[go: up one dir, main page]

CN108120438A - A kind of indoor objects fast tracking method merged based on IMU and RFID information - Google Patents

A kind of indoor objects fast tracking method merged based on IMU and RFID information Download PDF

Info

Publication number
CN108120438A
CN108120438A CN201711345255.1A CN201711345255A CN108120438A CN 108120438 A CN108120438 A CN 108120438A CN 201711345255 A CN201711345255 A CN 201711345255A CN 108120438 A CN108120438 A CN 108120438A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711345255.1A
Other languages
Chinese (zh)
Other versions
CN108120438B (en
Inventor
金学波
王发发
苏婷立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Technology and Business University
Original Assignee
Beijing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Technology and Business University filed Critical Beijing Technology and Business University
Priority to CN201711345255.1A priority Critical patent/CN108120438B/en
Publication of CN108120438A publication Critical patent/CN108120438A/en
Application granted granted Critical
Publication of CN108120438B publication Critical patent/CN108120438B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供一种基于IMU和RFID信息融合的室内目标快速跟踪方法,根据RFID的采样周期与阈值的比较结果选择目标追踪的方法,若RFID的采样周期小于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,获得机动目标的坐标;如果RFID的采样周期大于或者等于阈值,则将两次估计到的目标坐标间的距离作为估算距离,利用估算距离和航向角数据估计目标在各个采样间隔内的运动坐标;还判断RFID测量系统中是否还有未处理的原始测量数据,如果有,则再次进行上述的估计过程;如果没有,则按基于IMU数据的姿态解算方法对目标的运动进行补充计算。实现了对室内目标的快速跟踪,提高了跟踪精度,其估计结果不会随着时间的推移造成误差的累积。

The present invention provides an indoor target fast tracking method based on the fusion of IMU and RFID information. The target tracking method is selected according to the comparison result between the RFID sampling period and the threshold value. If the RFID sampling period is less than the threshold value, the insensitive Kalman filter is used Estimate the coordinates of the RFID measurement data to obtain the coordinates of the maneuvering target; if the sampling period of the RFID is greater than or equal to the threshold, the distance between the two estimated target coordinates is used as the estimated distance, and the estimated distance and heading angle data are used to estimate the target The motion coordinates in each sampling interval; it is also judged whether there are unprocessed raw measurement data in the RFID measurement system, and if so, the above-mentioned estimation process is performed again; if not, the attitude calculation method based on IMU data is used. The motion of the target is supplemented by calculations. The fast tracking of indoor targets is realized, the tracking accuracy is improved, and the estimation results will not cause error accumulation over time.

Description

一种基于IMU和RFID信息融合的室内目标快速跟踪方法A Fast Tracking Method for Indoor Targets Based on IMU and RFID Information Fusion

技术领域technical field

本发明涉及目标跟踪技术领域,尤其涉及一种基于IMU和RFID信息融合的室内目标快速跟踪方法。The invention relates to the technical field of target tracking, in particular to an indoor target fast tracking method based on IMU and RFID information fusion.

背景技术Background technique

随着科技的发展,室内跟踪定位技术成为人们关注的热点问题。例如,在大型医院、机场、火车站等室内场所中如何感知自身所处的位置并到达自己的目的地、在大型仓库中如何跟踪移动货物的位置以实现货物移动的自动化、公共场所中服务型机器人在运动过程中对自身位置的感知等。With the development of science and technology, indoor tracking and positioning technology has become a hot issue that people pay attention to. For example, how to perceive your own location and reach your destination in indoor places such as large hospitals, airports, and railway stations; how to track the location of moving goods in large warehouses to realize the automation of goods movement; The perception of the robot's own position during the movement, etc.

人们通常使用GPS定位等方式获取室外目标的坐标位置,然而这些技术对室内运动目标位置的确定时误差很大。常用的室内机动目标运动的跟踪技术包括Wi-Fi技术、射频识别定位技术(RFID,Radio Frequency Identification)、惯性导航技术、光跟踪定位技术、传感器网络定位技术、红外线定位技术等。但这些技术的发展还处于起步阶段,有些对室内目标的跟踪精度不高,难以达到实际应用的要求,有些精度稍高的成本却更高难以投入实用。People usually use methods such as GPS positioning to obtain the coordinates of outdoor targets. However, these technologies have large errors in determining the positions of indoor moving targets. Commonly used indoor mobile target tracking technologies include Wi-Fi technology, Radio Frequency Identification (RFID, Radio Frequency Identification), inertial navigation technology, optical tracking and positioning technology, sensor network positioning technology, infrared positioning technology, etc. However, the development of these technologies is still in its infancy. Some of them have low tracking accuracy for indoor targets and are difficult to meet the requirements of practical applications.

RFID即射频标签(Radio frequency identification),是室内定位与跟踪系统的主要部件。RFID系统由射频标签和读取器组成,射频标签内存有该标签的标识信息。当带有该标签的目标移动至读取器附件时,读取器可获得该标签的标识信息,从而辨识出某个目标,同时获得该标签与读取器的距离信息,进而可对目标进行定位或跟踪。目前,关于RFID系统的目标定位专利主要有一种基于有源RFID的室内定位方法(CN201110101432.8)、基于无线射频识别技术的钢铁成品智能仓储系统(CN201210093992.8)、车站人员定位系统(CN201010256882.X)、一种用于RFID室内定位系统的定位方法(CN200910040571.7)、基于RFID技术的室内定位系统(CN200810027885.9),这些专利都是获得目标的定位信息,其统一特征是假设目标为静止不动的,利用射频原理,得到带有标签的目标的大致位置。RFID, or Radio frequency identification, is the main component of an indoor positioning and tracking system. The RFID system consists of a radio frequency tag and a reader, and the radio frequency tag stores the identification information of the tag. When the target with the tag moves to the vicinity of the reader, the reader can obtain the identification information of the tag, thereby identifying a certain target, and at the same time obtain the distance information between the tag and the reader, and then can carry out the target locate or track. At present, the target positioning patents of the RFID system mainly include an indoor positioning method based on active RFID (CN201110101432.8), an intelligent storage system for steel products based on radio frequency identification technology (CN201210093992.8), and a station personnel positioning system (CN201010256882. X), a positioning method for RFID indoor positioning system (CN200910040571.7), indoor positioning system based on RFID technology (CN200810027885.9), these patents are to obtain the positioning information of the target, and its unified feature is to assume that the target is Stationary, use the radio frequency principle to get the approximate location of the tagged target.

对于运动的目标,上述方法具有以下缺陷:1.因为RFID只能获得与读取器的距离信息,因此要想得到准确位置数据,必须依靠多个读取器获得的某一个目标的距离信息,利用各读取器之间的几何关系才能得到目标的位置,这给系统计算增加了复杂度;2.上述方法都是假设目标是静止的,这不符合运动目标的实际情况,运动目标的位移、速度及加速度满足运动学的基本约束关系,假设目标是静止的就完全抛弃了该关系,造成约束关系的减少,直接导致运动目标轨迹估计不准确。3.当目标运动过程中,出现与RFID距离过远或者因为其他因素导致没有采集到运动目标相关数据时,会影响定位的准确性。For moving targets, the above method has the following defects: 1. Because RFID can only obtain distance information with the reader, so in order to obtain accurate position data, it must rely on the distance information of a certain target obtained by multiple readers. The geometric relationship between the readers can get the position of the target, which increases the complexity of the system calculation; 2. The above methods all assume that the target is stationary, which does not conform to the actual situation of the moving target. The displacement of the moving target, Velocity and acceleration satisfy the basic constraint relationship of kinematics. Assuming that the target is stationary, the relationship is completely discarded, resulting in the reduction of the constraint relationship, which directly leads to inaccurate estimation of the trajectory of the moving target. 3. When the target is moving, the distance from the RFID is too far away or the data related to the moving target is not collected due to other factors, which will affect the accuracy of positioning.

获得目标实时轨迹在很多跟踪系统中十分常用,例如室内场馆的行人跟踪、智能交通等领域,因此,上述发明并不适用于需要获得运动目标实时轨迹的RFID室内目标跟踪系统。Obtaining real-time trajectories of targets is very common in many tracking systems, such as pedestrian tracking in indoor venues, intelligent transportation and other fields. Therefore, the above invention is not suitable for RFID indoor target tracking systems that need to obtain real-time trajectories of moving targets.

发明内容Contents of the invention

基于此,本发明的目的在于提供一种基于IMU和RFID信息融合的室内目标快速跟踪方法,其实现了对室内目标的快速跟踪,提高了跟踪精度。Based on this, the object of the present invention is to provide a fast tracking method for indoor targets based on IMU and RFID information fusion, which realizes fast tracking of indoor targets and improves tracking accuracy.

该方法基于不敏Kalman滤波器(Unsented Kalman Filters,简写为UKF),利用RFID系统获得的目标到读取器的距离信息,根据室内运动目标的动力学特性,获得运动轨迹的估计。在没有RFID测量数据的地方,则利用IMU获得的姿态解算方法进行信息补充,实现室内目标的快速跟踪。The method is based on the Unsented Kalman Filters (UKF for short), uses the distance information from the target to the reader obtained by the RFID system, and obtains the estimation of the trajectory according to the dynamic characteristics of the indoor moving target. In places where there is no RFID measurement data, the attitude calculation method obtained by the IMU is used to supplement information to achieve fast tracking of indoor targets.

实现本发明的目的的基本思路是:首先判断来自RFID阅读器的两次测量数据之间的间隔是否小于阈值(取阈值为0.18秒),如果间隔小于阈值,则采取基于RFID测量数据的非线性卡尔曼滤波方法进行坐标的估计,并将估计到的机动目标的坐标存储下来;如果间隔大于阈值,则将两次估计到的目标坐标间的距离作为姿态解算方法中的估算距离,利用IMU测量数据估算目标在这段时间内的姿态角变化情况并考虑到陀螺仪测量数据的漂移特性,将姿态角数据做一个6秒的延迟,然后利用距离和航向角的数据估计目标在这段时间内的运动坐标,并将得到的位置坐标进行存储。数据被存储后需要判断是否还有来自RFID阅读器的测量数据,如果有,则再次进行上述的估计过程;如果没有,还要判断是否有来自IMU的测量数据,如果有测量数据,则应该按基于IMU数据的姿态解算方法对目标的运动进行补充计算,此时的距离计算应采用加速度计的测量数据,如果也没有来自IMU的测量数据,则算法结束。该算法的优势在于:基于RFID数据利用Kalman滤波器对运动目标进行轨迹估计,估计结果不会随着时间的推移造成误差的累积。在没有RFID测量数据时,采用惯性传感器数据的姿态解算方法对目标的运动进行跟踪,此时的跟踪信息作为目标运动信息的补充。The basic train of thought of realizing the purpose of the present invention is: at first judge whether the interval between two measurement data from RFID reader is less than threshold value (take threshold value as 0.18 second), if interval is less than threshold value, then take based on the non-linearity of RFID measurement data The Kalman filter method estimates the coordinates and stores the estimated coordinates of the maneuvering target; if the interval is greater than the threshold, the distance between the two estimated target coordinates is used as the estimated distance in the attitude calculation method, and the IMU is used to The measurement data estimates the attitude angle change of the target during this period and takes into account the drift characteristics of the gyroscope measurement data. The attitude angle data is delayed for 6 seconds, and then the distance and heading angle data are used to estimate the target during this time. The motion coordinates within and store the obtained position coordinates. After the data is stored, it is necessary to determine whether there is any measurement data from the RFID reader. If so, perform the above estimation process again; if not, determine whether there is measurement data from the IMU. If there is measurement data, press The attitude calculation method based on IMU data supplements the calculation of the target’s motion. At this time, the distance calculation should use the measurement data of the accelerometer. If there is no measurement data from the IMU, the algorithm ends. The advantage of this algorithm is that the Kalman filter is used to estimate the trajectory of the moving target based on the RFID data, and the estimation result will not cause error accumulation over time. When there is no RFID measurement data, the attitude calculation method of inertial sensor data is used to track the movement of the target, and the tracking information at this time is used as a supplement to the movement information of the target.

为实现上述目的,本发明的技术方案如下:To achieve the above object, the technical scheme of the present invention is as follows:

一种基于IMU和RFID信息融合的室内目标快速跟踪方法,包括以下步骤:A fast tracking method for indoor targets based on IMU and RFID information fusion, comprising the following steps:

步骤1:根据RFID的采样周期与阈值的比较结果选择目标追踪的方法,若RFID的采样周期小于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,获得机动目标的坐标;如果RFID的采样周期大于或者等于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,以两次估计到的坐标间的距离作为估算距离d1,并选择用IMU的陀螺仪数据估算航向角,根据的数学关系式推算出机动目标在各个时刻的坐标;Step 1: Select the target tracking method according to the comparison result between the sampling period of the RFID and the threshold value. If the sampling period of the RFID is less than the threshold value, estimate the coordinates of the RFID measurement data through an insensitive Kalman filter to obtain the coordinates of the maneuvering target; If the sampling period of the RFID is greater than or equal to the threshold, the coordinates of the RFID measurement data are estimated through the insensitive Kalman filter, and the distance between the two estimated coordinates is used as the estimated distance d 1 , and the gyroscope of the IMU is selected Estimate heading angle from data, according to Calculate the coordinates of the maneuvering target at each moment using the mathematical relational formula;

步骤2:判断RFID测量系统中是否还有未处理的原始测量数据,如果有,则返回步骤1;如果没有,则判断是否还有来自IMU的测量数据,若是,则用IMU的陀螺仪数据估算航向角,并采用IMU的加速度计数据由牛顿运动定律计算出机动目标在各个采样间隔内的位移d2,根据的数学关系式推算出机动目标在各个时刻的坐标;若否,则算法结束;Step 2: Determine whether there are unprocessed raw measurement data in the RFID measurement system, if so, return to step 1; if not, determine whether there is still measurement data from the IMU, if so, use the gyroscope data of the IMU to estimate heading angle, and use the accelerometer data of the IMU to calculate the displacement d 2 of the maneuvering target in each sampling interval by Newton's law of motion, according to Calculate the coordinates of the maneuvering target at each moment by the mathematical relational expression; if not, the algorithm ends;

其中,Δx为目标在跟踪区域内的横向坐标x的变化量,Δy为目标在跟踪区域内的纵向坐标y的变化量,为目标转过的航向角。Among them, Δx is the variation of the horizontal coordinate x of the target in the tracking area, and Δy is the variation of the longitudinal coordinate y of the target in the tracking area, The heading angle turned by the target.

