6是本发明实施例1的方向的一示意图;Fig. 6 is a schematic diagram of the direction of Embodiment 1 of the present invention;

图7是本发明实施例1的对某一候选区域进行烟雾检测的另一示意图;FIG. 7 is another schematic diagram of smoke detection for a certain candidate area according to Embodiment 1 of the present invention;

图8是本发明实施例1的对某一候选区域进行烟雾检测的另一示意图;FIG. 8 is another schematic diagram of smoke detection for a certain candidate area according to Embodiment 1 of the present invention;

图9是本发明实施例1的对某一候选区域进行烟雾检测的另一示意图;FIG. 9 is another schematic diagram of smoke detection for a certain candidate area according to Embodiment 1 of the present invention;

图10是本发明实施例1的对某一候选区域进行烟雾检测的另一示意图;Fig. 10 is another schematic diagram of smoke detection for a certain candidate area according to Embodiment 1 of the present invention;

图11是本发明实施例1的获取剩余运动区域的一示意图;Fig. 11 is a schematic diagram of obtaining the remaining motion area according to Embodiment 1 of the present invention;

图12是本发明实施例1的对某一候选区域进行烟雾检测的另一示意图;Fig. 12 is another schematic diagram of smoke detection for a certain candidate area according to Embodiment 1 of the present invention;

图13是本发明实施例2的烟雾检测装置的一示意图;Fig. 13 is a schematic diagram of a smoke detection device according to Embodiment 2 of the present invention;

图14是本发明实施例2的候选区域获取单元的一示意图;Fig. 14 is a schematic diagram of the candidate area acquisition unit in Embodiment 2 of the present invention;

图15是本发明实施例2的烟雾检测装置的另一示意图;Fig. 15 is another schematic diagram of the smoke detection device according to Embodiment 2 of the present invention;

图16是本发明实施例2的属性信息计算单元的一示意图;FIG. 16 is a schematic diagram of an attribute information calculation unit according to Embodiment 2 of the present invention;

图17是本发明实施例2的属性信息计算单元的另一示意图;Fig. 17 is another schematic diagram of the attribute information calculation unit according to Embodiment 2 of the present invention;

图18是本发明实施例2的属性信息计算单元的另一示意图;Fig. 18 is another schematic diagram of the attribute information calculation unit according to Embodiment 2 of the present invention;

图19是本发明实施例2的属性信息计算单元的另一示意图;Fig. 19 is another schematic diagram of the attribute information calculation unit according to Embodiment 2 of the present invention;

图20是本发明实施例2的属性信息计算单元的另一示意图;Fig. 20 is another schematic diagram of the attribute information calculation unit according to Embodiment 2 of the present invention;

图21是本发明实施例2的属性信息计算单元的另一示意图;Fig. 21 is another schematic diagram of the attribute information calculation unit according to Embodiment 2 of the present invention;

图22是本发明实施例3的图像处理设备的一示意图。 Fig. 22 is a schematic diagram of an image processing apparatus according to Embodiment 3 of the present invention.

具体实施方式Detailed ways

参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。The foregoing and other features of the invention will become apparent from the following description, taken with reference to the accompanying drawings. In the specification and drawings, specific embodiments of the invention are disclosed, which illustrate some embodiments in which the principles of the invention may be employed. It is to be understood that the invention is not limited to the described embodiments, but rather, the invention The invention includes all modifications, variations and equivalents that come within the scope of the appended claims.

实施例1Example 1

本发明实施例提供一种烟雾检测方法。图1是本发明实施例的烟雾检测方法的一示意图,如图1所示,所述烟雾检测方法包括:An embodiment of the present invention provides a smoke detection method. Fig. 1 is a schematic diagram of a smoke detection method according to an embodiment of the present invention. As shown in Fig. 1, the smoke detection method includes:

步骤101,对当前图像进行背景图像建模以获取当前图像的前景图像和背景图像;Step 101, performing background image modeling on the current image to obtain a foreground image and a background image of the current image;

步骤102,基于前景图像获取当前图像中用于检测运动物体的一个或多个候选区域;Step 102, acquiring one or more candidate regions for detecting moving objects in the current image based on the foreground image;

步骤103,计算某一候选区域对应于当前图像和/或背景图像的属性信息;以及Step 103, calculating attribute information of a candidate area corresponding to the current image and/or background image; and

步骤104,根据该属性信息确定该候选区域中是否存在烟雾。Step 104, determine whether there is smoke in the candidate area according to the attribute information.

在本实施例中,可以使用摄像头等设备获得包含多个帧的视频。可以采用基于高斯混合模型(GMM,Gaussian Mixture Model)的背景图像建模方法,对输入视频的彩色的当前图像(或称为当前帧)进行背景建模后获取前景图像和背景图像。但本发明不限于此,可以采用背景图像建模的任意方法。In this embodiment, a device such as a camera may be used to obtain a video containing multiple frames. The background image modeling method based on Gaussian Mixture Model (GMM, Gaussian Mixture Model) can be used to obtain the foreground image and the background image after performing background modeling on the colored current image (or called the current frame) of the input video. But the present invention is not limited thereto, and any method of background image modeling can be used.

在本实施例中,可以基于前景图像获取一个或多个候选区域。具体地,可以将前景图像以二值图像的方式表示,获取前景图像的二值化图像;例如前景部分像素的像素值为“1”,背景部分像素的像素值为“0”。In this embodiment, one or more candidate regions may be acquired based on the foreground image. Specifically, the foreground image may be represented as a binary image to obtain a binary image of the foreground image; for example, the pixel value of the foreground part of the pixels is "1", and the pixel value of the background part of the pixels is "0".

在本实施例中,可以对该二值化图像进行中值滤波,去除小的噪声点。然后,将该二值化图像中像素值相同(例如为“1”)且相互连通的多个像素作为一个连通域,以获取该前景图像中表示运动物体的一个或多个连通域。例如可以从一幅二值化图像中提取出若干大小不同的连通域。In this embodiment, median filtering may be performed on the binarized image to remove small noise points. Then, multiple pixels in the binarized image with the same pixel value (for example, "1") and connected to each other are used as a connected domain, so as to obtain one or more connected domains representing moving objects in the foreground image. For example, several connected domains of different sizes can be extracted from a binarized image.

图2是本发明实施例的提取出连通域的一示意图,如图2所示,像素值例如为“1”且连通的多个像素可以形成一个连通域。该二值化图像中共可以提取出5个连通域,分别记为连通域201、连通域202、……连通域205。FIG. 2 is a schematic diagram of an extracted connected domain according to an embodiment of the present invention. As shown in FIG. 2 , a plurality of connected pixels with pixel values such as “1” may form a connected domain. A total of 5 connected domains can be extracted from the binarized image, which are denoted as connected domain 201 , connected domain 202 , ... connected domain 205 .

在本实施例中,可以对一个或多个连通域进行选择以获取一个或多个候选区域。 例如,可以去掉面积小于或等于预设阈值(第一阈值)的连通域,和/或,可以去掉平均颜色深度在预设范围之外的连通域。其中第一阈值的具体数值例如可以根据经验值预先设定,本发明不对该第一阈值进行限制。In this embodiment, one or more connected domains may be selected to obtain one or more candidate regions. For example, connected domains whose area is less than or equal to a preset threshold (first threshold) may be removed, and/or connected domains whose average color depth is outside a preset range may be removed. The specific value of the first threshold may be preset based on empirical values, for example, and the present invention is not limited to the first threshold.

在如图2所述的示例中,例如连通域203和204的面积均小于第一阈值,而连通域201、202和205的面积均大于第一阈值,则可以将连通域201、202和205作为候选区域。In the example shown in FIG. 2 , for example, the areas of the connected domains 203 and 204 are all smaller than the first threshold, and the areas of the connected domains 201, 202 and 205 are all greater than the first threshold, then the connected domains 201, 202 and 205 can be as a candidate area.

在本实施例中,可以对于每一个候选区域判断该候选区域中是否存在烟雾。例如,对于某一个候选区域,可以计算该候选区域对应于当前图像和/或背景图像的属性信息;以及根据该属性信息确定该候选区域中是否存在烟雾。In this embodiment, for each candidate area, it may be determined whether there is smoke in the candidate area. For example, for a certain candidate area, attribute information corresponding to the current image and/or background image of the candidate area may be calculated; and whether smoke exists in the candidate area is determined according to the attribute information.

其中,属性信息可以包括如下的一种或多种:饱和度信息、灰度方差信息、梯度方向信息、灰度平均信息、运动方向信息。但本发明不限于此,还可以使用其他的对应于当前图像和/或背景图像的属性信息,本发明仅以上述属性信息为例进行说明。Wherein, the attribute information may include one or more of the following: saturation information, grayscale variance information, gradient direction information, grayscale average information, and motion direction information. However, the present invention is not limited thereto, and other attribute information corresponding to the current image and/or background image may also be used, and the present invention only uses the above attribute information as an example for illustration.

由此,不仅能够通过视频图像快速准确地对烟雾进行检测,而且可以提高基于视频的烟雾检测在光照变化以及复杂环境下的检测精度。Therefore, not only can the smoke be detected quickly and accurately through video images, but also the detection accuracy of video-based smoke detection under illumination changes and complex environments can be improved.

图3是本发明实施例的烟雾检测方法的另一示意图,进一步使用基于候选区域的连续运动区域进行烟雾的检测。如图3所示,该烟雾检测方法包括:FIG. 3 is another schematic diagram of the method for detecting smoke according to an embodiment of the present invention, further using continuous motion regions based on candidate regions to detect smoke. As shown in Figure 3, the smoke detection method includes:

步骤301,对当前图像进行背景图像建模以获取当前图像的前景图像和背景图像。Step 301, perform background image modeling on the current image to obtain a foreground image and a background image of the current image.

步骤302,基于前景图像获取当前图像中用于检测运动物体的一个或多个候选区域。Step 302, based on the foreground image, one or more candidate regions for detecting moving objects in the current image are acquired.

步骤303,选择某一个候选区域。Step 303, selecting a certain candidate area.

步骤304,根据该候选区域分别在多个图像帧中的位置获取该候选区域对应的连续运动区域;Step 304, acquiring the continuous motion region corresponding to the candidate region according to the positions of the candidate region in the plurality of image frames respectively;

在本实施例中,可以获取当前帧之前连续的多个(例如N个)图像帧,然后将这N+1个帧中对应的该候选区域进行合并,构造该候选区域对应的连续运动区域,即该连续运动区域为该候选区域在这N+1个图像帧中的“运动轨迹”。In this embodiment, a plurality of consecutive (for example N) image frames before the current frame may be acquired, and then the candidate regions corresponding to the N+1 frames are combined to construct a continuous motion region corresponding to the candidate region, That is, the continuous motion area is the "motion trajectory" of the candidate area in the N+1 image frames.

图4是本发明实施例的获取连续运动区域的一示意图,如图4所示,当前帧记为第N帧,该第N帧到第0帧共N+1个图像帧中均存在候选区域401,该候选区域401在第0帧到第N帧中的位置和形状可能均不相同,通过将这些候选区域401合并起来可以得到连续运动区域402。 Fig. 4 is a schematic diagram of obtaining a continuous motion region according to an embodiment of the present invention. As shown in Fig. 4, the current frame is marked as the Nth frame, and there are candidate regions in a total of N+1 image frames from the Nth frame to the 0th frame 401 , the positions and shapes of the candidate regions 401 from frame 0 to frame N may be different, and a continuous motion region 402 can be obtained by merging these candidate regions 401 .

步骤305,基于该连续运动区域计算该候选区域对应于当前图像和/或背景图像的属性信息。Step 305, calculating attribute information of the candidate area corresponding to the current image and/or the background image based on the continuous motion area.

步骤306,根据该属性信息确定该候选区域中是否存在烟雾。Step 306, determine whether there is smoke in the candidate area according to the attribute information.

步骤307,判断是否还有其他候选区域;如果还有则执行步骤303选择另一候选区域,继续对该另一候选区域进行判断。Step 307, judging whether there are other candidate areas; if so, execute step 303 to select another candidate area, and continue to judge the other candidate area.

以上对于本发明实施例的烟雾检测方法的流程进行了示意性说明,以下再以运动方向信息、饱和度平均值、灰度方差值、梯度方向信息平均值、灰度平均值为例,对本发明中某一候选区域的烟雾检测进行进一步说明。对于如何获取候选区域以及如何获取连续运动区域,可以参考上述内容。The flow of the smoke detection method in the embodiment of the present invention has been schematically described above, and the following will take the moving direction information, saturation average value, grayscale variance value, gradient direction information average value, and grayscale average value as examples to describe this The smoke detection of a certain candidate area in the invention is further described. For how to obtain the candidate region and how to obtain the continuous motion region, you can refer to the above content.

在一个实施方式(实施方式1)中,可以根据某一候选区域在多个图像帧中的主运动方向是否向下,确定该候选区域中是否存在烟雾。In one embodiment (implementation 1), it may be determined whether there is smoke in a candidate region according to whether the main motion direction of the candidate region is downward in multiple image frames.

图5是本发明实施例的对某一候选区域进行烟雾检测的一示意图,如图5所示,所述方法包括:Fig. 5 is a schematic diagram of smoke detection for a certain candidate area according to an embodiment of the present invention. As shown in Fig. 5, the method includes:

步骤501,基于该候选区域的质心位置和重心位置,计算该候选区域在多个图像帧中相对于当前图像的运动方向。Step 501 , based on the position of the center of mass and the position of the center of gravity of the candidate area, calculate the motion direction of the candidate area relative to the current image in multiple image frames.

例如,可以通过下式(1)计算当前帧中“候选区域”的质心Mc(Xc,Yc)For example, the centroid Mc(Xc, Yc) of the "candidate region" in the current frame can be calculated by the following formula (1):

其中,N是“候选区域”包含的像素个数,p∈component是指“候选区域”包含像素p,p.x是指像素p的x坐标,p.y是指像素p的y坐标。Among them, N is the number of pixels contained in the "candidate region", p∈component means that the "candidate region" contains pixel p, p.x refers to the x coordinate of pixel p, and p.y refers to the y coordinate of pixel p.

假设当前帧“候选区域”的质心为Mc(Xc,Yc),在该当前帧之前若干帧(例如之前第5帧或者第10帧)中对应的“候选区域”的重心为Mp(Xp,Yp),则计算如下的值:Suppose the centroid of the current frame "candidate area" is Mc(Xc, Yc), and the center of gravity of the corresponding "candidate area" in several frames before the current frame (for example, the previous 5th or 10th frame) is Mp(Xp, Yp ), then calculate the following value:

ΔX=Xc-XpΔX= Xc - Xp ;

ΔY=Yc-Yp ΔY=Y c -Y p

图6示出了本发明实施例的方向的一示意图,如图6所示,可以定义8个方向。但本发明不限于此,例如还可以定义更多或者更少的方向,可以根据实际情况具体进行定义。FIG. 6 shows a schematic diagram of directions in an embodiment of the present invention. As shown in FIG. 6 , eight directions can be defined. However, the present invention is not limited thereto, for example, more or fewer directions may be defined, which may be specifically defined according to actual conditions.

如果ΔX>0且ΔY=0,则运动方向为1; If ΔX>0 and ΔY=0, the direction of motion is 1;

如果ΔX>0且ΔY<0,则运动方向为2;If ΔX>0 and ΔY<0, the direction of motion is 2;

如果ΔX=0且ΔY<0,则运动方向为3;If ΔX=0 and ΔY<0, the direction of motion is 3;

如果ΔX<0且ΔY<0,则运动方向为4;If ΔX<0 and ΔY<0, the direction of motion is 4;

如果ΔX<0且ΔY=0,则运动方向为5;If ΔX<0 and ΔY=0, the direction of motion is 5;

如果ΔX<0且ΔY>0,则运动方向为6;If ΔX<0 and ΔY>0, the direction of motion is 6;

如果ΔX=0且ΔY>0,则运动方向为7;If ΔX=0 and ΔY>0, the direction of movement is 7;

如果ΔX>0且ΔY>0,则运动方向为8。If ΔX>0 and ΔY>0, the direction of motion is 8.

由此,可以获得该候选区域在每一个图像帧中相对于当前帧的运动方向。Thus, the motion direction of the candidate region in each image frame relative to the current frame can be obtained.

步骤502,统计每个运动方向在多个图像帧中出现的频率。Step 502, count the frequency of each motion direction appearing in multiple image frames.

步骤503,将出现频率最高的运动方向作为该候选区域的主运动方向。Step 503, taking the motion direction with the highest frequency as the main motion direction of the candidate area.

在本实施方式中,可以记录“候选区域”在连续若干帧中的运动方向,并记录每个运动方向出现的频率,然后出现频率最高的那个运动方向被视作该“候选区域”的主运动方向。In this embodiment, the motion direction of the "candidate area" in several consecutive frames can be recorded, and the frequency of occurrence of each motion direction can be recorded, and then the motion direction with the highest frequency is regarded as the main motion of the "candidate area" direction.

步骤504,判断该主运动方向是否为向下;在主运动方向为向下的情况下执行步骤505;Step 504, judging whether the main movement direction is downward; if the main movement direction is downward, execute step 505;

步骤505,确定该候选区域中不存在烟雾。Step 505, determining that there is no smoke in the candidate area.

在本实施方式中,例如如果“候选区域”的主运动方向为向下(例如如图6所示的6,7,8),则可以把当前帧的这个“候选区域”从“候选区域”列表中移除;即确定该候选区域中不存在烟雾。此外,在主运动方向不是向下的情况下,可以确定该候选区域中存在烟雾,或者为了使得检测结果更加精确,可以继续对该候选区域进行其他项目的检测。In this embodiment, for example, if the main motion direction of the "candidate area" is downward (such as 6, 7, 8 as shown in Figure 6), the "candidate area" of the current frame can be moved from the "candidate area" to list; that is, it is determined that there is no smoke in the candidate area. In addition, if the main motion direction is not downward, it may be determined that there is smoke in the candidate area, or in order to make the detection result more accurate, the candidate area may continue to be detected for other items.

在另一个实施方式(实施方式2)中,可以根据某一候选区域在连续运动区域中的饱和度信息是否小于预设阈值,确定该候选区域中是否存在烟雾。In another implementation (implementation 2), it may be determined whether there is smoke in a candidate area according to whether the saturation information of the candidate area in the continuous motion area is less than a preset threshold.

图7是本发明实施例的对某一候选区域进行烟雾检测的另一示意图,如图7所示,所述方法包括:Fig. 7 is another schematic diagram of smoke detection for a certain candidate area according to an embodiment of the present invention. As shown in Fig. 7, the method includes:

步骤701,对当前图像进行色彩空间变换,并根据色彩分量计算饱和度色彩分量以获取当前图像的饱和度图;Step 701, performing color space transformation on the current image, and calculating saturation color components according to the color components to obtain a saturation map of the current image;

例如,饱和度的计算公式如下式(2)所示: For example, the calculation formula of saturation is shown in the following formula (2):

上式仅示例性地说明如何计算某个像素的饱和度。关于饱和度具体如何计算,可以采用现有的任意方法,此处不再赘述。The above formula is only an example to illustrate how to calculate the saturation of a certain pixel. As for how to calculate the saturation, any existing method can be used, which will not be repeated here.

步骤702,基于当前图像的饱和度图,计算该候选区域在连续运动区域中的当前饱和度平均值。Step 702, based on the saturation map of the current image, calculate the current average saturation of the candidate area in the continuous motion area.

例如,该当前饱和度平均值的计算公式可以如下式(3)所示:For example, the calculation formula of the current saturation average value may be shown in the following formula (3):

其中,Savg为该当前饱和度平均值,Ω为该连续运动区域,N为该连续运动区域的像素数目,i为该连续运动区域的某个像素,Si为该像素i的饱和度值。Among them, S avg is the average value of the current saturation, Ω is the continuous motion area, N is the number of pixels in the continuous motion area, i is a certain pixel in the continuous motion area, S i is the saturation value of the pixel i .

上式仅示例性地说明如何计算当前饱和度平均值,但本发明不限于此,还可以根据实际情况进行适当地调整或者变型。The above formula only exemplifies how to calculate the current average value of saturation, but the present invention is not limited thereto, and may also be properly adjusted or modified according to actual conditions.

步骤703,判断当前饱和度平均值是否大于或等于预设阈值(第二阈值);在当前饱和度平均值大于或等于预设阈值的情况下执行步骤704;Step 703, judging whether the current average value of saturation is greater than or equal to a preset threshold (second threshold); if the current average value of saturation is greater than or equal to the preset threshold, perform step 704;

在本实施方式中,第二阈值的具体数值例如可以根据经验值预先设定,本发明不对该第二阈值进行限制。In this embodiment, the specific value of the second threshold may be preset based on empirical values, for example, and the present invention is not limited to the second threshold.

步骤704,确定该候选区域中不存在烟雾。Step 704, determining that there is no smoke in the candidate area.

在本实施方式中,例如如果当前饱和度平均值大于或等于第二阈值,则说明该运动物体的饱和度较高,而一般烟雾的饱和度较低,因此可以确定该候选区域中不存在烟雾,可以把当前帧的这个“候选区域”从“候选区域”列表中移除。此外,在当前饱和度平均值小于第二阈值的情况下,可以确定该候选区域中存在烟雾,或者为了使得检测结果更加精确,可以继续对该候选区域进行其他项目的检测。In this embodiment, for example, if the current average saturation value is greater than or equal to the second threshold, it indicates that the saturation of the moving object is high, while the saturation of general smoke is low, so it can be determined that there is no smoke in the candidate area , the "candidate area" of the current frame can be removed from the "candidate area" list. In addition, when the current average saturation value is less than the second threshold, it may be determined that there is smoke in the candidate area, or in order to make the detection result more accurate, the candidate area may continue to be detected for other items.

在另一个实施方式(实施方式3)中,可以根据某一候选区域在连续运动区域中的当前饱和度信息和背景饱和度信息的比较结果,确定该候选区域中是否存在烟雾。In another embodiment (implementation 3), it may be determined whether there is smoke in a candidate region according to a comparison result of the current saturation information of a candidate region in the continuous motion region and the background saturation information.

图8是本发明实施例的对某一候选区域进行烟雾检测的另一示意图,如图8所示,所述方法包括:Fig. 8 is another schematic diagram of smoke detection for a certain candidate area according to an embodiment of the present invention. As shown in Fig. 8, the method includes:

步骤801,对当前图像进行色彩空间变换,并根据色彩分量计算饱和度色彩分量 以获取当前图像的饱和度图;Step 801, perform color space transformation on the current image, and calculate the saturation color component according to the color component to get the saturation map of the current image;

步骤802,基于当前图像的饱和度图,计算该候选区域在连续运动区域中的当前饱和度平均值。Step 802, based on the saturation map of the current image, calculate the current average saturation of the candidate area in the continuous motion area.

步骤803,对背景图像进行色彩空间变换,根据色彩分量计算饱和度色彩分量以获取背景图像的饱和度图;Step 803, performing color space transformation on the background image, and calculating saturation color components according to the color components to obtain a saturation map of the background image;

步骤804,基于背景图像的饱和度图,计算该候选区域在连续运动区域中的背景饱和度平均值。Step 804, based on the saturation map of the background image, calculate the average background saturation of the candidate area in the continuous motion area.

在本实施方式中,该背景饱和度平均值的计算公式例如也可以使用公式(3)。In this embodiment, the formula (3) may be used as the calculation formula of the background saturation average value, for example.

步骤805,判断该当前饱和度平均值是否大于或等于该背景饱和度平均值;在该当前饱和度平均值大于或等于该背景饱和度平均值的情况下执行步骤806;Step 805, judging whether the current average saturation value is greater than or equal to the background saturation average value; if the current saturation average value is greater than or equal to the background saturation average value, perform step 806;

步骤806,确定该候选区域中不存在烟雾。Step 806, determine that there is no smoke in the candidate area.

在本实施方式中,例如如果当前饱和度平均值大于或等于背景饱和度平均值,则说明该候选区域的整体饱和度较高,而一般具有烟雾的区域的整体饱和度会较低,因此可以确定该候选区域中不存在烟雾,可以把当前帧的这个“候选区域”从“候选区域”列表中移除。此外,在当前饱和度平均值小于背景饱和度平均值的情况下,可以确定该候选区域中存在烟雾,或者为了使得检测结果更加精确,可以继续对该候选区域进行其他项目的检测。In this embodiment, for example, if the current average saturation value is greater than or equal to the background saturation average value, it indicates that the overall saturation of the candidate area is relatively high, and generally the overall saturation of an area with smoke will be low, so it can be It is determined that there is no smoke in the candidate area, and the "candidate area" of the current frame may be removed from the "candidate area" list. In addition, in the case that the current average saturation value is smaller than the average background saturation value, it can be determined that there is smoke in the candidate area, or in order to make the detection result more accurate, the detection of other items can continue to be performed on the candidate area.

在另一个实施方式(实施方式4)中,可以根据某一候选区域在连续运动区域中的灰度方差信息,确定该候选区域中是否存在烟雾。In another embodiment (embodiment 4), it may be determined whether there is smoke in a candidate region according to the gray variance information of the candidate region in the continuous motion region.

图9是本发明实施例的对某一候选区域进行烟雾检测的另一示意图,如图9所示,所述方法包括:Fig. 9 is another schematic diagram of smoke detection for a certain candidate area according to an embodiment of the present invention. As shown in Fig. 9, the method includes:

步骤901,基于当前图像的灰度图,计算该候选区域在连续运动区域中的灰度方差值。Step 901, based on the grayscale image of the current image, calculate the grayscale variance value of the candidate area in the continuous motion area.

例如,该灰度方差值的计算公式可以如下式(4)所示:For example, the calculation formula of the gray variance value can be shown in the following formula (4):

其中,Ω为该连续运动区域,N为该连续运动区域的像素数目,i为该连续运动 区域的某个像素,Yi为该像素i的灰度值,Yavg为该连续运动区域的灰度平均值;Var为该灰度方差值。Among them, Ω is the continuous motion area, N is the number of pixels in the continuous motion area, i is a certain pixel in the continuous motion area, Y i is the gray value of the pixel i, Y avg is the gray value of the continuous motion area The average value of the gray level; Var is the variance value of the gray level.

上式仅示例性地说明如何计算该灰度方差值,但本发明不限于此,还可以根据实际情况进行适当地调整或者变型。此外,关于灰度图或灰度值具体如何计算,可以采用现有的任意方法,此处不再赘述。The above formula only exemplifies how to calculate the gray variance value, but the present invention is not limited thereto, and can also be properly adjusted or modified according to actual conditions. In addition, as for how to calculate the grayscale image or the grayscale value, any existing method can be used, which will not be repeated here.

步骤902,判断灰度方差值是否大于或等于预设阈值(第三阈值);在该灰度方差值大于或等于预设阈值的情况下执行步骤903;Step 902, judging whether the grayscale variance value is greater than or equal to a preset threshold (the third threshold); if the grayscale variance value is greater than or equal to the preset threshold value, perform step 903;

在本实施方式中,第三阈值的具体数值例如可以根据经验值预先设定,本发明不对该第三阈值进行限制。In this embodiment, the specific value of the third threshold may be preset based on empirical values, for example, and the present invention is not limited to the third threshold.

步骤903,确定该候选区域中不存在烟雾。Step 903, determining that there is no smoke in the candidate area.

在本实施方式中,例如如果灰度方差值大于或等于第三阈值,则说明物体的纹理较高,而一般烟雾的纹理较低,因此可以确定该候选区域中不存在烟雾,可以把当前帧的这个“候选区域”从“候选区域”列表中移除。此外,在灰度方差值小于第三阈值的情况下,可以确定该候选区域中存在烟雾,或者为了使得检测结果更加精确,可以继续对该候选区域进行其他项目的检测。In this embodiment, for example, if the grayscale variance value is greater than or equal to the third threshold, it means that the texture of the object is relatively high, while the texture of general smoke is low, so it can be determined that there is no smoke in the candidate area, and the current This "candidate region" of the frame is removed from the list of "candidate regions". In addition, when the gray variance value is less than the third threshold, it can be determined that there is smoke in the candidate area, or in order to make the detection result more accurate, the candidate area can continue to be detected for other items.

在另一个实施方式(实施方式5)中,可以根据某一候选区域在连续运动区域中的灰度平均信息,确定该候选区域中是否存在烟雾。In another embodiment (implementation 5), it may be determined whether there is smoke in a candidate region according to the gray average information of the candidate region in the continuous motion region.

图10是本发明实施例的对某一候选区域进行烟雾检测的另一示意图,如图10所示,所述方法包括:Fig. 10 is another schematic diagram of smoke detection for a certain candidate area according to an embodiment of the present invention. As shown in Fig. 10, the method includes:

步骤1001,从连续运动区域中去除该候选区域以获取剩余运动区域。Step 1001, remove the candidate area from the continuous motion area to obtain the remaining motion area.

图11是本发明实施例的获取剩余运动区域的一示意图,示意性示出了在图4的基础上获得的剩余运动区域。如图11所示,可以从图4所示的连续运动区域402中去掉当前图像(第N帧)的候选区域401,从而得到剩余运动区域1101。FIG. 11 is a schematic diagram of obtaining a remaining motion area according to an embodiment of the present invention, schematically showing the remaining motion area obtained on the basis of FIG. 4 . As shown in FIG. 11 , the candidate area 401 of the current image (the Nth frame) can be removed from the continuous motion area 402 shown in FIG. 4 , so as to obtain the remaining motion area 1101 .

步骤1002,基于当前图像的灰度图,计算该剩余候选区域的当前灰度平均值;Step 1002, based on the grayscale image of the current image, calculate the current average grayscale of the remaining candidate area;

例如,该当前灰度平均值的计算公式可以如下式(5)所示:For example, the calculation formula of the current gray-scale average value can be shown in the following formula (5):

其中,Ω为该剩余运动区域,N为该剩余运动区域的像素数目,i为该剩余运动 区域的某个像素,Yi为该像素i在当前图像中的灰度值,Favg为该剩余运动区域的当前灰度平均值。Among them, Ω is the remaining motion area, N is the number of pixels in the remaining motion area, i is a certain pixel in the remaining motion area, Y i is the gray value of the pixel i in the current image, F avg is the remaining The current grayscale average of the motion area.

步骤1003,基于背景图像的灰度图,计算该剩余候选区域的背景灰度平均值。Step 1003, based on the grayscale image of the background image, calculate the background grayscale average value of the remaining candidate area.

例如,该背景灰度平均值的计算公式可以如下式(6)所示:For example, the calculation formula of the average value of the background gray level can be shown in the following formula (6):

其中,Ω为该剩余运动区域,N为该剩余运动区域的像素数目,j为该剩余运动区域的某个像素,Yj为该像素j在背景图像中的灰度值,Bavg为该剩余运动区域的背景灰度平均值。Among them, Ω is the remaining motion area, N is the number of pixels in the remaining motion area, j is a certain pixel in the remaining motion area, Y j is the gray value of the pixel j in the background image, B avg is the remaining The background gray level average of the motion area.

步骤1004,计算该当前灰度平均值与该背景灰度平均值的差值;Step 1004, calculating the difference between the current grayscale average and the background grayscale average;

步骤1005,判断该差值是否小于或等于预设阈值(第四阈值);在该差值小于或等于预设阈值的情况下执行步骤1006;Step 1005, judging whether the difference is less than or equal to a preset threshold (the fourth threshold); if the difference is less than or equal to the preset threshold, perform step 1006;

在本实施方式中,第四阈值的具体数值例如可以根据经验值预先设定,本发明不对该第四阈值进行限制。In this embodiment, the specific value of the fourth threshold may be preset based on empirical values, for example, and the present invention is not limited to the fourth threshold.

步骤1006,确定该候选区域中不存在烟雾。Step 1006, determine that there is no smoke in the candidate area.

在本实施方式中,例如如果该当前灰度平均值与该背景灰度平均值的差值小于或等于第四阈值,则说明该候选区域中的运动物体是刚性物体,而一般烟雾的具有弥漫发散的特点,因此可以确定该候选区域中不存在烟雾,可以把当前帧的这个“候选区域”从“候选区域”列表中移除。此外,在差值大于第四阈值的情况下,可以确定该候选区域中存在烟雾,或者为了使得检测结果更加精确,可以继续对该候选区域进行其他项目的检测。In this embodiment, for example, if the difference between the current grayscale average value and the background grayscale average value is less than or equal to the fourth threshold, it indicates that the moving object in the candidate area is a rigid object, and generally smoke has a diffuse Therefore, it can be determined that there is no smoke in the candidate area, and this "candidate area" of the current frame can be removed from the "candidate area" list. In addition, if the difference is greater than the fourth threshold, it may be determined that there is smoke in the candidate area, or in order to make the detection result more accurate, the candidate area may continue to be detected for other items.

在另一个实施方式(实施方式6)中,可以根据某一候选区域的梯度方向信息,确定该候选区域中是否存在烟雾。In another embodiment (implementation 6), it may be determined whether there is smoke in a candidate region according to the gradient direction information of the candidate region.

图12是本发明实施例的对某一候选区域进行烟雾检测的另一示意图,如图12所示,所述方法包括:Fig. 12 is another schematic diagram of smoke detection for a certain candidate area according to an embodiment of the present invention. As shown in Fig. 12, the method includes:

步骤1201,对于该候选区域内的某一像素,基于当前图像的灰度图计算该像素的水平梯度和垂直梯度以获取该像素的当前图像梯度方向;Step 1201, for a certain pixel in the candidate area, calculate the horizontal gradient and vertical gradient of the pixel based on the grayscale image of the current image to obtain the current image gradient direction of the pixel;

步骤1202,基于背景图像的灰度图计算该像素的水平梯度和垂直梯度以获取该 像素的背景图像梯度方向。Step 1202, calculate the horizontal gradient and vertical gradient of the pixel based on the grayscale image of the background image to obtain the The direction of the background image gradient in pixels.

在本实施方式中,例如可以如下式(7)所述计算某一像素的水平梯度:In this embodiment, for example, the horizontal gradient of a certain pixel can be calculated as described in the following formula (7):

Gx=(-1)*f(x-1,y-1)+0*f(x,y-1)+1*f(x+1,y-1)Gx=(-1)*f(x-1,y-1)+0*f(x,y-1)+1*f(x+1,y-1)

+(-2)*f(x-1,y)+0*f(x,y)+2*f(x+1,y)+(-2)*f(x-1,y)+0*f(x,y)+2*f(x+1,y)

+(-1)*f(x-1,y+1)+0*f(x,y+1)+1*f(x+1,y+1)+(-1)*f(x-1,y+1)+0*f(x,y+1)+1*f(x+1,y+1)

=[f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]  (7)=[f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2* f(x-1,y)+f(x-1,y+1)] (7)

可以如下式(8)所述计算该像素的垂直梯度:The vertical gradient of this pixel can be calculated as described in equation (8):

Gy=1*f(x-1,y-1)+2*f(x,y-1)+1*f(x+1,y-1)Gy=1*f(x-1,y-1)+2*f(x,y-1)+1*f(x+1,y-1)

+0*f(x-1,y)0*f(x,y)+0*f(x+1,y)+0*f(x-1,y)0*f(x,y)+0*f(x+1,y)

+(-1)*f(x-1,y+1)+(-2)*f(x,y+1)+(-1)*f(x+1,y+1)+(-1)*f(x-1,y+1)+(-2)*f(x,y+1)+(-1)*f(x+1,y+1)

=[f(x-1,y-1)+2f(x,y-1)+f(x+1,y-1)]-[f(x-1,y+1)+2*f(x,y+1)+f(x+1,y+1)]  (8)=[f(x-1,y-1)+2f(x,y-1)+f(x+1,y-1)]-[f(x-1,y+1)+2*f( x,y+1)+f(x+1,y+1)] (8)

其中,f为该像素,x是指像素f的x坐标,y是指像素f的y坐标。Wherein, f is the pixel, x refers to the x coordinate of the pixel f, and y refers to the y coordinate of the pixel f.

步骤1203,计算该像素的当前图像梯度方向和背景图像梯度方向的夹角相关值;Step 1203, calculating the angle correlation value between the gradient direction of the current image of the pixel and the gradient direction of the background image;

在本实施方式中,可以根据当前图像梯度方向和背景图像梯度方向获取夹角,然后计算该夹角的相关值(例如余弦值),但本实施方式不限于此,例如还可以是其他的相关值(例如余切值等),以下仅以夹角余弦值为例进行说明。In this embodiment, the included angle can be obtained according to the gradient direction of the current image and the gradient direction of the background image, and then the correlation value (such as a cosine value) of the included angle can be calculated, but this embodiment is not limited thereto, for example, other correlation value (such as cotangent value, etc.), the following only takes the cosine value of the included angle as an example for illustration.

步骤1204,对该候选区域内多个像素(例如所有像素)的夹角相关值进行统计并平均,将该候选区域的平均夹角相关值作为梯度方向信息平均值。Step 1204: Statistically and average the angle correlation values of multiple pixels (for example, all pixels) in the candidate area, and use the average angle correlation value of the candidate area as the average value of the gradient direction information.

步骤1205,判断该梯度方向信息平均值是否大于或等于预设阈值(第五阈值);在该梯度方向信息平均值大于或等于预设阈值的情况下执行步骤1206;Step 1205, judging whether the average value of the gradient direction information is greater than or equal to a preset threshold (the fifth threshold); if the average value of the gradient direction information is greater than or equal to the preset threshold, perform step 1206;

在本实施方式中,第五阈值的具体数值例如可以根据经验值预先设定,本发明不对该第五阈值进行限制。In this embodiment, the specific value of the fifth threshold may be preset based on empirical values, for example, and the present invention is not limited to the fifth threshold.

步骤1206,确定该候选区域中不存在烟雾。Step 1206, determine that there is no smoke in the candidate area.

在本实施方式中,例如如果该梯度方向信息平均值大于或等于第五阈值,则说明该候选区域并非是由真正的运动物体产生的前景,而是光照变化而引起的伪前景,因此可以把当前帧的这个“候选区域”从“候选区域”列表中移除。此外,在梯度方向信息平均值小于第五阈值的情况下,可以确定该候选区域中存在烟雾,或者为了使得检测结果更加精确,可以继续对该候选区域进行其他项目的检测。In this embodiment, for example, if the average value of the gradient direction information is greater than or equal to the fifth threshold, it indicates that the candidate area is not a foreground generated by a real moving object, but a false foreground caused by a change in illumination, so the This "candidate region" of the current frame is removed from the "candidate region" list. In addition, when the average value of the gradient direction information is less than the fifth threshold, it may be determined that there is smoke in the candidate area, or in order to make the detection result more accurate, the candidate area may continue to be detected for other items.

以上对于如何判断某一候选区域中存在烟雾进行了示意性说明,但本发明不限于 此,例如还可以使用其他的属性信息进行判断。并且上述公式(1)至(8)仅示意性对本发明进行了说明,但本发明不限于此,可以根据实际情况对上述公式(1)至(8)进行适当地变型。The above schematically illustrates how to judge the existence of smoke in a certain candidate area, but the present invention is not limited to Here, for example, other attribute information may also be used for determination. And the above formulas (1) to (8) only schematically illustrate the present invention, but the present invention is not limited thereto, and the above formulas (1) to (8) can be appropriately modified according to the actual situation.

此外可以采用上述实施方式1至6中的一种或多种,例如可以仅使用其中的某一实施方式,也可以使用上述全部的6种实施方式。并且上述实施方式之间也不存在执行顺序的限制;例如可以按照顺利分别执行实施方式1至6,也可以执行实施方式4之后再执行实施方式2,等等。在实际应用时,可以根据实际情况确定具体的检测方案。In addition, one or more of the above-mentioned implementation modes 1 to 6 may be used, for example, only one of the above-mentioned implementation modes may be used, or all of the above-mentioned six implementation modes may be used. Moreover, there is no restriction on the order of execution among the above-mentioned embodiments; for example, Embodiments 1 to 6 can be respectively executed according to the smoothness, or Embodiment 2 can be executed after Embodiment 4 is executed, and so on. In actual application, the specific detection scheme can be determined according to the actual situation.

由上述实施例可知,基于前景图像获取一个或多个候选区域,计算某一候选区域对应于当前图像和/或背景图像的属性信息,以及根据该属性信息确定该候选区域中是否存在烟雾。由此,不仅能够通过视频图像快速准确地对烟雾进行检测,而且可以提高基于视频的烟雾检测在光照变化以及复杂环境下的检测精度。It can be seen from the above embodiments that one or more candidate regions are obtained based on the foreground image, attribute information of a candidate region corresponding to the current image and/or background image is calculated, and whether there is smoke in the candidate region is determined according to the attribute information. Therefore, not only can the smoke be detected quickly and accurately through video images, but also the detection accuracy of video-based smoke detection under illumination changes and complex environments can be improved.

实施例2Example 2

本发明实施例提供一种烟雾检测装置,对应于实施例1所述的烟雾检测方法,其中相同的内容不再赘述。An embodiment of the present invention provides a smoke detection device, which corresponds to the smoke detection method described in Embodiment 1, and the same content will not be repeated here.

图13是本发明实施例的烟雾检测装置的一示意图,如图13所示,烟雾检测装置1300包括:FIG. 13 is a schematic diagram of a smoke detection device according to an embodiment of the present invention. As shown in FIG. 13 , the smoke detection device 1300 includes:

背景图像建模单元1301,对当前图像进行背景图像建模以获取当前图像的前景图像和背景图像;A background image modeling unit 1301, performing background image modeling on the current image to obtain a foreground image and a background image of the current image;

候选区域获取单元1302,基于前景图像获取当前图像中用于检测运动物体的一个或多个候选区域;A candidate area acquiring unit 1302, based on the foreground image, acquires one or more candidate areas for detecting moving objects in the current image;

属性信息计算单元1303,计算某一候选区域对应于当前图像和/或背景图像的属性信息;以及An attribute information calculation unit 1303, which calculates the attribute information of a candidate area corresponding to the current image and/or the background image; and

烟雾确定单元1304,根据该候选区域对应于当前图像和/或背景图像的属性信息,确定该候选区域中是否存在烟雾。The smoke determination unit 1304 determines whether there is smoke in the candidate area according to the attribute information of the candidate area corresponding to the current image and/or the background image.

图14是本发明实施例的候选区域获取单元的一示意图,如图14所示,候选区域获取单元1302可以包括:FIG. 14 is a schematic diagram of a candidate area acquisition unit according to an embodiment of the present invention. As shown in FIG. 14 , the candidate area acquisition unit 1302 may include:

二值化图获取单元1401,获取前景图像的二值化图像; A binarized image acquisition unit 1401, which acquires a binarized image of the foreground image;

连通域获取单元1402,将二值化图像中像素值相同且相互连通的多个像素作为一个连通域,以获取前景图像中表示运动物体的一个或多个连通域;Connected domain acquisition unit 1402, using a plurality of pixels with the same pixel value and connected with each other in the binarized image as a connected domain, so as to obtain one or more connected domains representing moving objects in the foreground image;

连通域选择单元1403,对连通域进行选择以获取一个或多个候选区域。The connected domain selection unit 1403 selects the connected domains to obtain one or more candidate regions.

其中,连通域选择单元1403可以用于:去掉面积小于或等于预设阈值的连通域,和/或,去掉平均颜色深度在预设范围之外的连通域。但本发明不限于此,还可以根据其他规则对连通域进行筛选。Wherein, the connected domain selection unit 1403 may be configured to: remove connected domains whose area is smaller than or equal to a preset threshold, and/or remove connected domains whose average color depth is outside a preset range. But the present invention is not limited thereto, and the connected domains can also be screened according to other rules.

图15是本发明实施例的烟雾检测装置的另一示意图,如图15所示,烟雾检测装置1500包括:背景图像建模单元1301,候选区域获取单元1302,属性信息计算单元1303以及烟雾确定单元1304,如上所述。Fig. 15 is another schematic diagram of a smoke detection device according to an embodiment of the present invention. As shown in Fig. 15 , the smoke detection device 1500 includes: a background image modeling unit 1301, a candidate area acquisition unit 1302, an attribute information calculation unit 1303 and a smoke determination unit 1304, as above.

如图15所示,烟雾检测装置1500还可以包括:As shown in Figure 15, the smoke detection device 1500 may also include:

运动区域获取单元1501,根据该候选区域分别在包括当前图像的多个图像帧中的位置获取该候选区域对应的连续运动区域;The motion area obtaining unit 1501, according to the position of the candidate area in multiple image frames including the current image, obtains the continuous motion area corresponding to the candidate area;

属性信息计算单元1303还可以用于:基于连续运动区域计算该候选区域对应于当前图像和/或背景图像的属性信息。The attribute information calculating unit 1303 may also be configured to: calculate attribute information of the candidate area corresponding to the current image and/or the background image based on the continuous motion area.

在一个实施方式中,可以根据某一候选区域在多个图像帧中的主运动方向是否向下,确定该候选区域中是否存在烟雾。In one embodiment, it may be determined whether there is smoke in a candidate area according to whether the main motion direction of the candidate area is downward in multiple image frames.

在本实施方式中,属性信息计算单元1303还可以用于:获取该候选区域在多个图像帧中的主运动方向;烟雾确定单元1304还可以用于:在该候选区域的主运动方向为向下的情况下,确定该候选区域中不存在烟雾。In this embodiment, the attribute information calculation unit 1303 can also be used to: obtain the main motion direction of the candidate area in multiple image frames; the smoke determination unit 1304 can also be used to: the main motion direction of the candidate area is In the case of the following, it is determined that there is no smoke in the candidate area.

图16是本发明实施例的属性信息计算单元的一示意图,如图16所示,属性信息计算单元1303可以包括:FIG. 16 is a schematic diagram of an attribute information calculation unit according to an embodiment of the present invention. As shown in FIG. 16 , the attribute information calculation unit 1303 may include:

运动方向计算单元1601,基于该候选区域的质心位置和重心位置,计算该候选区域在多个图像帧中相对于当前图像的运动方向;The motion direction calculation unit 1601 calculates the motion direction of the candidate area relative to the current image in multiple image frames based on the position of the center of mass and the position of the center of gravity of the candidate area;

运动方向统计单元1602,统计每个运动方向在多个图像帧中出现的频率;以及A motion direction statistics unit 1602, which counts the frequency of each motion direction appearing in multiple image frames; and

主运动方向确定单元1603,将出现频率最高的运动方向作为该候选区域的主运动方向。The main motion direction determining unit 1603 takes the motion direction with the highest occurrence frequency as the main motion direction of the candidate area.

在另一个实施方式中,可以根据某一候选区域在连续运动区域中的饱和度信息是否小于预设阈值,确定该候选区域中是否存在烟雾。In another embodiment, it may be determined whether there is smoke in a candidate area according to whether the saturation information of the candidate area in the continuous motion area is less than a preset threshold.

图17是本发明实施例的属性信息计算单元的另一示意图,如图17所示,属性信 息计算单元133可以包括:Fig. 17 is another schematic diagram of the attribute information calculation unit according to the embodiment of the present invention. As shown in Fig. 17, the attribute information The information calculation unit 133 may include:

当前饱和度图获取单元1701,对当前图像进行色彩空间变换,并根据色彩分量计算饱和度色彩分量以获取当前图像的饱和度图;The current saturation map acquisition unit 1701 performs color space transformation on the current image, and calculates saturation color components according to the color components to obtain a saturation map of the current image;

当前饱和度计算单元1702,基于当前图像的饱和度图,计算该候选区域在连续运动区域中的当前饱和度平均值。The current saturation calculation unit 1702 calculates the current average saturation of the candidate area in the continuous motion area based on the saturation map of the current image.

在本实施方式中,烟雾确定单元1304还可以用于:在当前饱和度平均值大于或等于预设阈值的情况下,确定该候选区域中不存在烟雾。In this embodiment, the smoke determining unit 1304 may also be configured to: determine that there is no smoke in the candidate area when the current saturation average value is greater than or equal to a preset threshold.

在另一个实施方式中,可以根据某一候选区域在连续运动区域中的当前饱和度信息和背景饱和度信息的比较结果,确定该候选区域中是否存在烟雾。In another embodiment, it may be determined whether there is smoke in a candidate area according to a comparison result of the current saturation information of the candidate area in the continuous motion area and the background saturation information.

图18是本发明实施例的属性信息计算单元的另一示意图,如图18所示,属性信息计算单元1303可以包括:当前饱和度图获取单元1701和当前饱和度计算单元1702,如上所述。Fig. 18 is another schematic diagram of an attribute information calculation unit according to an embodiment of the present invention. As shown in Fig. 18 , the attribute information calculation unit 1303 may include: a current saturation map acquisition unit 1701 and a current saturation calculation unit 1702, as described above.

如图18所示,属性信息计算单元1303还可以包括:As shown in Figure 18, the attribute information calculation unit 1303 may also include:

背景饱和度图获取单元1801,对背景图像进行色彩空间变换,根据色彩分量计算饱和度色彩分量以获取背景图像的饱和度图;The background saturation map acquisition unit 1801 performs color space transformation on the background image, and calculates saturation color components according to the color components to obtain a saturation map of the background image;

背景饱和度计算单元1802,基于背景图像的饱和度图,计算该候选区域在连续运动区域中的背景饱和度平均值。The background saturation calculation unit 1802 calculates the average background saturation of the candidate area in the continuous motion area based on the saturation map of the background image.

在本实施方式中,烟雾确定单元1304还可以用于:在当前饱和度平均值大于或等于背景饱和度平均值的情况下,确定该候选区域中不存在烟雾。In this embodiment, the smoke determination unit 1304 may also be configured to: determine that there is no smoke in the candidate area when the current average saturation value is greater than or equal to the average background saturation value.

在另一个实施方式中,可以根据某一候选区域在连续运动区域中的灰度方差信息,确定该候选区域中是否存在烟雾。In another embodiment, it may be determined whether there is smoke in a candidate area according to the gray variance information of the candidate area in the continuous motion area.

图19是本发明实施例的属性信息计算单元的另一示意图,如图19所示,属性信息计算单元1303可以包括:FIG. 19 is another schematic diagram of an attribute information calculation unit according to an embodiment of the present invention. As shown in FIG. 19 , the attribute information calculation unit 1303 may include:

方差值计算单元1901,基于当前图像的灰度图,计算该候选区域在连续运动区域中的灰度方差值。The variance value calculation unit 1901 calculates the gray scale variance value of the candidate area in the continuous motion area based on the gray scale image of the current image.

在本实施方式中,烟雾确定单元1304还可以用于:在灰度方差值大于或等于预设阈值的情况下,确定该候选区域中不存在烟雾。In this embodiment, the smoke determining unit 1304 may also be configured to: determine that there is no smoke in the candidate area when the gray variance value is greater than or equal to a preset threshold.

在另一个实施方式中,可以根据某一候选区域在连续运动区域中的灰度平均信息,确定该候选区域中是否存在烟雾。 In another embodiment, it may be determined whether there is smoke in a candidate area according to gray average information of the candidate area in the continuous motion area.

图20是本发明实施例的属性信息计算单元的另一示意图,如图20所示,属性信息计算单元1303可以包括:FIG. 20 is another schematic diagram of an attribute information calculation unit according to an embodiment of the present invention. As shown in FIG. 20 , the attribute information calculation unit 1303 may include:

运动区域调整单元2001,从连续运动区域中去除该候选区域以获取剩余运动区域;The motion area adjustment unit 2001 removes the candidate area from the continuous motion area to obtain the remaining motion area;

当前平均值计算单元2002,基于当前图像的灰度图,计算该剩余候选区域的当前灰度平均值;The current average value calculation unit 2002, based on the grayscale image of the current image, calculates the current grayscale average value of the remaining candidate regions;

背景平均值计算单元2003,基于背景图像的灰度图,计算该剩余候选区域的背景灰度平均值;以及The background average calculation unit 2003, based on the grayscale image of the background image, calculates the background grayscale average value of the remaining candidate area; and

差值计算单元2004,计算该当前灰度平均值与该背景灰度平均值的差值。The difference calculation unit 2004 calculates the difference between the current grayscale average value and the background grayscale average value.

在本实施方式中,烟雾确定单元1304还可以用于:在当前灰度平均值与背景灰度平均值的差值小于或等于预设阈值的情况下,确定该候选区域中不存在烟雾。In this embodiment, the smoke determining unit 1304 may also be configured to: determine that there is no smoke in the candidate area when the difference between the current average gray level and the background gray level is less than or equal to a preset threshold.

在另一个实施方式中,可以根据某一候选区域的梯度方向信息,确定该候选区域中是否存在烟雾。In another embodiment, it may be determined whether there is smoke in a candidate area according to the gradient direction information of the candidate area.

在本实施方式中,属性信息计算单元1303还可以用于:计算该候选区域的梯度方向信息平均值;烟雾确定单元1304还可以用于:在梯度方向信息平均值大于或等于预设阈值的情况下,确定该候选区域中不存在烟雾。In this embodiment, the attribute information calculation unit 1303 can also be used to: calculate the average value of the gradient direction information of the candidate area; the smoke determination unit 1304 can also be used to: when the average value of the gradient direction information is greater than or equal to a preset threshold Next, it is determined that there is no smoke in the candidate area.

图21是本发明实施例的属性信息计算单元的一示意图,如图21所示,属性信息计算单元1303可以包括:FIG. 21 is a schematic diagram of an attribute information calculation unit according to an embodiment of the present invention. As shown in FIG. 21 , the attribute information calculation unit 1303 may include:

当前梯度计算单元2101,对于该候选区域内的某一像素,基于当前图像的灰度图计算该像素的水平梯度和垂直梯度以获取该像素的当前图像梯度方向;The current gradient calculation unit 2101, for a certain pixel in the candidate area, calculate the horizontal gradient and vertical gradient of the pixel based on the grayscale image of the current image to obtain the current image gradient direction of the pixel;

背景梯度计算单元2102,基于背景图像的灰度图计算该像素的水平梯度和垂直梯度以获取该像素的背景图像梯度方向;The background gradient calculation unit 2102 calculates the horizontal gradient and vertical gradient of the pixel based on the grayscale image of the background image to obtain the background image gradient direction of the pixel;

夹角相关值计算单元2103,计算该像素的当前图像梯度方向和背景图像梯度方向的夹角相关值;以及The angle correlation value calculation unit 2103, which calculates the angle correlation value between the gradient direction of the current image of the pixel and the gradient direction of the background image; and

梯度平均值获取单元2104,对该候选区域内多个像素的夹角相关值进行统计并平均,将该候选区域的平均夹角相关值作为梯度方向信息平均值。The average value gradient acquisition unit 2104 is used to calculate and average the angle correlation values of multiple pixels in the candidate area, and use the average angle correlation value of the candidate area as the average value of the gradient direction information.

在本实施例中,属性信息可以包括如下的一种或多种:饱和度信息、灰度方差信息、梯度方向信息、灰度平均信息、运动方向信息。但本发明不限于此,例如还可以使用其他的属性信息进行判断。此外可以采用上述实施方式中的一种或多种,可以根 据实际情况确定具体的检测方案。In this embodiment, the attribute information may include one or more of the following: saturation information, grayscale variance information, gradient direction information, grayscale average information, and motion direction information. But the present invention is not limited thereto, for example, other attribute information can also be used for judgment. In addition, one or more of the above-mentioned embodiments can be adopted, and can be based on Determine the specific testing plan according to the actual situation.

由上述实施例可知,基于前景图像获取一个或多个候选区域,计算某一候选区域对应于当前图像和/或背景图像的属性信息,以及根据该属性信息确定该候选区域中是否存在烟雾。由此,不仅能够通过视频图像快速准确地对烟雾进行检测,而且可以提高基于视频的烟雾检测在光照变化以及复杂环境下的检测精度。It can be seen from the above embodiments that one or more candidate regions are obtained based on the foreground image, attribute information of a candidate region corresponding to the current image and/or background image is calculated, and whether there is smoke in the candidate region is determined according to the attribute information. Therefore, not only can the smoke be detected quickly and accurately through video images, but also the detection accuracy of video-based smoke detection under illumination changes and complex environments can be improved.

实施例3Example 3

本发明实施例提供一种图像处理设备,该图像处理设备包括如实施例2所述的烟雾检测装置。An embodiment of the present invention provides an image processing device, and the image processing device includes the smoke detection device as described in Embodiment 2.

图22是本发明实施例的图像处理设备的一示意图。如图22所示,图像处理设备2200可以包括:中央处理器(CPU)100和存储器110;存储器110耦合到中央处理器100。其中该存储器110可存储各种数据;此外还存储信息处理的程序,并且在中央处理器100的控制下执行该程序。Fig. 22 is a schematic diagram of the image processing apparatus of the embodiment of the present invention. As shown in FIG. 22 , an image processing device 2200 may include: a central processing unit (CPU) 100 and a memory 110 ; the memory 110 is coupled to the central processing unit 100 . Among them, the memory 110 can store various data; in addition, it also stores information processing programs, and executes the programs under the control of the central processing unit 100 .

在一个实施方式中,烟雾检测装置的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为对实施例1所述的烟雾检测方法进行控制。In one embodiment, the function of the smoke detection device can be integrated into the central processing unit 100 . Wherein, the central processing unit 100 may be configured to control the smoke detection method described in Embodiment 1.

在另一个实施方式中,烟雾检测装置可以与中央处理器100分开配置,例如可以将烟雾检测装置配置为与中央处理器100连接的芯片,通过中央处理器100的控制来实现烟雾检测装置的功能。In another embodiment, the smoke detection device can be configured separately from the central processing unit 100, for example, the smoke detection device can be configured as a chip connected to the central processing unit 100, and the function of the smoke detection device can be realized through the control of the central processing unit 100 .

在本实施例中,中央处理器100可以被配置为进行如下的控制:In this embodiment, the central processing unit 100 may be configured to perform the following control:

对当前图像进行背景图像建模以获取当前图像的前景图像和背景图像;基于前景图像获取当前图像中用于检测运动物体的一个或多个候选区域;计算某一候选区域对应于当前图像和/或背景图像的属性信息;以及根据该属性信息确定该候选区域中是否存在烟雾。Perform background image modeling on the current image to obtain the foreground image and background image of the current image; obtain one or more candidate regions in the current image for detecting moving objects based on the foreground image; calculate a candidate region corresponding to the current image and/or or the attribute information of the background image; and determine whether there is smoke in the candidate area according to the attribute information.

进一步地,中央处理器100还可以被配置为进行如下的控制:根据该候选区域分别在多个图像帧中的位置获取该候选区域对应的连续运动区域;并基于该连续运动区域计算该候选区域对应于当前图像和/或背景图像的属性信息。Further, the central processing unit 100 may also be configured to perform the following control: acquire the continuous motion area corresponding to the candidate area according to the position of the candidate area in the plurality of image frames respectively; and calculate the candidate area based on the continuous motion area Attribute information corresponding to the current image and/or background image.

此外,如图22所示,图像处理设备2200还可以包括:输入输出(I/O)设备120和显示器130等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,图像处理设备2200也并不是必须要包括图22中所示的所有部件;此外,图像 处理设备2200还可以包括图22中没有示出的部件,可以参考现有技术。In addition, as shown in FIG. 22 , the image processing device 2200 may further include: an input/output (I/O) device 120 and a display 130 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the image processing device 2200 does not necessarily include all components shown in FIG. 22; in addition, the image The processing device 2200 may also include components not shown in FIG. 22 , and reference may be made to the prior art.

本发明实施例提供一种计算机可读程序,其中当在图像处理设备中执行所述程序时,所述程序使得计算机在所述图像处理设备中执行如实施例1所述的烟雾检测方法。An embodiment of the present invention provides a computer-readable program, wherein when the program is executed in the image processing device, the program causes the computer to execute the smoke detection method as described in Embodiment 1 in the image processing device.

本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在图像处理设备中执行如实施例1所述的烟雾检测方法。An embodiment of the present invention provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the smoke detection method as described in Embodiment 1 in an image processing device.

本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。The above devices and methods of the present invention can be implemented by hardware, or by combining hardware and software. The present invention relates to such a computer-readable program that, when the program is executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps. The present invention also relates to a storage medium for storing the above program, such as hard disk, magnetic disk, optical disk, DVD, flash memory and the like.

针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。One or more of the functional blocks described in the accompanying drawings and/or one or more combinations of the functional blocks can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof. One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.

以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。 The present invention has been described above in conjunction with specific embodiments, but those skilled in the art should be clear that these descriptions are all exemplary and not limiting the protection scope of the present invention. Those skilled in the art can make various variations and modifications to the present invention according to the principles of the present invention, and these variations and modifications are also within the scope of the present invention.

Claims (20)

一种烟雾检测装置,其中,所述烟雾检测装置包括:A smoke detection device, wherein the smoke detection device includes: 背景图像建模单元,其对当前图像进行背景图像建模,以获取所述当前图像的前景图像和背景图像;a background image modeling unit, which performs background image modeling on the current image to obtain a foreground image and a background image of the current image; 候选区域获取单元,其基于所述前景图像获取所述当前图像中用于检测运动物体的一个或多个候选区域;a candidate region acquiring unit, which acquires one or more candidate regions for detecting moving objects in the current image based on the foreground image; 属性信息计算单元,其计算某一候选区域对应于所述当前图像和/或所述背景图像的属性信息;以及an attribute information calculation unit, which calculates attribute information of a candidate area corresponding to the current image and/or the background image; and 烟雾确定单元,其根据所述属性信息确定所述某一候选区域中是否存在烟雾。A smoke determining unit, which determines whether there is smoke in the certain candidate area according to the attribute information. 根据权利要求1所述的烟雾检测装置,其中,所述烟雾检测装置还包括:The smoke detection device according to claim 1, wherein the smoke detection device further comprises: 运动区域获取单元,其根据所述某一候选区域分别在多个图像帧中的位置获取所述某一候选区域对应的连续运动区域;A motion area acquisition unit, which acquires the continuous motion area corresponding to the certain candidate area according to the positions of the certain candidate area in the plurality of image frames respectively; 所述属性信息计算单元还用于:基于所述连续运动区域计算所述某一候选区域对应于所述当前图像和/或所述背景图像的属性信息。The attribute information calculation unit is further configured to: calculate the attribute information of the certain candidate area corresponding to the current image and/or the background image based on the continuous motion area. 根据权利要求2所述的烟雾检测装置,其中,所述属性信息计算单元包括:The smoke detection device according to claim 2, wherein the attribute information calculation unit comprises: 当前饱和度图获取单元,其对所述当前图像进行色彩空间变换,并根据色彩分量计算饱和度色彩分量以获取所述当前图像的饱和度图;A current saturation map acquisition unit, which performs color space transformation on the current image, and calculates saturation color components according to the color components to obtain a saturation map of the current image; 当前饱和度计算单元,其基于所述当前图像的饱和度图,计算所述某一候选区域在所述连续运动区域中的当前饱和度平均值。A current saturation calculation unit, which calculates the current saturation average value of the certain candidate area in the continuous motion area based on the saturation map of the current image. 根据权利要求3所述的烟雾检测装置,其中,所述烟雾确定单元还用于:在所述当前饱和度平均值大于或等于预设阈值的情况下,确定所述某一候选区域中不存在烟雾。The smoke detection device according to claim 3, wherein the smoke determination unit is further configured to: determine that there is no smoke. 根据权利要求3所述的烟雾检测装置,其中,所述属性信息计算单元还包括:The smoke detection device according to claim 3, wherein the attribute information calculation unit further comprises: 背景饱和度图获取单元,其对所述背景图像进行色彩空间变换,根据色彩分量计算饱和度色彩分量以获取所述背景图像的饱和度图;A background saturation map acquisition unit, which performs color space transformation on the background image, and calculates saturation color components according to the color components to obtain a saturation map of the background image; 背景饱和度计算单元,其基于所述背景图像的饱和度图,计算所述某一候选区域在所述连续运动区域中的背景饱和度平均值。A background saturation calculation unit, which calculates the average background saturation of the certain candidate area in the continuous motion area based on the saturation map of the background image. 根据权利要求5所述的烟雾检测方法,其中,所述烟雾确定单元还用于:在 所述当前饱和度平均值大于或等于所述背景饱和度平均值的情况下,确定所述某一候选区域中不存在烟雾。The smoke detection method according to claim 5, wherein the smoke determination unit is further used for: In a case where the current average saturation value is greater than or equal to the background saturation average value, it is determined that there is no smoke in the certain candidate area. 根据权利要求2所述的烟雾检测装置,其中,所述属性信息计算单元包括:The smoke detection device according to claim 2, wherein the attribute information calculation unit comprises: 方差值计算单元,其基于所述当前图像的灰度图,计算所述某一候选区域在所述连续运动区域中的灰度方差值。A variance value calculation unit, which calculates the gray scale variance value of the certain candidate area in the continuous motion area based on the gray scale image of the current image. 根据权利要求7所述的烟雾检测装置,其中,所述烟雾确定单元还用于:在所述灰度方差值大于或等于预设阈值的情况下,确定所述某一候选区域中不存在烟雾。The smoke detection device according to claim 7, wherein the smoke determination unit is further configured to: determine that there is no smoke. 根据权利要求2所述的烟雾检测装置,其中,所述属性信息计算单元包括:The smoke detection device according to claim 2, wherein the attribute information calculation unit comprises: 运动区域调整单元,其从所述连续运动区域中去除所述某一候选区域以获取剩余运动区域;a motion area adjustment unit, which removes the certain candidate area from the continuous motion area to obtain the remaining motion area; 当前平均值计算单元,其基于所述当前图像的灰度图,计算所述剩余候选区域的当前灰度平均值;a current average calculation unit, which calculates the current gray average of the remaining candidate regions based on the grayscale image of the current image; 背景平均值计算单元,其基于所述背景图像的灰度图,计算所述剩余候选区域的背景灰度平均值;以及a background average calculation unit, which calculates the background gray average of the remaining candidate regions based on the gray image of the background image; and 差值计算单元,其计算所述当前灰度平均值与所述背景灰度平均值的差值。A difference calculation unit, which calculates the difference between the current average gray level and the average background gray level. 根据权利要求9所述的烟雾检测装置,其中,所述烟雾确定单元还用于:在所述差值小于或等于预设阈值的情况下,确定所述某一候选区域中不存在烟雾。The smoke detection device according to claim 9, wherein the smoke determination unit is further configured to: determine that there is no smoke in the certain candidate area when the difference is less than or equal to a preset threshold. 根据权利要求1所述的烟雾检测装置,其中,所述属性信息计算单元包括:The smoke detection device according to claim 1, wherein the attribute information calculation unit comprises: 当前梯度计算单元,其对于所述某一候选区域内的某一像素,基于所述当前图像的灰度图计算所述某一像素的水平梯度和垂直梯度以获取所述某一像素的当前图像梯度方向;The current gradient calculation unit, for a certain pixel in the certain candidate area, calculates the horizontal gradient and vertical gradient of the certain pixel based on the grayscale image of the current image to obtain the current image of the certain pixel gradient direction; 背景梯度计算单元,其基于所述背景图像的灰度图计算所述某一像素的水平梯度和垂直梯度以获取所述某一像素的背景图像梯度方向;A background gradient calculation unit, which calculates the horizontal gradient and vertical gradient of the certain pixel based on the grayscale image of the background image to obtain the background image gradient direction of the certain pixel; 夹角相关值计算单元,其计算所述某一像素的所述当前图像梯度方向和所述背景图像梯度方向的夹角相关值;以及An included angle correlation value calculation unit, which calculates an included angle correlation value between the gradient direction of the current image and the gradient direction of the background image of the certain pixel; and 梯度平均值获取单元,其对所述某一候选区域内多个像素的所述夹角相关值进行统计并平均,将所述某一候选区域的平均夹角相关值作为梯度方向信息平均值。A gradient mean value acquisition unit, which counts and averages the angle correlation values of multiple pixels in the certain candidate area, and takes the average angle correlation value of the certain candidate area as the average value of the gradient direction information. 根据权利要求11所述的烟雾检测装置,其中,所述烟雾确定单元还用于: 在所述梯度方向信息平均值大于或等于预设阈值的情况下,确定所述某一候选区域中不存在烟雾。The smoke detection device according to claim 11, wherein the smoke determination unit is further used for: In a case where the average value of the gradient direction information is greater than or equal to a preset threshold, it is determined that there is no smoke in the certain candidate area. 根据权利要求1所述的烟雾检测装置,其中,所述候选区域获取单元包括:The smoke detection device according to claim 1, wherein the candidate area acquisition unit comprises: 二值化图获取单元,其获取所述前景图像的二值化图像;a binarized image acquisition unit, which acquires a binarized image of the foreground image; 连通域获取单元,其将所述二值化图像中像素值相同且相互连通的多个像素作为一个连通域,以获取所述前景图像中表示运动物体的一个或多个连通域;A connected domain acquisition unit, which uses a plurality of pixels in the binarized image that have the same pixel value and are connected to each other as a connected domain, so as to obtain one or more connected domains representing moving objects in the foreground image; 连通域选择单元,其对所述连通域进行选择以获取所述一个或多个候选区域。A connected domain selection unit, which selects the connected domains to obtain the one or more candidate regions. 根据权利要求13所述的烟雾检测装置,其中,所述连通域选择单元用于:去掉面积小于或等于预设阈值的所述连通域,和/或,去掉平均颜色深度在预设范围之外的所述连通域。The smoke detection device according to claim 13, wherein the connected domain selection unit is configured to: remove the connected domains whose area is less than or equal to a preset threshold, and/or remove the average color depth outside the preset range The connected domain of . 根据权利要求1所述的烟雾检测装置,其中,所述属性信息计算单元包括:The smoke detection device according to claim 1, wherein the attribute information calculation unit comprises: 运动方向计算单元,其基于所述某一候选区域的质心位置和重心位置,计算所述某一候选区域在所述多个图像帧中相对于所述当前图像的运动方向;A motion direction calculation unit, which calculates the motion direction of the certain candidate area relative to the current image in the plurality of image frames based on the position of the centroid and the position of the center of gravity of the certain candidate area; 运动方向统计单元,其统计每个运动方向在所述多个图像帧中出现的频率;以及a motion direction statistics unit, which counts the frequency of occurrence of each motion direction in the plurality of image frames; and 主运动方向确定单元,其将出现频率最高的运动方向确定为所述某一候选区域的主运动方向。A main motion direction determining unit, which determines the motion direction with the highest frequency of occurrence as the main motion direction of the certain candidate area. 根据权利要求15所述的烟雾检测装置,其中,所述烟雾确定单元还用于:在所述某一候选区域的主运动方向为向下的情况下,确定所述某一候选区域中不存在烟雾。The smoke detection device according to claim 15, wherein the smoke determination unit is further configured to: determine that there is no smoke. 一种烟雾检测方法,其中,所述烟雾检测方法包括:A smoke detection method, wherein the smoke detection method comprises: 对当前图像进行背景图像建模以获取所述当前图像的前景图像和背景图像;performing background image modeling on the current image to obtain a foreground image and a background image of the current image; 基于所述前景图像获取所述当前图像中用于检测运动物体的一个或多个候选区域;Acquiring one or more candidate regions for detecting moving objects in the current image based on the foreground image; 计算某一候选区域对应于所述当前图像和/或所述背景图像的属性信息;以及calculating attribute information of a candidate area corresponding to the current image and/or the background image; and 根据所述属性信息确定所述某一候选区域中是否存在烟雾。Determine whether there is smoke in the certain candidate area according to the attribute information. 根据权利要求17所述的烟雾检测方法,其中,所述方法还包括:The smoke detection method according to claim 17, wherein the method further comprises: 根据所述某一候选区域分别在多个图像帧中的位置获取所述某一候选区域对应的连续运动区域;Acquiring a continuous motion region corresponding to the certain candidate region according to the respective positions of the certain candidate region in multiple image frames; 并且,基于所述连续运动区域计算所述某一候选区域对应于所述当前图像和/或 所述背景图像的属性信息。And, based on the continuous motion area, calculating that the certain candidate area corresponds to the current image and/or Attribute information of the background image. 根据权利要求18所述的烟雾检测方法,其中,所述属性信息包括如下的一种或多种:饱和度信息、灰度方差信息、梯度方向信息、灰度平均信息、运动方向信息。The smoke detection method according to claim 18, wherein the attribute information includes one or more of the following: saturation information, grayscale variance information, gradient direction information, grayscale average information, and motion direction information. 一种图像处理设备,其中,所述图像处理设备包括如权利要求1所述的烟雾检测装置。 An image processing device, wherein the image processing device comprises the smoke detection device according to claim 1.
CN201580084015.3A 2015-11-20 2015-11-20 Mist detecting device, method and image processing equipment Pending CN108140291A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095178 WO2017084094A1 (en) 2015-11-20 2015-11-20 Apparatus, method, and image processing device for smoke detection

Publications (1)

Publication Number Publication Date
CN108140291A true CN108140291A (en) 2018-06-08

Family

ID=58717279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580084015.3A Pending CN108140291A (en) 2015-11-20 2015-11-20 Mist detecting device, method and image processing equipment

Country Status (5)

Country Link
US (1) US10846867B2 (en)
EP (1) EP3379509A4 (en)
JP (1) JP6620888B2 (en)
CN (1) CN108140291A (en)
WO (1) WO2017084094A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028234A (en) * 2018-09-29 2018-12-18 佛山市云米电器科技有限公司 It is a kind of can be to the kitchen ventilator that level of smoke is identified
CN109035666A (en) * 2018-08-29 2018-12-18 深圳市中电数通智慧安全科技股份有限公司 A kind of fire-smoke detection method, apparatus and terminal device
CN111443019A (en) * 2020-05-10 2020-07-24 安徽建筑大学 Group mist detection device and group mist movement direction determination method
CN113112453A (en) * 2021-03-22 2021-07-13 深圳市华启生物科技有限公司 Colloidal gold detection card identification method and system, electronic equipment and storage medium
CN119091324A (en) * 2024-11-07 2024-12-06 大连禾圣科技有限公司 Data visualization analysis method, system and medium for land management

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997461B (en) * 2017-03-28 2019-09-17 浙江大华技术股份有限公司 A kind of firework detecting method and device
CN107633212A (en) * 2017-08-30 2018-01-26 清华大学苏州汽车研究院(吴江) A kind of firework detecting method and device based on video image
CN109142176B (en) * 2018-09-29 2024-01-12 佛山市云米电器科技有限公司 Smoke subarea space rechecking method based on space association
CN111353334A (en) 2018-12-21 2020-06-30 富士通株式会社 Smoke detection method and device
CN111060442B (en) * 2019-04-30 2022-06-17 威海戥同测试设备有限公司 Oil particle detection method based on image processing
CN110263654A (en) * 2019-05-23 2019-09-20 深圳市中电数通智慧安全科技股份有限公司 A kind of flame detecting method, device and embedded device
CN111144312B (en) * 2019-12-27 2024-03-22 中国移动通信集团江苏有限公司 Image processing method, device, equipment and medium
CN112115875B (en) * 2020-09-21 2024-05-24 北京林业大学 A forest fire smoke root detection method based on dynamic and static combined regional stacking strategy
US11908195B2 (en) 2020-12-01 2024-02-20 Devon Energy Corporation Systems, methods, and computer program products for object detection and analysis of an image
CN112616049B (en) * 2020-12-15 2022-12-02 南昌欧菲光电技术有限公司 Monitoring equipment water mist frost treatment method, device, equipment and medium
CN112819791A (en) * 2021-02-03 2021-05-18 广州市云景信息科技有限公司 Ringelmann blackness detection method and device on ring inspection line, detector and black cigarette vehicle identification system
KR102279627B1 (en) 2021-03-02 2021-07-21 한국콜마주식회사 Container
CN113505707A (en) * 2021-07-14 2021-10-15 腾讯音乐娱乐科技(深圳)有限公司 Smoking behavior detection method, electronic device and readable storage medium
TWI793901B (en) * 2021-12-08 2023-02-21 威盛電子股份有限公司 Smoke detection system and smoke detection method
CN116433035B (en) * 2023-06-13 2023-09-15 中科数创(临沂)数字科技有限公司 Building electrical fire risk assessment prediction method based on artificial intelligence
CN116503388B (en) * 2023-06-25 2023-11-14 广东利元亨智能装备股份有限公司 Defect detection method, device and storage medium

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233541A (en) * 2006-04-26 2008-07-30 三菱电机株式会社 Object test apparatus and object test apparatus of elevator
KR20080077481A (en) * 2007-02-20 2008-08-25 (주)에이치엠씨 Fire Detection Method and System Using Image Processing
CN101441771A (en) * 2008-12-19 2009-05-27 中国科学技术大学 Video fire hazard smoke detecting method based on color saturation degree and movement mode
CN101609589A (en) * 2008-06-17 2009-12-23 侯荣琴 Multi-frequency image fire detection system
CN101738394A (en) * 2009-02-11 2010-06-16 北京智安邦科技有限公司 Method and system for detecting indoor smog
CN101751558A (en) * 2009-12-16 2010-06-23 北京智安邦科技有限公司 Tunnel smog detection method based on video and device thereof
CN101908141A (en) * 2010-08-04 2010-12-08 丁天 Video smoke detection method based on mixed Gaussian model and morphological characteristics
CN101916372A (en) * 2010-09-08 2010-12-15 大连古野软件有限公司 Video-based smoke detection device and method according to multi-feature fusion
CN102136059A (en) * 2011-03-03 2011-07-27 苏州市慧视通讯科技有限公司 Video- analysis-base smoke detecting method
JP4926603B2 (en) * 2006-08-17 2012-05-09 能美防災株式会社 Smoke detector
CN102663869A (en) * 2012-04-23 2012-09-12 国家消防工程技术研究中心 Indoor fire detection method based on video monitoring platform
CN103983574A (en) * 2014-06-03 2014-08-13 上海安维尔信息科技有限公司 Smoke detection method
CN104050480A (en) * 2014-05-21 2014-09-17 燕山大学 Cigarette smoke detection method based on computer vision
CN104316974A (en) * 2014-11-04 2015-01-28 无锡北斗星通信息科技有限公司 Forest smoke area detecting system
CN104408745A (en) * 2014-11-18 2015-03-11 北京航空航天大学 Real-time smog scene detection method based on video image
CN104978733A (en) * 2014-04-11 2015-10-14 富士通株式会社 Smoke detection method and smoke detection device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859419B2 (en) * 2006-12-12 2010-12-28 Industrial Technology Research Institute Smoke detecting method and device
EP2000952B1 (en) * 2007-05-31 2013-06-12 Industrial Technology Research Institute Smoke detecting method and device
US7786877B2 (en) * 2008-06-20 2010-08-31 Billy Hou Multi-wavelength video image fire detecting system
WO2011151821A1 (en) * 2010-05-31 2011-12-08 Dvp Technologies Ltd. Inspection of region of interest
JP5697587B2 (en) * 2011-12-09 2015-04-08 三菱電機株式会社 Vehicle fire detection device
JP5971761B2 (en) * 2013-03-26 2016-08-17 能美防災株式会社 Smoke detection device and smoke detection method
DE102013017395B3 (en) * 2013-10-19 2014-12-11 IQ Wireless Entwicklungsges. für Systeme und Technologien der Telekommunikation mbH Method and device for automated early forest fire detection by means of optical detection of clouds of smoke

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233541A (en) * 2006-04-26 2008-07-30 三菱电机株式会社 Object test apparatus and object test apparatus of elevator
JP4926603B2 (en) * 2006-08-17 2012-05-09 能美防災株式会社 Smoke detector
KR20080077481A (en) * 2007-02-20 2008-08-25 (주)에이치엠씨 Fire Detection Method and System Using Image Processing
CN101609589A (en) * 2008-06-17 2009-12-23 侯荣琴 Multi-frequency image fire detection system
CN101441771A (en) * 2008-12-19 2009-05-27 中国科学技术大学 Video fire hazard smoke detecting method based on color saturation degree and movement mode
CN101738394A (en) * 2009-02-11 2010-06-16 北京智安邦科技有限公司 Method and system for detecting indoor smog
CN101751558A (en) * 2009-12-16 2010-06-23 北京智安邦科技有限公司 Tunnel smog detection method based on video and device thereof
CN101908141A (en) * 2010-08-04 2010-12-08 丁天 Video smoke detection method based on mixed Gaussian model and morphological characteristics
CN101916372A (en) * 2010-09-08 2010-12-15 大连古野软件有限公司 Video-based smoke detection device and method according to multi-feature fusion
CN102136059A (en) * 2011-03-03 2011-07-27 苏州市慧视通讯科技有限公司 Video- analysis-base smoke detecting method
CN102663869A (en) * 2012-04-23 2012-09-12 国家消防工程技术研究中心 Indoor fire detection method based on video monitoring platform
CN104978733A (en) * 2014-04-11 2015-10-14 富士通株式会社 Smoke detection method and smoke detection device
CN104050480A (en) * 2014-05-21 2014-09-17 燕山大学 Cigarette smoke detection method based on computer vision
CN103983574A (en) * 2014-06-03 2014-08-13 上海安维尔信息科技有限公司 Smoke detection method
CN104316974A (en) * 2014-11-04 2015-01-28 无锡北斗星通信息科技有限公司 Forest smoke area detecting system
CN104408745A (en) * 2014-11-18 2015-03-11 北京航空航天大学 Real-time smog scene detection method based on video image

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035666A (en) * 2018-08-29 2018-12-18 深圳市中电数通智慧安全科技股份有限公司 A kind of fire-smoke detection method, apparatus and terminal device
CN109035666B (en) * 2018-08-29 2020-05-19 深圳市中电数通智慧安全科技股份有限公司 Fire and smoke detection method and device and terminal equipment
CN109028234A (en) * 2018-09-29 2018-12-18 佛山市云米电器科技有限公司 It is a kind of can be to the kitchen ventilator that level of smoke is identified
CN111443019A (en) * 2020-05-10 2020-07-24 安徽建筑大学 Group mist detection device and group mist movement direction determination method
CN113112453A (en) * 2021-03-22 2021-07-13 深圳市华启生物科技有限公司 Colloidal gold detection card identification method and system, electronic equipment and storage medium
CN119091324A (en) * 2024-11-07 2024-12-06 大连禾圣科技有限公司 Data visualization analysis method, system and medium for land management
CN119091324B (en) * 2024-11-07 2025-03-04 大连禾圣科技有限公司 Data visualization analysis method, system and medium for homeland remediation

Also Published As

Publication number Publication date
EP3379509A4 (en) 2019-10-30
JP6620888B2 (en) 2019-12-18
JP2019504379A (en) 2019-02-14
US20180260963A1 (en) 2018-09-13
EP3379509A1 (en) 2018-09-26
WO2017084094A1 (en) 2017-05-26
US10846867B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
CN108140291A (en) Mist detecting device, method and image processing equipment
JP6719457B2 (en) Method and system for extracting main subject of image
CN104392468B (en) Moving Object Detection Method Based on Improved Visual Background Extraction
CN104978733B (en) Smog detection method and device
CN109086724B (en) An accelerated face detection method and storage medium
CN111091592B (en) Image processing method, image processing device, electronic device, and readable storage medium
JP6024658B2 (en) Object detection apparatus, object detection method, and program
US20150269739A1 (en) Apparatus and method for foreground object segmentation
CN103761527A (en) Device and method for detecting the presence of a logo in a picture
CN109478329B (en) Image processing method and device
CN104603838B (en) Apparatus and method for monitoring object from captured image
CN105308618A (en) Face recognition with parallel detection and tracking, and/or grouped feature motion shift tracking
CN107430694A (en) Mobile object detection based on motion blur
CN111382606A (en) Tumble detection method, tumble detection device and electronic equipment
JP5983749B2 (en) Image processing apparatus, image processing method, and image processing program
JPWO2018179119A1 (en) Video analysis device, video analysis method, and program
CN105354833A (en) Shadow detection method and apparatus
US12067770B2 (en) Image processing apparatus, image processing method, and storage medium for determining a number of persons in an input image
JP2015130166A (en) Backside watermark detection method and backside watermark detection apparatus
US11488410B2 (en) Pedestrian article detection apparatus and method and electronic device
CN115661194A (en) Moving object extraction method, system, electronic device and medium
CN104978745B (en) A kind of High Resolution Visible Light image object change detecting method
CN107545268B (en) Color feature extraction method and system
JP2021043774A (en) Notification determination device, notification determination method, and notification determination program
WO2013093731A1 (en) A motion detection method for a video processing system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180608

RJ01 Rejection of invention patent application after publication