[go: up one dir, main page]

CN108137786A - 助熔底部填充组合物 - Google Patents

助熔底部填充组合物 Download PDF

Info

Publication number
CN108137786A
CN108137786A CN201680057055.3A CN201680057055A CN108137786A CN 108137786 A CN108137786 A CN 108137786A CN 201680057055 A CN201680057055 A CN 201680057055A CN 108137786 A CN108137786 A CN 108137786A
Authority
CN
China
Prior art keywords
composition
organic acid
solder
solid organic
solder ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680057055.3A
Other languages
English (en)
Inventor
H·蒋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel IP and Holding GmbH
Original Assignee
Henkel IP and Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel IP and Holding GmbH filed Critical Henkel IP and Holding GmbH
Publication of CN108137786A publication Critical patent/CN108137786A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Wire Bonding (AREA)

Abstract

本发明涉及可用于助熔底部填充应用的热固性树脂组合物,特别是以预施加膜的形式。

Description

助熔底部填充组合物
背景技术
领域
本发明涉及可用于助熔底部填充应用的热固性树脂组合物,特别是以预施加膜的形式。
有关技术的简介
硅通孔("TSV")互连技术由于其能够在电路板上使用与传统半导体封装件大概相同的基板面(real estate)以较低功耗来增加计算能力,因而越来越受欢迎。使用TSV,通过裸片本身在层状半导体裸片之间形成互连,而不是如在裸片附着应用中所见的围绕裸片的打线接合技术或如在毛细管流动底部填充应用中所见的通过焊料互连。
在堆叠裸片应用中,裸片之间的间隙相当窄,使得难以施加毛细管流动底部填充剂。虽然非流动底部填充组合物为覆晶组装件的一种选择,但该方法存在阻碍其在商业上被接受的技术问题。参见H.Lu等人."No-flowUnderfill Flip Chip Assembly-AnExperimental And Modeling Analysis",Microelec.Reliab.,42,1205-12(2001).
美国专利号7,213,739(Wilson)描述并要求保护一种用于固化包含环氧树脂的底部填充剂和在电子元件至电子设备基板的焊料组装期间用于使焊料助熔的助熔固化剂,所述助熔固化剂包含作为咪唑组分与每分子具有至少10个碳原子的羧酸组分的反应产物的盐,其中所述羧酸组分为异硬脂酸、5-正己基-2-(羧基-正庚基)环己-3-烯羧酸或它们的组合。'739专利中报道的底部填充剂为溶液,用于施加在电子组件和电子设备基板之间以助于电子元件至电子设备基板的焊料组装并提供耐机械冲击性和耐热循环性。
虽然'739专利描述了基于助熔固化剂的底部填充剂,所述助熔固化剂包含作为咪唑组分与每分子具有至少10个碳原子的羧酸组分的反应产物的盐,但已发现,该方法不满足目前商业半导体封装操作的要求。
因此,期望提供适合于高级应用的电子封装材料,如可用于堆叠裸片应用的热固性树脂组合物,特别是使用TSV互连技术的那些。
概述
本发明满足该需求。
代替如'791专利所述使用包含作为咪唑组分与每分子具有至少10个碳原子的羧酸组分的反应产物的盐的助熔固化剂,本发明使用固体酚酸作为潜伏助熔剂,其熔点在130℃至245℃的范围内。
更具体地说,本发明提供热固性树脂组合物,其组分包括环氧树脂组分、硬化剂、无机填料和固体酚酸,其熔点在130℃至245℃的范围内。
作为固体酚酸,可使用许多实例。
例如,固体有机酸可具有在140℃至230℃范围内的熔点,如在165℃至175℃范围内。
固体有机酸可具有至少一个羧基,并且在有些情况下,可具有至少一个羧基和至少一个酚羟基。
固体有机酸可被下述结构包含:
其中R为氢或C1-4烷基;R1为氢、芳基或酚基;R2为氢、羟基、C1-4烷基或O-Ra,其中Ra为C(=O)-Rb,其中Rb为C1-4烷基;R3、R4和R5各自独立地选自氢、C1-4烷基或O-Rb,其中Rb为C1-4烷基;R6为氢、羟基或O-Rb,其中Rb为C1-4烷基;和R7-R9各自独立地选自氢或C1-4烷基。
在该结构内,固体有机酸的具体实例包括下述的一种或多种:2,3-二羟苯甲酸(204℃-206℃的熔点)、丁香酸(205℃-209℃的熔点)、3,4,5-三甲氧基苯甲酸(168℃-171℃的熔点)、苔色酸(orselliaic acid)(175℃的熔点)、双酚酸(167℃-170℃的熔点)和乙酰水杨酸(140℃的熔点)。
在另一个方面中,本发明提供一种半导体装置的制造方法。该方法的步骤包括:
提供硅晶圆;
将如此限定的底部填充组合物提供到所述硅晶圆表面上以形成其层;
将焊料球放置在底部填充层上的预定位置;
提供在其表面上具有电接触垫的基板;
将所述硅晶圆与基板配合,使得所述焊料球与电接触垫对齐以形成预组装件;和
将所述预组装件暴露至足以提供助熔的升高温度条件,随后使所述底部填充组合物固化以形成组装件;和
将所述组装件切割(singulating)以形成多个半导体装置。
在一个实施方式中,所述基板为载体基板。
在另一个实施方式中,所述基板为电路板。
在又一个方面中,还提供半导体装置,其包括:
至少一个具有附着在其上的焊料球的半导体芯片;
至少一个载体基板或电路板,在其表面上具有电接触垫,至少一个半导体芯片通过所述焊料球与其电互连;和
在所述半导体芯片与所述载体基板或电路板之间的底部填充组合物。
在这些实施方式中,如上所述的底部填充组合物包括环氧树脂组分、硬化剂、无机填料和固体酚酸,所述固体酚酸的熔点在130℃至245℃的范围内。
其中,所述固体有机酸充当助熔剂,当暴露于其熔点范围内的温度条件时和当暴露于电互连和焊料时,其除去形成在焊料表面的氧化层,从而形成优质的电互连。
在这些实施方式中,电互连可通过TSV互连技术来制成,其中连接直接通过所述晶圆和/或基板形成而不是通过围绕所述半导体装置的周边如利用打线接合形成。
附图简介
图1描述了作为层设置在晶圆上的底部填充组合物的示意图,其中已经在预定位置上放置了焊料球。将附着焊料球的晶圆倒置,并以配合方式与具有焊料垫的基板对齐。
图2描述了温度和力随时间变化的示意图,以说明施加底部填充剂的晶圆在将其施加至半导体裸片并经历渐增的温度和力后的性能发展。
图3描述了在覆晶组装件中使用膜形式的本发明的组合物的方法。
图4描述了放置在预施加的底部填充剂膜上并经历升高温度条件以测量接触角值的焊料球的示意图。
图5描述了热压成型条件的示意图,其中示出随着温度增加的压力与时间。当使用Toray FC3000F热压接合机时,代表性的曲线为:拾取温度(60℃);阶段温度(stagetemperature)(140℃);待机温度(60℃);Ground温度(140℃);步骤1:头压力(Headpressure)(40N);(降)增压(0.2s);头保持时期(1.8s);头温度(140℃);和时间(2s);步骤2:头压力(40N);(降)增压(0.2s);头保持时期(3.8s);头温度(260℃);和时间(4s)。当达到头压力时,加压压力置于晶圆;4秒后出现的上曲线为机器上设定的头温度,而就在4秒后出现的上曲线的下方的曲线为所述头处测得的温度。
在一些图中,使用术语WAUF(施加底部填充剂膜的晶圆)和PAUF(预施加的底部填充剂膜)。它们在本文意图表示相同的事物,应认为是可互换的。
详细说明
如上所述,本发明的热固性树脂组合物除其他成分外包括环氧树脂组分、硬化剂、无机填料和固体酚酸,所述固体酚酸的熔点在130℃至245℃的范围内。
更具体地说,所述固体有机酸的熔点在140℃至230℃的范围内,如在165℃至175℃范围内。
所述固体有机酸可具有至少一个羧基,并且可具有至少一个羧基和至少一个酚羟基。
所述固体有机酸可被下述结构包含:
其中R为氢或C1-4烷基;R1是氢、芳基或酚基;R2为氢、羟基、C1-4烷基或O-Ra,其中Ra为C(=O)-Rb,Rb为C1-4烷基;R3、R4和R5各自独立地选自氢、C1-4烷基或O-Rb,其中Rb为C1-4烷基;R6为氢、羟基或O-Rb,其中Rb为C1-4烷基;和R7-R9各自独立地选自氢或C1-4烷基。
在该结构内,固体有机酸的具体实例包括下述的一种或多种:2,3-二羟苯甲酸(204℃-206℃的熔点)、丁香酸(205℃-209℃的熔点)、3,4,5-三甲氧基苯甲酸(168℃-171℃的熔点)、苔色酸(orselliaic acid)(175℃的熔点)、双酚酸(167℃-170℃的熔点)和乙酰水杨酸(140℃的熔点)。
所述固体有机酸可以约0.5重量%至约15重量%的量用于本发明的组合物中,如约2重量%至约10重量%。
所述固体有机酸赋予本发明的组合物潜伏性。在过去,某些添加剂对环氧基组合物的可靠性质以这种方式操作。参见例如美国专利号6,872,762(Burns)(赋予屈服点的改进)。
有利地,本发明的组合物应直到所述固体有机酸充当焊料球的助熔剂后才固化,本发明的组合物在施加后与焊料球接触,焊料球将塌陷且在焊料回流操作期间形成焊料互连。换而言之,控制本发明的组合物的固化,使得首先出现焊料球塌陷。
以这种方法,本发明的组合物可预施加到晶圆、半导体芯片或封装件,或电路板,并且可用于半导体装置的组装件中。如此预先施加,本发明的组合物被认为是潜伏性的,直到引入某种环境。因此,本发明的组合物允许通过毛细管作用在焊料回流之前如以膜形式施加到集成电路装置或基板上,而不是在回流操作中或在回流操作之后。另外,潜伏性质允许本发明的组合物储存更长时间而不会在焊料回流之前表现出性能的任何劣化。
例如,当维持在约20℃至约30℃之间的常规储存温度下时,本发明的组合物在其形成后紧接着的24小时时期内经历小于约20%的粘度增大。正因如此,本发明的组合物被认为具有至少约24小时的适用期。本发明的组合物的潜伏性质和粘度允许本发明的组合物在焊料回流操作期间达到最大温度之前和之后流动,这将空隙的出现最小化并且将底部填充剂、装置和基板之间的接合最大化。通常,本发明的组合物在约50℃至最大回流温度(例如,约170℃)之间的温度下具有在约1厘泊至约20,000厘泊范围内的粘度。
胶凝点测量可用于测定潜伏程度。通常,在固化开始时,粘性模量(损耗模量)大于弹性模量(储存模量)。随着固化进行,弹性模量和粘性模量二者均增大,但它们以不同的速率增大。最终,弹性模量等于,然后超过粘性模量。胶凝点为固化期间弹性模量等于粘性模量时的点。在达到胶凝点之前,环氧树脂组分通常表现的像液体;在达到凝胶点之后,环氧树脂组分通常表现的像固体。因为胶凝点取决于环氧树脂组分与助熔固化剂之间的反应动力学,因而其是与温度有关的。即,具体温度和达到具体温度时的速率将影响胶凝点。因此,通常,随着本发明的组合物加热的速率增加,出现胶凝点的温度也增大。
因此,选择本发明的组合物的成分,以使得与焊料的液线温度基本上同时或在其之后达到胶凝点。以这种方法,焊料球会塌陷,固体有机酸的助熔活性已经被释放,并且在半导体装置与载体基板或电路板之间建立电互连。
一旦暴露于升高温度环境,如在焊料回流操作期间,固体有机酸开始熔融并从焊料和金属垫表面展现其助熔活性(即,除去氧化物和其它杂质,并预防或至少最小化进一步形成氧化物的能力),然后催化、引发、参与和/或导致环氧树脂组分的固化。
以下给出环氧树脂组分的实例。例如,所述环氧树脂组分可包括两种或更多种不同的基于双酚的环氧树脂的组合。这些基于双酚的环氧树脂可选自双酚A、双酚F或双酚S环氧树脂,或它们的组合。另外,可使用相同类型的树脂中的两种或更多种不同双酚环氧树脂。
理想用于本文的双酚环氧树脂的可商购获得的实例包括双酚-F-型环氧树脂(如来自Nippon Kayaku,Japan的RE-404-S,和来自Dai Nippon Ink&Chemicals,Inc.的EPICLON 830(RE1801)、830S(RE1815)、830A(RE1826)和830W,和来自Resolution的RSL1738和YL-983U)和双酚-A-型环氧树脂(如来自Resolution的YL-979和980)。
可从Dai Nippon商购获得且以上指出的双酚环氧树脂以液体未稀释的表氯醇-双酚F环氧树脂销售,其具有比基于双酚A环氧树脂的常规环氧树脂低得多的粘度,并且具有与液体双酚A环氧树脂类似的物理性质。双酚F环氧树脂具有比双酚A环氧树脂更低的粘度,两种类型的环氧树脂之间所有其他性质相同,双酚F环氧树脂提供更低的粘度,由此提供快速流动的底部填充密封材料。这四种双酚F环氧树脂的EEW在165至180之间。25℃下的粘度在3,000至4,500cps之间(除RE1801以外,其粘度上限为4,000cps)。据报道,可水解的氯化物含量:RE1815和830W为200ppm,RE1826为100ppm。
可从Resolution商购获得且以上指出的双酚环氧树脂以含有低氯化物的液体环氧树脂销售。双酚A环氧树脂具有180至195的EEW(g/eq)和100-250cps的25℃下的粘度。据报道,YL-979的总氯化物含量在500-700ppm之间,YL-980的总氯化物含量在100-300ppm之间。双酚F环氧树脂具有165至180的EEW(g/eq)和30至60的25℃下的粘度。据报道,RSL-1738的总氯化物含量在500-700ppm之间,YL-983U的总氯化物含量在150-350ppm之间。
除双酚环氧树脂之外,本发明的环氧树脂组分还包括其它环氧化合物。例如,使用脂环族环氧树脂,如3,4-环氧基环己基甲基-3,4-环氧基环己基碳酸酯。也使用单官能的、双官能的或多官能的活性稀释剂以调节粘度和/或降低Tg,如丁基缩水甘油醚、甲苯基缩水甘油醚、聚乙二醇缩水甘油醚或聚丙二醇缩水甘油醚。
适合用于本文的环氧树脂之中还包括酚类化合物的聚缩水甘油衍生物,如可根据商品名EPON如EPON 828、EPON 1001、EPON 1009和EPON 1031从Resolution商购获得的那些;可根据商品名DER 331、DER 332、DER 334和DER 542从Dow Chemical Co.商购获得的那些;和可根据商品名BREN-S从Nippon Kayaku商购获得的那些。其他适合的环氧树脂包括由多元醇等制得的聚环氧化合物和苯酚-甲醛酚醛清漆的聚缩水甘油衍生物,后者例如是来自Dow Chemical的DEN 431、DEN 438和DEN 439。甲酚类似物也可根据商品名ARALDITE如ARALDITE ECN 1235、ARALDITE ECN 1273和ARALDITE ECN 1299从Ciba SpecialtyChemicals Corporation商购获得。SU-8为可从Resolution获得的双酚-A-型环氧酚醛清漆树脂。胺、氨基醇和多羧酸的聚缩水甘油加合物也可用于本发明中,其可商购获得的树脂包括来自F.I.C.Corporation的GLYAMINE 135、GLYAMINE 125和GLYAMINE115;来自CibaSpecialty Chemicals的ARALDITE MY-720、ARALDITE 0500和ARALDITE 0510;和来自Sherwin-Williams Co的PGA-X和PGA-C。
用于本文的适合的单官能环氧共反应物稀释剂包括其粘度低于环氧树脂组分的粘度的那些,通常小于约250cps。
单官能环氧共反应物稀释剂应具有含有约6至约28个碳原子的烷基的环氧基,其实例包括C6-28烷基缩水甘油醚、C6-28脂肪酸缩水甘油酯和C6-28烷基酚缩水甘油醚。
在包括此类单官能环氧共反应物稀释剂的情况下,所述共反应物稀释剂应以高达约5重量%至约15重量%,如约8重量%至约12重量%的量使用,基于所述组合物的总重量。
所述环氧组分应以范围为约10重量%至约95重量%、期望约20重量%至约80重量%、如约60重量%的量存在于所述组合物中。
作为硬化剂,可使用氰酸酯或芳族胺。氰酸酯的实例包括在每个分子上具有至少一个氰酸酯基的芳基化合物,其通常可由Ar(OCN)m表示,其中m为2至5的整数和Ar为芳基。芳基Ar应含有至少6个碳原子,并且可衍生自例如芳烃,如苯、联苯、萘、蒽、芘等。芳基Ar也可衍生自其中至少两个芳环通过桥连基团彼此连接的多核芳羟。还包括衍生自酚醛清漆型酚醛树脂的芳基-即这些酚醛树脂的氰酸酯。芳基Ar还可含有其他连接环的非反应性取代基。
此类氰酸酯的实例包括,例如,1,3-二氰酰基苯;1,4-二氰酰基苯;1,3,5-三氰酰基苯;1,3-、1,4-、1,6-、1,8-、2,6-或2,7-二氰酰基萘;1,3,6-三氰酰基萘;4,4'-二氰酰基-联苯;双(4-氰酰苯基)甲烷和3,3',5,5'-四甲基双(4-氰酰苯基)甲烷;2,2-双(3,5-二氯-4-氰酰苯基)丙烷;2,2-双(3,5-二溴-4-二氰酰苯基)丙烷;双(4-氰酰苯基)醚;双(4-氰酰苯基)硫醚;2,2-双(4-氰酰苯基)丙烷;三(4-氰酰苯基)-亚磷酸酯;三(4-氰酰苯基)磷酸酯;双(3-氯-4-氰酰苯基)甲烷;氰化酚醛清漆;1,3-双[4-氰酰苯基-1-(甲基亚乙基)]苯和氰化双酚封端的聚碳酸酯或其它热塑性低聚物。
其他氰酸酯包括美国专利号4,477,629和4,528,366中公开的氰酸酯,其公开内容在此通过引用明确结合到本文中;英国专利号1,305,702中公开的氰酸酯,和国际专利公开WO 85/02184中公开的氰酸酯,其公开内容在此通过引用明确结合到本文中。当然,本文也期望采用在本发明的组合物的咪唑组分内的这些氰酸酯的组合。
用于本文的特别理想的氰酸酯可从Ciba Specialty Chemicals,Tarrytown,NewYork根据商品名AROCY 366(1,3-双[4-氰酰苯基-1-(甲基亚乙基)]苯)商购获得。四种其他理想的"AROCY"氰酸酯的结构为
芳族胺的实例包括3-氨基苯基砜、4-氨基苯砜和4,4-亚甲基双(邻乙基苯胺),其中后者可在市面上已知为Acetocure MBOEA。
所述硬化剂应以所述组合物的10-50重量%的量存在。
作为无机填料,可潜在使用许多材料。例如,无机填料可以是有用的,特别是在待配对和密封的半导体芯片与基板之间的热膨胀系数("CTE")更紧密匹配的情况下。无机填料影响CTE,因此可用于降低已固化材料的热膨胀,由此减少翘曲。无机填料组分可通常包括增强性二氧化硅,如熔合球形二氧化硅,并且可以是未处理的或处理以改变它们表面的化学性质的。然而,无机填料组分应包括具有0.1-50微米范围的平均粒径分布的颗粒。此类颗粒的可商购获得的实例由日本的Tatsumori或Denka出售。另外,可添加纳米尺寸的二氧化硅粉,如根据商品名NANOPOX由Nanoresins,Germany销售的那些。NANOPOX填料为以至多约50重量%的浓度在环氧树脂中的单分散的二氧化硅填料分散体,其可从Nanoresins,Germany获得。NANOPOX填料通常被认为具有约5nm至约80nm的粒径。
Nanoresins也制造NANOPOX E商标名称的材料。例如,Nanoresins报道NANOPOX E-品牌产品能够使难以别的方式密封的电子组件完全浸渍,并提供大范围的机械和热性质如降低的收缩性和热膨胀、断裂韧性和模量。在下表1中,Nanoresin提供四种所注明的NANOPOX E产品的信息:
表1
1 3,4-环氧基环己基甲基-3,4-环氧基环己基碳酸酯
Nanoresins报道,通过使用NANOPOX E-品牌产品,可显著改进环氧配制物的重要性质。例如:
·与常规的增强填料相比,更低的配制物粘度
·无沉降
·断裂韧性、耐冲击性和模量的增大
·改进的耐划痕性和耐磨性
·收缩性和热膨胀的降低
·许多期望的性质如热稳定性、耐化学性、玻璃化转变温度、耐气候性和介电性质的改进,或至少无负面影响。
将NANOPOX E用于其中这些性质的改进是期望的或必需的应用中,而不会由于粘度过度增大而损害可加工性(由气相法二氧化硅可知)。应用实例为封装材料和涂料。重要的是,强调NANOPOX E由于粒径小且不存在团块而具有优异的浸渍性质。这也能够使难以别的方式密封的电子组件完全浸渍。
根据制造商,NANOPOX E-品牌产品为环氧树脂基质中的胶态二氧化硅溶胶。根据制造商,分散相由具有低于50nm直径且极其窄的粒径分布的表面改性的球状SiO2纳米颗粒组成。这些球体(尺寸仅有几纳米)在树脂基质中无团块地分布。根据制造商,这会产生非常低粘度的SiO2含量为至多40重量%的分散体。如制造商所报道,所述纳米颗粒是由硅酸钠水溶液化学合成的。与其中粉末填料使用溶解器或使用高剪切能量的其他设备分散的工艺不同,在该工艺中,不破坏粘结剂。
用作填料组分的其他理想材料包括由以下构成或包含以下的那些:氧化铝、氮化硅、氮化铝、二氧化硅涂布的氮化铝、氮化硼和它们的组合。
当使用时,填料组分应以所述组合物的约10-约80重量%、如约12-约60重量%、期望在约15-约35重量%范围内的量使用。
本发明的底部填充组合物可以可分散或可流动形式或以膜形式使用。当以膜形式使用时,所述组合物可在溶剂中稀释,然后流延到随后使用的载体基板上,或直接流延到电路板或半导体裸片上。当然,溶剂将闪蒸出或蒸发,以留下B-阶段膜。或者,本发明的组合物可层压到支撑胶带,此后所述组合物将被B-阶段化。B-阶段化是指将组合物加热至足以闪蒸或蒸发溶剂但低于导致所述组合物的各成分反应的程度。在这种情况下,使所述组合物通过去除溶剂来干燥(即,非粘性的)。在其它情况下,B-阶段化通过所述组合物的部分固化或设置所述组合物以使其达到非粘性状态来实现。
为了制备膜形式的本发明的组合物,需要考虑膜厚度。当膜厚度太大时,可能难以缩小电子装置的尺寸,因为装置可能具有超过胶层(bondlines)的过量的底部填充剂膜。当膜厚度太小时,形成充分的粘结强度可能存在挑战,并且无法实现意图由底部填充剂吸收的应力冲击,因为所述组合物未充分填充半导体裸片与电路板之间的空间。因此,膜厚度应该在约5μm至约100μm之间。
在施加到基板上后的底部填充剂厚度应视为与焊料球的直径有关。例如,在一些实施方式中,当放置在焊料球上时,膜厚度为焊料球高度的约50%至约95%,可能是理想的,而在其它实施方式中,膜厚度为焊料球高度的约70%至约170%,可能是理想的。
如所述,所述底部填充组合物可以是膜形式,并且在如此形成膜时,将所述底部填充组合物溶解或分散在溶剂中,然后施加到支撑基板上;然后,通过除去溶剂,使所述底部填充组合物B-阶段化。
所述支撑基板可以是硅晶圆。所述支撑结构也可以是由塑料膜制成的离型衬底,如聚对苯二甲酸乙二醇酯膜、聚四氟乙烯膜、聚乙烯膜、聚丙烯膜和聚甲基戊烯膜。所述支撑结构也可以是载体基板。
用于稀释本发明的组合物以施加到支撑基板上的溶剂应具有足够低以允许其容易去除且足够高以便仅在需要时闪蒸或蒸发的沸点。具有较低沸点的具体溶剂包括甲醇、乙醇、2-甲氧基乙醇、2-乙氧基乙醇、2-丁氧基乙醇、甲基乙基酮、丙酮、甲基异丁基酮、甲苯和二甲苯。当使用具有较高沸点的溶剂时,可以改进组合物涂布效率,所述溶剂的实例包括二甲基乙酰胺、二甲基甲酰胺、N-甲基吡咯烷酮和环己酮。这些溶剂可单独或组合使用。
常规方法如刮刀涂布法、辊涂法、喷涂法、凹版涂布法、棒涂法、幕帘涂布法、模版涂布法等,可用于将所述底部填充组合物施加至基板。
B-阶段化条件可根据用于制备组合物的具体成分和要制备的膜的厚度、溶剂等来调节。例如,将组合物暴露以除去溶剂的温度应在70℃至150℃之间,如90℃至130℃,且持续0.5分钟至10分钟的时间段。B-阶段化可通过将组合物保持在静电干燥烘箱中一定时间,或通过将其放置在直列的烘箱、传送带型炉等中来进行。
以膜形式,本发明的组合物可用作助熔底部填充组合物,其已经形成于或可预施加到半导体芯片、载体基板或电路板中的一种或多种上,能够填充窄公差(narrowtolerances)的底部填充空间,并且能够实现控制填角高度以允许更精确的裸片堆叠。
针对焊料球选择的特定合金应与用于形成基板的导线的金属相容(即,在通过助熔剂从金属去除氧化物时,焊料在回流期间润湿导线以形成电互连)。用于焊料球的合金的选择可取决于环境和/或工人安全问题(例如,导致使用无铅焊料)或加工温度条件(例如,以确保半导体封装件或电路板在回流期间无劣化)。
焊料球应在底部填充剂不劣化的温度下熔融并因此塌陷。例如,通常期望焊料在小于约300℃的温度下熔融,如在约180℃至约260℃之间,期望在约220℃至约260℃之间。针对焊料球选择的合金应在高于熔融温度约10℃至约40℃之间的温度下是稳定的(例如,其不蒸发),因为典型的回流操作导致焊料达到该温度。例如,当回流具有较高熔融温度如约210℃至约240℃的焊料时,回流温度通常在约220℃至约280℃之间。类似地,当回流具有较低熔融温度如约160℃至约190℃的焊料时,回流温度较低,通常在约170℃至约230℃之间。
本发明的组合物可与任何含铅的焊料(例如,Sn63Pb37和Sn62Pb36Ag2)或基本上不含铅的焊料一起使用。与含铅的焊料相比,此类不含Pb的焊料倾向于具有更高的液线温度和/或要求更长的回流持续时间。不含Pb的焊料的实例包括Au80Sn20、Sn96.2Ag2.5Cu0.8Sb0.5、Sn65Ag25Sb10、Sn96.5Ag3.5、Sn95.5Ag3.8Cu0.7、Sn96.5Ag3Cu0.5、Sn95.5Ag4Cu0.5、Sn93.6Ag4.7Cu1.7、Sn42Bi58、Sn90Bi9.5Cu0.5、Sn99.3Cu0.7、Sn99Cu1、Sn97Cu3、Sn87.1In10.5Ag2Sb0.4、Sn77.2In20Ag2.8、Sn63.6In8.8Zn27.6、Sn97Sb3和Sn95Sb5.
所述底部填充剂可覆盖基板和/或晶圆上的接触垫和/或焊料球的至少一部分,以赋予一定程度的针对金属的氧化、污染和机械损伤的保护。所述基板和晶圆可放在一起,且接触垫和焊料球使用拾取和放置机器对齐。参见例如图2。如此,通常将底部填充组合物在晶圆重叠的基板表面的一部分上基本均匀地移置且压紧。然后,基板和晶圆(在放置在基板上后)通常通过具有单独加热控制的多区域烘箱,以允许适合于具体焊料的加热曲线。在回流期间,固体有机酸熔融并向金属表面提供助熔活性,由此减少存在于焊料球中或上或者接触金属垫表面上的氧化物。然后,焊料可在基板与晶圆之间形成电互连。所述底部填充剂流动,并且随着温度增加至焊料液相线或更高时,底部填充剂固化。在回流循环结束时冷却至室温时,焊料硬化,由此形成机械和电互连,并且固化的底部填充剂向结构提供稳定性。
或者,覆晶接合机可用于施加热和压力,而不是回流烘箱的加热。使用覆晶接合机允许将覆晶组装至其上已经安装组件的电路板。
实施例
下表1中列出样品1和2号。提供样品1号用于比较的目的;样品2号在本发明的范围内。
表1
i.#固体三缩水甘油环氧树脂,EEW 150-170,软化点=90-100℃
ii.$双酚F环氧树脂,EEW165-180,低粘度液体
iii.固体甲酚酚醛清漆环氧树脂,EEW 200-215,软化点=64-72℃
iv.!用甲基丙烯酰基硅烷表面处理的纳米二氧化硅
v.@咪唑
所述组合物各自通过使用机械混合器将环氧树脂成分混合在一起直到观察到溶解至均匀的溶液来制备。然后,添加增韧剂和无机填料,并在室温下继续混合约30-60分钟的时间段,直到获得具有基本上均匀稠度的粘性糊状物。最后添加固体有机酸。然后,将如此形成的组合物转移到容器中,直到准备使用。
然后,通过以约1:1的比例使用甲基乙基酮作为溶剂稀释这些组合物,将所述组合物转化成膜形式的B-阶段底部填充组合物。然后,将稀释的组合物以薄(约5-100μm,如约15-50μm)膜形式分配到离型衬底上,然后将薄膜暴露至约80-110℃的升高温度条件持续约1-约5分钟的时间,以去除溶剂。
在实践中,通过暴露至热压成型条件如图5中描述的那些,使用膜形式的B-阶段底部填充组合物。
为了评价如此形式的B-阶段助熔底部填充组合物的性能,使用焊料球在基板上的润湿性作为评价助熔有效性的措施。在此,参考图4,将预施加的底部填充膜层压到涂布Pd的Ni基板上。一个膜是根据本发明的,并选择一个不使用固体有机酸制成的膜作为对照用于比较目的。将单个500μm直径共熔体SAC(Sn96.5Ag3.0Cu0.5)焊料球放置到膜顶部。将球压成膜,以确保与Ni基板接触。然后,将如此形成的组装件放置到热板上,热板的温度设置为260℃。在该温度下10秒时间后,检查球在基板表面上的润湿行为,其通过接触角测定量化。对照显示150℃的接触角,而本发明的预施加底部填充膜显示45℃的接触角。接触角测定显示,使用本发明的底部填充组合物,获得在基板上更好的焊料润湿性,因为大的接触角(如大于约90℃)表示组合物的润湿性差,其导致差的接合形成和互连品质。

Claims (21)

1.热固性树脂组合物,其包含:
环氧树脂组分;
硬化剂;
填料组分;和
具有在130℃至245℃范围内的熔点的固体有机酸。
2.权利要求1所述的组合物,其中所述固体有机酸具有在140℃至230℃范围内的熔点。
3.权利要求1所述的组合物,其中所述固体有机酸具有在165℃至175℃范围内的熔点。
4.权利要求1所述的组合物,其中所述固体有机酸具有至少一个羧基。
5.权利要求1所述的组合物,其中所述固体有机酸具有至少一个羧基和至少一个酚羟基。
6.权利要求1所述的组合物,其中所述固体有机酸包括在下述结构中:
其中R为氢或C1-4烷基;R1是氢、芳基或酚基;R2为氢、羟基、C1-4烷基或O-Ra,其中Ra为C(=O)-Rb,其中Rb为C1-4烷基;R3、R4和R5各自独立地选自氢、C1-4烷基或O-Rb,其中Rb为C1-4烷基;R6为氢、羟基或O-Rb,其中Rb为C1-4烷基;和R7-R9各自独立地选自氢或C1-4烷基。
7.权利要求1所述的组合物,其中所述固体有机酸包括2,3-二羟苯甲酸、丁香酸、3,4,5-三甲氧基苯甲酸、苔色酸、双酚酸和乙酰水杨酸中的一种或多种。
8.权利要求1所述的组合物,其中所述组合物在高于约130℃的温度下固化。
9.权利要求1所述的组合物,其中所述组合物在高于约260℃的温度下固化。
10.权利要求1所述的组合物,其是膜形式。
11.权利要求10所述的组合物,其是配置在离型衬底上的膜形式。
12.权利要求10所述的组合物,其是配置在半导体芯片、载体基板或电路板中的一种或多种上的膜形式。
13.权利要求1所述的组合物,其在热压接合条件下固化。
14.组装件,其包括:
热固性树脂组合物,包含:
环氧树脂组分;
硬化剂;
填料组分;和
具有在130℃至245℃范围内的熔点的固体有机酸,
所述热固性树脂组合物为配置在下述两者之间的膜形式:
具有有源侧的硅晶圆,所述有源侧具有由其突出的焊料凸点,和
半导体裸片,具有附着其上并与所述硅晶圆上的焊料凸点对齐的焊料球。
15.权利要求14所述的组装件,其中所述固体有机酸用作助熔剂用于焊料球。
16.权利要求14所述的组装件,其中所述固体有机酸用作催化剂用于固化所述环氧树脂组分。
17.权利要求14所述的组装件,其中所述焊料球由Sn-Pb焊料合金、不含Pb的焊料合金和它们的组合构成。
18.权利要求14所述的组装件,其中所述组合物在回流温度下与所述焊料球接触,所述组合物润湿所述焊料球以形成小于90℃的接触角。
19.权利要求14所述的组装件,其中所述焊料球由选自由以下组成的组的成员构成:Sn63:Pb37、Pb95:Sn5、Sn:Ag3.5:Cu0.5和Sn:Ag3.3:Cu0.7。
20.半导体装置的制造方法,其步骤包括:
提供硅晶圆;
将根据权利要求1的底部填充组合物提供到所述硅晶圆表面上,以形成其层;
将焊料球放置在底部填充层上的预定位置;
提供在其表面上具有电接触垫的基板;
将所述硅晶圆与基板配合,使得所述焊料球与电接触垫对齐以形成预组装件;
将所述预组装件暴露至足以提供助熔的升高温度条件,随后使所述底部填充组合物固化以形成组装件;和
将所述组装件切割以形成多个半导体装置。
21.半导体装置,其包括:
至少一个具有附着在其上的焊料球的半导体芯片;
至少一个载体基板或电路板,在其表面上具有电接触垫,至少一个半导体芯片通过所述焊料球与其电互连;和
在所述半导体芯片与所述载体基板或电路板之间的底部填充组合物。
CN201680057055.3A 2015-08-19 2016-08-15 助熔底部填充组合物 Pending CN108137786A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562206939P 2015-08-19 2015-08-19
US62/206,939 2015-08-19
PCT/US2016/047004 WO2017031043A1 (en) 2015-08-19 2016-08-15 Fluxing underfill compositions

Publications (1)

Publication Number Publication Date
CN108137786A true CN108137786A (zh) 2018-06-08

Family

ID=58051832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680057055.3A Pending CN108137786A (zh) 2015-08-19 2016-08-15 助熔底部填充组合物

Country Status (7)

Country Link
US (1) US10283378B2 (zh)
EP (1) EP3337842A4 (zh)
JP (1) JP6785841B2 (zh)
KR (1) KR102720665B1 (zh)
CN (1) CN108137786A (zh)
TW (1) TWI714621B (zh)
WO (1) WO2017031043A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11049805B2 (en) 2018-06-29 2021-06-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060217499A1 (en) * 2005-03-25 2006-09-28 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
JP4112306B2 (ja) * 2002-08-08 2008-07-02 住友ベークライト株式会社 液状封止樹脂組成物及びこれを用いた半導体装置並びに半導体装置の製造方法
US20090321948A1 (en) * 2008-06-27 2009-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method for stacking devices
US20130344627A1 (en) * 2012-06-20 2013-12-26 Samsung Electronics Co., Ltd. Method of fabricating wafer level package
JP2014019813A (ja) * 2012-07-20 2014-02-03 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物、接着フィルム、ダイシングテープ一体型接着フィルム、半導体装置、多層回路基板および電子部品
WO2014070694A1 (en) * 2012-10-31 2014-05-08 3M Innovative Properties Company Underfill composition and semiconductor device and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528366A (en) 1982-09-28 1985-07-09 The Dow Chemical Company Production of polytriazines from aromatic polycyanates with cobalt salt of a carboxylic acid as catalyst
US4477629A (en) 1983-07-27 1984-10-16 The Dow Chemical Company Cyanate-containing polymers
US4751323A (en) 1983-11-16 1988-06-14 The Dow Chemical Company Novel polyaromatic cyanates
CN1165592C (zh) * 1998-01-16 2004-09-08 洛克泰特(R&D)有限公司 可固化的环氧基组合物
US6653371B1 (en) * 1998-01-16 2003-11-25 Barry E. Burns One-part curable composition of polyepoxide, polythiol, latent hardener and solid organic acid
US6872762B2 (en) * 2000-07-13 2005-03-29 Loctite (R&D) Limited Epoxy resin composition with solid organic acid
US7213739B2 (en) 2004-04-02 2007-05-08 Fry's Metals, Inc. Underfill fluxing curative
US7247683B2 (en) 2004-08-05 2007-07-24 Fry's Metals, Inc. Low voiding no flow fluxing underfill for electronic devices
TWI414580B (zh) * 2006-10-31 2013-11-11 Sumitomo Bakelite Co 黏著帶及使用該黏著帶而成之半導體裝置
JP2011140617A (ja) * 2009-12-07 2011-07-21 Hitachi Chem Co Ltd アンダーフィル形成用接着剤組成物、アンダーフィル形成用接着剤シート及び半導体装置の製造方法
GB201305702D0 (en) 2013-03-28 2013-05-15 Rolls Royce Plc Seal segment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112306B2 (ja) * 2002-08-08 2008-07-02 住友ベークライト株式会社 液状封止樹脂組成物及びこれを用いた半導体装置並びに半導体装置の製造方法
US20060217499A1 (en) * 2005-03-25 2006-09-28 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
US20090321948A1 (en) * 2008-06-27 2009-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method for stacking devices
US20130344627A1 (en) * 2012-06-20 2013-12-26 Samsung Electronics Co., Ltd. Method of fabricating wafer level package
JP2014019813A (ja) * 2012-07-20 2014-02-03 Sumitomo Bakelite Co Ltd 熱硬化性樹脂組成物、接着フィルム、ダイシングテープ一体型接着フィルム、半導体装置、多層回路基板および電子部品
WO2014070694A1 (en) * 2012-10-31 2014-05-08 3M Innovative Properties Company Underfill composition and semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
TWI714621B (zh) 2021-01-01
KR20180042276A (ko) 2018-04-25
US10283378B2 (en) 2019-05-07
JP2018530641A (ja) 2018-10-18
EP3337842A4 (en) 2019-06-26
KR102720665B1 (ko) 2024-10-23
JP6785841B2 (ja) 2020-11-18
TW201718687A (zh) 2017-06-01
WO2017031043A1 (en) 2017-02-23
EP3337842A1 (en) 2018-06-27
US20180350631A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US7047633B2 (en) Method of using pre-applied underfill encapsulant
EP0929592B1 (en) Thermosetting resin compositions useful as underfill sealants
JP4299140B2 (ja) ウエハレベル用の二重硬化b−ステージ化可能なアンダーフィル
US6458472B1 (en) Fluxing underfill compositions
US20020089067A1 (en) Wafer applied fluxing and underfill material, and layered electronic assemblies manufactured therewith
JP4481651B2 (ja) 非フローアンダーフィル組成物
TWI603439B (zh) 底部塡充組合物及半導體器件及其製造方法
US6492438B1 (en) Electrically connectable adhesive agent for semiconductor
US8698320B2 (en) Curable resin compositions useful as underfill sealants for use with low-k dielectric-containing semiconductor devices
JP2005516090A5 (zh)
TW201346000A (zh) 半導體裝置及其製造方法
JP2010171118A (ja) 実装部品の表面実装方法、その方法を用いて得られる実装部品構造体、及びその方法に用いられるアンダーフィル用液状エポキシ樹脂組成物
US7004375B2 (en) Pre-applied fluxing underfill composition having pressure sensitive adhesive properties
CN108137786A (zh) 助熔底部填充组合物
JP7249549B2 (ja) 樹脂組成物およびこれを含む異方性導電フィルム、並びに電子装置
KR20230017861A (ko) 저-갭 언더필 적용을 위한 플럭스-상용성 에폭시-무수물 접착제 조성물
TWI848023B (zh) 補強用樹脂組成物、電子零件、電子零件之製造方法、安裝結構體及安裝結構體之製造方法
MXPA99002815A (en) Thermosetting resin compositions useful as underfill sealants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180608

RJ01 Rejection of invention patent application after publication