在上述方案的基础上,本发明还可以做如下改进。On the basis of the above solution, the present invention can also be improved as follows.

进一步地,步骤1中若RFID的采样周期小于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,获得机动目标的坐标,包括:Further, in step 1, if the sampling period of the RFID is less than the threshold value, the coordinates of the RFID measurement data are estimated through an insensitive Kalman filter to obtain the coordinates of the maneuvering target, including:

步骤1.1:目标运动状态和系统自适应参数初始化;Step 1.1: Target motion state and system adaptive parameter initialization;

步骤1.2:建立具有系统自适应参数的运动模型及RFID测量模型;Step 1.2: Establish a motion model with system adaptive parameters and an RFID measurement model;

步骤1.3:根据建立的具有系统自适应参数的运动模型对目标状态进行预测,得到下一时间点的目标状态预测值;Step 1.3: Predict the target state according to the established motion model with system adaptive parameters, and obtain the predicted value of the target state at the next time point;

步骤1.4:根据RFID测量模型和目标状态预测值计算目标状态测量预测值;Step 1.4: Calculate the target state measurement prediction value according to the RFID measurement model and the target state prediction value;

步骤1.5:根据目标状态预测值和目标状态测量预测值计算不敏卡尔曼滤波器增益;Step 1.5: Calculate the insensitive Kalman filter gain according to the target state prediction value and the target state measurement prediction value;

步骤1.6:读取RFID监控系统获取的下一时间点目标状态原始测量值zn(ti);Step 1.6: Read the original measured value z n (t i ) of the target state at the next time point obtained by the RFID monitoring system;

步骤1.7:根据目标状态原始测量值、目标状态测量预测值和滤波器增益计算目标状态修正值:Step 1.7: Calculate the target state correction value based on the target state raw measurement value, target state measurement prediction value and filter gain:

其中,X(ti)为目标状态修正值,ti为采样时刻,n=1,2,…N(ti),N(ti)为ti时刻的获得与目标距离数据的RFID读取器的个数;Kn(ti)为ti时刻滤波器增益,zn(ti)为第n个读取器在ti时刻的测量数据,为ti时刻的测量的估计值;Among them, X(t i ) is the correction value of the target state, t i is the sampling time, n=1,2,...N(t i ), N(t i ) is the RFID reading of the acquisition and target distance data at the time t i The number of readers; K n (t i ) is the filter gain at time t i , z n (t i ) is the measurement data of the nth reader at time t i , is the estimated value of the measurement at time t i ;

步骤1.8:根据目标状态预测值和目标状态修正值X(ti)计算目标状态估计值及目标状态协方差估计值;Step 1.8: Predict value based on target state and target state correction value X(t i ) to calculate target state estimated value and target state covariance estimated value;

目标状态估计值的计算公式如下:The calculation formula of target state estimate is as follows:

其中,表示ti时刻的目标状态估计值;表示在ti-1时刻时预测ti时刻的目标状态预测值;X(ti)为目标状态修正值,ti为采样时刻;in, Indicates the estimated value of the target state at time t i ; Indicates the predicted value of the target state at the time t i -1 when predicting the target state; X(t i ) is the target state correction value, and t i is the sampling time;

目标状态协方差估计值的计算公式如下:The calculation formula of target state covariance estimate is as follows:

其中,P(ti|ti)表示ti时刻的目标状态协方差估计值,P(ti|ti-1)表示在ti-1时刻预测ti时刻的目标状态协方差预测值,Kn(ti)为ti时刻第n个读写器的滤波器增益;Sn(ti)为第n个读写器的协方差矩阵;Among them, P(t i |t i ) represents the estimated value of the target state covariance at time t i , and P(t i |t i-1 ) represents the predicted value of the target state covariance at time t i at time t i-1 , K n (t i ) is the filter gain of the nth reader at time t i ; S n (t i ) is the covariance matrix of the nth reader;

步骤1.9:利用目标状态预测值更新系统自适应参数,进而更新步骤1.3中的运动模型;Step 1.9: Utilize the predicted value of the target state to update the adaptive parameters of the system, and then update the motion model in step 1.3;

步骤1.10:将估计到的机动目标的坐标存储下来。Step 1.10: Store the estimated coordinates of the maneuvering target.

进一步地,步骤1.1中目标运动状态和系统自适应参数初始化的具体过程如下:Further, the specific process of target motion state and system adaptive parameter initialization in step 1.1 is as follows:

步骤1.1.1:设置目标运动状态的初始值为6维全0列向量,维数为系统模型中状态向量的维数;Step 1.1.1: Set the initial value of the target motion state is a 6-dimensional vector of all 0 columns, and its dimension is the dimension of the state vector in the system model;

步骤1.1.2:设置系统自适应参数的初始值αη=α0其中η=x,y,x表示目标在跟踪区域的横向坐标,y表示目标在跟踪区域内的纵向坐标,αη表示横向坐标、纵向坐标的加速度机动频率,表示横向坐标、纵向坐标的加速度方差;Step 1.1.2: Set the initial value of the system adaptive parameter α η = α 0 and Wherein η=x, y, x represents the horizontal coordinate of target in tracking area, and y represents the vertical coordinate of target in tracking area, and α η represents the acceleration maneuvering frequency of horizontal coordinate, vertical coordinate, Represents the acceleration variance of the horizontal and vertical coordinates;

步骤1.1.3:设置系统加速度分量的初始值其中η=x,y,x表示目标在跟踪区域的横向坐标,y表示目标在跟踪区域内的纵向坐标;Step 1.1.3: Set the initial value of the acceleration component of the system Wherein η=x, y, x represents the transverse coordinates of the target in the tracking area, and y represents the longitudinal coordinates of the target in the tracking area;

步骤1.1.4:设置系统的尺度参数κ=-3,χ=0.01,ο=2;Step 1.1.4: Set the scale parameters of the system κ=-3, χ=0.01, ο=2;

步骤1.1.5:设置加速度前一步互相关参数初始值为r0,η(1)=0,向加速度自相关参数初值为r0,η(0)=0。Step 1.1.5: Set the initial value of the cross-correlation parameter of the previous step of acceleration to r 0,η (1)=0, and the initial value of the auto-correlation parameter of the acceleration step to r 0,η (0)=0.

进一步地,步骤1.2中建立具有系统自适应参数的运动模型及RFID测量模型,包括:Further, in step 1.2, a motion model and an RFID measurement model with system adaptive parameters are established, including:

步骤1.2.1:利用下式描述目标的运动特征:Step 1.2.1: Use the following formula to describe the motion characteristics of the target:

其中,为6维状态列向量,分别是横向坐标位移、速度和加速度,分别是纵向坐标位移、速度和加速度;x(ti)为ti时刻目标的状态向量,ti为采样时刻;A(ti-1)为ti-1时刻的状态转移矩阵;U(ti-1)为ti-1时刻的控制矩阵;wd(ti-1)为过程噪声,其均值为0,方差为Q;A(ti-1)、U(ti-1)和Q中包含系统自适应参数;in, is a 6-dimensional state column vector, are the lateral coordinate displacement, velocity and acceleration, respectively, are the longitudinal coordinate displacement, velocity and acceleration respectively; x(t i ) is the state vector of the target at time t i , and t i is the sampling time; A(t i-1 ) is the state transition matrix at time t i-1 ; U( t i-1 ) is the control matrix at time t i-1 ; w d (t i-1 ) is the process noise, its mean value is 0, and its variance is Q; A(t i-1 ), U(t i-1 ) and Q include system adaptive parameters;

步骤1.2.2:建立如下RFID系统目标测量方程:Step 1.2.2: Establish the following RFID system target measurement equation:

zn(ti)=hn[x(ti)]+vn(ti)z n (t i )=h n [x(t i )]+v n (t i )

其中,zn(ti)为RFID监控系统获取的目标在ti时刻的测量值,hn[x(ti)]为测量方程,x(ti)为ti时刻目标的状态向量;vn(ti)为RFID监控系统中第n个读取器的高斯测量白噪声,且与过程噪声wd(ti-1)相互独立,dn(ti)为目标在ti时刻所处的位置到第n个RFID读取器的真实距离(未知),x(ti)、y(ti)分别为ti时刻目标位置的横、纵坐标;xn(0)、yn(0)分别为第n个RFID读取器的横、纵坐标。Among them, z n (t i ) is the measured value of the target at time t i obtained by the RFID monitoring system, h n [x(t i )] is the measurement equation, and x(t i ) is the state vector of the target at time t i ; v n (t i ) is the Gaussian measurement white noise of the nth reader in the RFID monitoring system, and is independent of the process noise w d (t i-1 ), d n (t i ) is the target at time t i The real distance (unknown) from the position to the nth RFID reader, x(t i ), y(t i ) are the abscissa and ordinate of the target position at time t i respectively; x n (0), y n (0) are the abscissa and ordinate of the nth RFID reader respectively.

进一步地,步骤1.3中根据建立的具有系统自适应参数的运动模型对目标状态进行预测,包括:Further, in step 1.3, the target state is predicted according to the established motion model with system adaptive parameters, including:

步骤1.3.1:按照下式计算不敏卡尔曼滤波器所需的sigma点状态值及其权值;Step 1.3.1: Calculate the sigma point state value and its weight required by the insensitive Kalman filter according to the following formula;

其中,x(i)为第i个sigma点的扩展状态值,其中包括i=0,1,…2Nx,为第i个sigma点的状态值,Nx是系统状态的维数;为第i个sigma点的过程噪声模拟量,为第i个sigma点的测量噪声模拟量;表示在ti-1时刻的目标状态估计值,P(ti-1|ti-1)表示在ti-1时刻的目标状态协方差估计值,是与过程噪声w(ti-1)维数相同的全0矩阵,是与测量噪声v(ti-1)维数相同的全0矩阵;i=0,1,…2Nx,为第i个sigma点的状态估计权值;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值;表示均方差矩阵的第i列,κ、χ、ο为尺度参数;Among them, x (i) is the extended state value of the ith sigma point, including i=0,1,...2N x is the state value of the i-th sigma point, and N x is the dimension of the system state; is the process noise analog quantity of the ith sigma point, is the measurement noise analog quantity of the ith sigma point; Represents the estimated value of the target state at time t i-1 , P(t i-1 |t i-1 ) represents the estimated value of covariance of the target state at time t i-1 , is an all-0 matrix with the same dimension as the process noise w(t i-1 ), is an all-0 matrix with the same dimension as the measurement noise v(t i-1 ); i=0,1,...2N x , which is the state estimation weight of the i-th sigma point; i=0,1,…2N x , is the state estimation variance weight of the i-th sigma point; express The ith column of the mean square error matrix, κ, χ, ο are scale parameters;

步骤1.3.2:根据运动模型和目标状态初始值计算每一个sigma点的状态预测值,计算公式如下,Step 1.3.2: Calculate the state prediction value of each sigma point according to the motion model and the initial value of the target state, the calculation formula is as follows,

其中,为第i个sigma点的状态预测值;i=0,1,…2Nx,为第i个sigma点的状态值,为第i个sigma点的过程噪声模拟量,来重构过程噪声对状态预测的影响;A(ti-1)为ti-1时刻的状态转移矩阵;U(ti-1)为ti-1时刻的控制矩阵;为从0时刻至ti-1时刻的加速度均值;in, is the state prediction value of the i-th sigma point; i=0,1,…2N x , which is the state value of the i-th sigma point, is the process noise analog quantity at the i-th sigma point to reconstruct the influence of process noise on state prediction; A(t i-1 ) is the state transition matrix at time t i-1 ; U(t i-1 ) is t The control matrix at time i-1 ; is the mean value of acceleration from time 0 to time t i-1 ;

步骤1.3.3:计算所有sigma点状态预测值的加权值,即目标状态预测值,计算公式如下:Step 1.3.3: Calculate the weighted value of all sigma point state prediction values, that is, the target state prediction value, the calculation formula is as follows:

其中,表示在ti-1时刻预测ti时刻的目标状态预测值,ti为采样时刻,|表示条件操作符;为第i个sigma点的状态预测值;i=0,1,…2Nx,为第i个sigma点的状态估计权值;in, Represents the predicted value of the target state at time t i-1 , t i is the sampling time, and | represents the conditional operator; is the state prediction value of the i-th sigma point; i=0,1,...2N x , which is the state estimation weight of the i-th sigma point;

步骤1.3.4:计算目标状态协方差预测值,计算公式如下Step 1.3.4: Calculate the target state covariance prediction value, the calculation formula is as follows

其中,P(ti|ti-1)表示在ti-1时刻预测ti时刻的目标状态协方差预测值;为第i个sigma点的状态预测值;表示在ti-1时刻预测ti时刻的目标状态预测值;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值;Q(ti-1)为过程噪声协方差。Among them, P(t i |t i-1 ) represents the predicted value of the target state covariance at time t i at time t i-1; is the state prediction value of the i-th sigma point; Indicates the predicted value of the target state at time t i -1 at time t i ; i=0,1,...2N x , is the state estimation variance weight of the ith sigma point; Q(t i -1) is the process noise covariance.

进一步地,步骤1.4中根据RFID测量模型和目标状态预测值计算目标状态测量预测值,包括:Further, in step 1.4, calculate the target state measurement prediction value according to the RFID measurement model and the target state prediction value, including:

步骤1.4.1:根据每个sigma点的状态预测值计算每个sigma点的测量预测值,计算公式如下:Step 1.4.1: Calculate the measurement prediction value of each sigma point according to the state prediction value of each sigma point, the calculation formula is as follows:

其中,为第i个sigma点的测量预测值;为第i个sigma点的状态预测值;为将每个sigma点的状态预测值代入测量方程得到的结果;为第i个sigma点的测量噪声模拟量,来重构测量噪声对测量预测的影响;in, is the measured predicted value of the ith sigma point; is the state prediction value of the i-th sigma point; For the state prediction value of each sigma point The results obtained by substituting into the measurement equation; is the measurement noise analog quantity of the i-th sigma point to reconstruct the influence of measurement noise on measurement prediction;

步骤1.4.2:计算所有sigma点的测量预测值的加权值,即为目标状态测量预测值,计算公式如下:Step 1.4.2: Calculate the weighted value of the measured predicted value of all sigma points, which is the measured predicted value of the target state. The calculation formula is as follows:

其中,为目标状态测量预测值;为第i个sigma点的测量预测值;i=0,1,…2Nx,为第i个sigma点的状态估计权值;n=1,2,…N(ti),N(ti)为ti时刻能够获得目标测量值的RFID读取器的个数。in, Measure the predicted value for the target state; is the measured predicted value of the ith sigma point; i=0,1,...2N x , is the state estimation weight of the i-th sigma point; n=1,2,...N(t i ), N(t i ) is the target measurement value that can be obtained at time t i The number of RFID readers.

进一步地,步骤1.5中根据目标状态预测值和目标状态测量预测值计算不敏卡尔曼滤波器增益,包括:Further, in step 1.5, the insensitive Kalman filter gain is calculated according to the predicted value of the target state and the measured predicted value of the target state, including:

步骤1.5.1:计算目标状态测量预测值的协方差,计算公式如下:Step 1.5.1: Calculate the covariance of the target state measurement prediction value, the calculation formula is as follows:

其中,为第i个sigma点的测量预测值;为目标状态测量预测值;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值;Rn(ti)为第n个读取器的测量方差;in, is the measured predicted value of the ith sigma point; Measure the predicted value for the target state; i=0,1,...2N x , is the state estimation variance weight of the i-th sigma point; R n (t i ) is the measurement variance of the n-th reader;

步骤1.5.2:计算目标状态预测值与目标状态测量预测值的交叉协方差,计算公式如下:Step 1.5.2: Calculate the cross-covariance of the predicted value of the target state and the predicted value of the target state measurement, the calculation formula is as follows:

其中,Pxz,n(ti)为交叉协方差矩阵;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值;为第i个sigma点的状态预测值;表示在ti-1时刻预测ti时刻的目标状态预测值;为第i个sigma点的测量预测值;为目标测量预测值;Among them, P xz,n (t i ) is the cross-covariance matrix; i=0,1,…2N x , is the state estimation variance weight of the i-th sigma point; is the state prediction value of the i-th sigma point; Indicates the predicted value of the target state at time t i -1 at time t i ; is the measured predicted value of the ith sigma point; measure the predicted value for the target;

步骤1.5.3:根据步骤1.5.1中的协方差和步骤1.5.2中的交叉协方差计算滤波器增益,计算公式如下:Step 1.5.3: Calculate the filter gain based on the covariance in step 1.5.1 and the cross-covariance in step 1.5.2, the calculation formula is as follows:

其中,Kn(ti)为ti时刻第n个RFID读取器的滤波器增益,ti为采样时刻;Pzz,n(ti)为交叉协方差矩阵,表示交叉协方差矩阵的逆;Sn(ti)为协方差矩阵,n=1,2,…N(ti),N(ti)为ti时刻能够获得目标测量值的RFID读取器的个数。Among them, K n (t i ) is the filter gain of the nth RFID reader at time t i , t i is the sampling time; P zz,n (t i ) is the cross-covariance matrix, Represents the inverse of the cross covariance matrix; S n (t i ) is the covariance matrix, n=1,2,...N(t i ), N(t i ) is the RFID reading that can obtain the target measurement value at time t i number of devices.

进一步地,步骤1.9的计算如下:Further, the calculation of step 1.9 is as follows:

为步骤1.4得到的目标状态预测值的第三行及第六行,即横、纵轴加速度预测值,η=x,y分别表示跟踪区域的横、纵向坐标;Pick The third row and the sixth row of the target state prediction value that step 1.4 obtains, i.e. the horizontal and vertical axis acceleration prediction values, η=x, y represent the horizontal and vertical coordinates of the tracking area respectively;

1)当i≤4时,按照如下方式更新系统自适应参数:1) When i≤4, update the system adaptive parameters as follows:

时, when hour,

时, when hour,

如果可取任意小的正数;if Can take any small positive number;

机动频率设置为α0不变;其中η=x,y分别表示跟踪区域的横、纵向加速度方差值,aM,η为一正数,范围在1到100之间,a-M,η为与aM,η绝对值相同的负数;The maneuvering frequency is set to α 0 unchanged; where η=x, y respectively represent the horizontal and vertical acceleration variance values of the tracking area, a M, η is a positive number, the range is between 1 and 100, a -M, η is the same absolute value as a M, η negative number;

2)当i>4时,按照如下方式更新系统自适应参数;2) When i>4, update the system adaptive parameters as follows;

其中,ri,η(1)为ti时刻的加速度前一步互相关参数,ri,η(0)为ti时刻向加速度自相关参数,η=x,y,x表示跟踪区域内的横向坐标,y表示跟踪区域内的纵向坐标;横、纵轴加速度预测值,ri-1,η(1)为ti-1时刻的加速度前一步互相关参数,ri-1,η(0)为ti-1时刻向加速度自相关参数,βi,η为ti时刻的计算中间变量,为ti时刻的加速度方差,αi,η为ti时刻的机动频率,thi=ti-ti-1为两次测量数据的时间间隔。Among them, r i, η (1) is the cross-correlation parameter before the acceleration step at t i moment, r i, η (0) is the acceleration autocorrelation parameter at t i moment, η=x, y, and x represents the acceleration in the tracking area Horizontal coordinate, y represents the vertical coordinate in the tracking area; Acceleration prediction value of the horizontal and vertical axes, r i-1, η (1) is the cross-correlation parameter of the previous step of acceleration at the time t i-1, r i-1, η (0) is the autocorrelation of the acceleration at the time t i-1 parameters, βi , η and is the calculation intermediate variable at time t i , is the acceleration variance at time t i , α i, η is the maneuvering frequency at time t i , th i =t i -t i-1 is the time interval between two measurement data.

进一步地,步骤1中如果RFID的采样周期大于或者等于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,以两次估计到的坐标间的距离作为估算距离d1,并选择用IMU的陀螺仪数据估算航向角,根据 的数学关系式推算出机动目标在各个时刻的坐标;具体实现步骤为:Further, in step 1, if the sampling period of the RFID is greater than or equal to the threshold, the coordinates of the RFID measurement data are estimated through an insensitive Kalman filter, and the distance between the two estimated coordinates is used as the estimated distance d 1 , and Choose to use the gyroscope data of the IMU to estimate the heading angle, according to Calculate the coordinates of the maneuvering target at each moment using the mathematical relational formula; the specific implementation steps are:

步骤1.1′:通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,以两次估计到的坐标间的距离作为估算距离d1Step 1.1': Estimate the coordinates of the RFID measurement data through an insensitive Kalman filter, and use the distance between the two estimated coordinates as the estimated distance d 1 ;

步骤1.2′:利用IMU测量数据估算目标在各个采样间隔内的姿态角变化情况并考虑到陀螺仪测量数据的漂移特性,将姿态角数据做一个6秒的延迟;Step 1.2': Use the IMU measurement data to estimate the attitude angle change of the target in each sampling interval and take into account the drift characteristics of the gyroscope measurement data, and make a 6-second delay for the attitude angle data;

步骤1.3′:获得各个采样间隔内IMU中陀螺仪的角速度信息,根据陀螺仪的角速度信息列出关于四元数微分方程;Step 1.3': Obtain the angular velocity information of the gyroscope in the IMU in each sampling interval, and list the differential equations about the quaternion according to the angular velocity information of the gyroscope;

通过求解以上四元数微分方程得到实时的四元数q0,q1,q2,q3,将获得的q0,q1,q2,q3带入下式得到姿态矩阵 Real-time quaternion q 0 , q 1 , q 2 , q 3 are obtained by solving the above quaternion differential equation, and the obtained q 0 , q 1 , q 2 , q 3 are put into the following formula to obtain the attitude matrix

其中,表示四元数乘积,表示b系相对n系的角速度,ωnbx、ωnby、ωnbz为陀螺仪的输出值;in, represents a quaternion product, Indicates the angular velocity of the b system relative to the n system, ω nbx , ω nby , ω nbz are the output values of the gyroscope;

步骤1.4′:利用4阶龙格库塔法对四元数进行更新;Step 1.4': update the quaternion by using the fourth-order Runge-Kutta method;

h为姿态更新周期;h is the attitude update cycle;

步骤1.5′:根据更新后的四元数更新姿态矩阵,再根据更新后的姿态矩阵求解得到姿态角为:Step 1.5': Update the attitude matrix according to the updated quaternion, and then calculate the attitude angle according to the updated attitude matrix:

θ=arcsinC32 θ main = arcsinC 32

θ=θ θ = θ main

其中俯仰角的定义域为(-90°,90°),橫滚角的定义域为(-180°,180°),航向角的定义域为(0°,360°),公式中的θ、γ分别是由姿态矩阵计算得到的俯仰角、横滚角和航向角,θ、γ和表示转换到定义域内的角度值;The definition domain of the pitch angle is (-90°, 90°), the definition domain of the roll angle is (-180°, 180°), and the definition domain of the heading angle is (0°, 360°). The θ in the formula main , gamma main and The pitch angle, roll angle and heading angle calculated by the attitude matrix respectively, θ, γ and Indicates the angle value transformed into the domain;

步骤1.6′:根据的数学关系式推算出机动目标在各个时刻的坐标;Step 1.6': According to Calculate the coordinates of the maneuvering target at each moment using the mathematical relational formula;

步骤1.7′:将计算得到的机动目标的坐标存储。Step 1.7': Store the calculated coordinates of the maneuvering target.

进一步地,步骤2中判断是否还有来自IMU的测量数据,若是,则用IMU的陀螺仪数据估算航向角,并采用IMU的加速度计数据由牛顿运动定律计算机动目标在各个采样间隔内的位移d2,根据的数学关系式推算出机动目标在各个时刻的坐标;具体实现步骤为:Further, in step 2, it is judged whether there is any measurement data from the IMU, if so, the gyroscope data of the IMU is used to estimate the heading angle, and the accelerometer data of the IMU is used to calculate the displacement of the moving target in each sampling interval by Newton's law of motion d 2 , according to Calculate the coordinates of the maneuvering target at each moment using the mathematical relational formula; the specific implementation steps are:

步骤2.1:采用加速度计的测量数据计算目标的位移d2Step 2.1: Calculate the displacement d 2 of the target using the measurement data of the accelerometer;

步骤2.2:通过求解如下四元数微分方程得到实时的四元数q0,q1,q2,q3Step 2.2: Obtain the real-time quaternion q 0 , q 1 , q 2 , q 3 by solving the following quaternion differential equation:

其中,表示四元数乘积,表示b系相对n系的角速度,ωnbx、ωnby、ωnbz为陀螺仪的输出值;in, represents a quaternion product, Indicates the angular velocity of the b system relative to the n system, ω nbx , ω nby , ω nbz are the output values of the gyroscope;

步骤2.3:将获得的q0,q1,q2,q3带入下式得到姿态矩阵 Step 2.3: Put the obtained q 0 , q 1 , q 2 , and q 3 into the following formula to obtain the attitude matrix

步骤2.4:采用四阶龙格库塔法对四元数进行更新,计算公式如下:Step 2.4: Use the fourth-order Runge-Kutta method to update the quaternion, the calculation formula is as follows:

h为姿态更新周期;h is the attitude update cycle;

步骤2.5:根据更新后的四元数更新姿态矩阵,再根据更新后的姿态矩阵求解得到姿态角为:Step 2.5: Update the attitude matrix according to the updated quaternion, and then solve the attitude angle according to the updated attitude matrix:

θ=arcsinC32 θ main = arcsinC 32

θ=θ θ = θ main

其中俯仰角的定义域为(-90°,90°),橫滚角的定义域为(-180°,180°),航向角的定义域为(0°,360°),公式中的θ、γ分别是由姿态矩阵计算得到的俯仰角、横滚角和航向角,θ、γ和表示转换到定义域内的角度值;The definition domain of the pitch angle is (-90°, 90°), the definition domain of the roll angle is (-180°, 180°), and the definition domain of the heading angle is (0°, 360°). The θ in the formula main , gamma main and The pitch angle, roll angle and heading angle calculated by the attitude matrix respectively, θ, γ and Indicates the angle value transformed into the domain;

步骤2.6:利用求得的位移d2以及航向角根据的数学关系式推算出机动目标在各个时刻的坐标;Step 2.6: Use the obtained displacement d 2 and heading angle according to Calculate the coordinates of the maneuvering target at each moment using the mathematical relational formula;

步骤2.7:将计算得到的机动目标的坐标存储。Step 2.7: Store the calculated coordinates of the maneuvering target.

本发明的有益效果是:The beneficial effects of the present invention are:

本发明的基于IMU和RFID测量数据的多传感器融合室内快速跟踪方法,基于RFID数据利用Kalman滤波器对运动目标进行轨迹估计,估计结果不会随着时间的推移造成误差的累积;在没有RFID测量数据时,采用惯性传感器数据的姿态解算方法对目标的运动进行跟踪,此时的跟踪信息作为目标运动信息的补充,重构目标的运动轨迹;实现了对室内目标的快速跟踪,提高了跟踪精度,尤其适用于需要获得运动目标实时轨迹的RFID室内目标跟踪系统。对跟踪方法的优化,进一步提高了跟踪精度。The multi-sensor fusion indoor fast tracking method based on IMU and RFID measurement data of the present invention uses the Kalman filter to estimate the trajectory of the moving target based on the RFID data, and the estimation result will not cause error accumulation over time; without RFID measurement When the data is collected, the attitude calculation method of the inertial sensor data is used to track the movement of the target. At this time, the tracking information is used as a supplement to the target movement information to reconstruct the movement trajectory of the target; the fast tracking of the indoor target is realized, and the tracking is improved. Accuracy, especially suitable for RFID indoor target tracking systems that need to obtain real-time trajectories of moving targets. The optimization of the tracking method further improves the tracking accuracy.

附图说明Description of drawings

图1为本发明一实施例的基于IMU和RFID测量数据的多传感器融合室内快速跟踪方法的流程图。FIG. 1 is a flow chart of a multi-sensor fusion indoor fast tracking method based on IMU and RFID measurement data according to an embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明的基于IMU和RFID测量数据的多传感器融合室内快速跟踪方法进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and advantages of the present invention clearer, the multi-sensor fusion indoor fast tracking method based on IMU and RFID measurement data of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

参照图1,本发明一实施例的基于IMU和RFID测量数据的多传感器融合室内快速跟踪方法,包括以下步骤:Referring to Fig. 1, the multi-sensor fusion indoor fast tracking method based on IMU and RFID measurement data of an embodiment of the present invention includes the following steps:

步骤1:根据RFID的采样周期与阈值的比较结果选择目标追踪的方法,若RFID的采样周期小于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,获得机动目标的坐标(载体的位置信息);如果RFID的采样周期大于或者等于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,以两次估计到的坐标间的距离作为估算距离d1,并选择用IMU的陀螺仪数据估算航向角,根据的数学关系式推算出机动目标(载体)在各个时刻的坐标;Step 1: Select the target tracking method according to the comparison result between the sampling period of the RFID and the threshold value. If the sampling period of the RFID is less than the threshold value, estimate the coordinates of the RFID measurement data through an insensitive Kalman filter to obtain the coordinates of the maneuvering target ( location information of the carrier); if the sampling period of the RFID is greater than or equal to the threshold, the coordinates of the RFID measurement data are estimated by an insensitive Kalman filter, and the distance between the two estimated coordinates is used as the estimated distance d 1 , and Choose to use the gyroscope data of the IMU to estimate the heading angle, according to Calculate the coordinates of the maneuvering target (carrier) at each moment using the mathematical relational formula;

步骤2:判断RFID测量系统中是否还有未处理的原始测量数据,如果有,则返回步骤1;如果没有,则判断是否还有来自IMU的测量数据,若是,则用IMU的陀螺仪数据估算航向角,并采用IMU的加速度计数据由牛顿运动定律计算出机动目标在各个采样间隔内的位移d2,根据的数学关系式推算出机动目标在各个时刻的坐标;若否,则算法结束;Step 2: Determine whether there are unprocessed raw measurement data in the RFID measurement system, if so, return to step 1; if not, determine whether there is still measurement data from the IMU, if so, use the gyroscope data of the IMU to estimate heading angle, and use the accelerometer data of the IMU to calculate the displacement d 2 of the maneuvering target in each sampling interval by Newton's law of motion, according to Calculate the coordinates of the maneuvering target at each moment by the mathematical relational expression; if not, the algorithm ends;

其中,Δx表示目标在跟踪区域内的横向坐标x的变化量Δy表示目标在跟踪区域内的纵向坐标y的变化量,为目标转过的航向角。本实施例中,阈值可取为0.18秒。Among them, Δx represents the variation of the horizontal coordinate x of the target in the tracking area, and Δy represents the variation of the vertical coordinate y of the target in the tracking area, The heading angle turned by the target. In this embodiment, the threshold may be set to 0.18 seconds.

作为一种可优选方式,步骤1中若RFID的采样周期小于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,获得机动目标的坐标,包括:As a preferred method, if the sampling period of the RFID is less than the threshold in step 1, the coordinates of the RFID measurement data are estimated by an insensitive Kalman filter to obtain the coordinates of the maneuvering target, including:

步骤1.1:目标运动状态和系统自适应参数初始化;Step 1.1: Target motion state and system adaptive parameter initialization;

步骤1.2:建立具有系统自适应参数的运动模型及RFID测量模型;Step 1.2: Establish a motion model with system adaptive parameters and an RFID measurement model;

步骤1.3:根据建立的具有系统自适应参数的运动模型对目标状态进行预测,得到下一时间点的目标状态预测值;Step 1.3: Predict the target state according to the established motion model with system adaptive parameters, and obtain the predicted value of the target state at the next time point;

步骤1.4:根据RFID测量模型和目标状态预测值计算目标状态测量预测值;Step 1.4: Calculate the target state measurement prediction value according to the RFID measurement model and the target state prediction value;

步骤1.5:根据目标状态预测值和目标状态测量预测值计算不敏卡尔曼滤波器增益;Step 1.5: Calculate the insensitive Kalman filter gain according to the target state prediction value and the target state measurement prediction value;

步骤1.6:读取RFID监控系统获取的下一时间点目标状态原始测量值zn(ti);Step 1.6: Read the original measurement value zn(ti) of the target state at the next time point obtained by the RFID monitoring system;

步骤1.7:根据目标状态原始测量值、目标状态测量预测值和滤波器增益计算目标状态修正值:Step 1.7: Calculate the target state correction value based on the target state raw measurement value, target state measurement prediction value and filter gain:

其中,X(ti)为目标状态修正值,ti为采样时刻,n=1,2,…N(ti),N(ti)为ti时刻的获得与目标距离数据的RFID读取器的个数;Kn(ti)为ti时刻滤波器增益,zn(ti)为第n个读取器在ti时刻的测量数据,为ti时刻的测量的估计值;Among them, X(t i ) is the correction value of the target state, t i is the sampling time, n=1,2,...N(t i ), N(t i ) is the RFID reading of the acquisition and target distance data at the time t i The number of readers; K n (t i ) is the filter gain at time t i , z n (t i ) is the measurement data of the nth reader at time t i , is the estimated value of the measurement at time t i ;

步骤1.8:根据目标状态预测值和目标状态修正值X(ti)计算目标状态估计值及目标状态协方差估计值;Step 1.8: Predict value based on target state and target state correction value X(t i ) to calculate target state estimated value and target state covariance estimated value;

目标状态估计值的计算公式如下:The calculation formula of target state estimate is as follows:

其中,表示ti时刻的目标状态估计值;表示在ti-1时刻时预测ti时刻的目标状态预测值;X(ti)为目标状态修正值,ti为采样时刻;in, Indicates the estimated value of the target state at time t i ; Indicates the predicted value of the target state at the time t i -1 when predicting the target state; X(t i ) is the target state correction value, and t i is the sampling time;

目标状态协方差估计值的计算公式如下:The calculation formula of target state covariance estimate is as follows:

其中,P(ti|ti)表示ti时刻的目标状态协方差估计值,P(ti|ti-1)表示在ti-1时刻预测ti时刻的目标状态协方差预测值,Kn(ti)为ti时刻第n个读写器的滤波器增益;Sn(ti)为第n个读写器的协方差矩阵;Among them, P(t i |t i ) represents the estimated value of the target state covariance at time t i , and P(t i |t i-1 ) represents the predicted value of the target state covariance at time t i at time t i-1 , K n (t i ) is the filter gain of the nth reader at time t i ; S n (t i ) is the covariance matrix of the nth reader;

步骤1.9:利用目标状态预测值更新系统自适应参数,进而更新步骤2.3中的运动模型;Step 1.9: Utilize the predicted value of the target state to update the adaptive parameters of the system, and then update the motion model in step 2.3;

步骤1.10:将估计到的机动目标的坐标存储下来。Step 1.10: Store the estimated coordinates of the maneuvering target.

进一步地,步骤1.1中目标运动状态和系统自适应参数初始化的具体过程如下:Further, the specific process of target motion state and system adaptive parameter initialization in step 1.1 is as follows:

步骤1.1.1:设置目标运动状态的初始值为6维全0列向量,维数为系统模型中状态向量的维数;Step 1.1.1: Set the initial value of the target motion state is a 6-dimensional vector of all 0 columns, and its dimension is the dimension of the state vector in the system model;

步骤1.1.2:设置系统自适应参数的初始值αη=α0其中η=x,y,x表示目标在跟踪区域的横向坐标,y表示目标在跟踪区域内的纵向坐标,αη表示横向坐标、纵向坐标的加速度机动频率,表示横向坐标、纵向坐标的加速度方差,本实施例中α0=1/20、 Step 1.1.2: Set the initial value of the system adaptive parameter α η = α 0 and Wherein η=x, y, x represents the horizontal coordinate of target in tracking area, and y represents the vertical coordinate of target in tracking area, and α η represents the acceleration maneuvering frequency of horizontal coordinate, vertical coordinate, Indicates the acceleration variance of the horizontal and vertical coordinates, in this embodiment α 0 =1/20,

步骤1.1.3:设置系统加速度分量的初始值本实施例中取0,其中η=x,y,x表示目标在跟踪区域的横向坐标,y表示目标在跟踪区域内的纵向坐标;Step 1.1.3: Set the initial value of the acceleration component of the system In this example Get 0, where η=x, y, x represents the horizontal coordinates of the target in the tracking area, and y represents the longitudinal coordinates of the target in the tracking area;

步骤1.1.4:设置系统的尺度参数κ=-3,χ=0.01,ο=2;Step 1.1.4: Set the scale parameters of the system κ=-3, χ=0.01, ο=2;

步骤1.1.5:设置加速度前一步互相关参数初始值为r0,η(1)=0,向加速度自相关参数初值为r0,η(0)=0。Step 1.1.5: Set the initial value of the cross-correlation parameter of the previous step of acceleration to r 0,η (1)=0, and the initial value of the auto-correlation parameter of the acceleration step to r 0,η (0)=0.

进一步地,步骤1.2中建立具有系统自适应参数的运动模型及RFID测量模型,包括:Further, in step 1.2, a motion model and an RFID measurement model with system adaptive parameters are established, including:

步骤1.2.1:利用下式描述目标的运动特征(运动模型公式):Step 1.2.1: Use the following formula to describe the motion characteristics of the target (motion model formula):

其中,为6维状态列向量,分别是横向坐标位移、速度和加速度,分别是纵向坐标位移、速度和加速度;x(ti)为ti时刻目标的状态向量,ti为采样时刻;A(ti-1)为ti-1时刻的状态转移矩阵;U(ti-1)为ti-1时刻的控制矩阵;wd(ti-1)为过程噪声,其均值为0,方差为Q;A(ti-1)、U(ti-1)和Q中包含系统自适应参数;in, is a 6-dimensional state column vector, are the lateral coordinate displacement, velocity and acceleration, respectively, are the longitudinal coordinate displacement, velocity and acceleration respectively; x(t i ) is the state vector of the target at time t i , and t i is the sampling time; A(t i-1 ) is the state transition matrix at time t i-1 ; U( t i-1 ) is the control matrix at time t i-1 ; w d (t i-1 ) is the process noise, its mean value is 0, and its variance is Q; A(t i-1 ), U(t i-1 ) and Q include system adaptive parameters;

为状态转移矩阵;为控制矩阵; is the state transition matrix; is the control matrix;

为0时刻开始至ti-1时刻目标的加速度均值;w(ti-1)=[wx(ti-1) wy(ti-1)]T为过程噪声,其均值为0,方差为假设横向和纵向过程噪声相互独立;设η=x,y,x表示目标在跟踪区域的横向坐标,y表示目标在跟踪区域内的纵向坐标,其中相应矩阵的取值为: is the average acceleration value of the target from time 0 to time t i-1 ; w(t i-1 )=[w x (t i-1 ) w y (t i-1 )] T is the process noise, and its mean value is 0 , with a variance of Assume that the horizontal and vertical process noises are independent of each other; let η=x, y, x represents the horizontal coordinates of the target in the tracking area, and y represents the vertical coordinates of the target in the tracking area, where the value of the corresponding matrix is:

其中thi=ti-ti-1为两次测量数据的时间间隔;Wherein th i =t i -t i-1 is the time interval between two measurement data;

步骤1.2.2:建立如下RFID系统目标测量方程:Step 1.2.2: Establish the following RFID system target measurement equation:

zn(ti)=hn[x(ti)]+vn(ti)z n (t i )=h n [x(t i )]+v n (t i )

其中,zn(ti)为RFID监控系统获取的目标在ti时刻的测量值,hn[x(ti)]为测量方程,x(ti)为ti时刻目标的状态向量;vn(ti)为RFID监控系统中第n个读取器的高斯测量白噪声,且与过程噪声wd(ti-1)相互独立,其测量方差满足σp和γ为射频测量的参数,实验表明σp取为4dB,γ可取为1.6到6.5区间的任意正数;dn(ti)为目标在ti时刻所处的位置到第n个RFID读取器的真实距离(未知),x(ti)、y(ti)分别为ti时刻目标位置的横、纵坐标;xn(0)、yn(0)分别为第n个RFID读取器的横、纵坐标,n=1,2,…N(ti),N(ti)为ti时刻能够获得目标测量值的RFID读取器的个数。Among them, z n (t i ) is the measured value of the target at time t i obtained by the RFID monitoring system, h n [x(t i )] is the measurement equation, and x(t i ) is the state vector of the target at time t i ; v n (t i ) is the Gaussian measurement white noise of the nth reader in the RFID monitoring system, which is independent of the process noise w d (t i-1 ), and its measurement variance satisfies σ p and γ are the parameters of radio frequency measurement. Experiments show that σ p is taken as 4dB, and γ can be taken as any positive number in the interval from 1.6 to 6.5; d n (t i ) is the position of the target at time t i to the nth The real distance (unknown) of the RFID reader, x(t i ), y(t i ) are the horizontal and vertical coordinates of the target position at time t i respectively; x n (0), y n (0) are the nth The abscissa and ordinate of each RFID reader, n=1, 2, ... N(t i ), N(t i ) is the number of RFID readers capable of obtaining the target measurement value at time t i .

进一步地,步骤1.3中根据建立的具有系统自适应参数的运动模型对目标状态进行预测,包括:Further, in step 1.3, the target state is predicted according to the established motion model with system adaptive parameters, including:

步骤1.3.1:按照下式计算不敏卡尔曼滤波器所需的sigma点状态值及其权值;Step 1.3.1: Calculate the sigma point state value and its weight required by the insensitive Kalman filter according to the following formula;

其中,x(i)为第i个sigma点的扩展状态值,其中包括i=0,1,…2Nx,为第i个sigma点的状态值,Nx是系统状态的维数;为第i个sigma点的过程噪声模拟量,为第i个sigma点的测量噪声模拟量;表示在ti-1时刻的目标状态估计值,P(ti-1|ti-1)表示在ti-1时刻的目标状态协方差估计值,是与过程噪声w(ti-1)维数相同的全0矩阵,是与测量噪声v(ti-1)维数相同的全0矩阵;i=0,1,…2Nx,为第i个sigma点的状态估计权值;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值,Nx是系统状态的维数;表示均方差矩阵的第i列,κ、χ、ο为尺度参数;Among them, x (i) is the extended state value of the ith sigma point, including i=0,1,...2N x is the state value of the i-th sigma point, and N x is the dimension of the system state; is the process noise analog quantity of the ith sigma point, is the measurement noise analog quantity of the ith sigma point; Represents the estimated value of the target state at time t i -1, P(t i-1 |t i-1 ) represents the estimated value of covariance of the target state at time t i-1 , is an all-0 matrix with the same dimension as the process noise w(t i-1 ), is an all-0 matrix with the same dimension as the measurement noise v(t i-1 ); i=0,1,...2N x , which is the state estimation weight of the i-th sigma point; i=0,1,...2N x , is the state estimation variance weight of the i-th sigma point, and N x is the dimension of the system state; express The ith column of the mean square error matrix, κ, χ, ο are scale parameters;

步骤1.3.2:根据运动模型和目标状态初始值计算每一个sigma点的状态预测值,计算公式如下,Step 1.3.2: Calculate the state prediction value of each sigma point according to the motion model and the initial value of the target state, the calculation formula is as follows,

其中,为第i个sigma点的状态预测值;i=0,1,…2Nx,为第i个sigma点的状态值,为第i个sigma点的过程噪声模拟量,来重构过程噪声对状态预测的影响,Nx是系统状态的维数;A(ti-1)为ti-1时刻的状态转移矩阵;U(ti-1)为ti-1时刻的控制矩阵;为从0时刻至ti-1时刻的加速度均值;in, is the state prediction value of the i-th sigma point; i=0,1,…2N x , which is the state value of the i-th sigma point, is the process noise analog quantity at the i-th sigma point to reconstruct the influence of process noise on state prediction, N x is the dimension of the system state; A(t i-1 ) is the state transition matrix at time t i-1 ; U(t i-1 ) is the control matrix at time t i - 1 ; is the mean value of acceleration from time 0 to time t i-1 ;

步骤1.3.3:计算所有sigma点状态预测值的加权值,即目标状态预测值,计算公式如下:Step 1.3.3: Calculate the weighted value of all sigma point state prediction values, that is, the target state prediction value, the calculation formula is as follows:

其中,表示在ti-1时刻预测ti时刻的目标状态预测值,ti为采样时刻,|表示条件操作符;为第i个sigma点的状态预测值;i=0,1,…2Nx,为第i个sigma点的状态估计权值,Nx是系统状态的维数;in, Represents the predicted value of the target state at time t i-1 , t i is the sampling time, and | represents the conditional operator; is the state prediction value of the i-th sigma point; i=0,1,...2N x , is the state estimation weight of the i-th sigma point, and N x is the dimension of the system state;

步骤1.3.4:计算目标状态协方差预测值,计算公式如下Step 1.3.4: Calculate the target state covariance prediction value, the calculation formula is as follows

其中,P(ti|ti-1)表示在ti-1时刻预测ti时刻的目标状态协方差预测值;为第i个sigma点的状态预测值;表示在ti-1时刻预测ti时刻的目标状态预测值;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值;Nx是系统状态的维数;Q(ti-1)为过程噪声协方差。Among them, P(t i |t i-1 ) represents the predicted value of the target state covariance at time t i at time t i-1; is the state prediction value of the i-th sigma point; Indicates the predicted value of the target state at time t i-1 at time t i ; i=0,1,...2N x , is the state estimation variance weight of the ith sigma point; N x is the dimension of the system state; Q(t i-1 ) is the process noise covariance.

进一步地,步骤1.4中根据RFID测量模型和目标状态预测值计算目标状态测量预测值,包括:Further, in step 1.4, calculate the target state measurement prediction value according to the RFID measurement model and the target state prediction value, including:

步骤1.4.1:根据每个sigma点的状态预测值计算每个sigma点的测量预测值,计算公式如下:Step 1.4.1: Calculate the measurement prediction value of each sigma point according to the state prediction value of each sigma point, the calculation formula is as follows:

其中,为第i个sigma点的测量预测值;为第i个sigma点的状态预测值;为将每个sigma点的状态预测值代入测量方程得到的结果;n=1,2,…N(ti),N(ti)为ti时刻能够获得目标测量值的RFID读取器的个数;为第i个sigma点的测量噪声模拟量,来重构测量噪声对测量预测的影响;in, is the measured predicted value of the ith sigma point; is the state prediction value of the i-th sigma point; For the state prediction value of each sigma point The result obtained by substituting the measurement equation; n=1,2,...N(t i ), N(t i ) is the number of RFID readers that can obtain the target measurement value at t i moment; is the measurement noise analog quantity of the i-th sigma point to reconstruct the influence of measurement noise on measurement prediction;

步骤1.4.2:计算所有sigma点的测量预测值的加权值,即为目标状态测量预测值,计算公式如下:Step 1.4.2: Calculate the weighted value of the measured predicted value of all sigma points, which is the measured predicted value of the target state. The calculation formula is as follows:

其中,为目标状态测量预测值;为第i个sigma点的测量预测值;i=0,1,…2Nx,为第i个sigma点的状态估计权值,Nx是系统状态的维数;n=1,2,…N(ti),N(ti)为ti时刻能够获得目标测量值的RFID读取器的个数。in, Measure the predicted value for the target state; is the measured predicted value of the ith sigma point; i=0,1,...2N x , is the state estimation weight of the i-th sigma point, N x is the dimension of the system state; n=1,2,...N(t i ), N(t i ) is The number of RFID readers that can obtain the target measurement value at time t i .

进一步地,步骤1.5中根据目标状态预测值和目标状态测量预测值计算不敏卡尔曼滤波器增益,包括:Further, in step 1.5, the insensitive Kalman filter gain is calculated according to the predicted value of the target state and the measured predicted value of the target state, including:

步骤1.5.1:计算目标状态测量预测值的协方差,计算公式如下:Step 1.5.1: Calculate the covariance of the target state measurement prediction value, the calculation formula is as follows:

其中,为第i个sigma点的测量预测值;为目标状态测量预测值;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值;Nx是系统状态的维数;Rn(ti)为第n个读取器的测量方差;n=1,2,…N(ti),N(ti)为ti时刻能够获得目标测量值的RFID读取器的个数;in, is the measured predicted value of the ith sigma point; Measure the predicted value for the target state; i=0,1,...2N x , is the state estimation variance weight of the i-th sigma point; N x is the dimension of the system state; R n (t i ) is the measurement variance of the n-th reader; n =1,2,...N(t i ), N(t i ) is the number of RFID readers that can obtain the target measurement value at time t i ;

步骤1.5.2:计算目标状态预测值与目标状态测量预测值的交叉协方差,计算公式如下:Step 1.5.2: Calculate the cross-covariance of the predicted value of the target state and the predicted value of the target state measurement, the calculation formula is as follows:

其中,Pxz,n(ti)为交叉协方差矩阵;i=0,1,…2Nx,为第i个sigma点的状态估计方差权值;为第i个sigma点的状态预测值;表示在ti-1时刻预测ti时刻的目标状态预测值;为第i个sigma点的测量预测值;为目标测量预测值;Among them, P xz,n (t i ) is the cross-covariance matrix; i=0,1,...2N x , is the state estimation variance weight of the i-th sigma point; is the state prediction value of the i-th sigma point; Indicates the predicted value of the target state at time t i at time t i-1 ; is the measured predicted value of the ith sigma point; measure the predicted value for the target;

步骤1.5.3:根据步骤2.5.1中的协方差和步骤2.5.2中的交叉协方差计算滤波器增益,计算公式如下:Step 1.5.3: Calculate the filter gain based on the covariance in step 2.5.1 and the cross-covariance in step 2.5.2, the calculation formula is as follows:

其中,Kn(ti)为ti时刻第n个RFID读取器的滤波器增益,ti为采样时刻;Pzz,n(ti)为交叉协方差矩阵,表示交叉协方差矩阵的逆;Sn(ti)为协方差矩阵,n=1,2,…N(ti),N(ti)为ti时刻能够获得目标测量值的RFID读取器的个数。Among them, K n (t i ) is the filter gain of the nth RFID reader at time t i , t i is the sampling time; P zz,n (t i ) is the cross-covariance matrix, Represents the inverse of the cross-covariance matrix; S n (t i ) is the covariance matrix, n=1,2,...N(t i ), N(t i ) is the RFID reading that can obtain the target measurement value at time t i number of devices.

进一步地,步骤1.9的计算如下:Further, the calculation of step 1.9 is as follows:

为步骤1.4得到的目标状态预测值的第三行及第六行,即横、纵轴加速度预测值,η=x,y分别表示跟踪区域的横、纵向坐标;Pick The third row and the sixth row of the target state prediction value that step 1.4 obtains, i.e. the horizontal and vertical axis acceleration prediction values, η=x, y represent the horizontal and vertical coordinates of the tracking area respectively;

1)当i≤4时,按照如下方式更新系统自适应参数:1) When i≤4, update the system adaptive parameters as follows:

时, when Time,

时, when Time,

如果可取任意小的正数;if Can take any small positive number;

机动频率设置为α0不变;其中η=x,y分别表示跟踪区域的横、纵向加速度方差值,aM,η为一正数,范围在1到100之间,a-M,η为与aM,η绝对值相同的负数;The maneuvering frequency is set to α 0 unchanged; where η=x, y respectively represent the horizontal and vertical acceleration variance values of the tracking area, a M, η is a positive number, the range is between 1 and 100, a -M, η is the same absolute value as a M, η negative number;

2)当i>4时,按照如下方式更新系统自适应参数;2) When i>4, update the system adaptive parameters as follows;

其中,ri,η(1)为ti时刻的加速度前一步互相关参数,ri,η(0)为ti时刻向加速度自相关参数,η=x,y,x表示跟踪区域内的横向坐标,y表示跟踪区域内的纵向坐标;横、纵轴加速度预测值,ri-1,η(1)为ti-1时刻的加速度前一步互相关参数,ri-1,η(0)为ti-1时刻向加速度自相关参数,βi,η为ti时刻的计算中间变量,为ti时刻的加速度方差,αi,η为ti时刻的机动频率,thi=ti-ti-1为两次测量数据的时间间隔。Among them, r i, η (1) is the cross-correlation parameter of the previous step of the acceleration at the time t i , r i, η (0) is the autocorrelation parameter of the acceleration at the time t i , and η=x, y, and x represents the acceleration in the tracking area Horizontal coordinate, y represents the vertical coordinate in the tracking area; Acceleration prediction value of the horizontal and vertical axes, r i-1, η (1) is the cross-correlation parameter of the previous step of acceleration at the time t i-1, r i-1, η (0) is the autocorrelation of the acceleration at the time t i-1 parameters, βi , η and is the calculation intermediate variable at time t i , is the acceleration variance at time t i , α i, η is the maneuvering frequency at time t i , th i =t i -t i-1 is the time interval between two measurement data.

作为一种可优选方式,步骤1中如果RFID的采样周期大于或者等于阈值,则通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,以两次估计到的坐标间的距离作为估算距离d1,并选择用IMU的陀螺仪数据估算航向角,根据的数学关系式推算出机动目标在各个时刻的坐标;具体实现步骤为:As a preferred method, in step 1, if the sampling period of the RFID is greater than or equal to the threshold, the coordinates of the RFID measurement data are estimated by an insensitive Kalman filter, and the distance between the two estimated coordinates is used as the estimated distance d 1 , and choose to use the gyroscope data of the IMU to estimate the heading angle, according to Calculate the coordinates of the maneuvering target at each moment using the mathematical relational formula; the specific implementation steps are:

步骤1.1′:通过不敏卡尔曼滤波器对RFID测量数据进行坐标的估计,以两次估计到的坐标间的距离作为估算距离d1Step 1.1': Estimate the coordinates of the RFID measurement data through an insensitive Kalman filter, and use the distance between the two estimated coordinates as the estimated distance d 1 ;

步骤1.2′:利用IMU测量数据估算目标在各个采样间隔内的姿态角变化情况并考虑到陀螺仪测量数据的漂移特性,将姿态角数据做一个6秒的延迟;Step 1.2': Use the IMU measurement data to estimate the attitude angle change of the target in each sampling interval and take into account the drift characteristics of the gyroscope measurement data, and make a 6-second delay for the attitude angle data;

步骤1.3′:获得各个采样间隔内IMU中陀螺仪的角速度信息,根据陀螺仪的角速度信息列出关于四元数微分方程;Step 1.3': Obtain the angular velocity information of the gyroscope in the IMU in each sampling interval, and list the differential equations about the quaternion according to the angular velocity information of the gyroscope;

四元数微分方程进一步写成矩阵形式为:The quaternion differential equation is further written in matrix form as:

通过求解以上四元数微分方程得到实时的四元数q0,q1,q2,q3,将获得的q0,q1,q2,q3带入下式得到(b系到n系的姿态矩阵)姿态矩阵 Real-time quaternion q 0 , q 1 , q 2 , q 3 are obtained by solving the above quaternion differential equation, and the obtained q 0 , q 1 , q 2 , q 3 are put into the following formula to obtain (b to n Attitude matrix of the system) Attitude matrix

其中,表示四元数乘积,表示b系相对n系的角速度,ωnbx、ωnby、ωnbz为陀螺仪的输出值;in, represents a quaternion product, Indicates the angular velocity of the b system relative to the n system, ω nbx , ω nby , ω nbz are the output values of the gyroscope;

步骤1.4′:利用4阶龙格库塔法对四元数进行更新;Step 1.4': update the quaternion by using the fourth-order Runge-Kutta method;

h为姿态更新周期;h is the attitude update cycle;

步骤1.5′:根据更新后的四元数更新姿态矩阵,再根据更新后的姿态矩阵求解得到姿态角为:Step 1.5': Update the attitude matrix according to the updated quaternion, and then calculate the attitude angle according to the updated attitude matrix:

θ=arcsinC32 θ main = arcsinC 32

θ=θ θ = θ main

其中俯仰角的定义域为(-90°,90°),橫滚角的定义域为(-180°,180°),航向角的定义域为(0°,360°)。公式中的θ、γ分别是由姿态矩阵计算得到的俯仰角、横滚角和航向角,θ、γ和表示转换到定义域内的角度值。四元数更新之后,便可得到更新后的姿态矩阵,而姿态角可由姿态矩阵求得,从而得到更新后的姿态角。The definition domain of the pitch angle is (-90°, 90°), the definition domain of the roll angle is (-180°, 180°), and the definition domain of the heading angle is (0°, 360°). The θ main , γ main and The pitch angle, roll angle and heading angle calculated by the attitude matrix respectively, θ, γ and Represents the angle value transformed into the domain. After the quaternion is updated, the updated attitude matrix can be obtained, and the attitude angle can be obtained from the attitude matrix to obtain the updated attitude angle.

步骤1.6′:根据的数学关系式推算出机动目标在各个时刻的坐标;其中d1表示步骤2.1中两次估计到的坐标间的距离,Δx为目标在跟踪区域内的横向坐标x的变化量,Δy为目标在跟踪区域内的纵向坐标y的变化量,为目标转过的航向角。Step 1.6': According to The coordinates of the maneuvering target at each moment are deduced from the mathematical relationship of The amount of change in the longitudinal coordinate y within the tracking area, The heading angle turned by the target.

步骤1.7′:将计算得到的机动目标的坐标存储。Step 1.7': Store the calculated coordinates of the maneuvering target.

作为一种可优选方式,步骤2中判断是否还有来自IMU的测量数据,若是,则用IMU的陀螺仪数据估算航向角,并采用IMU的加速度计数据由牛顿运动定律计算机动目标在各个采样间隔内的位移d2,根据的数学关系式推算出机动目标在各个时刻的坐标,包括:As a preferred method, in step 2, it is judged whether there is any measurement data from the IMU, and if so, the gyroscope data of the IMU is used to estimate the heading angle, and the accelerometer data of the IMU is used to calculate the moving target at each sampling point by Newton's law of motion. The displacement d 2 within the interval, according to The coordinates of the maneuvering target at each moment are calculated by the mathematical relationship, including:

步骤2.1:采用加速度计的测量数据计算目标的位移d2Step 2.1: Calculate the displacement d 2 of the target by using the measurement data of the accelerometer;

步骤2.2:通过求解如下四元数微分方程得到实时的四元数q0,q1,q2,q3Step 2.2: Obtain the real-time quaternion q 0 , q 1 , q 2 , q 3 by solving the following quaternion differential equation:

根据陀螺仪的测量数据列出如下关于四元数更新的微分方程;According to the measurement data of the gyroscope, the following differential equations for quaternion update are listed;

由于状态估计量q为四元数,四元数微分方程进一步写成矩阵形式为:Since the state estimator q is a quaternion, the quaternion differential equation is further written in matrix form as:

步骤2.3:将获得的q0,q1,q2,q3带入下式得到(b系到n系的姿态矩阵)姿态矩阵 Step 2.3: Put the obtained q 0 , q 1 , q 2 , and q 3 into the following formula to obtain the attitude matrix (the attitude matrix of the b-system to the n-system)

步骤2.4:采用四阶龙格库塔法对四元数进行更新,计算公式如下Step 2.4: Use the fourth-order Runge-Kutta method to update the quaternion, the calculation formula is as follows

h为姿态更新周期;h is the attitude update cycle;

步骤2.5:根据更新后的四元数更新姿态矩阵,再根据更新后的姿态矩阵求解得到姿态角为:Step 2.5: Update the attitude matrix according to the updated quaternion, and then solve the attitude angle according to the updated attitude matrix:

θ=arcsinC32 θ main = arcsinC 32

θ=θ θ = θ main

为了准确的确定θ、γ的真值,下面对姿态角的定义域做了定义,其中俯仰角的定义域为(-90°,90°),橫滚角的定义域为(-180°,180°),航向角的定义域为(0°,360°),公式中的θ、γ分别是由姿态矩阵计算得到的俯仰角、横滚角和航向角,θ、γ和表示转换到定义域内的角度值;姿态矩阵是θ、γ的函数,因此姿态角可以通过解姿态矩阵的方程得。in order to accurately determine The true value of θ and γ, the definition domain of the attitude angle is defined below, where the definition domain of the pitch angle is (-90°, 90°), and the definition domain of the roll angle is (-180°, 180°) , the domain of heading angle is (0°,360°), the θ main , γ main and The pitch angle, roll angle and heading angle calculated by the attitude matrix respectively, θ, γ and Represents the angle value transformed into the domain; the attitude matrix is The functions of θ and γ, so the attitude angle can be obtained by solving the equation of the attitude matrix.

步骤2.6:利用求得的位移d2以及航向角根据的数学关系式推算出机动目标在各个时刻的坐标,Δx为目标在跟踪区域内的横向坐标x的变化量,Δy为目标在跟踪区域内的纵向坐标y的变化量,为目标转过的航向角。Step 2.6: Use the calculated displacement d 2 and heading angle according to The coordinates of the maneuvering target at each moment are calculated by the mathematical relationship, Δx is the variation of the horizontal coordinate x of the target in the tracking area, and Δy is the variation of the longitudinal coordinate y of the target in the tracking area, The heading angle turned by the target.

步骤2.7:将计算得到的机动目标的坐标存储。Step 2.7: Store the calculated coordinates of the maneuvering target.

以上各实施例的基于IMU和RFID测量数据的多传感器融合室内快速跟踪方法,基于RFID数据利用Kalman滤波器对运动目标进行轨迹估计,估计结果不会随着时间的推移造成误差的累积;在没有RFID测量数据时,采用惯性传感器数据的姿态解算方法对目标的运动进行跟踪,此时的跟踪信息作为目标运动信息的补充,重构目标的运动轨迹;实现了对室内目标的快速跟踪,提高了跟踪精度,尤其适用于需要获得运动目标实时轨迹的RFID室内目标跟踪系统。对跟踪方法的优化,进一步提高了跟踪精度。The multi-sensor fusion indoor fast tracking method based on the IMU and RFID measurement data of the above embodiments uses the Kalman filter to estimate the trajectory of the moving target based on the RFID data, and the estimation result will not cause error accumulation over time; When RFID measures data, the attitude calculation method of inertial sensor data is used to track the movement of the target. At this time, the tracking information is used as a supplement to the target movement information to reconstruct the trajectory of the target; it realizes the fast tracking of indoor targets and improves It improves the tracking accuracy, and is especially suitable for RFID indoor target tracking systems that need to obtain real-time trajectories of moving targets. The optimization of the tracking method further improves the tracking accuracy.

需要说明的是,在不冲突的情况下,以上各实施例及实施例中的特征可以相互组合。It should be noted that, in the case of no conflict, the above embodiments and the features in the embodiments can be combined with each other.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention.

Claims (10)

1. An indoor target rapid tracking method based on IMU and RFID information fusion is characterized by comprising the following steps:
step 1: selecting a target tracking method according to a comparison result of the sampling period of the RFID and a threshold value, and if the sampling period of the RFID is smaller than the threshold value, estimating coordinates of RFID measurement data through an insensitive Kalman filter to obtain the coordinates of a maneuvering target; if the sampling period of the RFID is larger than or equal to the threshold value, estimating coordinates of the RFID measured data through an insensitive Kalman filter, and estimating the distance between the two estimated coordinatesDistance as the estimated distance d1And estimating the course angle by selecting gyroscope data of the IMU based onThe coordinates of the maneuvering target at each moment are calculated by the mathematical relation;
step 2: judging whether unprocessed original measurement data exist in the RFID measurement system or not, and if yes, returning to the step 1; if not, judging whether measurement data from the IMU exist, if so, estimating a course angle by using gyroscope data of the IMU, and calculating the displacement d of the maneuvering target in each sampling interval by using the accelerometer data of the IMU through Newton's law of motion2According toThe coordinates of the maneuvering target at each moment are calculated by the mathematical relation; if not, the algorithm is ended;
wherein, Δ x is the variation of the horizontal coordinate x of the target in the tracking area, Δ y is the variation of the vertical coordinate y of the target in the tracking area,is the heading angle the target is turning.
2. The IMU and RFID information fusion-based indoor target fast tracking method of claim 1, wherein in step 1, if the sampling period of the RFID is less than a threshold, the RFID measurement data is subjected to coordinate estimation through an insensitive Kalman filter to obtain the coordinates of the maneuvering target, and the method comprises the following steps:
step 1.1: initializing a target motion state and system self-adaptive parameters;
step 1.2: establishing a motion model and an RFID (radio frequency identification) measurement model with system self-adaptive parameters;
step 1.3: predicting the target state according to the established motion model with the system self-adaptive parameters to obtain a target state predicted value of the next time point;
step 1.4: calculating a target state measurement predicted value according to the RFID measurement model and the target state predicted value;
step 1.5: calculating the gain of the insensitive Kalman filter according to the target state predicted value and the target state measurement predicted value;
step 1.6: reading the original measured value z of the target state at the next time point acquired by the RFID monitoring systemn(ti);
Step 1.7: calculating a target state correction value according to the target state original measurement value, the target state measurement prediction value and the filter gain:
<mrow> <mi>X</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </munderover> <msub> <mi>K</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>{</mo> <msub> <mi>z</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow>
wherein, X (t)i) Is a target state correction value, tiFor the sampling instant, N is 1,2, … N (t)i),N(ti) Is tiThe number of RFID readers which acquire distance data between the RFID readers and the target at any moment; kn(ti) Is tiTime of day filter gain, zn(ti) For the nth reader at tiThe measurement data of the time of day,is tiAn estimate of the measurement of the time of day;
step 1.8: predicting a value based on a target stateAnd a target state correction value X (t)i) Calculating a target state estimation value and a target state covariance estimation value;
the calculation formula of the target state estimation value is as follows:
<mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>X</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
wherein,represents tiA target state estimate at a time;is shown at ti-1Time of day prediction tiTarget state prediction value of the moment;X(ti) Is a target state correction value, tiIs the sampling time;
the target state covariance estimate is calculated as follows:
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </munderover> <msub> <mi>K</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>S</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>K</mi> <mi>n</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
wherein, P (t)i|ti) Represents tiTarget state covariance estimate at time, P (t)i|ti-1) Is shown at ti-1Time of day prediction tiTarget state covariance predicted value at time, Kn(ti) Is tiFilter of nth reader-writer at momentA filter gain; sn(ti) The covariance matrix of the nth reader-writer is obtained;
step 1.9: updating the adaptive parameters of the system by using the target state predicted value, and further updating the motion model in the step 1.3;
step 1.10: the estimated coordinates of the maneuvering target are stored.
3. The IMU and RFID information fusion-based indoor target fast tracking method according to claim 2, characterized in that the specific process of target motion state and system adaptive parameter initialization in step 1.1 is as follows:
step 1.1.1: setting an initial value of a target motion stateThe vector is a 6-dimensional all-0 column vector, and the dimension is the dimension of a state vector in the system model;
step 1.1.2 setting initial value alpha of system self-adaptive parameterη=α0Andwhere η is x, y, x represents the lateral coordinate of the target in the tracking area, y represents the longitudinal coordinate of the target in the tracking area, αηThe acceleration maneuvering frequency of the transverse coordinate and the longitudinal coordinate is represented,the acceleration variance of the transverse coordinate and the longitudinal coordinate is represented;
step 1.1.3: setting initial value of system acceleration componentwhere η is x, y, x representing the lateral coordinate of the target in the tracking area, and y representing the longitudinal coordinate of the target in the tracking area;
step 1.1.4: setting a scale parameter k of the system to be-3, χ to be 0.01, and omicron to be 2;
step 1.1.5: setting the initial value of the cross-correlation parameter of the acceleration one step as r0,η(1) 0, initial value of auto-correlation parameter of acceleration is r0,η(0)=0。
4. The IMU and RFID information fusion-based indoor target fast tracking method according to claim 3, wherein the establishing of the motion model and the RFID measurement model with system adaptive parameters in step 1.2 comprises:
step 1.2.1: the motion characteristics of the object are described using the following equation:
<mrow> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>U</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>w</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
wherein,is a 6-dimensional state column vector, x (t)i),Respectively transverse coordinate displacement, velocity and acceleration, y (t)i),Respectively longitudinal coordinate displacement, velocity and acceleration; x (t)i) Is tiState vector of the time target, tiIs the sampling time; a (t)i-1) Is ti-1A state transition matrix of a time; u (t)i-1) Is ti-1A control matrix of time instants; w is ad(ti-1) Is process noise, with a mean of 0 and a variance of Q; a (t)i-1)、U(ti-1) And Q comprises system adaptive parameters;
step 1.2.2: establishing the following target measurement equation of the RFID system:
zn(ti)=hn[x(ti)]+vn(ti)
<mrow> <msub> <mi>h</mi> <mi>n</mi> </msub> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <msub> <mi>d</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mrow>
wherein z isn(ti) Target obtained for RFID monitoring system at tiMeasured value of time of day, hn[x(ti)]For the measurement equation, x (t)i) Is tiA state vector of the time target; v. ofn(ti) White noise is measured for the Gaussian of the nth reader in the RFID monitoring system and correlated with the process noise wd(ti-1) Independently of one another, dn(ti) Is targeted at tiThe true distance (unknown), x (t), from the location at which the time is located to the nth RFID readeri)、y(ti) Are each tiThe horizontal and vertical coordinates of the target position at the moment; x is the number ofn(0)、yn(0) Respectively, the abscissa and ordinate of the nth RFID reader.
5. The IMU and RFID information fusion-based indoor target rapid tracking method according to claim 2, wherein the predicting of the target state according to the established motion model with system adaptive parameters in step 1.3 comprises:
step 1.3.1: calculating sigma point state values and weight values required by the insensitive Kalman filter according to the following formula;
<mrow> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mi>v</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>x</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <msub> <mi>N</mi> <mi>w</mi> </msub> </msub> </mtd> <mtd> <msub> <mn>0</mn> <msub> <mi>N</mi> <mi>v</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>x</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mrow> <mo>(</mo> <msqrt> <mrow> <mfrac> <msub> <mi>N</mi> <mi>x</mi> </msub> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>W</mi> <mi>x</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </mfrac> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>......</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>x</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msub> <mrow> <mo>(</mo> <msqrt> <mrow> <mfrac> <msub> <mi>N</mi> <mi>x</mi> </msub> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>W</mi> <mi>x</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </mfrac> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mn>......</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>W</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <mi>&amp;kappa;</mi> <mrow> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>&amp;kappa;</mi> </mrow> </mfrac> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>&amp;kappa;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>......</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>&amp;kappa;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mn>......</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>W</mi> <mi>p</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;chi;</mi> <mn>2</mn> </msup> <mo>+</mo> <mi>o</mi> <mo>+</mo> <mfrac> <mi>&amp;kappa;</mi> <mrow> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>&amp;kappa;</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>&amp;kappa;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>......</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>&amp;kappa;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>2</mn> <mo>,</mo> <mn>......</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
wherein x is(i)Extended state value for the ith sigma point, includingi=0,1,…2NxIs the state value of the ith sigma point, NxIs the dimension of the system state;the process noise analog for the ith sigma point,measuring noise analog quantity for the ith sigma point;is shown at ti-1Target state estimate at time, P (t)i-1|ti-1) Is shown at ti-a target state covariance estimate at time 1,is the process noise wd(ti-1) An all-0 matrix of the same dimension,is related to the measurement noise v (t)i-1) All 0 matrices of the same dimension;i=0,1,…2Nxstate estimation for ith sigma pointA weight value;i=0,1,…2Nxestimating a variance weight for the state of the ith sigma point;to representP(ti-1|ti-1) The ith column, kappa, chi and omicron of the mean square error matrix are scale parameters;
step 1.3.2: and calculating the state predicted value of each sigma point according to the motion model and the target state initial value, wherein the calculation formula is as follows,
<mrow> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msubsup> <mi>x</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <mi>U</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mover> <mi>a</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>x</mi> <mi>w</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>...2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow>
wherein,the state predicted value of the ith sigma point is obtained;i=0,1,…2Nxthe state value of the ith sigma point,reconstructing the influence of process noise on state prediction for the process noise analog quantity of the ith sigma point; a (t)i-1) Is ti-1A state transition matrix of a time; u (t)i-1) Is ti-1A control matrix of time instants;from time 0 to ti-1The mean value of the acceleration at that moment;
step 1.3.3: calculating weighted values of all sigma point state predicted values, namely target state predicted values, wherein the calculation formula is as follows:
<mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </munderover> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <msubsup> <mi>W</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mrow>
wherein,is shown at ti-1Time of day prediction tiTarget State prediction value at time, tiFor the sampling moment, | represents a conditional operator;the state predicted value of the ith sigma point is obtained;i=0,1,…2Nxestimating a weight value for the state of the ith sigma point;
step 1.3.4: calculating the target state covariance predicted value according to the following formula
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>p</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>{</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> <msup> <mrow> <mo>{</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
Wherein, P (t)i|ti-1) Is shown at ti-1Time of day prediction tiPredicting the covariance value of the target state at the moment;the state predicted value of the ith sigma point is obtained;is shown at ti-1Time of day prediction tiTarget state prediction value of the moment;i=0,1,…2Nxestimating a variance weight for the state of the ith sigma point; q (t)i-1)Is the process noise covariance.
6. The indoor target fast tracking method based on IMU and RFID information fusion of claim 2, wherein the step 1.4 of calculating the target state measurement predicted value according to the RFID measurement model and the target state predicted value comprises:
step 1.4.1: and calculating the measurement predicted value of each sigma point according to the state predicted value of each sigma point, wherein the calculation formula is as follows:
<mrow> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>h</mi> <mi>n</mi> </msub> <mo>&amp;lsqb;</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>+</mo> <msubsup> <mi>x</mi> <mi>v</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mrow>
wherein,measuring and predicting value of ith sigma point;the state predicted value of the ith sigma point is obtained;predicting the state of each sigma pointSubstituting the result obtained by the measurement equation;reconstructing the influence of the measurement noise on the measurement prediction for the measurement noise analog quantity of the ith sigma point;
step 1.4.2: calculating weighted values of the measurement predicted values of all sigma points, namely the target state measurement predicted value, wherein the calculation formula is as follows:
<mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </munderover> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <msubsup> <mi>W</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> </mrow>
wherein,measuring a predicted value for a target state;measuring and predicting value of ith sigma point;i=0,1,…2Nxestimating a weight value for the state of the ith sigma point; n is 1,2, … N (t)i),N(ti) Is tiThe number of RFID readers that can obtain the target measurement value at the time.
7. The IMU and RFID information fusion-based indoor target fast tracking method of claim 2, wherein the step 1.5 of calculating the insensitive Kalman filter gain according to the target state prediction value and the target state measurement prediction value comprises:
step 1.5.1: and (3) calculating the covariance of the target state measurement predicted value, wherein the calculation formula is as follows:
<mrow> <msub> <mi>S</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>p</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>{</mo> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mo>}</mo> <msup> <mrow> <mo>{</mo> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mo>}</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
wherein,measuring and predicting value of ith sigma point;measuring a predicted value for a target state;i=0,1,…2Nxestimating a variance weight for the state of the ith sigma point; rn(ti) The measured variance for the nth reader;
step 1.5.2: calculating the cross covariance of the target state predicted value and the target state measurement predicted value, wherein the calculation formula is as follows:
<mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>z</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>p</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>{</mo> <msup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>}</mo> <msup> <mrow> <mo>{</mo> <msubsup> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>n</mi> </msub> <mo>}</mo> </mrow> <mi>T</mi> </msup> </mrow>
wherein, Pxz,n(ti) Is a cross covariance matrix;i=0,1,…2Nxestimating a variance weight for the state of the ith sigma point;the state predicted value of the ith sigma point is obtained;is shown at ti-1Time of day prediction tiTarget state prediction value of the moment;measuring and predicting value of ith sigma point;measuring a predicted value for the target;
step 1.5.3: the filter gain is calculated from the covariance in step 1.5.1 and the cross covariance in step 1.5.2, the calculation formula is as follows:
<mrow> <msub> <mi>K</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>S</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>x</mi> <mi>z</mi> <mo>,</mo> <mi>n</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
wherein, Kn(ti) Is tiFilter gain, t, of the nth RFID reader at timeiIs the sampling time; pzz,n(ti) In the form of a cross-covariance matrix,represents the inverse of the cross covariance matrix; sn(ti) Is a covariance matrix, N is 1,2, … N (t)i),N(ti) Is tiThe number of RFID readers that can obtain the target measurement value at the time.
8. The IMU and RFID information fusion based indoor target fast tracking method according to claim 2, characterized in that the calculation of step 1.9 is as follows:
getthe third row and the sixth row of the target state predicted value obtained in step 1.4 are horizontal and vertical axis acceleration predicted values, η ═ x, y respectively represent horizontal and vertical coordinates of the tracking area;
1) when i is less than or equal to 4, updating the system self-adaptive parameters as follows:
when in useWhen the temperature of the water is higher than the set temperature,
when in useWhen the temperature of the water is higher than the set temperature,
if it is notAny small positive number can be taken;
with the motive frequency set to α0The change is not changed; whereinη ═ x, y denote the lateral and longitudinal acceleration variance values of the tracking area, respectively, aM,ηIs a positive number, ranging from 1 to 100, a-M,ηIs a andM,ηnegative numbers with the same absolute value;
2) when i is greater than 4, updating the system adaptive parameters in the following manner;
<mrow> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>i</mi> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>&amp;eta;</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>&amp;eta;</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow>
<mrow> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mi>i</mi> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>&amp;eta;</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>&amp;eta;</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <msubsup> <mi>&amp;delta;</mi> <mrow> <mi>a</mi> <mi>w</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <msubsup> <mi>&amp;delta;</mi> <mi>a</mi> <mn>2</mn> </msubsup> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <msubsup> <mi>&amp;delta;</mi> <mrow> <mi>a</mi> <mi>w</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>ln&amp;beta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> </msub> </mrow> <mrow> <mo>-</mo> <msub> <mi>th</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
wherein r isi,η(1) Is tiAcceleration previous step cross-correlation parameter of time, ri,η(0) Is tithe moment-to-moment acceleration autocorrelation parameter, η ═ x, y, x represents a transverse coordinate in the tracking area, and y represents a longitudinal coordinate in the tracking area;predicted values of lateral and longitudinal axial acceleration, ri-1,η(1) Is ti-1Acceleration previous step cross-correlation parameter of time, ri-1,η(0) Is ti-1time of day acceleration autocorrelation parameter, βi,ηAndis tiThe intermediate variable of the calculation of the time of day,is tivariance of acceleration at time, αi,ηIs tiFrequency of manoeuvres of time, thi=ti-ti-1The time interval between two measurements.
9. The IMU and RFID information fusion-based indoor target fast tracking method according to any one of claims 1-8, wherein if the sampling period of RFID is greater than or equal to the threshold in step 1, the RFID measurement data is subjected to coordinate estimation through an insensitive Kalman filter, and the distance between the two estimated coordinates is used as the estimated distance d1And estimating the course angle by selecting gyroscope data of the IMU based onThe coordinates of the maneuvering target at each moment are calculated by the mathematical relation; the concrete implementation steps are as follows:
step 1.1': estimating coordinates of RFID measurement data through an insensitive Kalman filter, and taking the distance between two estimated coordinates as an estimated distance d1
Step 1.2': estimating the attitude angle change condition of the target in each sampling interval by utilizing IMU (inertial measurement Unit) measurement data, and delaying the attitude angle data for 6 seconds by taking the drift characteristic of gyroscope measurement data into consideration;
step 1.3': obtaining angular velocity information of a gyroscope in each sampling interval IMU, and listing a quaternion differential equation according to the angular velocity information of the gyroscope;
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>q</mi> <mo>&amp;CircleTimes;</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mi>b</mi> </msubsup> </mrow>
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
obtaining real-time quaternion q by solving the quaternion differential equation0,q1,q2,q3Q to be obtained0,q1,q2,q3Carry into the following formula to get the attitude matrix
<mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein,which represents the product of the quaternion numbers,denotes the angular velocity, ω, of b with respect to nnbx、ωnby、ωnbzIs the output value of the gyroscope;
step 1.4': updating the quaternion by using a 4-order Runge Kutta method;
<mfenced open = "" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>4</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>hK</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mi>q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>h</mi> <mn>6</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>K</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow>
h is a posture updating period;
step 1.5': updating an attitude matrix according to the updated quaternion, and solving according to the updated attitude matrix to obtain an attitude angle as follows:
θmaster and slave=arcsinC32
θ=θMaster and slave
Wherein the pitch angle is defined as (-90 degrees and 90 degrees), the roll angle is defined as (-180 degrees and 180 degrees), the course angle is defined as (0 degrees and 360 degrees), and theta in the formulaMaster and slave、γMaster and slaveAndthe pitch angle, roll angle and course angle, theta, gamma andrepresenting the angle value converted into the defined domain;
step 1.6': according toThe coordinates of the maneuvering target at each moment are calculated by the mathematical relation;
step 1.7': and storing the calculated coordinates of the maneuvering target.
10. The IMU and RF based according to any of claims 1-8The method for quickly tracking the indoor target fused with the ID information is characterized in that whether measurement data from the IMU exist or not is judged in the step 2, if the measurement data from the IMU exist, a course angle is estimated by using gyroscope data of the IMU, and the displacement d of the maneuvering target in each sampling interval is calculated by adopting accelerometer data of the IMU according to the Newton's law of motion2According to The coordinates of the maneuvering target at each moment are calculated by the mathematical relation; the concrete implementation steps are as follows:
step 2.1: calculating the displacement d of the target using the measurement data of the accelerometer2
Step 2.2: obtaining a real-time quaternion q by solving a quaternion differential equation0,q1,q2,q3
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>q</mi> <mo>&amp;CircleTimes;</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mi>b</mi> </msubsup> </mrow>
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein,which represents the product of the quaternion numbers,denotes the angular velocity, ω, of b with respect to nnbx、ωnby、ωnbzIs the output value of the gyroscope;
step 2.3: q to be obtained0,q1,q2,q3Carry into the following formula to get the attitude matrix
<mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>C</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Step 2.4: and updating the quaternion by adopting a fourth-order Runge Kutta method, wherein the calculation formula is as follows:
<mfenced open = "" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>4</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>q</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>hK</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mi>q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>h</mi> <mn>6</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>K</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow>
h is a posture updating period;
step 2.5: updating an attitude matrix according to the updated quaternion, and solving according to the updated attitude matrix to obtain an attitude angle as follows:
θmaster and slave=arcsinC32
θ=θMaster and slave
Wherein the definition range of the pitch angle is (-90 degrees and 90 degrees), the definition range of the roll angle is (-180 degrees and 180 degrees), the definition range of the course angle is (0 degrees and 360 degrees), and the formula is shown in the specificationTheta ofMaster and slave、γMaster and slaveAndthe pitch angle, roll angle and course angle, theta, gamma andrepresenting the angle value converted into the defined domain;
step 2.6: using the determined displacement d2And course angleAccording toThe coordinates of the maneuvering target at each moment are calculated by the mathematical relation;
step 2.7: and storing the calculated coordinates of the maneuvering target.
CN201711345255.1A 2017-12-15 2017-12-15 A Fast Tracking Method for Indoor Targets Based on IMU and RFID Information Fusion Active CN108120438B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711345255.1A CN108120438B (en) 2017-12-15 2017-12-15 A Fast Tracking Method for Indoor Targets Based on IMU and RFID Information Fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711345255.1A CN108120438B (en) 2017-12-15 2017-12-15 A Fast Tracking Method for Indoor Targets Based on IMU and RFID Information Fusion

Publications (2)

Publication Number Publication Date
CN108120438A true CN108120438A (en) 2018-06-05
CN108120438B CN108120438B (en) 2020-05-05

Family

ID=62230148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711345255.1A Active CN108120438B (en) 2017-12-15 2017-12-15 A Fast Tracking Method for Indoor Targets Based on IMU and RFID Information Fusion

Country Status (1)

Country Link
CN (1) CN108120438B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116845A (en) * 2018-08-17 2019-01-01 华晟(青岛)智能装备科技有限公司 Automated guided vehicle localization method, positioning system and homing guidance transportation system
CN110095793A (en) * 2019-04-10 2019-08-06 同济大学 A kind of automatic Pilot low speed sweeper localization method adaptive based on tire radius
CN110211151A (en) * 2019-04-29 2019-09-06 华为技术有限公司 A kind of method for tracing and device of moving object
CN110427055A (en) * 2019-08-05 2019-11-08 厦门大学 A kind of stage follow spotlight automatic control system and method
CN110515381A (en) * 2019-08-22 2019-11-29 浙江迈睿机器人有限公司 Multi-sensor Fusion algorithm for positioning robot
CN111536967A (en) * 2020-04-09 2020-08-14 江苏大学 A tracking method of multi-sensor fusion greenhouse inspection robot based on EKF
CN111563918A (en) * 2020-03-30 2020-08-21 西北工业大学 A Target Tracking Method Based on Data Fusion of Multiple Kalman Filters
CN113566821A (en) * 2021-06-28 2021-10-29 江南造船(集团)有限责任公司 Method, system and electronic device for UAV heading estimation based on interactive filtering
CN113947158A (en) * 2021-10-26 2022-01-18 国汽智控(北京)科技有限公司 Data fusion method and device for intelligent vehicle
CN116108873A (en) * 2022-12-12 2023-05-12 天津大学 Motion posture assessment system based on RFID/IMU fusion

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070273463A1 (en) * 2006-02-04 2007-11-29 Evigia Systems, Inc. Micro-electro-mechanical module
CN202600620U (en) * 2012-06-04 2012-12-12 宋子健 Realizing device using shoe for replacing keyboard and mouse to be used as computer peripheral devices
EP2570772A1 (en) * 2011-09-16 2013-03-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for localisation and mapping of pedestrians or robots using wireless access points
CN103529424A (en) * 2013-10-23 2014-01-22 北京工商大学 RFID (radio frequency identification) and UKF (unscented Kalman filter) based method for rapidly tracking indoor target
CN104007460A (en) * 2014-05-30 2014-08-27 北京中电华远科技有限公司 Individual fireman positioning and navigation device
CN204115737U (en) * 2014-09-11 2015-01-21 金海新源电气江苏有限公司 A kind of indoor positioning device based on inertial guidance and radio-frequency (RF) identification
CN104697521A (en) * 2015-03-13 2015-06-10 哈尔滨工程大学 Method for measuring posture and angle speed of high-speed rotating body by gyro redundant oblique configuration mode
CN105716608A (en) * 2015-11-23 2016-06-29 南京华苏科技股份有限公司 Positioning and display method of motion trajectories in building
CN105806343A (en) * 2016-04-19 2016-07-27 武汉理工大学 Indoor 3D positioning system and method based on inertial sensor
CN105850773A (en) * 2016-03-29 2016-08-17 西北农林科技大学 Device and method for monitoring of pig attitudes based on micro-inertial sensor
CN106093858A (en) * 2016-06-22 2016-11-09 山东大学 A kind of alignment system based on UWB, RFID, INS multi-source co-located technology and localization method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070273463A1 (en) * 2006-02-04 2007-11-29 Evigia Systems, Inc. Micro-electro-mechanical module
EP2570772A1 (en) * 2011-09-16 2013-03-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for localisation and mapping of pedestrians or robots using wireless access points
CN202600620U (en) * 2012-06-04 2012-12-12 宋子健 Realizing device using shoe for replacing keyboard and mouse to be used as computer peripheral devices
CN103529424A (en) * 2013-10-23 2014-01-22 北京工商大学 RFID (radio frequency identification) and UKF (unscented Kalman filter) based method for rapidly tracking indoor target
CN104007460A (en) * 2014-05-30 2014-08-27 北京中电华远科技有限公司 Individual fireman positioning and navigation device
CN204115737U (en) * 2014-09-11 2015-01-21 金海新源电气江苏有限公司 A kind of indoor positioning device based on inertial guidance and radio-frequency (RF) identification
CN104697521A (en) * 2015-03-13 2015-06-10 哈尔滨工程大学 Method for measuring posture and angle speed of high-speed rotating body by gyro redundant oblique configuration mode
CN105716608A (en) * 2015-11-23 2016-06-29 南京华苏科技股份有限公司 Positioning and display method of motion trajectories in building
CN105850773A (en) * 2016-03-29 2016-08-17 西北农林科技大学 Device and method for monitoring of pig attitudes based on micro-inertial sensor
CN105806343A (en) * 2016-04-19 2016-07-27 武汉理工大学 Indoor 3D positioning system and method based on inertial sensor
CN106093858A (en) * 2016-06-22 2016-11-09 山东大学 A kind of alignment system based on UWB, RFID, INS multi-source co-located technology and localization method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIAN C. HO等: ""Real-Time Indoor Positioning System Based on RFID Heron-Bilateration Location Estimation and IMU Inertial-Navigation Location Estimation"", 《2015 IEEE 39TH ANNUAL INTERNATIONAL COMPUTERS, SOFTWARE & APPLICATIONS CONFERENCE》 *
STUDENT SH等: ""Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials"", 《CONF PROC IEEE ENG MED BIOL SOC》 *
艾明曦等: ""基于低成本INS/RFID的室内定位技术"", 《计算机测量与控制》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116845A (en) * 2018-08-17 2019-01-01 华晟(青岛)智能装备科技有限公司 Automated guided vehicle localization method, positioning system and homing guidance transportation system
CN109116845B (en) * 2018-08-17 2021-09-17 华晟(青岛)智能装备科技有限公司 Automatic guided transport vehicle positioning method, positioning system and automatic guided transport system
CN110095793A (en) * 2019-04-10 2019-08-06 同济大学 A kind of automatic Pilot low speed sweeper localization method adaptive based on tire radius
CN110095793B (en) * 2019-04-10 2021-11-09 同济大学 Automatic driving low-speed sweeper positioning method based on tire radius self-adaption
CN110211151B (en) * 2019-04-29 2021-09-21 华为技术有限公司 Method and device for tracking moving object
CN110211151A (en) * 2019-04-29 2019-09-06 华为技术有限公司 A kind of method for tracing and device of moving object
US12073630B2 (en) 2019-04-29 2024-08-27 Huawei Technologies Co., Ltd. Moving object tracking method and apparatus
CN110427055A (en) * 2019-08-05 2019-11-08 厦门大学 A kind of stage follow spotlight automatic control system and method
CN110515381A (en) * 2019-08-22 2019-11-29 浙江迈睿机器人有限公司 Multi-sensor Fusion algorithm for positioning robot
CN111563918A (en) * 2020-03-30 2020-08-21 西北工业大学 A Target Tracking Method Based on Data Fusion of Multiple Kalman Filters
CN111563918B (en) * 2020-03-30 2022-03-04 西北工业大学 A Target Tracking Method Based on Data Fusion of Multiple Kalman Filters
CN111536967A (en) * 2020-04-09 2020-08-14 江苏大学 A tracking method of multi-sensor fusion greenhouse inspection robot based on EKF
CN113566821A (en) * 2021-06-28 2021-10-29 江南造船(集团)有限责任公司 Method, system and electronic device for UAV heading estimation based on interactive filtering
CN113947158A (en) * 2021-10-26 2022-01-18 国汽智控(北京)科技有限公司 Data fusion method and device for intelligent vehicle
CN116108873A (en) * 2022-12-12 2023-05-12 天津大学 Motion posture assessment system based on RFID/IMU fusion
CN116108873B (en) * 2022-12-12 2024-04-19 天津大学 Sports posture assessment system based on RFID/IMU fusion

Also Published As

Publication number Publication date
CN108120438B (en) 2020-05-05

Similar Documents

Publication Publication Date Title
CN108120438A (en) A kind of indoor objects fast tracking method merged based on IMU and RFID information
CN105115487B (en) Positioning navigation method in a kind of supermarket based on information fusion
KR102226846B1 (en) System for Positioning Hybrid Indoor Localization Using Inertia Measurement Unit Sensor and Camera
CN103529424B (en) A Method for Fast Tracking of Indoor Targets Based on RFID and UKF
CN110554376A (en) Radar range finding method for vehicles
CN113108791A (en) Navigation positioning method and navigation positioning equipment
CN112525197B (en) Fusion Pose Estimation Method for Ultra-Broadband Inertial Navigation Based on Graph Optimization Algorithm
CN103925925A (en) Real-time high-precision position solution method for multilateration system
US20190204433A1 (en) Method of tracking target by using 2d radar with sensor
CN106908762A (en) A kind of many hypothesis UKF method for tracking target for UHF rfid systems
Yap et al. A particle filter for monocular vision-aided odometry
CN112254729A (en) A mobile robot localization method based on multi-sensor fusion
Zhao et al. Learning-based bias correction for ultra-wideband localization of resource-constrained mobile robots
CN114217268A (en) A wireless localization method in complex environment based on machine learning
CN106969767A (en) A kind of method of estimation of moving platform sensing system deviation
CN119110244A (en) An ultra-wideband (UWB) real-time positioning method and system for obstacle-occluded scenes
CN117665792A (en) Unmanned vehicle autonomous positioning method based on millimeter wave radar and integrating multiple sensors
Sun et al. UWB/IMU integrated indoor positioning algorithm based on robust extended Kalman filter
CN106441282B (en) A kind of star sensor star tracking method
Zhu et al. FGO-MFI: factor graph optimization-based multi-sensor fusion and integration for reliable localization
CN103529425A (en) Method for rapidly tracking indoor target
CN114089748B (en) Formation capturing method based on track prediction
CN106017482B (en) A kind of spatial operation relative orbit control error calculation method based on no mark recursion
CN113115214A (en) Indoor human body orientation recognition system based on non-reversible positioning tag
Cheng et al. An INS/UWB joint indoor positioning algorithm based on hypothesis testing and yaw angle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant