[go: up one dir, main page]

CN108120907A - The partial discharge diagnostic method of feature extraction under a kind of tremendously low frequency voltage based on power frequency - Google Patents

The partial discharge diagnostic method of feature extraction under a kind of tremendously low frequency voltage based on power frequency Download PDF

Info

Publication number
CN108120907A
CN108120907A CN201810023937.9A CN201810023937A CN108120907A CN 108120907 A CN108120907 A CN 108120907A CN 201810023937 A CN201810023937 A CN 201810023937A CN 108120907 A CN108120907 A CN 108120907A
Authority
CN
China
Prior art keywords
discharge
voltage
insulation defect
partial discharge
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810023937.9A
Other languages
Chinese (zh)
Other versions
CN108120907B (en
Inventor
周远翔
周仲柳
张灵
张云霄
孙建涛
李金忠
王健
王健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Hubei Electric Power Co Ltd
Original Assignee
Tsinghua University
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI filed Critical Tsinghua University
Priority to CN201810023937.9A priority Critical patent/CN108120907B/en
Publication of CN108120907A publication Critical patent/CN108120907A/en
Application granted granted Critical
Publication of CN108120907B publication Critical patent/CN108120907B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1281Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of liquids or gases

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明提出一种基于工频至低频电压下特征提取的局部放电诊断方法,属于高电压与绝缘技术领域中的局部放电检测与模式识别技术。该方法首先构建局部放电试验平台并制作绝缘缺陷模型;对每种绝缘缺陷模型在局部放电试验平台上分别进行工频至低频电压下局部放电试验,提取每种绝缘缺陷模型在每种频率电压下的放电特征参数;然后对待测电力设备进行局部放电试验并记录放电特征参数;将待测电力设备的放电特征参数变化趋势与每个绝缘缺陷模型放电特征参数的变化趋势对比,通过评价函数识别待测电力设备绝缘缺陷。本方法在各频率下采取相同电压幅值,避免较高电压幅值对绝缘的损伤;利用特征参数变化趋势进行识别,减弱了信号衰减的影响。

The invention proposes a partial discharge diagnosis method based on feature extraction under power frequency to low frequency voltage, which belongs to the partial discharge detection and pattern recognition technology in the field of high voltage and insulation technology. In this method, a partial discharge test platform is first constructed and an insulation defect model is made; each insulation defect model is subjected to a partial discharge test under power frequency to low frequency voltage on the partial discharge test platform, and each insulation defect model is extracted under each frequency voltage. Then conduct a partial discharge test on the power equipment to be tested and record the discharge characteristic parameters; compare the change trend of the discharge characteristic parameters of the power equipment to be tested with the change trend of the discharge characteristic parameters of each insulation defect model, and use the evaluation function to identify the discharge characteristic parameters. Detect insulation defects of electrical equipment. In this method, the same voltage amplitude is adopted at each frequency to avoid damage to insulation caused by higher voltage amplitudes; the variation trend of characteristic parameters is used for identification, and the influence of signal attenuation is weakened.

Description

一种基于工频至低频电压下特征提取的局部放电诊断方法A Partial Discharge Diagnosis Method Based on Feature Extraction under Power Frequency to Low Frequency Voltage

技术领域technical field

本发明属于高电压与绝缘技术领域中的局部放电检测与模式识别技术,特别涉及一种基于工频至低频电压下特征提取的局部放电诊断方法。The invention belongs to the partial discharge detection and pattern recognition technology in the technical field of high voltage and insulation, in particular to a partial discharge diagnosis method based on feature extraction under power frequency to low frequency voltage.

背景技术Background technique

局部放电作为一种发生在绝缘缺陷处、未形成整体贯穿性损伤的部分区域放电,同时伴随着电、声与光等可检测现象,这些特点使得局部放电试验成为考核电力设备绝缘可靠性的重要手段。由于局部放电信号的各项特征,如放电量、放电重复率、放电相位分布及n-q曲线等,蕴含了绝缘缺陷类型的信息,使得局部放电试验更是成为故障类型诊断的重要手段。近年来,有关局部放电的研究主要围绕不同的检测方法(如电脉冲法、超声波法、超高频法、光信号法等),不同绝缘缺陷不同发展阶段的放电特征,故障诊断算法等方面展开。Partial discharge, as a partial area discharge that occurs at the insulation defect and does not form an overall penetrating damage, is accompanied by detectable phenomena such as electricity, sound and light. means. Since the characteristics of the partial discharge signal, such as discharge volume, discharge repetition rate, discharge phase distribution and n-q curve, etc., contain information on the type of insulation defect, the partial discharge test has become an important means of fault type diagnosis. In recent years, the research on partial discharge has mainly focused on different detection methods (such as electric pulse method, ultrasonic method, ultra-high frequency method, optical signal method, etc.), discharge characteristics of different insulation defects at different development stages, and fault diagnosis algorithms. .

然而,上述故障诊断技术均基于工频电压(50Hz)下的放电信息,使得信息来源相对单一。同时由于现场测量的干扰,放电信号的传播与衰减,使得工频电压下放电模式识别的难度更为增加。对于局部放电模式识别,现有的基于电压幅值的方法,是通过施加不同幅值的电压,测量待测设备的局部放电信号,分析不同幅值电压下的放电信号特征进行模式识别,这一方法可能使得电力设备在加压过程中发生意外的损伤。However, the above-mentioned fault diagnosis techniques are all based on the discharge information under the power frequency voltage (50Hz), which makes the source of information relatively single. At the same time, due to the interference of on-site measurement, the propagation and attenuation of the discharge signal, it is more difficult to identify the discharge mode under power frequency voltage. For partial discharge pattern recognition, the existing method based on voltage amplitude is to apply voltages of different amplitudes, measure the partial discharge signal of the equipment under test, and analyze the characteristics of the discharge signal under different amplitude voltages for pattern recognition. The method may cause accidental damage to electrical equipment during pressurization.

发明内容Contents of the invention

本发明的目的在于解决传统工频电压下局部放电获取信息较为单一,不同电压幅值可能造成意外的绝缘损伤的问题,提出一种基于工频至低频电压下特征提取的局部放电诊断方法。本方法可以获得更多的放电信息,各频率下采取一致的电压幅值,避免较高电压幅值对绝缘的损伤。利用特征参数的变化趋势进行识别,减弱了信号衰减的影响。The purpose of the present invention is to solve the problem that partial discharge acquisition information is relatively single under traditional power frequency voltage, and different voltage amplitudes may cause unexpected insulation damage, and proposes a partial discharge diagnosis method based on feature extraction under power frequency to low frequency voltage. This method can obtain more discharge information, adopt consistent voltage amplitudes at each frequency, and avoid damage to insulation caused by higher voltage amplitudes. The variation trend of characteristic parameters is used for identification, which weakens the influence of signal attenuation.

本发明提出的一种基于工频至低频电压下特征提取的局部放电诊断方法,具体包括以下步骤:A method for diagnosing partial discharge based on feature extraction under power frequency to low frequency voltage proposed by the present invention, specifically includes the following steps:

1)构建工频至低频电压下局部放电试验平台;所述局部放电试验平台包括:高压功率放大器,任意波形发生器,保护电阻,绝缘缺陷模型,第一测量阻抗,第二测量阻抗,耦合电容,局部放电测量与分析仪,高压探头和示波器;1) Build a partial discharge test platform under power frequency to low frequency voltage; the partial discharge test platform includes: high voltage power amplifier, arbitrary waveform generator, protection resistor, insulation defect model, first measurement impedance, second measurement impedance, coupling capacitance , partial discharge measurement and analyzer, high voltage probe and oscilloscope;

所述任意波形发生器与高压功率放大器通过同轴电缆连接线连接,高压功率放大器与保护电阻通过高压电缆线连接,保护电阻与绝缘缺陷模型、耦合电容分别通过高压电缆线连接,高压探头与耦合电容通过高压电缆线连接,绝缘缺陷模型与第一测量阻抗通过金属导线连接,耦合电容与第二测量阻抗通过金属导线连接,第一测量阻抗和第二测量阻抗分别与局部放电测量与分析仪通过同轴电缆连接线连接,高压探头与示波器通过同轴电缆连接线连接;The arbitrary waveform generator is connected to the high-voltage power amplifier through a coaxial cable connection, the high-voltage power amplifier is connected to the protection resistor through a high-voltage cable, the protection resistor is connected to the insulation defect model, and the coupling capacitor is respectively connected through a high-voltage cable, and the high-voltage probe is connected to the coupling The capacitor is connected through a high-voltage cable, the insulation defect model is connected to the first measurement impedance through a metal wire, the coupling capacitor is connected to the second measurement impedance through a metal wire, and the first measurement impedance and the second measurement impedance are connected to the partial discharge measurement and analyzer respectively. Coaxial cable connection, the high voltage probe is connected to the oscilloscope through the coaxial cable connection;

2)制作绝缘缺陷模型;2) Make an insulation defect model;

所述绝缘缺陷模型包括:内部油隙与沿面复合放电模型,绝缘油均匀场放电模型,油中电晕放电模型和沿面放电模型,以及根据设备具体情况可能存在的缺陷模型;The insulation defect model includes: internal oil gap and surface discharge model, insulating oil uniform field discharge model, corona discharge model in oil and surface discharge model, and defect models that may exist according to the specific conditions of the equipment;

3)对步骤2)制作的每种绝缘缺陷模型,在步骤1)构建的局部放电试验平台上分别进行50Hz、40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz频率电压下局部放电试验;每次试验中,调整任意波形发生器输出波形的频率与幅值,在1.05倍的放电起始电压下记录并存储每次局部放电试验数据;每种绝缘缺陷模型在每个频率电压下进行的局部放电试验均重复10~15次,并对该频率电压下每次试验数据取平均值作为该绝缘缺陷模型在选定频率电压下对应的局部放电试验数据,得到每种绝缘缺陷模型在每种频率电压下的局部放电试验数据;3) For each insulation defect model produced in step 2), carry out partial discharge tests at 50Hz, 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz frequency voltages on the partial discharge test platform constructed in step 1); In each test, adjust the frequency and amplitude of the output waveform of the arbitrary waveform generator, record and store the data of each partial discharge test at 1.05 times the discharge initiation voltage; each insulation defect model is tested at each frequency voltage The partial discharge test is repeated 10 to 15 times, and the average value of each test data at the frequency and voltage is taken as the partial discharge test data corresponding to the insulation defect model at the selected frequency voltage, and each insulation defect model is obtained at each Partial discharge test data under frequency voltage;

4)从步骤3)得到的每种绝缘缺陷模型在每种频率电压下的局部放电试验数据中提取放电特征参数形成参考特征库;所述放电特征参数包括:起始电压UPDIV;正半周最大放电量q+ max和负半周最大放电量q- max,正半周平均放电量q+ mean和负半周平均放电量q- mean,正半周脉冲重复率rate+和负半周脉冲重复率rate-;最大放电量相位分布图谱 平均放电量相位分布图谱放电次数相位分布图谱的特征参数,包括:每个图谱的正半周偏斜度Sk和负半周偏斜度Sk,每个图谱的正半周峭度Ku和负半周峭度Ku,每个图谱的不对称度Asy和相关度Cc;放电量的次数分布图谱n-Q的特征参数,包括:偏斜度Sk,峭度Ku,不对称度Asy,相关度Cc4) Extract discharge characteristic parameters from the partial discharge test data of each kind of insulation defect model obtained in step 3) to form a reference characteristic library; the discharge characteristic parameters include: initial voltage U PDIV ; positive half cycle maximum Discharge capacity q + max and negative half-cycle maximum discharge capacity q - max , positive half-cycle average discharge capacity q + mean and negative half-cycle average discharge capacity q - mean , positive half-cycle pulse repetition rate rate + and negative half-cycle pulse repetition rate rate - ; max Discharge phase distribution map Average discharge phase distribution map Phase distribution spectrum of discharge times The characteristic parameters of , including: positive semicircular skewness S k and negative semicircular skewness S k of each spectrum, positive semicircular kurtosis K u and negative semicircular kurtosis K u of each spectrum, asymmetry of each spectrum degree A sy and correlation degree C c ; the characteristic parameters of the frequency distribution spectrum nQ of discharge capacity, including: skewness S k , kurtosis K u , asymmetry degree Asy , correlation degree C c ;

5)将待测电力设备置于步骤1)构建的局部放电试验平台中绝缘缺陷模型位置处,对待测电力设备进行局部放电试验,记录待测电力设备在每种频率电压下对应的局部放电试验数据,电压频率包括50Hz、40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz,电压幅值为1.05倍放电起始电压;5) Place the power equipment to be tested at the location of the insulation defect model in the partial discharge test platform constructed in step 1), conduct a partial discharge test on the power equipment to be tested, and record the corresponding partial discharge tests of the power equipment to be tested under each frequency and voltage Data, the voltage frequency includes 50Hz, 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz, and the voltage amplitude is 1.05 times the discharge initiation voltage;

6)提取待测电力设备在每种频率电压下局部放电试验数据中的放电特征参数;6) Extract the discharge characteristic parameters in the partial discharge test data of the power equipment to be tested under each frequency and voltage;

7)将待测电力设备的放电特征参数的变化趋势与每个绝缘缺陷模型的对应放电特征参数的变化趋势进行对比,通过评价函数对待测电力设备绝缘缺陷进行识别;具体步骤如下:7) Compare the change trend of the discharge characteristic parameters of the power equipment to be tested with the change trend of the corresponding discharge characteristic parameters of each insulation defect model, and identify the insulation defects of the power equipment to be tested through the evaluation function; the specific steps are as follows:

7-1)选取任一种绝缘缺陷模型和任一种放电特征参数,以局部放电试验的电压频率为横坐标,该放电特征参数值为纵坐标,利用该绝缘缺陷模型在每种频率电压下的局部放电试验数据中记录的该放电特征参数值,得到该绝缘缺陷模型的选定放电特征参数从工频到低频电压下的变化趋势图;7-1) Select any insulation defect model and any discharge characteristic parameter, take the voltage frequency of the partial discharge test as the abscissa, and the discharge characteristic parameter value as the ordinate, use the insulation defect model at each frequency voltage Based on the discharge characteristic parameter value recorded in the partial discharge test data, the change trend diagram of the selected discharge characteristic parameter of the insulation defect model from power frequency to low frequency voltage is obtained;

7-2)重复步骤7-1),得到每种绝缘缺陷模型的每种放电特征参数从工频到低频电压下的变化趋势图;7-2) Repeat step 7-1) to obtain the change trend diagram of each discharge characteristic parameter of each insulation defect model from power frequency to low frequency voltage;

7-3)对待测电力设备,重复步骤7-1),得到待测电力设备对应的每种放电特征参数从工频到低频电压下的的趋势图;7-3) Repeat step 7-1) for the power equipment to be tested to obtain a trend diagram of each discharge characteristic parameter corresponding to the power equipment to be tested from power frequency to low frequency voltage;

7-4)通过评价函数对待测电力设备绝缘缺陷进行识别;7-4) Identify the insulation defect of the power equipment to be tested through the evaluation function;

评价函数如下式所示:The evaluation function is as follows:

将待测电力设备的每种放电特征参数的变化趋势与每个绝缘缺陷模型的对应放电特征参数的变化趋势进行对比:若待测电力设备从工频到低频电压下的起始电压UPDIV变化趋势与该绝缘缺陷模型的变化趋势一致,则令k=1,反之令k=0;对比待测电力设备与每个绝缘缺陷模型从工频到低频电压下的q+ max、q- max、q+ mean、q- mean、rate+和rate-6个放电特征参数的变化趋势,得到mi的值:若变化趋势一致则令mi=1,反之令mi=0;对比待测电力设备与每个缺陷模型从工频到低频电压下的对应的各放电图谱的特征参数变化趋势:若变化趋势一致则令ni=1,反之令ni=0;从而计算得到待测电力设备与每个绝缘缺陷模型的放电特征参数变化趋势比较的评价函数值;Compare the change trend of each discharge characteristic parameter of the power equipment under test with the change trend of the corresponding discharge characteristic parameter of each insulation defect model: if the initial voltage U PDIV of the power equipment under test changes from power frequency to low frequency voltage If the trend is consistent with the change trend of the insulation defect model, then let k=1, otherwise let k=0; compare the q + max , q - max , q + mean , q - mean , rate + and rate - the variation trend of the 6 discharge characteristic parameters, and the value of mi is obtained: if the variation trend is consistent, set mi = 1, otherwise set mi = 0; compare the power to be measured The change trend of the characteristic parameters of each discharge spectrum corresponding to the equipment and each defect model from power frequency to low frequency voltage: if the change trend is consistent, set n i =1, otherwise set n i =0; thus the power equipment under test is calculated Evaluation function value compared with the variation trend of discharge characteristic parameters of each insulation defect model;

选出各评价函数值中最大值所对应的绝缘缺陷模型,该绝缘缺陷模型的放电模式即为待测设备最有可能的绝缘缺陷,局部放电诊断结束。Select the insulation defect model corresponding to the maximum value of each evaluation function value, the discharge mode of the insulation defect model is the most likely insulation defect of the equipment under test, and the partial discharge diagnosis ends.

本发明的特点及有益效果在于:Features and beneficial effects of the present invention are:

与现有技术相比,本发明基于工频至低频电压下的局部放电试验,可以获得有关绝缘缺陷更多的信息,避免施加不同电压幅值造成的意外绝缘损伤。利用放电特征参数的变化趋势进行识别,减弱了信号衰减的影响。此外,对于一些电容量较大的待测设备,使用低频电压下的局部放电检测,可有效降低试验电源的容量。Compared with the prior art, the present invention is based on the partial discharge test under power frequency to low frequency voltage, can obtain more information about insulation defects, and avoid accidental insulation damage caused by applying different voltage amplitudes. The variation trend of discharge characteristic parameters is used for identification, which weakens the influence of signal attenuation. In addition, for some devices under test with large capacitance, the use of partial discharge detection under low frequency voltage can effectively reduce the capacity of the test power supply.

附图说明Description of drawings

图1是本发明方法的整体流程框图。Fig. 1 is the overall flow chart of the method of the present invention.

图2是本发明的工频至低频电压下局部放电试验平台结构示意图。Fig. 2 is a structural schematic diagram of the partial discharge test platform under power frequency to low frequency voltage of the present invention.

图3是本发明实施例的绝缘缺陷模型示意图;其中:(a)为内部油隙与沿面复合放电模型,(b)为绝缘油中均匀场放电模型,(c)为绝缘油中电晕放电模型,(d)为油纸绝缘沿面放电模型。Fig. 3 is a schematic diagram of an insulation defect model of an embodiment of the present invention; wherein: (a) is a composite discharge model of an internal oil gap and along a surface, (b) is a uniform field discharge model in insulating oil, and (c) is a corona discharge in insulating oil Model, (d) is the surface discharge model of oil-paper insulation.

具体实施方式Detailed ways

本发明提出的一种基于工频至低频电压下特征提取的局部放电诊断方法,下面结合附图和具体实施例对本发明做更进一步的解释,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。The present invention proposes a method for diagnosing partial discharge based on feature extraction under power frequency to low frequency voltage. The present invention will be further explained below in conjunction with the accompanying drawings and specific embodiments. The described embodiments are only part of the embodiments of the present invention. , but not all examples.

本发明提出的一种基于工频至低频电压下特征提取的局部放电诊断方法,涉及工频50Hz,与低频40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz,整体流程如图1所示,包括以下步骤:A partial discharge diagnosis method based on feature extraction under power frequency to low frequency voltage proposed by the present invention involves power frequency 50Hz, and low frequency 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz. The overall process is shown in Figure 1 , including the following steps:

1)构建工频至低频电压下局部放电试验平台。本发明的局部放电试验平台组成如图2所示,包括:高压功率放大器,任意波形发生器,保护电阻,绝缘缺陷模型,第一测量阻抗,第二测量阻抗,耦合电容,局部放电测量与分析仪,高压探头和示波器。所选取的各元件需满足《GBT 7354-2003局部放电测量》的要求,本实施例选取的高压功率放大器型号为Trek model 50/12,保护电阻为1MΩ,测量阻抗型号为CPL 542,耦合电容为400pF,局部放电测量与分析仪型号为MPD 600。1) Construct a partial discharge test platform under power frequency to low frequency voltage. The composition of the partial discharge test platform of the present invention is shown in Figure 2, including: high voltage power amplifier, arbitrary waveform generator, protective resistor, insulation defect model, first measurement impedance, second measurement impedance, coupling capacitance, partial discharge measurement and analysis instrument, high voltage probe and oscilloscope. The selected components must meet the requirements of "GBT 7354-2003 Partial Discharge Measurement". The high-voltage power amplifier model selected in this embodiment is Trek model 50/12, the protection resistor is 1MΩ, the measurement impedance model is CPL 542, and the coupling capacitor is 400pF, the model of partial discharge measurement and analyzer is MPD 600.

所述任意波形发生器与高压功率放大器通过BNC线(同轴电缆连接线)连接,高压功率放大器与保护电阻通过高压电缆线连接,保护电阻与绝缘缺陷模型、耦合电容分别通过高压电缆线连接,高压探头与耦合电容通过高压电缆线连接,绝缘缺陷模型与第一测量阻抗通过金属导线连接,耦合电容与第二测量阻抗通过金属导线连接,第一测量阻抗和第二测量阻抗分别与局部放电测量与分析仪通过BNC线连接,高压探头与示波器通过BNC线连接。The arbitrary waveform generator and the high-voltage power amplifier are connected by a BNC line (coaxial cable connection), the high-voltage power amplifier and the protection resistor are connected by a high-voltage cable, and the protection resistor is connected with the insulation defect model and the coupling capacitor by a high-voltage cable respectively, The high-voltage probe is connected to the coupling capacitor through a high-voltage cable, the insulation defect model is connected to the first measurement impedance through a metal wire, the coupling capacitor is connected to the second measurement impedance through a metal wire, and the first measurement impedance and the second measurement impedance are respectively connected to the partial discharge measurement It is connected with the analyzer through the BNC line, and the high-voltage probe is connected with the oscilloscope through the BNC line.

工作时,任意波形发生器输出的不同频率(50Hz、40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz)的正弦波信号,经高压功率放大器升压,获得不同频率的正弦电压。高压功率放大器输出的正弦电压经保护电阻后施加到绝缘缺陷模型上,耦合电容与绝缘缺陷模型并联连接。与缺陷模型串联连接的第一测量阻抗用以采集放电脉冲信号,与耦合电容串联连接的第二测量阻抗用以采集电压同步信号,两路信号输入局部放电存储与分析系统。使用高压探头与示波器测量外施电压,用以监测实时电压,并记录放电起始电压。When working, the sine wave signals of different frequencies (50Hz, 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz) output by the arbitrary waveform generator are boosted by the high-voltage power amplifier to obtain sinusoidal voltages of different frequencies. The sinusoidal voltage output by the high-voltage power amplifier is applied to the insulation defect model after passing through the protection resistor, and the coupling capacitor is connected in parallel with the insulation defect model. The first measurement impedance connected in series with the defect model is used to collect the discharge pulse signal, the second measurement impedance connected in series with the coupling capacitor is used to collect the voltage synchronization signal, and the two signals are input to the partial discharge storage and analysis system. Use a high voltage probe and an oscilloscope to measure the applied voltage to monitor the real-time voltage and record the discharge initiation voltage.

2)制作绝缘缺陷模型;本实施例制作的绝缘缺陷模型如图3所示,包括内部油隙与沿面复合放电模型,如图3(a)所示,试样由3层1mm厚的绝缘纸粘结而成,中间一层挖孔形成油隙,高压尖电极抵住试样;绝缘油均匀场放电模型,如图3(b)所示,高压电极与地电极均为圆形平板,油隙间距为2.5mm;油中电晕放电模型,如图3(c)所示,高压尖电极距离地电极为5mm;沿面放电模型,如图3(d)所示,由两个半球电极组成,球半径为2.5mm,电极间距2mm,高压电极与地电极均紧贴1mm厚绝缘纸板。2) Make an insulation defect model; the insulation defect model made in this example is shown in Figure 3, including the internal oil gap and the compound discharge model along the surface, as shown in Figure 3(a), the sample consists of three layers of 1mm thick insulating paper The middle layer is dug to form an oil gap, and the high-voltage pointed electrode is against the sample; the uniform field discharge model of insulating oil, as shown in Figure 3(b), the high-voltage electrode and the ground electrode are both circular plates, and the oil The gap distance is 2.5mm; the corona discharge model in oil, as shown in Figure 3(c), the distance between the high-voltage tip electrode and the ground electrode is 5mm; the surface discharge model, as shown in Figure 3(d), consists of two hemispherical electrodes , the radius of the ball is 2.5mm, the electrode spacing is 2mm, and the high-voltage electrode and the ground electrode are close to the 1mm thick insulating cardboard.

以上四种绝缘缺陷模型是最为常见的绝缘缺陷模型,操作者还可根据待测设备情况和实验需要自行设计制作绝缘缺陷模型。The above four insulation defect models are the most common insulation defect models, and operators can also design and manufacture insulation defect models according to the conditions of the equipment to be tested and experimental needs.

3)对步骤2)制作的每种绝缘缺陷模型,在步骤1)构建的局部放电试验平台上分别进行50Hz、40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz频率电压下局部放电试验,每种绝缘缺陷模型在每个频率电压下进行的局部放电试验均重复10~15次,并对该频率电压下每次试验数据取平均值作为该绝缘缺陷模型在选定频率电压下对应的局部放电试验数据。每次试验中,调整任意波形发生器输出波形的频率与幅值,在1.05倍的放电起始电压下记录并存储每次试验局部放电信号数据,得到每种绝缘缺陷模型在每种频率电压下的局部放电试验数据;3) For each insulation defect model produced in step 2), carry out partial discharge tests at 50Hz, 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz frequency voltages on the partial discharge test platform built in step 1), The partial discharge test of each insulation defect model at each frequency and voltage is repeated 10 to 15 times, and the average value of each test data at the frequency and voltage is taken as the corresponding partial discharge test of the insulation defect model at the selected frequency and voltage. Discharge test data. In each test, adjust the frequency and amplitude of the output waveform of the arbitrary waveform generator, record and store the partial discharge signal data of each test at 1.05 times the discharge initiation voltage, and obtain each insulation defect model at each frequency and voltage Partial discharge test data;

4)从步骤3)得到的每种绝缘缺陷模型在每种频率电压下的局部放电试验数据中提取放电特征参数形成参考特征库。所述放电特征参数包括:起始电压UPDIV;正半周最大放电量q+ max和负半周最大放电量q- max,正半周平均放电量q+ mean和负半周平均放电量q- mean,正半周脉冲重复率rate+和负半周脉冲重复率rate-;最大放电量相位分布图谱 平均放电量相位分布图谱放电次数相位分布图谱的特征参数,包括每个图谱的正半周偏斜度Sk和负半周偏斜度Sk,每个图谱的正半周峭度Ku和负半周峭度Ku,每个图谱的不对称度Asy和相关度Cc;放电量的次数分布图谱n-Q的特征参数,包括:偏斜度Sk,峭度Ku,不对称度Asy,相关度Cc;其中各放电图谱的特征参数共22个。4) Extract discharge characteristic parameters from the partial discharge test data of each insulation defect model obtained in step 3) at each frequency and voltage to form a reference characteristic library. The discharge characteristic parameters include: initial voltage U PDIV ; maximum discharge capacity q + max in the positive half cycle and q - max in the negative half cycle, average discharge capacity in the positive half cycle q + mean and average discharge capacity in the negative half cycle q - mean , positive Half-cycle pulse repetition rate rate + and negative half-cycle pulse repetition rate rate - ; phase distribution map of maximum discharge capacity Average discharge phase distribution map Phase distribution spectrum of discharge times The characteristic parameters of each spectrum, including the positive semicircular skewness S k and negative semicircular skewness S k of each spectrum, the positive semicircular kurtosis K u and negative semicircular kurtosis K u of each spectrum, the asymmetry of each spectrum A sy and correlation degree C c ; the characteristic parameters of the frequency distribution spectrum nQ of the discharge quantity, including: skewness S k , kurtosis Ku , asymmetry degree Asy , correlation degree C c ; among them, the characteristic parameters of each discharge spectrum There are 22 in total.

Sk为图谱的偏斜度参数,表征图谱相对于正态分布的偏移度,Sk>0时图谱相对于正态分布左偏,Sk<0时图谱相对于正态分布右偏。其表达式为:S k is the skewness parameter of the spectrum, which represents the deviation of the spectrum from the normal distribution. When S k >0, the spectrum is left-skewed relative to the normal distribution, and when S k <0, the spectrum is right-skewed relative to the normal distribution. Its expression is:

式中,xi为图谱横坐标的离散值;n为xi的数目;f(xi)为xi的概率;u为均值;σ为标准差。In the formula, x i is the discrete value of the abscissa of the map; n is the number of x i ; f( xi ) is the probability of x i ; u is the mean; σ is the standard deviation.

式中,yi为xi对应的纵坐标的值。In the formula, y i is the value of the ordinate corresponding to x i .

Ku为图谱的峭度参数,表征图谱相对于正态分布的尖锐程度,Ku>0时图谱比正态分布尖锐,Ku<0时图谱比正态分布平坦。其表达式为:K u is the kurtosis parameter of the spectrum, which represents the sharpness of the spectrum relative to the normal distribution. When K u >0, the spectrum is sharper than the normal distribution, and when K u <0, the spectrum is flatter than the normal distribution. Its expression is:

Asy为不对称度,Asy>1时图谱负半周范围内的平均值大于正半周范围的平均值,Asy<1时图谱正半周范围内的平均值大于负半周范围的平均值,表达式如下:A sy is the degree of asymmetry. When A sy > 1, the average value in the negative half cycle range of the spectrum is greater than the average value in the positive half cycle range. When A sy <1, the average value in the positive half cycle range of the spectrum is greater than the average value in the negative half cycle range of the spectrum. The formula is as follows:

式中,yi +与yi -分别为图谱在正负半周的纵坐标取值;N1和N2分别为正负半周的相位窗数,一般可取180,即正负半周分别划分为180个相位窗。In the formula, y i + and y i - are the ordinate values of the spectrum in the positive and negative half cycles respectively; N 1 and N 2 are the phase window numbers of the positive and negative half cycles respectively, which can generally be 180, that is, the positive and negative half cycles are divided into 180 a phase window.

Cc为相关度,表征图谱正负半周轮廓分布的相似程度,Cc趋向于1则分布越相似;Cc趋向于0,则分布差异越大。其表达式为:C c is the correlation degree, which represents the similarity of the positive and negative half-circle contour distribution of the spectrum. If C c tends to 1, the distribution is more similar; if C c tends to 0, the distribution difference is greater. Its expression is:

式中,N为半周的相位窗数,一般可取180,即将半个周期划分为180个相位窗。In the formula, N is the number of phase windows of a half cycle, generally 180, that is, a half cycle is divided into 180 phase windows.

5)将待测电力设备置于步骤1)构建的局部放电试验平台中绝缘缺陷模型位置处,对待测电力设备进行工频至低频电压下局部放电试验,记录待测电力设备在每种频率电压下对应的局部放电试验数据;电压频率包括50Hz、40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz,电压幅值为1.05倍放电起始电压。5) Place the power equipment to be tested at the position of the insulation defect model in the partial discharge test platform constructed in step 1), conduct a partial discharge test under power frequency to low frequency voltage for the power equipment to be tested, and record the voltage of the power equipment to be tested at each frequency The corresponding partial discharge test data below; the voltage frequency includes 50Hz, 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz, and the voltage amplitude is 1.05 times the discharge initiation voltage.

6)提取待测电力设备在每种频率电压下局部放电试验数据中的放电特征参数,所述特征参数包括但不限于步骤4)中设计的所有参数。6) Extracting the discharge characteristic parameters in the partial discharge test data of the power equipment under test at each frequency and voltage, the characteristic parameters include but not limited to all the parameters designed in step 4).

7)将待测电力设备的放电特征参数的变化趋势与每个绝缘缺陷模型的对应放电特征参数的变化趋势进行对比,通过评价函数对待测电力设备绝缘缺陷进行识别;具体步骤如下:7) Compare the change trend of the discharge characteristic parameters of the power equipment to be tested with the change trend of the corresponding discharge characteristic parameters of each insulation defect model, and identify the insulation defects of the power equipment to be tested through the evaluation function; the specific steps are as follows:

7-1)选取任一种绝缘缺陷模型和任一种放电特征参数,以局部放电试验的电压频率为横坐标,该放电特征参数值为纵坐标,利用该绝缘缺陷模型在每种频率电压下的局部放电试验数据中记录的该放电特征参数值,得到该绝缘缺陷模型的选定放电特征参数从工频到低频电压下的变化趋势图;7-1) Select any insulation defect model and any discharge characteristic parameter, take the voltage frequency of the partial discharge test as the abscissa, and the discharge characteristic parameter value as the ordinate, use the insulation defect model at each frequency voltage Based on the discharge characteristic parameter value recorded in the partial discharge test data, the change trend diagram of the selected discharge characteristic parameter of the insulation defect model from power frequency to low frequency voltage is obtained;

7-2)重复步骤7-1),得到每种绝缘缺陷模型的每种放电特征参数从工频到低频电压下的变化趋势图;7-2) Repeat step 7-1) to obtain the change trend diagram of each discharge characteristic parameter of each insulation defect model from power frequency to low frequency voltage;

7-3)对待测电力设备,重复步骤7-1),得到待测电力设备对应的每种放电特征参数从工频到低频电压下的的趋势图;7-3) Repeat step 7-1) for the power equipment to be tested to obtain a trend diagram of each discharge characteristic parameter corresponding to the power equipment to be tested from power frequency to low frequency voltage;

7-4)通过评价函数对待测电力设备绝缘缺陷进行识别;7-4) Identify the insulation defect of the power equipment to be tested through the evaluation function;

评价函数如下式所示:The evaluation function is as follows:

将待测电力设备的每种放电特征参数的变化趋势与每个绝缘缺陷模型的对应放电特征参数的变化趋势进行对比:若待测电力设备从工频到低频电压下的起始电压UPDIV变化趋势与该绝缘缺陷模型的变化趋势一致,所述变化趋势一致指选定放电特征参数(例如:起始电压)随频率变化整体呈现的变大或变小的趋势一致,则令k=1,反之令k=0;对比待测电力设备与每个绝缘缺陷模型从工频到低频电压下的q+ max、q- max、q+ mean、q- mean、rate+和rate-6个放电特征参数的变化趋势,得到mi的值:若变化趋势一致则令mi=1,反之令mi=0,其中i代表放电特征参数的编号,i的取值为1至6;对比待测电力设备与每个缺陷模型从工频到低频电压下的对应的各放电图谱的特征参数变化趋势:若变化趋势一致则令ni=1,反之令ni=0,i代表放电特征参数的编号,i的取值为1至22;从而计算得到待测电力设备与每个绝缘缺陷模型的放电特征参数变化趋势比较的评价函数值,本发明中共得到4个评价函数值;Compare the change trend of each discharge characteristic parameter of the power equipment under test with the change trend of the corresponding discharge characteristic parameter of each insulation defect model: if the initial voltage U PDIV of the power equipment under test changes from power frequency to low frequency voltage The trend is consistent with the change trend of the insulation defect model, and the change trend is consistent with the selected discharge characteristic parameter (for example: the initial voltage) with the frequency change The overall trend of increasing or decreasing is consistent, then let k=1, On the contrary, set k=0; compare the 6 discharge characteristics of q + max , q - max , q + mean , q - mean , rate + and rate - of the power equipment under test and each insulation defect model from power frequency to low frequency voltage The change trend of the parameter, get the value of m i : if the change trend is consistent, set m i = 1, otherwise set m i = 0, where i represents the number of the discharge characteristic parameter, and the value of i is 1 to 6; compare the measured The change trend of the characteristic parameters of each discharge spectrum corresponding to the power equipment and each defect model from power frequency to low frequency voltage: if the change trend is consistent, set n i =1, otherwise set n i =0, i represents the discharge characteristic parameter Numbering, the value of i is 1 to 22; thereby calculating the evaluation function value of the electrical equipment to be tested and the discharge characteristic parameter variation trend comparison of each insulation defect model, the present invention obtains 4 evaluation function values altogether;

选出各评价函数值中最大值所对应的绝缘缺陷模型,该绝缘缺陷模型的放电模式即为待测设备最有可能的绝缘缺陷,局部放电诊断结束。Select the insulation defect model corresponding to the maximum value of each evaluation function value, the discharge mode of the insulation defect model is the most likely insulation defect of the equipment under test, and the partial discharge diagnosis ends.

本发明的有益效果是,基于工频至低频电压下局部放电试验,获得有关绝缘缺陷更多的信息,避免施加不同电压幅值造成的意外绝缘损伤。利用特征量的变化趋势进行识别,减弱了信号衰减的影响。此外,对于一些电容量较大的待测设备,使用低频电压下的局部放电检测,可有效降低试验电源的容量。The invention has the beneficial effects of obtaining more information about insulation defects based on the partial discharge test under power frequency to low frequency voltage, and avoiding accidental insulation damage caused by applying different voltage amplitudes. Using the change trend of feature quantity to identify, weaken the influence of signal attenuation. In addition, for some devices under test with large capacitance, the use of partial discharge detection under low frequency voltage can effectively reduce the capacity of the test power supply.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (1)

1.一种基于工频至低频电压下特征提取的局部放电诊断方法,其特征在于,该方法包括以下步骤:1. A partial discharge diagnosis method based on feature extraction under power frequency to low frequency voltage, it is characterized in that, the method comprises the following steps: 1)构建工频至低频电压下局部放电试验平台;所述局部放电试验平台包括:高压功率放大器,任意波形发生器,保护电阻,绝缘缺陷模型,第一测量阻抗,第二测量阻抗,耦合电容,局部放电测量与分析仪,高压探头和示波器;1) Build a partial discharge test platform under power frequency to low frequency voltage; the partial discharge test platform includes: high voltage power amplifier, arbitrary waveform generator, protection resistor, insulation defect model, first measurement impedance, second measurement impedance, coupling capacitance , partial discharge measurement and analyzer, high voltage probe and oscilloscope; 所述任意波形发生器与高压功率放大器通过同轴电缆连接线连接,高压功率放大器与保护电阻通过高压电缆线连接,保护电阻与绝缘缺陷模型、耦合电容分别通过高压电缆线连接,高压探头与耦合电容通过高压电缆线连接,绝缘缺陷模型与第一测量阻抗通过金属导线连接,耦合电容与第二测量阻抗通过金属导线连接,第一测量阻抗和第二测量阻抗分别与局部放电测量与分析仪通过同轴电缆连接线连接,高压探头与示波器通过同轴电缆连接线连接;The arbitrary waveform generator is connected to the high-voltage power amplifier through a coaxial cable connection, the high-voltage power amplifier is connected to the protection resistor through a high-voltage cable, the protection resistor is connected to the insulation defect model, and the coupling capacitor is respectively connected through a high-voltage cable, and the high-voltage probe is connected to the coupling The capacitor is connected through a high-voltage cable, the insulation defect model is connected to the first measurement impedance through a metal wire, the coupling capacitor is connected to the second measurement impedance through a metal wire, and the first measurement impedance and the second measurement impedance are connected to the partial discharge measurement and analyzer respectively. Coaxial cable connection, the high voltage probe is connected to the oscilloscope through the coaxial cable connection; 2)制作绝缘缺陷模型;2) Make an insulation defect model; 所述绝缘缺陷模型包括:内部油隙与沿面复合放电模型,绝缘油均匀场放电模型,油中电晕放电模型和沿面放电模型,以及根据设备具体情况可能存在的缺陷模型;The insulation defect model includes: internal oil gap and surface discharge model, insulating oil uniform field discharge model, corona discharge model in oil and surface discharge model, and defect models that may exist according to the specific conditions of the equipment; 3)对步骤2)制作的每种绝缘缺陷模型,在步骤1)构建的局部放电试验平台上分别进行50Hz、40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz频率电压下局部放电试验;每次试验中,调整任意波形发生器输出波形的频率与幅值,在1.05倍的放电起始电压下记录并存储每次局部放电试验数据;每种绝缘缺陷模型在每个频率电压下进行的局部放电试验均重复10~15次,并对该频率电压下每次试验数据取平均值作为该绝缘缺陷模型在选定频率电压下对应的局部放电试验数据,得到每种绝缘缺陷模型在每种频率电压下的局部放电试验数据;3) For each insulation defect model produced in step 2), carry out partial discharge tests at 50Hz, 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz frequency voltages on the partial discharge test platform constructed in step 1); In each test, adjust the frequency and amplitude of the output waveform of the arbitrary waveform generator, record and store the data of each partial discharge test at 1.05 times the discharge initiation voltage; each insulation defect model is tested at each frequency voltage The partial discharge test is repeated 10 to 15 times, and the average value of each test data at the frequency and voltage is taken as the partial discharge test data corresponding to the insulation defect model at the selected frequency voltage, and each insulation defect model is obtained at each Partial discharge test data under frequency voltage; 4)从步骤3)得到的每种绝缘缺陷模型在每种频率电压下的局部放电试验数据中提取放电特征参数形成参考特征库;所述放电特征参数包括:起始电压UPDIV;正半周最大放电量q+ max和负半周最大放电量q- max,正半周平均放电量q+ mean和负半周平均放电量q- mean,正半周脉冲重复率rate+和负半周脉冲重复率rate-;最大放电量相位分布图谱 平均放电量相位分布图谱放电次数相位分布图谱的特征参数,包括:每个图谱的正半周偏斜度Sk和负半周偏斜度Sk,每个图谱的正半周峭度Ku和负半周峭度Ku,每个图谱的不对称度Asy和相关度Cc;放电量的次数分布图谱n-Q的特征参数,包括:偏斜度Sk,峭度Ku,不对称度Asy,相关度Cc4) Extract discharge characteristic parameters from the partial discharge test data of each kind of insulation defect model obtained in step 3) to form a reference characteristic library; the discharge characteristic parameters include: initial voltage U PDIV ; positive half cycle maximum Discharge capacity q + max and negative half-cycle maximum discharge capacity q - max , positive half-cycle average discharge capacity q + mean and negative half-cycle average discharge capacity q - mean , positive half-cycle pulse repetition rate rate + and negative half-cycle pulse repetition rate rate - ; max Discharge phase distribution map Average discharge phase distribution map Phase distribution spectrum of discharge times The characteristic parameters of , including: positive semicircular skewness S k and negative semicircular skewness S k of each spectrum, positive semicircular kurtosis K u and negative semicircular kurtosis K u of each spectrum, asymmetry of each spectrum degree A sy and correlation degree C c ; the characteristic parameters of the frequency distribution spectrum nQ of discharge capacity, including: skewness S k , kurtosis K u , asymmetry degree Asy , correlation degree C c ; 5)将待测电力设备置于步骤1)构建的局部放电试验平台中绝缘缺陷模型位置处,对待测电力设备进行局部放电试验,记录待测电力设备在每种频率电压下对应的局部放电试验数据,电压频率包括50Hz、40Hz、30Hz、20Hz、10Hz、5Hz、1Hz、0.1Hz,电压幅值为1.05倍放电起始电压;5) Place the power equipment to be tested at the location of the insulation defect model in the partial discharge test platform constructed in step 1), conduct a partial discharge test on the power equipment to be tested, and record the corresponding partial discharge tests of the power equipment to be tested under each frequency and voltage Data, the voltage frequency includes 50Hz, 40Hz, 30Hz, 20Hz, 10Hz, 5Hz, 1Hz, 0.1Hz, and the voltage amplitude is 1.05 times the discharge initiation voltage; 6)提取待测电力设备在每种频率电压下局部放电试验数据中的放电特征参数;6) Extract the discharge characteristic parameters in the partial discharge test data of the power equipment to be tested under each frequency and voltage; 7)将待测电力设备的放电特征参数的变化趋势与每个绝缘缺陷模型的对应放电特征参数的变化趋势进行对比,通过评价函数对待测电力设备绝缘缺陷进行识别;具体步骤如下:7) Compare the change trend of the discharge characteristic parameters of the power equipment to be tested with the change trend of the corresponding discharge characteristic parameters of each insulation defect model, and identify the insulation defects of the power equipment to be tested through the evaluation function; the specific steps are as follows: 7-1)选取任一种绝缘缺陷模型和任一种放电特征参数,以局部放电试验的电压频率为横坐标,该放电特征参数值为纵坐标,利用该绝缘缺陷模型在每种频率电压下的局部放电试验数据中记录的该放电特征参数值,得到该绝缘缺陷模型的选定放电特征参数从工频到低频电压下的变化趋势图;7-1) Select any insulation defect model and any discharge characteristic parameter, take the voltage frequency of the partial discharge test as the abscissa, and the discharge characteristic parameter value as the ordinate, use the insulation defect model at each frequency voltage Based on the discharge characteristic parameter value recorded in the partial discharge test data, the change trend diagram of the selected discharge characteristic parameter of the insulation defect model from power frequency to low frequency voltage is obtained; 7-2)重复步骤7-1),得到每种绝缘缺陷模型的每种放电特征参数从工频到低频电压下的变化趋势图;7-2) Repeat step 7-1) to obtain the change trend diagram of each discharge characteristic parameter of each insulation defect model from power frequency to low frequency voltage; 7-3)对待测电力设备,重复步骤7-1),得到待测电力设备对应的每种放电特征参数从工频到低频电压下的的趋势图;7-3) Repeat step 7-1) for the power equipment to be tested to obtain a trend diagram of each discharge characteristic parameter corresponding to the power equipment to be tested from power frequency to low frequency voltage; 7-4)通过评价函数对待测电力设备绝缘缺陷进行识别;7-4) Identify the insulation defect of the power equipment to be tested through the evaluation function; 评价函数如下式所示:The evaluation function is as follows: <mrow> <mi>y</mi> <mo>=</mo> <mn>10</mn> <mi>%</mi> <mo>&amp;times;</mo> <mi>k</mi> <mo>+</mo> <mfrac> <mrow> <mn>40</mn> <mi>%</mi> </mrow> <mn>6</mn> </mfrac> <mo>&amp;times;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <msub> <mi>m</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mrow> <mn>50</mn> <mi>%</mi> </mrow> <mn>22</mn> </mfrac> <mo>&amp;times;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>22</mn> </munderover> <msub> <mi>n</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>y</mi><mo>=</mo><mn>10</mn><mi>%</mi><mo>&amp;times;</mo><mi>k</mi><mo>+</mo><mfrac><mrow><mn>40</mn><mi>%</mi></mrow><mn>6</mn></mfrac><mo>&amp;times;</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mo>mn></mrow><mn>6</mn></munderover><msub><mi>m</mi><mi>i</mi></msub><mo>+</mo><mfrac><mrow><mn>50</mn><mi>%</mi></mrow><mn>22</mn></mfrac><mo>&amp;times;</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mn>22</mn></munderover><msub><mi>n</mi><mi>i</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 将待测电力设备的每种放电特征参数的变化趋势与每个绝缘缺陷模型的对应放电特征参数的变化趋势进行对比:若待测电力设备从工频到低频电压下的起始电压UPDIV变化趋势与该绝缘缺陷模型的变化趋势一致,则令k=1,反之令k=0;对比待测电力设备与每个绝缘缺陷模型从工频到低频电压下的q+ max、q- max、q+ mean、q- mean、rate+和rate-6个放电特征参数的变化趋势,得到mi的值:若变化趋势一致则令mi=1,反之令mi=0;对比待测电力设备与每个缺陷模型从工频到低频电压下的对应的各放电图谱的特征参数变化趋势:若变化趋势一致则令ni=1,反之令ni=0;从而计算得到待测电力设备与每个绝缘缺陷模型的放电特征参数变化趋势比较的评价函数值;Compare the change trend of each discharge characteristic parameter of the power equipment under test with the change trend of the corresponding discharge characteristic parameter of each insulation defect model: if the initial voltage U PDIV of the power equipment under test changes from power frequency to low frequency voltage If the trend is consistent with the change trend of the insulation defect model, then let k=1, otherwise let k=0; compare the q + max , q - max , q + mean , q - mean , rate + and rate - the variation trend of the 6 discharge characteristic parameters, and the value of mi is obtained: if the variation trend is consistent, set mi = 1, otherwise set mi = 0; compare the power to be measured The change trend of the characteristic parameters of each discharge spectrum corresponding to the equipment and each defect model from power frequency to low frequency voltage: if the change trend is consistent, set n i =1, otherwise set n i =0; thus the power equipment under test is calculated Evaluation function value compared with the variation trend of discharge characteristic parameters of each insulation defect model; 选出各评价函数值中最大值所对应的绝缘缺陷模型,该绝缘缺陷模型的放电模式即为待测设备最有可能的绝缘缺陷,局部放电诊断结束。Select the insulation defect model corresponding to the maximum value of each evaluation function value, the discharge mode of the insulation defect model is the most likely insulation defect of the equipment under test, and the partial discharge diagnosis ends.
CN201810023937.9A 2018-01-10 2018-01-10 A partial discharge diagnosis method based on feature extraction from power frequency to low frequency voltage Expired - Fee Related CN108120907B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810023937.9A CN108120907B (en) 2018-01-10 2018-01-10 A partial discharge diagnosis method based on feature extraction from power frequency to low frequency voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810023937.9A CN108120907B (en) 2018-01-10 2018-01-10 A partial discharge diagnosis method based on feature extraction from power frequency to low frequency voltage

Publications (2)

Publication Number Publication Date
CN108120907A true CN108120907A (en) 2018-06-05
CN108120907B CN108120907B (en) 2020-04-21

Family

ID=62233888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810023937.9A Expired - Fee Related CN108120907B (en) 2018-01-10 2018-01-10 A partial discharge diagnosis method based on feature extraction from power frequency to low frequency voltage

Country Status (1)

Country Link
CN (1) CN108120907B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085468A (en) * 2018-07-27 2018-12-25 上海交通大学 A kind of recognition methods of cable local discharge insulation defect
CN109709459A (en) * 2019-01-28 2019-05-03 国网安徽省电力有限公司电力科学研究院 A spectral analysis method for partial discharge online monitoring data
CN110361622A (en) * 2019-07-12 2019-10-22 台州宏创电力集团有限公司 Method for diagnosing faults, device, equipment and the storage medium of partial discharge of transformer
CN111581903A (en) * 2020-04-02 2020-08-25 中国电力科学研究院有限公司 Method and device for determining impedance spectrum of distribution cable based on improved micro-element equivalent model
CN112363026A (en) * 2020-08-11 2021-02-12 国网天津市电力公司电力科学研究院 Cable defect identification method based on U-Q curve under fixed oscillation frequency
CN112485610A (en) * 2020-11-05 2021-03-12 国网电力科学研究院有限公司 GIS partial discharge characteristic parameter extraction method considering insulation degradation
CN113406460A (en) * 2021-07-30 2021-09-17 江苏新亚高电压测试设备有限公司 Voltage transformer partial discharge fault diagnosis method and device and electronic equipment
CN113504296A (en) * 2021-06-25 2021-10-15 中国电力科学研究院有限公司 Device for measuring surface flashover voltage and partial discharge signal of insulating paper board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991171A (en) * 2015-06-25 2015-10-21 国家电网公司 Method for drawing GIS partial discharge frequency division fault spectrogram based on ultrahigh frequency signal
EP2942632A1 (en) * 2014-05-06 2015-11-11 Siemens Aktiengesellschaft Detection of partial discharges
CN205809231U (en) * 2016-03-08 2016-12-14 北京华天机电研究所有限公司 A kind of on-line monitoring system for electrical network
CN206057493U (en) * 2016-09-13 2017-03-29 许继集团有限公司 Local discharge detection device and the insulator assembly using the device
CN106680672A (en) * 2015-11-05 2017-05-17 云南电网有限责任公司昆明供电局 Portable switchgear partial discharge patrol detection system
CN106707114A (en) * 2016-11-22 2017-05-24 华北电力大学 Method and device for detecting operation states of GIS Intervals
CN106950480A (en) * 2017-04-28 2017-07-14 上海欧忆能源科技有限公司 The online qualitative checking method of power equipment shelf depreciation, system and equipment
CN107561425A (en) * 2017-10-31 2018-01-09 国网重庆市电力公司电力科学研究院 Characteristics of Partial Discharge recognition methods based on sulfur hexafluoride gas resolution characteristic

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2942632A1 (en) * 2014-05-06 2015-11-11 Siemens Aktiengesellschaft Detection of partial discharges
CN104991171A (en) * 2015-06-25 2015-10-21 国家电网公司 Method for drawing GIS partial discharge frequency division fault spectrogram based on ultrahigh frequency signal
CN106680672A (en) * 2015-11-05 2017-05-17 云南电网有限责任公司昆明供电局 Portable switchgear partial discharge patrol detection system
CN205809231U (en) * 2016-03-08 2016-12-14 北京华天机电研究所有限公司 A kind of on-line monitoring system for electrical network
CN206057493U (en) * 2016-09-13 2017-03-29 许继集团有限公司 Local discharge detection device and the insulator assembly using the device
CN106707114A (en) * 2016-11-22 2017-05-24 华北电力大学 Method and device for detecting operation states of GIS Intervals
CN106950480A (en) * 2017-04-28 2017-07-14 上海欧忆能源科技有限公司 The online qualitative checking method of power equipment shelf depreciation, system and equipment
CN107561425A (en) * 2017-10-31 2018-01-09 国网重庆市电力公司电力科学研究院 Characteristics of Partial Discharge recognition methods based on sulfur hexafluoride gas resolution characteristic

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUANXIANG ZHOU 等: "Comparison of air corona PD characteristics under low and power frequency voltage by impulse-current method", 《2017 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENON (CEIDP)》 *
余阳 等: "关于超低频电压在高电压实验中运用的研究", 《科学实践》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085468A (en) * 2018-07-27 2018-12-25 上海交通大学 A kind of recognition methods of cable local discharge insulation defect
CN109709459A (en) * 2019-01-28 2019-05-03 国网安徽省电力有限公司电力科学研究院 A spectral analysis method for partial discharge online monitoring data
CN110361622A (en) * 2019-07-12 2019-10-22 台州宏创电力集团有限公司 Method for diagnosing faults, device, equipment and the storage medium of partial discharge of transformer
CN111581903A (en) * 2020-04-02 2020-08-25 中国电力科学研究院有限公司 Method and device for determining impedance spectrum of distribution cable based on improved micro-element equivalent model
CN112363026A (en) * 2020-08-11 2021-02-12 国网天津市电力公司电力科学研究院 Cable defect identification method based on U-Q curve under fixed oscillation frequency
CN112485610A (en) * 2020-11-05 2021-03-12 国网电力科学研究院有限公司 GIS partial discharge characteristic parameter extraction method considering insulation degradation
CN112485610B (en) * 2020-11-05 2024-02-02 国网电力科学研究院有限公司 GIS partial discharge characteristic parameter extraction method considering insulation degradation
CN113504296A (en) * 2021-06-25 2021-10-15 中国电力科学研究院有限公司 Device for measuring surface flashover voltage and partial discharge signal of insulating paper board
CN113406460A (en) * 2021-07-30 2021-09-17 江苏新亚高电压测试设备有限公司 Voltage transformer partial discharge fault diagnosis method and device and electronic equipment

Also Published As

Publication number Publication date
CN108120907B (en) 2020-04-21

Similar Documents

Publication Publication Date Title
CN108120907A (en) The partial discharge diagnostic method of feature extraction under a kind of tremendously low frequency voltage based on power frequency
CN103954890B (en) DC partial discharge detection device and method for converter transformer
James et al. Development of computer-based measurements and their application to PD pattern analysis
CN104090214B (en) A kind of Cable fault examination and aging analysis method
CN102135593B (en) Insulation of large electrical machines state inline diagnosis appraisal procedure
CN103257306B (en) Method for diagnosing direct current partial discharging insulation state of converter transformer and measurement system
CN103344934B (en) The detection check method and system of Partial Discharge in Power Transformer sonac
Contin et al. Classification and separation of partial discharge signals by means of their auto-correlation function evaluation
CN104849686B (en) Partial discharge detector&#39;s performance evaluation system
CN102707203A (en) Discriminating and measuring method for partial discharge modes of transformer
Wu Design of partial discharge real-time capture system
CN109298298B (en) GIS basin-type insulator partial discharge defect diagnosis method and system based on quasi-high frequency withstand voltage
CN104714155A (en) Detection and evaluation device and method for partial discharge of direct current XLPE cables
CN104198898A (en) Local discharge development process diagnosis method based on pulse-train analysis
CN105067239A (en) Beam crack fault detection apparatus and apparatus based on frequency sweep frequency sweep excitation vibration
CN105548849A (en) Local discharge testing circuit and method for high-voltage direct current cable
CN107037338B (en) A Defect Type Identification Method for GIS Oscillating Shock Voltage Test
CN112305381A (en) Method and system for online partial discharge monitoring and positioning of distribution cable
CN203191508U (en) A GIS partial discharge detection test platform based on transient ground waves
Romano et al. A new technique for partial discharges measurement under DC periodic stress
CN110794329A (en) Test method for defect identification ability of partial discharge live detector for combined electrical appliances and switchgear
Xu et al. Loss current studies of partial discharge activity
CN103439676A (en) UHF sensor sensitivity detection method
CN110361637A (en) A kind of simulation experiment platform and method for studying cable terminal discharge Acoustic Emission Characteristic
CN206876855U (en) A kind of transformer suspension electrode partial discharge model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 100084 Tsinghua Yuan, Haidian District, Beijing, No. 1

Applicant after: TSINGHUA University

Applicant after: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd.

Applicant after: STATE GRID CORPORATION OF CHINA

Address before: 100084 Tsinghua Yuan, Haidian District, Beijing, No. 1

Applicant before: Tsinghua University

Applicant before: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd.

Applicant before: State Grid Corporation of China

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20181217

Address after: 100084 Tsinghua Yuan, Haidian District, Beijing, No. 1

Applicant after: TSINGHUA University

Applicant after: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd.

Applicant after: STATE GRID CORPORATION OF CHINA

Applicant after: STATE GRID HUBEI ELECTRIC POWER Co.,Ltd.

Address before: 100084 Tsinghua Yuan, Haidian District, Beijing, No. 1

Applicant before: Tsinghua University

Applicant before: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd.

Applicant before: STATE GRID CORPORATION OF CHINA

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200421