[go: up one dir, main page]

CN108122761A - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN108122761A
CN108122761A CN201611085957.6A CN201611085957A CN108122761A CN 108122761 A CN108122761 A CN 108122761A CN 201611085957 A CN201611085957 A CN 201611085957A CN 108122761 A CN108122761 A CN 108122761A
Authority
CN
China
Prior art keywords
sidewall
forming
gate structure
precursor
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611085957.6A
Other languages
Chinese (zh)
Other versions
CN108122761B (en
Inventor
张海洋
任佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201611085957.6A priority Critical patent/CN108122761B/en
Publication of CN108122761A publication Critical patent/CN108122761A/en
Application granted granted Critical
Publication of CN108122761B publication Critical patent/CN108122761B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/021Manufacture or treatment using multiple gate spacer layers, e.g. bilayered sidewall spacers

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体结构及其形成方法,形成方法包括:提供基底,所述基底包括衬底和位于所述衬底上的鳍部;形成栅极结构;形成源漏掺杂区;在所述栅极结构朝向所述源漏掺杂区的侧壁上形成前驱侧墙;形成位于所述前驱侧墙侧壁的伪侧墙;形成介质层;对所述前驱侧墙进行减薄处理,露出所述栅极结构的部分侧壁,剩余的所述前驱侧墙用于形成拐角侧墙;去除所述伪侧墙,在所述栅极结构和所述介质层之间形成真空侧墙。本发明技术方有利于改善晶体管导通电阻和导通电流性能退化问题,有利于提高所形成半导体结构的性能。

A semiconductor structure and its forming method, the forming method comprising: providing a base, the base including a substrate and a fin located on the substrate; forming a gate structure; forming a source-drain doped region; forming a precursor spacer on the sidewall of the structure facing the source-drain doping region; forming a dummy sidewall located on the sidewall of the precursor spacer; forming a dielectric layer; performing thinning treatment on the precursor spacer to expose the A part of the sidewall of the gate structure, and the remaining precursor sidewall is used to form a corner sidewall; the dummy sidewall is removed to form a vacuum sidewall between the gate structure and the dielectric layer. The technical side of the invention is beneficial to improving the performance degradation of the on-resistance and on-current performance of the transistor, and is beneficial to improving the performance of the formed semiconductor structure.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明涉及半导体制造领域,特别涉及一种半导体结构及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor structure and a forming method thereof.

背景技术Background technique

随着半导体制造技术的飞速发展,半导体器件朝着更高的元件密度,以及更高集成度的方向发展。晶体管作为最基本的半导体器件目前正被广泛应用,因此随着半导体器件的元件密度和集成度的提高,晶体管的尺寸也越来越小。小尺寸下的短沟道效应和栅极漏电流的问题,使晶体管的性能变坏,因此通过缩小传统晶体管的物理尺寸来提高性能面临一系列的困难。With the rapid development of semiconductor manufacturing technology, semiconductor devices are developing towards higher component density and higher integration. Transistors, as the most basic semiconductor devices, are currently being widely used. Therefore, as the component density and integration of semiconductor devices increase, the size of transistors is also getting smaller and smaller. The problems of short channel effect and gate leakage current in small size make the performance of transistor worse, so it faces a series of difficulties to improve performance by shrinking the physical size of traditional transistors.

Ⅲ-Ⅴ族半导体材料(例如,InGaAs)由于其出色的电子输运性能,成为当前研究的热点。为了解决传统半导体器件物理尺寸难以进一步减小的困难,现有技术提出了利用Ⅲ-Ⅴ族半导体材料形成晶体管沟道的技术方案,以改善晶体管的性能。Group III-V semiconductor materials (eg, InGaAs) have become a hotspot of current research due to their excellent electron transport properties. In order to solve the difficulty that the physical size of traditional semiconductor devices cannot be further reduced, the prior art proposes a technical solution of using III-V semiconductor materials to form transistor channels, so as to improve the performance of transistors.

但是现有技术中,Ⅲ-Ⅴ族半导体材料作为沟道材料的半导体结构性能依旧有待提高。However, in the prior art, the semiconductor structure performance of III-V semiconductor materials as channel materials still needs to be improved.

发明内容Contents of the invention

本发明解决的问题是提供一种半导体结构及其形成方法,以改善半导体结构的性能。The problem to be solved by the present invention is to provide a semiconductor structure and its forming method to improve the performance of the semiconductor structure.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising:

提供基底,所述基底包括衬底和位于所述衬底上的鳍部;形成位于所述鳍部上的栅极结构,所述栅极结构横跨所述鳍部且覆盖所述鳍部部分顶部和部分侧壁的表面;在所述栅极结构两侧鳍部内形成源漏掺杂区;在所述栅极结构朝向所述源漏掺杂区的侧壁上形成前驱侧墙;形成位于所述前驱侧墙侧壁的伪侧墙;在所述栅极结构、所述前驱侧墙以及所述伪侧墙露出的基底上形成介质层,所述介质层露出所述栅极结构、所述前驱侧墙以及所述伪侧墙;对所述前驱侧墙进行减薄处理,露出所述栅极结构的部分侧壁,剩余的所述前驱侧墙用于形成拐角侧墙;去除所述伪侧墙,在所述栅极结构和所述介质层之间形成真空侧墙。providing a base, the base including a substrate and a fin on the substrate; forming a gate structure on the fin, the gate structure spanning the fin and covering a portion of the fin The surface of the top and part of the sidewall; forming source-drain doped regions in the fins on both sides of the gate structure; forming a precursor sidewall on the sidewall of the gate structure facing the source-drain doped region; forming a Dummy sidewalls of the precursor sidewalls; forming a dielectric layer on the substrate exposed by the gate structure, the precursor spacers, and the dummy spacers, the dielectric layer exposing the gate structure, the The precursor sidewall and the dummy sidewall; the precursor sidewall is thinned to expose part of the sidewall of the gate structure, and the remaining precursor sidewall is used to form a corner sidewall; remove the A dummy spacer, forming a vacuum spacer between the gate structure and the dielectric layer.

可选的,形成所述前驱侧墙的步骤中,所述前驱侧墙的材料为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼中的一种或多种。Optionally, in the step of forming the precursor sidewall, the material of the precursor sidewall is silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride or One or more of boron carbonitride.

可选的,形成所述前驱侧墙的步骤包括:在所述栅极结构和所述基底上形成侧墙材料层;去除所述栅极结构上以及所述基底上的侧墙材料层,形成位于所述栅极结构侧壁的前驱侧墙。Optionally, the step of forming the precursor spacer includes: forming a sidewall material layer on the gate structure and the substrate; removing the spacer material layer on the gate structure and the substrate, forming A precursor spacer located on a sidewall of the gate structure.

可选的,去除所述栅极结构上以及所述基底上侧墙材料层的步骤包括:对所述栅极结构上以及所述基底上侧墙材料层进行第一等离子体处理;通过湿法的方式去除经等离子体处理的部分材料,形成所述前驱侧墙。Optionally, the step of removing the spacer material layer on the gate structure and the substrate includes: performing a first plasma treatment on the gate structure and the spacer material layer on the substrate; Part of the material treated by plasma is removed in a manner to form the precursor sidewall.

可选的,形成前驱侧墙之后,形成所述伪侧墙之前,所述形成方法还包括:对远离所述衬底的部分前驱侧墙进行第二等离子体处理;对所述前驱侧墙进行减薄处理的步骤包括:通过湿法的方式去除经等离子体处理的部分材料。Optionally, after forming the precursor spacer and before forming the dummy spacer, the forming method further includes: performing a second plasma treatment on a part of the precursor spacer far away from the substrate; performing a second plasma treatment on the precursor spacer The step of thinning treatment includes: removing part of the material treated by plasma by wet method.

可选的,形成所述前驱侧墙的步骤中,所述前驱侧墙的材料为氮化硅;所述第一等离子体处理的步骤和所述第二等离子体处理的步骤中的一个或两个步骤包括:采用H2或He等离子体进行离子体处理。Optionally, in the step of forming the precursor spacer, the material of the precursor spacer is silicon nitride; one or both of the step of the first plasma treatment and the step of the second plasma treatment The first step includes: plasma treatment with H2 or He plasma.

可选的,采用H2或He等离子体进行离子体处理的步骤中,工艺参数包括:工艺气体压强在2mTorr到100mTorr范围内,H2或He流量在50sccm到500sccm范围内,工艺温度在0℃到100℃范围内。Optionally, in the step of plasma treatment using H2 or He plasma, the process parameters include: the process gas pressure is in the range of 2mTorr to 100mTorr, the flow rate of H2 or He is in the range of 50sccm to 500sccm, and the process temperature is 0°C to the range of 100°C.

可选的,形成所述前驱侧墙的步骤中,所述前驱侧墙的材料为氮化硅;通过湿法的方式去除经等离子体处理的部分材料的步骤包括:采用氢氟酸去除经等离子体处理的部分材料。Optionally, in the step of forming the precursor sidewall, the material of the precursor sidewall is silicon nitride; Part of the material processed by the body.

可选的,形成所述真空侧墙的步骤中,沿垂直所述基底表面的方向上,所述真空侧墙尺寸与所述拐角侧墙尺寸之比在5:4到5:1范围内。Optionally, in the step of forming the vacuum sidewall, along the direction perpendicular to the surface of the substrate, the ratio of the size of the vacuum sidewall to the size of the corner sidewall is in the range of 5:4 to 5:1.

可选的,形成源漏掺杂区的步骤中,沿所述鳍部延伸方向,所述源漏掺杂区之间的距离大于所述栅极结构的尺寸;形成前驱侧墙的步骤包括:在所述源漏掺杂区和所述栅极结构之间的鳍部上形成所述前驱侧墙。Optionally, in the step of forming the doped source and drain regions, along the extending direction of the fin, the distance between the doped source and drain regions is greater than the size of the gate structure; the step of forming a precursor spacer includes: The precursor spacer is formed on the fin between the source-drain doped region and the gate structure.

可选的,形成所述伪侧墙的步骤中,所述伪侧墙的材料为多晶硅。Optionally, in the step of forming the dummy sidewall, the material of the dummy sidewall is polysilicon.

可选的,去除所述伪侧墙的步骤包括:通过化学扩散刻蚀的方式去除所述伪侧墙。Optionally, the step of removing the dummy sidewall includes: removing the dummy sidewall by means of chemical diffusion etching.

可选的,通过化学扩散刻蚀的方式去除所述伪侧墙的步骤包括:采用NH3去除所述伪侧墙。Optionally, the step of removing the dummy sidewall by chemical diffusion etching includes: using NH 3 to remove the dummy sidewall.

可选的,提供所述基底的步骤中,所述鳍部的材料为Ⅲ-Ⅴ族半导体材料。Optionally, in the step of providing the substrate, the material of the fin is a III-V semiconductor material.

可选的,提供所述基底的步骤中,所述鳍部的材料为InGaAs。Optionally, in the step of providing the base, the material of the fins is InGaAs.

相应的,本发明还提供一种半导体结构,包括:Correspondingly, the present invention also provides a semiconductor structure, including:

基底,所述基底包括衬底和位于所述衬底上的鳍部;位于所述基底上的介质层;位于所述介质层内鳍部上的栅极结构,所述栅极结构横跨所述鳍部且覆盖所述鳍部部分顶部和部分侧壁的表面;位于所述栅极结构两侧鳍部内的源漏掺杂区;位于所述栅极结构朝向所述源漏掺杂区侧壁上的拐角侧墙;位于所述栅极结构和所述介质层之间的真空侧墙。A base, the base includes a substrate and a fin on the substrate; a dielectric layer on the base; a gate structure on the fin in the dielectric layer, the gate structure spans the The fin and covers the surface of part of the top and part of the side wall of the fin; the source and drain doped regions located in the fins on both sides of the gate structure; located on the side of the gate structure facing the source and drain doped regions corner spacers on the walls; vacuum spacers between the gate structure and the dielectric layer.

可选的,所述拐角侧墙的材料为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼中的一种或多种。Optionally, the material of the corner sidewall is one or more of silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride or boron carbonitride kind.

可选的,沿垂直所述基底表面的方向上,所述真空侧墙尺寸与所述拐角侧墙尺寸之比在5:4到5:1范围内。Optionally, along a direction perpendicular to the surface of the substrate, the ratio of the dimension of the vacuum sidewall to the dimension of the corner sidewall is in the range of 5:4 to 5:1.

可选的,所述鳍部的材料为Ⅲ-Ⅴ族半导体材料。Optionally, the material of the fin is a III-V semiconductor material.

可选的,所述源漏掺杂区之间的距离大于所述栅极结构的尺寸;所述拐角侧墙位于在所述源漏掺杂区和所述栅极结构之间的鳍部上。Optionally, the distance between the source-drain doped region is greater than the size of the gate structure; the corner sidewall is located on the fin between the source-drain doped region and the gate structure .

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明技术方案通过在栅极结构朝向源漏掺杂区的侧壁上形成拐角侧墙,且所述拐角侧墙材料的介电常数大于真空的介电常数,所以所述拐角侧墙的设置能够有效的增大所述拐角侧墙和所述真空侧墙的平均介电常数,从而既有利于维持较小的边缘电容,也有利于改善晶体管导通电阻和导通电流性能退化问题,有利于提高所形成半导体结构的性能。The technical solution of the present invention forms a corner sidewall on the sidewall of the gate structure facing the source-drain doped region, and the dielectric constant of the material of the corner sidewall is greater than that of a vacuum, so the setting of the corner sidewall The average dielectric constant of the corner sidewall and the vacuum sidewall can be effectively increased, which is not only beneficial to maintain a small fringe capacitance, but also helps to improve the degradation of transistor on-resistance and on-current performance. It is beneficial to improve the performance of the formed semiconductor structure.

附图说明Description of drawings

图1至图13是本发明半导体结构形成方法一实施例各个步骤所对应的结构示意图。1 to 13 are structural schematic diagrams corresponding to each step of an embodiment of the semiconductor structure forming method of the present invention.

具体实施方式Detailed ways

由背景技术可知,现有技术中Ⅲ-Ⅴ族半导体材料作为沟道材料的半导体结构存在性能较差的问题。现结合Ⅲ-Ⅴ族半导体材料的特性分析其性能较差问题的原因:It can be seen from the background art that in the prior art, there is a problem of poor performance in the semiconductor structure in which the Group III-V semiconductor material is used as the channel material. Combining the characteristics of III-V semiconductor materials to analyze the reasons for their poor performance:

Ⅲ-Ⅴ族半导体材料所形成的沟道会出现较显著的量子限制效应和子带分裂现象。因此随着沟道长度的减小,Ⅲ-Ⅴ族半导体材料作为沟道材料的半导体结构容易出现栅介质层电隔离性能退化,栅极隧穿电流增大的问题。The channel formed by III-V semiconductor materials will have more significant quantum confinement effect and sub-band splitting phenomenon. Therefore, with the decrease of the channel length, the semiconductor structure of the III-V group semiconductor material as the channel material is prone to the degradation of the electrical isolation performance of the gate dielectric layer and the increase of the gate tunneling current.

为了抑制栅极漏电,Ⅲ-Ⅴ族半导体材料作为沟道材料的半导体结构中,需要设置厚度较大的栅介质层。为了改善栅介质层厚度增大对器件性能的影响,在半导体结构中引入了真空侧墙(vacuum spacer)的结构,即栅极结构与介质层之间以空气实现电绝缘。In order to suppress gate leakage, in a semiconductor structure in which group III-V semiconductor materials are used as channel materials, a thicker gate dielectric layer needs to be provided. In order to improve the effect of increasing the thickness of the gate dielectric layer on device performance, a vacuum spacer structure is introduced into the semiconductor structure, that is, air is used to electrically insulate the gate structure and the dielectric layer.

但是由于空气的介电常数较小(Kvacuum=1),所以真空侧墙的设置会减小器件的边缘电容(Fringing Capacitance),但是同时造成晶体管导通电阻和导通电流性能的退化,影响所形成半导体结构的性能。However, due to the small dielectric constant of air (K vacuum = 1), the setting of the vacuum sidewall will reduce the fringing capacitance (Fringing Capacitance) of the device, but at the same time cause the degradation of the on-resistance and on-current performance of the transistor, affecting Properties of the formed semiconductor structures.

为解决所述技术问题,本发明提供一种半导体结构的形成方法,包括:In order to solve the technical problem, the present invention provides a method for forming a semiconductor structure, including:

提供基底,所述基底包括衬底和位于所述衬底上的鳍部;形成位于所述鳍部上的栅极结构,所述栅极结构横跨所述鳍部且覆盖所述鳍部部分顶部和部分侧壁的表面;在所述栅极结构两侧鳍部内形成源漏掺杂区;在所述栅极结构朝向所述源漏掺杂区的侧壁上形成前驱侧墙;形成位于所述前驱侧墙侧壁的伪侧墙;在所述栅极结构、所述前驱侧墙以及所述伪侧墙露出的基底上形成介质层,所述介质层露出所述栅极结构、所述前驱侧墙以及所述伪侧墙;对所述前驱侧墙进行减薄处理,露出所述栅极结构的部分侧壁,剩余的所述前驱侧墙用于形成拐角侧墙;去除所述伪侧墙,在所述栅极结构和所述介质层之间形成真空侧墙。providing a base, the base including a substrate and a fin on the substrate; forming a gate structure on the fin, the gate structure spanning the fin and covering a portion of the fin The surface of the top and part of the sidewall; forming source-drain doped regions in the fins on both sides of the gate structure; forming a precursor sidewall on the sidewall of the gate structure facing the source-drain doped region; forming a Dummy sidewalls of the precursor sidewalls; forming a dielectric layer on the substrate exposed by the gate structure, the precursor spacers, and the dummy spacers, the dielectric layer exposing the gate structure, the The precursor sidewall and the dummy sidewall; the precursor sidewall is thinned to expose part of the sidewall of the gate structure, and the remaining precursor sidewall is used to form a corner sidewall; remove the A dummy spacer, forming a vacuum spacer between the gate structure and the dielectric layer.

本发明技术方案通过在栅极结构朝向源漏掺杂区的侧壁上形成拐角侧墙,且所述拐角侧墙材料的介电常数大于真空的介电常数,所以所述拐角侧墙的设置能够有效的增大所述拐角侧墙和所述真空侧墙的平均介电常数,从而既有利于维持较小的边缘电容,也有利于改善晶体管导通电阻和导通电流性能退化问题,有利于提高所形成半导体结构的性能。The technical solution of the present invention forms a corner sidewall on the sidewall of the gate structure facing the source-drain doped region, and the dielectric constant of the material of the corner sidewall is greater than that of a vacuum, so the setting of the corner sidewall The average dielectric constant of the corner sidewall and the vacuum sidewall can be effectively increased, which is not only beneficial to maintain a small fringe capacitance, but also helps to improve the degradation of transistor on-resistance and on-current performance. It is beneficial to improve the performance of the formed semiconductor structure.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

参考图1至图13,示出了本发明半导体结构形成方法一实施例各个步骤所对应的结构示意图。Referring to FIG. 1 to FIG. 13 , schematic structural diagrams corresponding to each step of an embodiment of a method for forming a semiconductor structure according to the present invention are shown.

如图1至图3所示,提供基底,所述基底包括衬底100和位于所述衬底100上的鳍部130。As shown in FIGS. 1 to 3 , a base is provided, and the base includes a substrate 100 and a fin 130 on the substrate 100 .

其中图1是所述基底的三维结构示意图,图2是图1中沿AA线的剖面结构示意图;图3是图1中沿BB线的剖面结构示意图。1 is a schematic diagram of a three-dimensional structure of the substrate, and FIG. 2 is a schematic diagram of a cross-sectional structure along line AA in FIG. 1 ; and FIG. 3 is a schematic diagram of a cross-sectional structure along line BB in FIG. 1 .

所述衬底100用于提供工艺操作平台。The substrate 100 is used to provide a process operation platform.

本实施例中,所述衬底100的材料为单晶硅。本发明其他实施例中,所述衬底还可以是多晶硅衬底、非晶硅衬底或者锗硅衬底、碳硅衬底、绝缘体上硅衬底、绝缘体上锗衬底、玻璃衬底或者III-V族化合物衬底,例如氮化镓衬底或砷化镓衬底等。所述衬底的材料可以选取适宜于工艺需求或易于集成的材料。In this embodiment, the material of the substrate 100 is single crystal silicon. In other embodiments of the present invention, the substrate may also be a polysilicon substrate, an amorphous silicon substrate, or a silicon-germanium substrate, a silicon-carbon substrate, a silicon-on-insulator substrate, a germanium-on-insulator substrate, a glass substrate, or III-V compound substrates, such as gallium nitride substrates or gallium arsenide substrates. The material of the substrate can be selected suitable for process requirements or easily integrated.

所述鳍部130用于提供所述鳍式场效应晶体管的沟道。The fin portion 130 is used for providing a channel of the FinFET.

本实施例中,所述鳍部130的材料为Ⅲ-Ⅴ族半导体材料。具体的,所述鳍部130的材料为InGaAs。本发明其他实施例中,所述鳍部的材料也可以为其他Ⅲ-Ⅴ族半导体材料。Ⅲ-Ⅴ族半导体材料以其较高的低场电子迁移率成为晶体管理想的沟道材料,有利于减小晶体管的沟道长度,提高半导体结构的集成度。In this embodiment, the material of the fin portion 130 is a group III-V semiconductor material. Specifically, the material of the fin portion 130 is InGaAs. In other embodiments of the present invention, the material of the fins may also be other III-V semiconductor materials. Group III-V semiconductor materials are ideal channel materials for transistors due to their high low-field electron mobility, which is beneficial to reducing the channel length of transistors and improving the integration of semiconductor structures.

形成所述衬底100和所述鳍部130的步骤包括:提供衬底100;在所述衬底100上形成鳍部材料层;在所述鳍部材料层上形成图形化的鳍部掩膜层;以所述鳍部掩膜层为掩膜刻蚀所述鳍部材料层形成鳍部130。The steps of forming the substrate 100 and the fins 130 include: providing a substrate 100; forming a fin material layer on the substrate 100; forming a patterned fin mask on the fin material layer layer; using the fin mask layer as a mask to etch the fin material layer to form the fin 130 .

所述鳍部材料层用于刻蚀以形成鳍部130。The fin material layer is used for etching to form the fin 130 .

本实施例中,所述鳍部130的材料为InGaAs。所以所述鳍部材料层的材料也为InGaAs,可以通过化学气相沉积、物理气相沉积或者原子层沉积的方式形成。In this embodiment, the material of the fin portion 130 is InGaAs. Therefore, the material of the fin material layer is also InGaAs, which can be formed by chemical vapor deposition, physical vapor deposition or atomic layer deposition.

需要说明的是,本实施例中,所述基底还包括位于所述衬底100和所述鳍部130之间的氧化层110。所述氧化层110用于为所述鳍部材料层提供良好的界面基础,以改善所形成鳍部材料层的质量。所以提供衬底100之后,形成鳍部材料层之前,所述形成方法还包括:在所述衬底100上形成氧化层。It should be noted that, in this embodiment, the base further includes an oxide layer 110 located between the substrate 100 and the fin 130 . The oxide layer 110 is used to provide a good interface foundation for the fin material layer, so as to improve the quality of the formed fin material layer. Therefore, after providing the substrate 100 and before forming the fin material layer, the forming method further includes: forming an oxide layer on the substrate 100 .

所述鳍部掩膜层用于定义所述鳍部130的尺寸和位置。The fin mask layer is used to define the size and position of the fin 130 .

形成所述鳍部掩膜层的步骤包括:在所述鳍部材料层上形成掩膜材料层;在所述掩膜材料层上形成图形层;以所述图形层为掩膜,刻蚀所述掩膜材料层,露出所述鳍部材料层,以形成所述鳍部掩膜层。The step of forming the fin mask layer includes: forming a mask material layer on the fin material layer; forming a pattern layer on the mask material layer; using the pattern layer as a mask, etching the The mask material layer is exposed to expose the fin material layer to form the fin mask layer.

所述图形层用于对所述掩膜材料层进行图形化,以定义所述鳍部的尺寸和位置。The pattern layer is used to pattern the mask material layer to define the size and position of the fins.

本实施例中,所述图形层为图形化的光刻胶层,可以通过涂布工艺和光刻工艺形成。本发明其他实施例中,所述图形层还可以为多重图形化掩膜工艺所形成的掩膜,以缩小鳍部的特征尺寸以及相邻鳍部之间的距离,提高所形成半导体结构的集成度。其中多重图形化掩膜工艺包括:自对准双重图形化(Self-aligned Double Patterned,SaDP)工艺、自对准三重图形化(Self-aligned Triple Patterned)工艺、或自对准四重图形化(Self-aligned Double Double Patterned,SaDDP)工艺。In this embodiment, the pattern layer is a patterned photoresist layer, which can be formed by a coating process and a photolithography process. In other embodiments of the present invention, the pattern layer can also be a mask formed by a multiple patterning mask process, so as to reduce the feature size of the fins and the distance between adjacent fins, and improve the integration of the formed semiconductor structure. Spend. The multiple patterned mask process includes: self-aligned double patterned (Self-aligned Double Patterned, SaDP) process, self-aligned triple patterned (Self-aligned triple patterned) process, or self-aligned quadruple patterned ( Self-aligned Double Double Patterned, SaDDP) process.

继续参考图1至图3,形成位于所述鳍部130上的栅极结构,所述栅极结构横跨所述鳍部130且覆盖所述鳍部130部分顶部和部分侧壁的表面。Continuing to refer to FIGS. 1 to 3 , a gate structure is formed on the fin 130 , the gate structure straddles the fin 130 and covers part of the top and part of the sidewall of the fin 130 .

本实施例中,所述栅极结构为用于为后续所形成金属栅极结构占据空间位置的伪栅结构121。本发明其他实施例中,所述栅极结构还可以是所形成半导体结构的栅极结构。In this embodiment, the gate structure is a dummy gate structure 121 for occupying a space position for a subsequently formed metal gate structure. In other embodiments of the present invention, the gate structure may also be a gate structure of a formed semiconductor structure.

本实施例中,所述伪栅结构121可以为叠层结构,包括位于所述基底上的伪氧化层以及位于所述伪氧化层上的伪栅极。所述伪栅极的材料为多晶硅,所述伪氧化层的材料可以为氧化硅和氮氧化硅。In this embodiment, the dummy gate structure 121 may be a stack structure, including a dummy oxide layer on the substrate and a dummy gate on the dummy oxide layer. The material of the dummy gate is polysilicon, and the material of the dummy oxide layer may be silicon oxide and silicon oxynitride.

本发明其他实施例中,所述伪栅极的材料还可以为氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳等其他材料。本发明另一些实施例中,所述伪栅结构还可以为单层结构,材料可以选自多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳等其他材料中的一种或几种。In other embodiments of the present invention, the material of the dummy gate can also be other materials such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon carbonitride or amorphous carbon. In other embodiments of the present invention, the dummy gate structure can also be a single-layer structure, and the material can be selected from polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon carbonitride, or One or more of other materials such as amorphous carbon.

形成所述伪栅结构121的步骤包括:在所述基底上形成伪栅材料层;在所述伪栅材料层上形成伪栅掩膜层,以所述伪栅掩膜层为掩膜,刻蚀所述伪栅材料层,形成所述伪栅结构121。The step of forming the dummy gate structure 121 includes: forming a dummy gate material layer on the substrate; forming a dummy gate mask layer on the dummy gate material layer, using the dummy gate mask layer as a mask, and engraving The dummy gate material layer is etched to form the dummy gate structure 121 .

继续参考图1至图3,在所述栅极结构两侧鳍部130内形成源漏掺杂区131。Continuing to refer to FIG. 1 to FIG. 3 , source and drain doped regions 131 are formed in the fins 130 on both sides of the gate structure.

具体的,本实施例中,所述栅极结构为伪栅结构121。所以形成源漏掺杂区131的步骤包括:在所述伪栅结构121两侧鳍部130内形成源漏掺杂区131。Specifically, in this embodiment, the gate structure is a dummy gate structure 121 . Therefore, the step of forming the doped source and drain regions 131 includes: forming the doped source and drain regions 131 in the fins 130 on both sides of the dummy gate structure 121 .

本实施例中,所述半导体结构为NMOS晶体管,所以所述源漏掺杂区131的掺杂离子为N型离子,例如P、As或Sb。本发明其他实施例中,所述半导体结构也可以为PMOS晶体管,所以所述源漏掺杂区的掺杂离子为P型离子,例如B、Ga或In。In this embodiment, the semiconductor structure is an NMOS transistor, so the doping ions in the source-drain doping region 131 are N-type ions, such as P, As or Sb. In other embodiments of the present invention, the semiconductor structure may also be a PMOS transistor, so the doping ions in the source and drain doping regions are P-type ions, such as B, Ga or In.

本实施例中,沿所述鳍部130延伸方向,所述源漏掺杂区131之间的距离大于所述伪栅结构121的尺寸,也就是说,所述半导体结构具有底部露出源区/漏区(gate-to-source/drain underlap)的结构。这种结构有利于降低所形成半导体结构中漏端的边缘电容,从而提高所形成半导体结构的性能。所以所述源漏掺杂区131之间用于形成沟道的部分鳍部130未被所述伪栅结构121覆盖,也就是说,所述伪栅结构121露出部分源漏掺杂区131之间用于形成沟道的鳍部130。In this embodiment, along the extending direction of the fin portion 130, the distance between the source-drain doped region 131 is greater than the size of the dummy gate structure 121, that is, the semiconductor structure has a bottom-exposed source region/ The structure of the drain area (gate-to-source/drain underlap). This structure is beneficial to reduce the fringe capacitance of the drain terminal in the formed semiconductor structure, thereby improving the performance of the formed semiconductor structure. Therefore, part of the fin portion 130 used to form a channel between the source-drain doped region 131 is not covered by the dummy gate structure 121 , that is, the dummy gate structure 121 exposes part of the source-drain doped region 131 between the fins 130 for forming the channel.

本实施例中形成所述源漏掺杂区131的步骤包括:通过向所述伪栅结构121两侧的鳍部130进行离子注入的方式形成所述源漏掺杂区131。但是本发明其他实施例中,所述源漏掺杂区也可以通过外延生长的方式形成于所述鳍部内。The step of forming the source-drain doped region 131 in this embodiment includes: forming the source-drain doped region 131 by ion implantation into the fins 130 on both sides of the dummy gate structure 121 . However, in other embodiments of the present invention, the source-drain doped region may also be formed in the fin by means of epitaxial growth.

参考图4至图7,在所述栅极结构朝向所述源漏掺杂区131的侧壁上形成前驱侧墙144。Referring to FIG. 4 to FIG. 7 , a precursor spacer 144 is formed on the sidewall of the gate structure facing the source-drain doped region 131 .

其中图4和图6是图2所对应的剖面结构示意图;图5和图7是图3所对应的剖面结构示意图。4 and 6 are schematic cross-sectional structure diagrams corresponding to FIG. 2 ; FIG. 5 and FIG. 7 are schematic cross-sectional structural diagrams corresponding to FIG. 3 .

本实施例中,所述栅极结构为伪栅结构121。所以形成前驱侧墙144的步骤包括:在所述伪栅结构121朝向所述源漏掺杂区131的侧壁上形成前驱侧墙144。In this embodiment, the gate structure is a dummy gate structure 121 . Therefore, the step of forming the precursor spacer 144 includes: forming the precursor spacer 144 on the sidewall of the dummy gate structure 121 facing the source-drain doped region 131 .

所述前驱侧墙144用于为后续真空侧墙的形成占据空间,还用于刻蚀形成拐角侧墙。此外,本实施例中,所述栅极结构为伪栅结构121,所以所述前驱侧墙144还用于定义后续所形成栅极结构的尺寸和位置。The precursor spacer 144 is used to occupy space for the formation of subsequent vacuum sidewalls, and is also used to etch to form corner sidewalls. In addition, in this embodiment, the gate structure is a dummy gate structure 121 , so the precursor spacer 144 is also used to define the size and position of the subsequently formed gate structure.

本实施例中,所述源漏掺杂区131之间的距离大于所述栅极结构的尺寸。所以形成所述前驱侧墙144的步骤包括:在所述源漏掺杂区131和所述栅极结构之间的鳍部130上形成所述前驱侧墙144。In this embodiment, the distance between the source-drain doped region 131 is greater than the size of the gate structure. Therefore, the step of forming the precursor spacer 144 includes: forming the precursor spacer 144 on the fin portion 130 between the source-drain doped region 131 and the gate structure.

所述前驱侧墙144的材料为氮化硅。本发明其他实施例中,所述前驱侧墙的材料还可以为氧化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼中的一种或多种The precursor spacer 144 is made of silicon nitride. In other embodiments of the present invention, the material of the precursor sidewall can also be one or more of silicon oxide, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride or boron carbonitride various

形成所述前驱侧墙144的步骤包括:在所述栅极结构和所述基底上形成侧墙材料层143;去除所述栅极结构上以及所述基底上的侧墙材料层,形成位于所述栅极结构侧壁的前驱侧墙144。The step of forming the precursor spacer 144 includes: forming a sidewall material layer 143 on the gate structure and the substrate; The precursor spacer 144 of the sidewall of the gate structure.

本实施例中,形成所述前驱侧墙144的步骤包括:如图4所示,在所述伪栅结构121和所述基底上形成侧墙材料层143;如图5所示,去除所述伪栅结构121上以及所述基底上的侧墙材料层,形成位于所述伪栅结构121侧壁的前驱侧墙144。In this embodiment, the step of forming the precursor spacer 144 includes: as shown in FIG. 4 , forming a sidewall material layer 143 on the dummy gate structure 121 and the substrate; as shown in FIG. 5 , removing the The spacer material layer on the dummy gate structure 121 and the substrate forms a precursor spacer 144 on the sidewall of the dummy gate structure 121 .

去除所述栅极结构上以及所述基底上侧墙材料层143的步骤包括:对所述栅极结构上以及所述基底上侧墙材料层143进行第一等离子体处理210;通过湿法的方式去除经所述第一等离子体处理210的部分材料,形成所述前驱侧墙144。The step of removing the spacer material layer 143 on the gate structure and the substrate includes: performing a first plasma treatment 210 on the gate structure and the spacer material layer 143 on the substrate; Part of the material after the first plasma treatment 210 is removed in a manner to form the precursor spacer 144 .

具体的,去除所述伪栅结构121上以及所述基底上侧墙材料层143的步骤包括:对所述伪栅结构121上以及所述基底上侧墙材料层143进行第一等离子体处理210;通过湿法的方式去除经第一等离子体处理的部分材料,形成所述前驱侧墙144。Specifically, the step of removing the sidewall material layer 143 on the dummy gate structure 121 and on the substrate includes: performing a first plasma treatment 210 on the dummy gate structure 121 and the sidewall material layer 143 on the substrate ; Removing part of the material treated by the first plasma by wet method to form the precursor spacer 144 .

其中,本实施例中,所述前驱侧墙的材料为氮化硅。所以所述第一等离子体处理210的步骤中,采用H2或He等离子体进行离子体处理,工艺参数包括:工艺气体压强在2mTorr到100mTorr范围内,H2或He气体流量在50sccm到500sccm范围内,Ar气体流量在0sccm到200sccm范围内,工艺温度在0℃到100℃范围内;所述湿法刻蚀的方式去除经等离子体处理的部分材料的步骤包括:采用氢氟酸去除经等离子体处理的部分材料,其中氢氟酸为稀氢氟酸,即按体积百分比,氢氟酸的浓度在1/2000到1/100范围内。Wherein, in this embodiment, the material of the precursor spacer is silicon nitride. Therefore, in the step of the first plasma treatment 210, H2 or He plasma is used for ion plasma treatment, and the process parameters include: the process gas pressure is in the range of 2mTorr to 100mTorr, and the flow rate of H2 or He gas is in the range of 50sccm to 500sccm The flow rate of Ar gas is in the range of 0sccm to 200sccm, and the process temperature is in the range of 0°C to 100°C; the step of removing part of the plasma-treated material by wet etching includes: using hydrofluoric acid to remove the plasma-treated Part of the material processed by body, wherein the hydrofluoric acid is dilute hydrofluoric acid, that is, the concentration of hydrofluoric acid is in the range of 1/2000 to 1/100 by volume percentage.

采用等离子体处理与湿法刻蚀的方式相结合的方法对所述侧墙材料层143具有较高的刻蚀选择比,所以能够有效的减少形成所述前驱侧墙144的工艺步骤对基底上其他半导体结构的影响,有利于提高良率,有利于提高所形成半导体结构的性能。The combination of plasma treatment and wet etching has a higher etching selectivity for the sidewall material layer 143, so it can effectively reduce the impact of the process steps of forming the precursor sidewall 144 on the substrate. The influence of other semiconductor structures is beneficial to improve the yield rate and the performance of the formed semiconductor structure.

结合参考图8和图9,形成位于所述前驱侧墙144侧壁的伪侧墙145。Referring to FIG. 8 and FIG. 9 together, a dummy spacer 145 located on a sidewall of the precursor spacer 144 is formed.

其中,图8是图6所对应的剖面结构示意图,图9是图7所对应的剖面结构示意图。8 is a schematic cross-sectional structure corresponding to FIG. 6 , and FIG. 9 is a schematic cross-sectional structure corresponding to FIG. 7 .

所述伪侧墙145用于为后续真空侧墙的形成占据空间。The dummy sidewalls 145 are used to occupy space for subsequent formation of vacuum sidewalls.

具体的,本实施例中,所述伪侧墙145的材料为多晶硅。形成所述伪侧墙145的步骤包括:在所述基底、所述伪栅结构121(如图6所示)以及所述前驱侧墙144的表面形成伪侧墙材料层;去除所述基底、所述伪栅结构121以及所述前驱侧墙144上的伪侧墙材料层,位于所述前驱侧墙144侧壁剩余的伪侧墙材料层用于形成所述伪侧墙145。Specifically, in this embodiment, the material of the dummy sidewall 145 is polysilicon. The step of forming the dummy spacer 145 includes: forming a dummy spacer material layer on the surface of the substrate, the dummy gate structure 121 (as shown in FIG. 6 ) and the precursor spacer 144; removing the substrate, The dummy gate structure 121 and the dummy spacer material layer on the precursor spacer 144 , and the remaining dummy spacer material layer on the sidewall of the precursor spacer 144 are used to form the dummy spacer 145 .

需要说明的是,如图7所示,形成前驱侧墙144之后,形成所述伪侧墙145之前,所述形成方法还包括:对远离所述衬底100的部分前驱侧墙144进行第二等离子体处理220。It should be noted that, as shown in FIG. 7 , after forming the precursor spacer 144 and before forming the dummy spacer 145 , the forming method further includes: performing a second Plasma treatment 220 .

所述第二等离子体处理220用于为后续形成拐角侧墙提供工艺基础,从而减少所述拐角侧墙的形成对基底上其他半导体结构的影响。The second plasma treatment 220 is used to provide a process basis for the subsequent formation of corner sidewalls, thereby reducing the impact of the formation of the corner sidewalls on other semiconductor structures on the substrate.

具体的,所述第二等离子体处理220的步骤中,采用H2或He等离子体进行离子体处理,工艺参数包括:工艺气体压强在2mTorr到100mTorr范围内,H2或He气体流量在50sccm到500sccm范围内,Ar气体流量在0sccm到200sccm范围内,工艺温度在0℃到100℃范围内。Specifically, in the step of the second plasma treatment 220, H 2 or He plasma is used for ion plasma treatment, and the process parameters include: the process gas pressure is in the range of 2 mTorr to 100 mTorr, and the H 2 or He gas flow rate is in the range of 50 sccm to 100 mTorr. In the range of 500sccm, the Ar gas flow rate is in the range of 0sccm to 200sccm, and the process temperature is in the range of 0°C to 100°C.

需要说明的是,本实施例中,所述第一等离子体处理210的步骤和所述第二等离子体处理220的步骤均采用相同的方式进行处理。这种做法仅为一示例,本发明其他实施例中,所述第一等离子体处理的步骤和所述第二等离子体处理的步骤也采用不同的方式进行处理。It should be noted that, in this embodiment, the steps of the first plasma treatment 210 and the second plasma treatment 220 are both processed in the same manner. This approach is only an example, and in other embodiments of the present invention, the first plasma treatment step and the second plasma treatment step are also treated in different ways.

继续参考图8和图9,在所述栅极结构、所述前驱侧墙144以及所述伪侧墙145露出的基底上形成介质层150,所述介质层150露出所述栅极结构、所述前驱侧墙144以及所述伪侧墙145。Continuing to refer to FIG. 8 and FIG. 9, a dielectric layer 150 is formed on the base exposed by the gate structure, the precursor spacer 144 and the dummy spacer 145, and the dielectric layer 150 exposes the gate structure, the The precursor spacer 144 and the dummy spacer 145 .

所述介质层150用于实现相邻半导体结构之间的电隔离,还用于定义后续所形成真空侧墙的尺寸和位置。The dielectric layer 150 is used to realize the electrical isolation between adjacent semiconductor structures, and is also used to define the size and position of the subsequent vacuum spacers.

本实施例中,所述介质层150为层间介质层,材料为氧化硅。本发明其他实施例中,所述介质层的材料还可以选自氮化硅、氮氧化硅或碳氮氧化硅等其他介质材料。In this embodiment, the dielectric layer 150 is an interlayer dielectric layer made of silicon oxide. In other embodiments of the present invention, the material of the dielectric layer may also be selected from other dielectric materials such as silicon nitride, silicon oxynitride, or silicon oxycarbonitride.

形成所述介质层150的步骤包括:通过化学气相沉积(例如:流体化学气相沉积)等方法在所述伪栅结构121、所述前驱侧墙144以及所述伪侧墙145露出的基底上上形成介质材料层,所述介质材料层覆盖所述伪栅结构121;去除高于所述伪栅结构121的介质材料层,露出所述伪栅结构121、所述前驱侧墙144以及所述伪侧墙145。The step of forming the dielectric layer 150 includes: on the exposed substrate of the dummy gate structure 121, the precursor spacer 144 and the dummy spacer 145 by chemical vapor deposition (for example: fluid chemical vapor deposition) and other methods forming a dielectric material layer, the dielectric material layer covering the dummy gate structure 121; removing the dielectric material layer higher than the dummy gate structure 121, exposing the dummy gate structure 121, the precursor spacer 144 and the dummy gate structure 121; Side wall 145.

需要说明的是,本实施例中,所述栅极结构为伪栅结构121,所以继续参考图8和图9,形成所述介质层150之后,去除所述伪栅结构121(如图6所示)形成开口并在所述开口内形成金属栅极结构120。It should be noted that, in this embodiment, the gate structure is a dummy gate structure 121, so continue to refer to FIG. 8 and FIG. 9, after forming the dielectric layer 150, remove the dummy gate structure 121 (as shown in FIG. 6 (shown) to form an opening and form a metal gate structure 120 within the opening.

本实施例中,所述半导体结构具有“高K金属栅”结构;所以去除所述伪栅结构121的步骤用于形成金属栅极结构。In this embodiment, the semiconductor structure has a "high-K metal gate" structure; therefore, the step of removing the dummy gate structure 121 is used to form a metal gate structure.

所述伪栅结构121横跨所述鳍部130,且覆盖所述鳍部130顶部和侧壁的部分表面,因此去除所述伪栅结构121所形成的开口底部露出所述鳍部130顶部和侧壁的部分表面。所以形成于所述开口内的所述金属栅极结构120也横跨所述鳍部130,且覆盖所述鳍部130顶部和侧壁的部分表面。The dummy gate structure 121 spans the fin portion 130 and covers part of the top and sidewall surfaces of the fin portion 130 , so the bottom of the opening formed by removing the dummy gate structure 121 exposes the top and the sidewall of the fin portion 130 . part of the sidewall surface. Therefore, the metal gate structure 120 formed in the opening also crosses the fin portion 130 and covers part of the top and sidewall surfaces of the fin portion 130 .

所述金属栅极结构120包括位于所述基底上行的栅介质层(图中未示出)以及位于所述栅介质层上的栅电极(图中未标示)。The metal gate structure 120 includes a gate dielectric layer (not shown in the figure) on the substrate and a gate electrode (not shown in the figure) on the gate dielectric layer.

所述栅介质层用于实现所形成栅极结构与基底内沟道之间的电隔离。所述栅介质层的材料为高K介质材料。其中,高K介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体的,所述栅介质层的材料为HfO2。本发明其他实施例中,所述栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、或Al2O3等。The gate dielectric layer is used to realize electrical isolation between the formed gate structure and the channel in the substrate. The material of the gate dielectric layer is a high-K dielectric material. Wherein, the high-K dielectric material refers to a dielectric material with a relative permittivity greater than that of silicon oxide. Specifically, the material of the gate dielectric layer is HfO 2 . In other embodiments of the present invention, the material of the gate dielectric layer may also be selected from ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, or Al 2 O 3 .

所述栅电极层用作为电极,实现与外部电路的电连接。本实施例中,所述栅电极层的材料为W。本发明其他实施例中,所述栅电极层的材料还可以为Al、Cu、Ag、Au、Pt、Ni或Ti等。The gate electrode layer is used as an electrode to realize electrical connection with an external circuit. In this embodiment, the material of the gate electrode layer is W. In other embodiments of the present invention, the material of the gate electrode layer may also be Al, Cu, Ag, Au, Pt, Ni or Ti and the like.

需要说明的是,由于所述鳍部130的材料为InGaAs,所以与鳍部材料为其他半导体材料的技术方案相比,本实施例中,所述栅介质层的厚度较大,从而使所述栅介质层具有较大的等效氧化层(Equivalent Oxide Thickness)厚度较大,以抑制栅极漏电流。具体的,本实施例中,所述栅介质层的厚度在范围内。It should be noted that, since the material of the fin portion 130 is InGaAs, compared with the technical solution in which the material of the fin portion is other semiconductor materials, in this embodiment, the thickness of the gate dielectric layer is larger, so that the The gate dielectric layer has a larger equivalent oxide thickness (Equivalent Oxide Thickness) to suppress gate leakage current. Specifically, in this embodiment, the thickness of the gate dielectric layer is arrive within range.

参考图10和图11,对所述前驱侧墙144(如图8和图9所示)进行减薄处理,露出所述栅极结构的部分侧壁,剩余的所述前驱侧墙144用于形成拐角侧墙141。Referring to FIG. 10 and FIG. 11 , the precursor spacer 144 (as shown in FIG. 8 and FIG. 9 ) is thinned to expose part of the sidewall of the gate structure, and the remaining precursor spacer 144 is used for Corner side walls 141 are formed.

本实施例中,所述栅极结构为金属栅极结构120,所以进行减薄处理的步骤包括:对所述前驱侧墙144进行减薄处理,露出所述金属栅极结构120的部分侧壁,形成拐角侧墙141。In this embodiment, the gate structure is a metal gate structure 120, so the step of thinning includes: thinning the precursor sidewall 144 to expose part of the sidewall of the metal gate structure 120 , forming the corner side wall 141 .

其中,图10是图8所对应的剖面结构示意图;图11是图9所对应的剖面结构示意图。Wherein, FIG. 10 is a schematic cross-sectional structure corresponding to FIG. 8 ; FIG. 11 is a schematic cross-sectional structure corresponding to FIG. 9 .

所述拐角侧墙141用于与后续所形成的真空侧墙一起实现栅极结构与其他半导体结构之间的电隔离。The corner spacer 141 is used together with the subsequently formed vacuum spacer to realize electrical isolation between the gate structure and other semiconductor structures.

所述拐角侧墙141材料的介电常数大于真空的介电常数,所以所述拐角侧墙141的设置有利于改善晶体管导通电阻和导通电流性能退化的问题,有利于减少延迟(delay)现象的出现,有利于提高所形成半导体结构的性能。The dielectric constant of the material of the corner sidewall 141 is greater than the dielectric constant of vacuum, so the setting of the corner sidewall 141 is conducive to improving the problem of transistor on-resistance and on-current performance degradation, and is conducive to reducing delay (delay) The appearance of the phenomenon is beneficial to improve the performance of the formed semiconductor structure.

所述前驱侧墙144(如图8和图9所示)的材料为氮化硅,也就是说所述拐角侧墙141的材料为氮化硅。氮化硅的介电常数为7.5,所以氮化硅材料的拐角侧墙141的形成,有利于改善晶体管导通电阻和导通电流性能退化的问题。The material of the precursor spacer 144 (as shown in FIG. 8 and FIG. 9 ) is silicon nitride, that is to say, the material of the corner spacer 141 is silicon nitride. The dielectric constant of silicon nitride is 7.5, so the formation of the corner spacer 141 of silicon nitride material is beneficial to improve the degradation of on-resistance and on-current performance of the transistor.

本实施例中,所述前驱侧墙144远离所述衬底100的部分材料经过第二等离子体处理220(如图6和图7所示),所以对所述前驱侧墙144进行减薄处理的步骤包括:通过湿法的方式去除经等离子体处理的部分材料。In this embodiment, part of the material of the precursor spacer 144 away from the substrate 100 is subjected to the second plasma treatment 220 (as shown in FIG. 6 and FIG. 7 ), so the precursor spacer 144 is thinned. The steps include: removing part of the plasma-treated material by a wet method.

去除经等离子体处理部分材料的步骤包括:采用氢氟酸去除经所述第二等离子体处理220的部分材料。具体的,采用氢氟酸去除部分材料的步骤中,按体积百分比,氢氟酸的浓度在1/2000到1/100范围内。需要说明的是,其中的体积百分比是指HF与水的体积百分比。The step of removing the part of the material treated by the plasma includes: using hydrofluoric acid to remove the part of the material after the second plasma treatment 220 . Specifically, in the step of using hydrofluoric acid to remove part of the material, the concentration of the hydrofluoric acid is in the range of 1/2000 to 1/100 by volume percentage. It should be noted that the volume percentage refers to the volume percentage of HF and water.

需要说明的是,本实施例中,去除经第一等离子体处理部分材料的步骤以及去除经第二等离子体处理部分材料的步骤均采用相同的方式进行去除。本发明其他实施例中,去除经第一等离子体处理部分材料的步骤以及去除经第二等离子体处理部分材料的步骤也可以采用不同的方式进行去除。It should be noted that, in this embodiment, the step of removing the part of the material treated by the first plasma and the step of removing the part of the material treated by the second plasma are all removed in the same manner. In other embodiments of the present invention, the step of removing the part of the material treated by the first plasma and the step of removing the part of the material treated by the second plasma can also be removed in different ways.

在等离子体处理之后,湿法刻蚀的方式对所述前驱侧墙144的刻蚀速率较高,因此采用等离子体处理与湿法刻蚀相结合等方式去除部分所述前驱侧墙144的材料,能够有效的减少减薄工艺对基底上其他半导体结构的影响,有利于提高良率,有利于提高所形成半导体结构的性能。After the plasma treatment, the etching rate of the precursor spacer 144 is relatively high by wet etching, so a combination of plasma treatment and wet etching is used to remove part of the material of the precursor spacer 144 , can effectively reduce the impact of the thinning process on other semiconductor structures on the substrate, which is beneficial to improving the yield rate and the performance of the formed semiconductor structure.

需要说明的是,如图11所示,本实施例中,所述前驱侧墙144(如图10所示)位于所述源漏掺杂区131和所述栅极结构120之间,所以所述拐角侧墙141也位于所述源漏掺杂区131和所述栅极结构120之间。这种做法有利于优化所形成半导体结构的导通电阻和电容的性能,从而改善延迟问题。It should be noted that, as shown in FIG. 11 , in this embodiment, the precursor spacer 144 (as shown in FIG. 10 ) is located between the source-drain doped region 131 and the gate structure 120, so the The corner spacer 141 is also located between the source-drain doped region 131 and the gate structure 120 . This approach is beneficial to optimize the performance of the on-resistance and capacitance of the formed semiconductor structure, thereby improving the delay problem.

参考图12和图13,去除所述伪侧墙145,在所述栅极结构和所述介质层150之间形成真空侧墙142。Referring to FIG. 12 and FIG. 13 , the dummy spacer 145 is removed, and a vacuum spacer 142 is formed between the gate structure and the dielectric layer 150 .

所述真空侧墙142用于改善所形成半导体结构中导通电流减小的问题,改善较大厚度的栅介质层对所形成半导体结构的影响。真空侧墙142的介电常数较低,有利于减小所形成半导体结构的边缘电容(Fringing Capacitance)。The vacuum spacer 142 is used to improve the problem of reduced conduction current in the formed semiconductor structure, and to improve the influence of a relatively thick gate dielectric layer on the formed semiconductor structure. The dielectric constant of the vacuum spacer 142 is low, which is beneficial to reduce the fringing capacitance of the formed semiconductor structure.

去除所述伪侧墙145的步骤包括:通过化学扩散刻蚀的方式去除所述伪侧墙145。去除所述伪侧墙145之后,在所述金属栅极结构120、所述拐角侧墙141和所述介质层150之间形成空隙,所述空隙用于形成所述真空侧墙142。The step of removing the dummy spacer 145 includes: removing the dummy sidewall 145 by means of chemical diffusion etching. After removing the dummy spacer 145 , a gap is formed between the metal gate structure 120 , the corner spacer 141 and the dielectric layer 150 , and the gap is used to form the vacuum spacer 142 .

本实施例中,通过化学扩散刻蚀的方式去除所述伪侧墙145的步骤包括:采用NH3去除所述伪侧墙145。具体的,采用Frontier机台,采用NH3通过化学扩散刻蚀的方式去除所述伪侧墙145。由于所述伪侧墙145的材料为多晶硅,这样方式的刻蚀方法多晶硅材料的刻蚀速率较大,因此采用这种方式去除所述伪侧墙145的做法能够有效的减小形成所述真空侧墙142工艺对其他半导体结构的影响,有利于良率的提高,器件性能的改善。In this embodiment, the step of removing the dummy spacers 145 by means of chemical diffusion etching includes: removing the dummy sidewalls 145 with NH 3 . Specifically, the dummy sidewall 145 is removed by chemical diffusion etching with NH 3 using a Frontier machine. Since the material of the dummy sidewall 145 is polysilicon, the etching rate of the polysilicon material is relatively high in this way of etching, so removing the dummy sidewall 145 in this way can effectively reduce the formation of the vacuum. The impact of the sidewall 142 process on other semiconductor structures is beneficial to the improvement of yield rate and device performance.

需要说明的是,垂直所述基底表面的方向上,所述真空侧墙142的尺寸与所述拐角侧墙141的尺寸之比不宜太大也不宜太小。It should be noted that, in the direction perpendicular to the surface of the substrate, the ratio of the size of the vacuum sidewall 142 to the size of the corner sidewall 141 should not be too large or too small.

垂直所述基底表面的方向上,所述真空侧墙142的尺寸与所述拐角侧墙141的尺寸之比如果太大,即真空侧墙142的尺寸过大,拐角侧墙141的尺寸过小,则真空侧墙142和拐角侧墙141的平均介电常数较小,会影响改善导通电阻和导通电流性能退化问题的功能;所述真空侧墙142的尺寸与所述拐角侧墙141的尺寸之比如果太小,即真空侧墙142的尺寸过小,拐角侧墙141的尺寸过大,则真空侧墙142和拐角侧墙141的平均介电常数较大,也会影响改善导通电阻和导通电流性能退化问题的功能。具体的,本实施例中,形成所述真空侧墙142的步骤中,沿垂直所述基底表面的方向上,所述真空侧墙142尺寸与所述拐角侧墙141尺寸之比在5:4到5:1范围内。In the direction perpendicular to the surface of the substrate, if the ratio of the size of the vacuum sidewall 142 to the size of the corner sidewall 141 is too large, that is, the size of the vacuum sidewall 142 is too large and the size of the corner sidewall 141 is too small , then the average dielectric constant of the vacuum sidewall 142 and the corner sidewall 141 is small, which will affect the function of improving the on-resistance and conduction current performance degradation; the size of the vacuum sidewall 142 is the same as that of the corner sidewall 141 If the size ratio of the vacuum sidewall 142 is too small and the size of the corner sidewall 141 is too large, then the average dielectric constant of the vacuum sidewall 142 and the corner sidewall 141 will be large, which will also affect the improvement of conduction. function of on-resistance and on-current performance degradation issues. Specifically, in this embodiment, in the step of forming the vacuum sidewall 142, along the direction perpendicular to the surface of the substrate, the ratio of the size of the vacuum sidewall 142 to the size of the corner sidewall 141 is 5:4 to the range of 5:1.

相应的,本发明还提供一种半导体结构,如图13所示,包括:Correspondingly, the present invention also provides a semiconductor structure, as shown in FIG. 13 , including:

基底,所述基底包括衬底100和位于所述衬底100上的鳍部130;位于所述基底上的介质层150;位于所述介质层150内鳍部130上的栅极结构,所述栅极结构横跨所述鳍部130且覆盖所述鳍部部分顶部和部分侧壁的表面;位于所述栅极结构两侧鳍部130内的源漏掺杂区131;位于所述栅极结构朝向所述源漏掺杂区131侧壁上的拐角侧墙141;位于所述栅极结构和所述介质层150之间的真空侧墙142。A base, the base includes a substrate 100 and a fin 130 on the substrate 100; a dielectric layer 150 on the base; a gate structure on the fin 130 in the dielectric layer 150, the The gate structure spans the fin 130 and covers the surface of part of the top and part of the sidewall of the fin; the source and drain doped regions 131 in the fin 130 on both sides of the gate structure; The structure faces the corner spacer 141 on the sidewall of the source-drain doped region 131 ; and the vacuum spacer 142 between the gate structure and the dielectric layer 150 .

所述衬底100用于提供工艺操作平台。The substrate 100 is used to provide a process operation platform.

本实施例中,所述衬底100的材料为单晶硅。本发明其他实施例中,所述衬底还可以是多晶硅衬底、非晶硅衬底或者锗硅衬底、碳硅衬底、绝缘体上硅衬底、绝缘体上锗衬底、玻璃衬底或者III-V族化合物衬底,例如氮化镓衬底或砷化镓衬底等。所述衬底的材料可以选取适宜于工艺需求或易于集成的材料。In this embodiment, the material of the substrate 100 is single crystal silicon. In other embodiments of the present invention, the substrate may also be a polysilicon substrate, an amorphous silicon substrate, or a silicon-germanium substrate, a silicon-carbon substrate, a silicon-on-insulator substrate, a germanium-on-insulator substrate, a glass substrate, or III-V compound substrates, such as gallium nitride substrates or gallium arsenide substrates. The material of the substrate can be selected suitable for process requirements or easily integrated.

所述鳍部130用于提供所述鳍式场效应晶体管的沟道。The fin portion 130 is used for providing a channel of the FinFET.

本实施例中,所述鳍部130的材料为Ⅲ-Ⅴ族半导体材料。具体的,所述鳍部130的材料为InGaAs。本发明其他实施例中,所述鳍部的材料也可以为其他Ⅲ-Ⅴ族半导体材料。Ⅲ-Ⅴ族半导体材料以其较高的低场电子迁移率成为晶体管理想的沟道材料,有利于减小晶体管的沟道长度,提高半导体结构的集成度。In this embodiment, the material of the fin portion 130 is a group III-V semiconductor material. Specifically, the material of the fin portion 130 is InGaAs. In other embodiments of the present invention, the material of the fins may also be other III-V semiconductor materials. Group III-V semiconductor materials are ideal channel materials for transistors due to their high low-field electron mobility, which is beneficial to reducing the channel length of transistors and improving the integration of semiconductor structures.

需要说明的是,本实施例中,所述基底还包括位于所述衬底100和所述鳍部130之间的氧化层110。所述氧化层110用于为所述鳍部材料的形成提供界面基础,以改善所述鳍部130的质量。It should be noted that, in this embodiment, the base further includes an oxide layer 110 located between the substrate 100 and the fin 130 . The oxide layer 110 is used to provide an interface basis for the formation of the fin material, so as to improve the quality of the fin 130 .

所述介质层150用于实现相邻半导体结构之间的电隔离,还用于定义后续所形成真空侧墙的尺寸和位置。The dielectric layer 150 is used to realize the electrical isolation between adjacent semiconductor structures, and is also used to define the size and position of the subsequent vacuum spacers.

本实施例中,所述介质层150为层间介质层,材料为氧化硅。本发明其他实施例中,所述介质层的材料还可以选自氮化硅、氮氧化硅或碳氮氧化硅等其他介质材料。In this embodiment, the dielectric layer 150 is an interlayer dielectric layer made of silicon oxide. In other embodiments of the present invention, the material of the dielectric layer may also be selected from other dielectric materials such as silicon nitride, silicon oxynitride, or silicon oxycarbonitride.

所述栅极结构用于控制半导体结构中沟道的导通和截断。The gate structure is used to control the turn-on and cut-off of the channel in the semiconductor structure.

本实施例中,所述半导体结构具有“高K金属栅”结构,所以所述栅极结构为金属栅极结构120。所述金属栅极结构120包括位于所述基底上行的栅介质层(图中未示出)以及位于所述栅介质层上的栅电极(图中未标示)。In this embodiment, the semiconductor structure has a “high-K metal gate” structure, so the gate structure is a metal gate structure 120 . The metal gate structure 120 includes a gate dielectric layer (not shown in the figure) on the substrate and a gate electrode (not shown in the figure) on the gate dielectric layer.

所述栅介质层用于实现所形成栅极结构与基底内沟道之间的电隔离。所述栅介质层的材料为高K介质材料。其中,高K介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体的,所述栅介质层的材料为HfO2。本发明其他实施例中,所述栅介质层的材料还可以选自ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、或Al2O3等。The gate dielectric layer is used to realize electrical isolation between the formed gate structure and the channel in the substrate. The material of the gate dielectric layer is a high-K dielectric material. Wherein, the high-K dielectric material refers to a dielectric material with a relative dielectric constant greater than that of silicon oxide. Specifically, the material of the gate dielectric layer is HfO 2 . In other embodiments of the present invention, the material of the gate dielectric layer may also be selected from ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, or Al 2 O 3 .

所述栅电极层用作为电极,实现与外部电路的电连接。本实施例中,所述栅电极层的材料为W。本发明其他实施例中,所述栅电极层的材料还可以为Al、Cu、Ag、Au、Pt、Ni或Ti等。The gate electrode layer is used as an electrode to realize electrical connection with an external circuit. In this embodiment, the material of the gate electrode layer is W. In other embodiments of the present invention, the material of the gate electrode layer may also be Al, Cu, Ag, Au, Pt, Ni or Ti and the like.

需要说明的是,由于所述鳍部130的材料为InGaAs,所以与鳍部材料为其他半导体材料的技术方案相比,本实施例中,所述栅介质层的厚度较大,从而使所述栅介质层具有较大的等效氧化层(Equivalent Oxide Thickness)厚度较大,以抑制栅极漏电流。具体的,本实施例中,所述栅介质层的厚度在范围内。It should be noted that, since the material of the fin portion 130 is InGaAs, compared with the technical solution in which the material of the fin portion is other semiconductor materials, in this embodiment, the thickness of the gate dielectric layer is larger, so that the The gate dielectric layer has a larger equivalent oxide thickness (Equivalent Oxide Thickness) to suppress gate leakage current. Specifically, in this embodiment, the thickness of the gate dielectric layer is arrive within range.

所述源漏掺杂区131用于形成所述半导体结构的源区或漏区。The source-drain doped region 131 is used to form a source region or a drain region of the semiconductor structure.

本实施例中,所述半导体结构为NMOS晶体管,所以所述源漏掺杂区131内的掺杂离子为N型离子,例如P、As或Sb。本发明其他实施例中,所述半导体结构也可以为PMOS晶体管,所以所述源漏掺杂区的掺杂离子为P型离子,例如B、Ga或In。In this embodiment, the semiconductor structure is an NMOS transistor, so the dopant ions in the source-drain doped region 131 are N-type ions, such as P, As or Sb. In other embodiments of the present invention, the semiconductor structure may also be a PMOS transistor, so the doping ions in the source and drain doping regions are P-type ions, such as B, Ga or In.

本实施例中,沿所述鳍部130延伸方向,所述源漏掺杂区131之间的距离大于所述伪栅结构121的尺寸,也就是说,所述半导体结构具有底部露出源区/漏区(gate-to-source/drain underlap)的结构。这种结构有利于降低所形成半导体结构中漏端的边缘电容,从而提高所形成半导体结构的性能。所以所述源漏掺杂区131之间用于形成沟道的部分鳍部130未被所述金属栅极结构120覆盖,也就是说,所述金属栅极结构120露出部分源漏掺杂区131之间用于形成沟道的鳍部130。In this embodiment, along the extending direction of the fin portion 130, the distance between the source-drain doped region 131 is greater than the size of the dummy gate structure 121, that is, the semiconductor structure has a bottom-exposed source region/ The structure of the drain area (gate-to-source/drain underlap). This structure is beneficial to reduce the fringe capacitance of the drain terminal in the formed semiconductor structure, thereby improving the performance of the formed semiconductor structure. Therefore, part of the fin 130 used to form a channel between the source-drain doped region 131 is not covered by the metal gate structure 120, that is, the metal gate structure 120 exposes a part of the source-drain doped region. 131 between fins 130 for forming channels.

所述拐角侧墙141用于与所述真空侧墙142一起实现栅极结构与其他半导体结构之间的电隔离。The corner spacers 141 are used together with the vacuum spacers 142 to realize electrical isolation between the gate structure and other semiconductor structures.

所述拐角侧墙141材料的介电常数大于真空的介电常数,所以所述拐角侧墙141的设置有利于改善晶体管导通电阻和导通电流性能退化的问题,有利于减少延迟(delay)现象的出现,有利于提高所形成半导体结构的性能。The dielectric constant of the material of the corner sidewall 141 is greater than the dielectric constant of vacuum, so the setting of the corner sidewall 141 is conducive to improving the problem of transistor on-resistance and on-current performance degradation, and is conducive to reducing delay (delay) The appearance of the phenomenon is beneficial to improve the performance of the formed semiconductor structure.

本实施例中,所述拐角侧墙141的材料为氮化硅。氮化硅的介电常数为7.5,所以氮化硅材料的拐角侧墙141有利于改善晶体管导通电阻和导通电流性能退化的问题。In this embodiment, the material of the corner sidewall 141 is silicon nitride. The dielectric constant of silicon nitride is 7.5, so the corner spacer 141 made of silicon nitride material is beneficial to improve the degradation of on-resistance and on-current performance of the transistor.

本发明其他实施例中,所述拐角侧墙的材料还可以为氧化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼中的一种或多种In other embodiments of the present invention, the material of the corner sidewall can also be one or more of silicon oxide, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride or boron carbonitride various

本实施例中,所述源漏掺杂区131之间的距离大于所述栅极结构的尺寸,所以所述拐角侧墙141位于所述源漏掺杂区131与所述栅极结构之间的鳍部130上。In this embodiment, the distance between the source-drain doped region 131 is greater than the size of the gate structure, so the corner spacer 141 is located between the source-drain doped region 131 and the gate structure on the fins 130 of the

所述真空侧墙142用于改善所形成半导体结构中导通电流减小的问题,改善较大厚度的栅介质层对所形成半导体结构的影响。真空侧墙142的介电常数较低,有利于减小所形成半导体结构的边缘电容(Fringing Capacitance)。The vacuum spacer 142 is used to improve the problem of reduced conduction current in the formed semiconductor structure, and to improve the influence of a relatively thick gate dielectric layer on the formed semiconductor structure. The dielectric constant of the vacuum spacer 142 is low, which is beneficial to reduce the fringing capacitance of the formed semiconductor structure.

需要说明的是,垂直所述基底表面的方向上,所述真空侧墙142的尺寸与所述拐角侧墙141的尺寸之比不宜太大也不宜太小。It should be noted that, in the direction perpendicular to the surface of the substrate, the ratio of the size of the vacuum sidewall 142 to the size of the corner sidewall 141 should not be too large or too small.

垂直所述基底表面的方向上,所述真空侧墙142的尺寸与所述拐角侧墙141的尺寸之比如果太大,即真空侧墙142的尺寸过大,拐角侧墙141的尺寸过小,则真空侧墙142和拐角侧墙141的平均介电常数较小,会影响改善导通电阻和导通电流性能退化问题的功能;所述真空侧墙142的尺寸与所述拐角侧墙141的尺寸之比如果太小,即真空侧墙142的尺寸过小,拐角侧墙141的尺寸过大,则真空侧墙142和拐角侧墙141的平均介电常数较大,也会影响改善导通电阻和导通电流性能退化问题的功能。具体的,本实施例中,形成所述真空侧墙142的步骤中,沿垂直所述基底表面的方向上,所述真空侧墙142尺寸与所述拐角侧墙141尺寸之比在5:4到5:1范围内。In the direction perpendicular to the substrate surface, if the ratio of the size of the vacuum sidewall 142 to the size of the corner sidewall 141 is too large, that is, the size of the vacuum sidewall 142 is too large and the size of the corner sidewall 141 is too small , then the average dielectric constant of the vacuum sidewall 142 and the corner sidewall 141 is small, which will affect the function of improving the on-resistance and conduction current performance degradation; the size of the vacuum sidewall 142 is the same as that of the corner sidewall 141 If the size ratio of the vacuum side wall 142 is too small, and the size of the corner side wall 141 is too large, then the average dielectric constant of the vacuum side wall 142 and the corner side wall 141 will be large, which will also affect the improvement of conduction. function of on-resistance and on-current performance degradation issues. Specifically, in this embodiment, in the step of forming the vacuum sidewall 142, along the direction perpendicular to the surface of the substrate, the ratio of the size of the vacuum sidewall 142 to the size of the corner sidewall 141 is 5:4 to the range of 5:1.

综上,本发明技术方案通过在栅极结构朝向源漏掺杂区的侧壁上形成拐角侧墙,且所述拐角侧墙材料的介电常数大于真空的介电常数,所以所述拐角侧墙的设置能够有效的增大所述拐角侧墙和所述真空侧墙的平均介电常数,从而既有利于维持较小的边缘电容,也有利于改善晶体管导通电阻和导通电流性能退化问题,有利于提高所形成半导体结构的性能。In summary, the technical solution of the present invention forms a corner sidewall on the sidewall of the gate structure facing the source-drain doped region, and the dielectric constant of the material of the corner sidewall is greater than that of a vacuum, so the corner sidewall The setting of the wall can effectively increase the average dielectric constant of the corner sidewall and the vacuum sidewall, which not only helps to maintain a small fringe capacitance, but also helps to improve the transistor on-resistance and on-current performance degradation problem, which is beneficial to improve the performance of the formed semiconductor structure.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (20)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 提供基底,所述基底包括衬底和位于所述衬底上的鳍部;providing a base comprising a substrate and a fin on the substrate; 形成位于所述鳍部上的栅极结构,所述栅极结构横跨所述鳍部且覆盖所述鳍部部分顶部和部分侧壁的表面;forming a gate structure on the fin, the gate structure spanning the fin and covering a portion of the top and a portion of the sidewall surface of the fin; 在所述栅极结构两侧鳍部内形成源漏掺杂区;forming source and drain doped regions in the fins on both sides of the gate structure; 在所述栅极结构朝向所述源漏掺杂区的侧壁上形成前驱侧墙;forming a precursor spacer on the sidewall of the gate structure facing the source-drain doped region; 形成位于所述前驱侧墙侧壁的伪侧墙;forming a dummy sidewall located on a sidewall of the precursor sidewall; 在所述栅极结构、所述前驱侧墙以及所述伪侧墙露出的基底上形成介质层,所述介质层露出所述栅极结构、所述前驱侧墙以及所述伪侧墙;forming a dielectric layer on the substrate where the gate structure, the precursor spacer and the dummy spacer are exposed, the dielectric layer exposing the gate structure, the precursor spacer and the dummy spacer; 对所述前驱侧墙进行减薄处理,露出所述栅极结构的部分侧壁,剩余的所述前驱侧墙用于形成拐角侧墙;Thinning the precursor sidewalls to expose part of the sidewalls of the gate structure, and the remaining precursor sidewalls are used to form corner sidewalls; 去除所述伪侧墙,在所述栅极结构和所述介质层之间形成真空侧墙。The dummy spacer is removed to form a vacuum spacer between the gate structure and the dielectric layer. 2.如权利要求1所述的形成方法,其特征在于,形成所述前驱侧墙的步骤中,所述前驱侧墙的材料为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼中的一种或多种。2. The forming method according to claim 1, wherein in the step of forming the precursor sidewall, the material of the precursor sidewall is silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, carbon One or more of silicon oxynitride, silicon oxynitride, boron nitride or carbon boron nitride. 3.如权利要求1所述的形成方法,其特征在于,形成所述前驱侧墙的步骤包括:3. The forming method according to claim 1, wherein the step of forming the precursor sidewall comprises: 在所述栅极结构和所述基底上形成侧墙材料层;forming a spacer material layer on the gate structure and the substrate; 去除所述栅极结构上以及所述基底上的侧墙材料层,形成位于所述栅极结构侧壁的前驱侧墙。removing the sidewall material layer on the gate structure and the substrate to form a precursor spacer on the sidewall of the gate structure. 4.如权利要求3所述的形成方法,其特征在于,去除所述栅极结构上以及所述基底上侧墙材料层的步骤包括:4. The forming method according to claim 3, wherein the step of removing the sidewall material layer on the gate structure and on the substrate comprises: 对所述栅极结构上以及所述基底上侧墙材料层进行第一等离子体处理;performing a first plasma treatment on the gate structure and the sidewall material layer on the substrate; 通过湿法的方式去除经等离子体处理的部分材料,形成所述前驱侧墙。The precursor sidewall is formed by removing part of the plasma-treated material in a wet method. 5.如权利要求1所述的形成方法,其特征在于,形成前驱侧墙之后,形成所述伪侧墙之前,所述形成方法还包括:对远离所述衬底的部分前驱侧墙进行第二等离子体处理;5. The forming method according to claim 1, wherein after forming the precursor spacer and before forming the dummy spacer, the forming method further comprises: performing a first step on the part of the precursor spacer far away from the substrate Two plasma treatment; 对所述前驱侧墙进行减薄处理的步骤包括:通过湿法的方式去除经等离子体处理的部分材料。The step of performing thinning treatment on the precursor sidewall includes: removing part of the plasma-treated material by wet method. 6.如权利要求4或5所述的形成方法,其特征在于,形成所述前驱侧墙的步骤中,所述前驱侧墙的材料为氮化硅;6. The forming method according to claim 4 or 5, wherein in the step of forming the precursor sidewall, the material of the precursor sidewall is silicon nitride; 所述第一等离子体处理的步骤和所述第二等离子体处理的步骤中的一个或两个步骤包括:采用H2或He等离子体进行离子体处理。One or both of the steps of the first plasma treatment and the second plasma treatment include: plasma treatment with H2 or He plasma. 7.如权利要求6所述的形成方法,其特征在于,采用H2或He等离子体进行离子体处理的步骤中,工艺参数包括:工艺气体压强在2mTorr到100mTorr范围内,H2或He流量在50sccm到500sccm范围内,工艺温度在0℃到100℃范围内。7. The forming method according to claim 6, characterized in that, in the step of using H2 or He plasma for plasma treatment, the process parameters include: process gas pressure within the range of 2mTorr to 100mTorr, H2 or He flow rate In the range of 50 sccm to 500 sccm, the process temperature is in the range of 0°C to 100°C. 8.如权利要求4或5所述的形成方法,其特征在于,形成所述前驱侧墙的步骤中,所述前驱侧墙的材料为氮化硅;8. The forming method according to claim 4 or 5, wherein in the step of forming the precursor sidewall, the material of the precursor sidewall is silicon nitride; 通过湿法的方式去除经等离子体处理的部分材料的步骤包括:采用氢氟酸去除经等离子体处理的部分材料。The step of removing the part of the plasma-treated material by wet method includes: using hydrofluoric acid to remove the part of the plasma-treated material. 9.如权利要求1所述的形成方法,其特征在于,形成所述真空侧墙的步骤中,沿垂直所述基底表面的方向上,所述真空侧墙尺寸与所述拐角侧墙尺寸之比在5:4到5:1范围内。9. The forming method according to claim 1, wherein in the step of forming the vacuum sidewall, along the direction perpendicular to the surface of the substrate, the difference between the dimension of the vacuum sidewall and the dimension of the corner sidewall The ratio is in the range of 5:4 to 5:1. 10.如权利要求1所述的形成方法,其特征在于,形成源漏掺杂区的步骤中,沿所述鳍部延伸方向,所述源漏掺杂区之间的距离大于所述栅极结构的尺寸;10. The forming method according to claim 1, wherein in the step of forming the doped source and drain regions, along the extending direction of the fin, the distance between the doped source and drain regions is greater than that of the gate the size of the structure; 形成前驱侧墙的步骤包括:在所述源漏掺杂区和所述栅极结构之间的鳍部上形成所述前驱侧墙。The step of forming a precursor spacer includes: forming the precursor spacer on the fin between the source-drain doped region and the gate structure. 11.如权利要求1所述的形成方法,其特征在于,形成所述伪侧墙的步骤中,所述伪侧墙的材料为多晶硅。11. The forming method according to claim 1, wherein in the step of forming the dummy spacer, the material of the dummy sidewall is polysilicon. 12.如权利要求1或11所述的形成方法,其特征在于,去除所述伪侧墙的步骤包括:通过化学扩散刻蚀的方式去除所述伪侧墙。12. The forming method according to claim 1 or 11, wherein the step of removing the dummy spacer comprises: removing the dummy spacer by means of chemical diffusion etching. 13.如权利要求12所述的形成方法,其特征在于,通过化学扩散刻蚀的方式去除所述伪侧墙的步骤包括:采用NH3去除所述伪侧墙。13 . The forming method according to claim 12 , wherein the step of removing the dummy sidewall by chemical diffusion etching comprises: using NH 3 to remove the dummy sidewall. 14 . 14.如权利要求1所述的形成方法,其特征在于,提供所述基底的步骤中,所述鳍部的材料为Ⅲ-Ⅴ族半导体材料。14 . The forming method according to claim 1 , wherein in the step of providing the substrate, the material of the fin is a III-V semiconductor material. 15.如权利要求1或14所述的形成方法,其特征在于,提供所述基底的步骤中,所述鳍部的材料为InGaAs。15. The forming method according to claim 1 or 14, wherein in the step of providing the substrate, the material of the fin is InGaAs. 16.一种半导体结构,其特征在于,包括:16. A semiconductor structure, characterized in that, comprising: 基底,所述基底包括衬底和位于所述衬底上的鳍部;a base comprising a substrate and a fin on the substrate; 位于所述基底上的介质层;a dielectric layer on the substrate; 位于所述介质层内鳍部上的栅极结构,所述栅极结构横跨所述鳍部且覆盖所述鳍部部分顶部和部分侧壁的表面;a gate structure located on the fin in the dielectric layer, the gate structure straddling the fin and covering the surface of part of the top and part of the sidewall of the fin; 位于所述栅极结构两侧鳍部内的源漏掺杂区;Source and drain doped regions located in the fins on both sides of the gate structure; 位于所述栅极结构朝向所述源漏掺杂区侧壁上的拐角侧墙;a corner sidewall located on the sidewall of the gate structure facing the source-drain doped region; 位于所述栅极结构和所述介质层之间的真空侧墙。A vacuum spacer between the gate structure and the dielectric layer. 17.如权利要求16所述的半导体结构,其特征在于,所述拐角侧墙的材料为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼中的一种或多种。17. The semiconductor structure according to claim 16, wherein the material of the corner sidewall is silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, nitride One or more of boron or carbon boron nitride. 18.如权利要求16所述的半导体结构,其特征在于,沿垂直所述基底表面的方向上,所述真空侧墙尺寸与所述拐角侧墙尺寸之比在5:4到5:1范围内。18. The semiconductor structure according to claim 16, wherein in a direction perpendicular to the substrate surface, the ratio of the size of the vacuum sidewall to the size of the corner sidewall is in the range of 5:4 to 5:1 Inside. 19.如权利要求16所述的半导体结构,其特征在于,所述鳍部的材料为Ⅲ-Ⅴ族半导体材料。19. The semiconductor structure according to claim 16, wherein the material of the fin is a III-V semiconductor material. 20.如权利要求16所述的半导体结构,其特征在于,所述源漏掺杂区之间的距离大于所述栅极结构的尺寸;20. The semiconductor structure according to claim 16, wherein the distance between the source and drain doped regions is greater than the size of the gate structure; 所述拐角侧墙位于在所述源漏掺杂区和所述栅极结构之间的鳍部上。The corner sidewall is located on the fin between the source-drain doped region and the gate structure.
CN201611085957.6A 2016-11-30 2016-11-30 Semiconductor structure and method of forming the same Active CN108122761B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611085957.6A CN108122761B (en) 2016-11-30 2016-11-30 Semiconductor structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611085957.6A CN108122761B (en) 2016-11-30 2016-11-30 Semiconductor structure and method of forming the same

Publications (2)

Publication Number Publication Date
CN108122761A true CN108122761A (en) 2018-06-05
CN108122761B CN108122761B (en) 2020-06-09

Family

ID=62226557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611085957.6A Active CN108122761B (en) 2016-11-30 2016-11-30 Semiconductor structure and method of forming the same

Country Status (1)

Country Link
CN (1) CN108122761B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216192A (en) * 2017-07-03 2019-01-15 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and forming method thereof
CN112838048A (en) * 2019-11-22 2021-05-25 联华电子股份有限公司 Interconnection structure and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120104512A1 (en) * 2010-10-28 2012-05-03 International Business Machines Corporation Sealed air gap for semiconductor chip
KR20130106622A (en) * 2012-03-20 2013-09-30 삼성전자주식회사 Semiconductor device and method for manufacturing the device
US20150263122A1 (en) * 2014-03-12 2015-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Air-gap offset spacer in finfet structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120104512A1 (en) * 2010-10-28 2012-05-03 International Business Machines Corporation Sealed air gap for semiconductor chip
KR20130106622A (en) * 2012-03-20 2013-09-30 삼성전자주식회사 Semiconductor device and method for manufacturing the device
US20150263122A1 (en) * 2014-03-12 2015-09-17 Taiwan Semiconductor Manufacturing Co., Ltd. Air-gap offset spacer in finfet structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216192A (en) * 2017-07-03 2019-01-15 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and forming method thereof
CN109216192B (en) * 2017-07-03 2021-10-15 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same
CN112838048A (en) * 2019-11-22 2021-05-25 联华电子股份有限公司 Interconnection structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN108122761B (en) 2020-06-09

Similar Documents

Publication Publication Date Title
US8889497B2 (en) Semiconductor devices and methods of manufacture thereof
CN104124174B (en) Semiconductor structure and forming method thereof
CN103295904B (en) There is the FinFET design that LDD extends
CN104517901B (en) The forming method of CMOS transistor
CN107958873A (en) Fin field effect pipe and forming method thereof
CN110364483B (en) Semiconductor structure and method of forming the same
US10658512B2 (en) Fin field effect transistor and fabrication method thereof
CN106298894B (en) The forming method of semiconductor devices
CN108122761B (en) Semiconductor structure and method of forming the same
CN108573910B (en) Semiconductor structure and forming method thereof
CN104183500A (en) Method for forming ion-implantation side wall protection layer on FinFET device
CN111162074B (en) Semiconductor structure and method of forming the same
CN108122760A (en) Semiconductor structure and forming method thereof
CN104347508B (en) Semiconductor structure and formation method thereof
CN103915387B (en) The forming method of CMOS transistor
CN106469652A (en) Semiconductor device and forming method thereof
CN111627814A (en) Semiconductor structure and forming method thereof
CN109994548A (en) Semiconductor structure and method of forming the same
CN105632925B (en) Fin field effect pipe and forming method thereof
CN109003976A (en) Semiconductor structure and forming method thereof
CN103545366B (en) Semiconductor device and method for manufacturing the same
CN113113356B (en) Semiconductor structure and forming method thereof
CN113053751B (en) Semiconductor structure and forming method thereof
CN112951725B (en) Semiconductor structure and forming method thereof
CN111162043B (en) Semiconductor structures and methods of forming them

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant