[go: up one dir, main page]

CN108118062A - Applications of the nitrate anion transporter gene OsNRT1.9a in rice selection and breeding - Google Patents

Applications of the nitrate anion transporter gene OsNRT1.9a in rice selection and breeding Download PDF

Info

Publication number
CN108118062A
CN108118062A CN201711378092.7A CN201711378092A CN108118062A CN 108118062 A CN108118062 A CN 108118062A CN 201711378092 A CN201711378092 A CN 201711378092A CN 108118062 A CN108118062 A CN 108118062A
Authority
CN
China
Prior art keywords
gene
rice
ser
leu
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711378092.7A
Other languages
Chinese (zh)
Other versions
CN108118062B (en
Inventor
方中明
黄玮婷
汪杰
朱炜
吕凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Bioengineering Institute
Original Assignee
Wuhan Bioengineering Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Bioengineering Institute filed Critical Wuhan Bioengineering Institute
Priority to CN201711378092.7A priority Critical patent/CN108118062B/en
Publication of CN108118062A publication Critical patent/CN108118062A/en
Application granted granted Critical
Publication of CN108118062B publication Critical patent/CN108118062B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了硝酸根运输基因OsNRT1.9a在水稻选育中的应用,属于植物基因工程领域。OsNRT1.9a基因编码蛋白质的氨基酸序列如SEQ ID NO.1所示,cDNA序列如SEQ ID NO.2所示。本发明通过构建水稻OsNRT1.9a基因超表达植株、OsNRT1.9a基因干扰植株,发现通过提高OsNRT1.9a基因表达,可以使正常的水稻分蘖数增加,单株灌浆粒数和单株产量增加,因此OsNRT1.9a基因可用于水稻选育中以提高水稻产量。OsNRT1.9a基因在阐述氮素影响植物生长及发育过程方面以及在水稻株型改良方面具有重要的应用价值。

The invention discloses the application of a nitrate transport gene OsNRT1.9a in rice selection and breeding, and belongs to the field of plant genetic engineering. The amino acid sequence of the protein encoded by the OsNRT1.9a gene is shown in SEQ ID NO.1, and the cDNA sequence is shown in SEQ ID NO.2. In the present invention, by constructing rice OsNRT1.9a gene overexpression plants and OsNRT1.9a gene interference plants, it is found that by increasing the expression of OsNRT1.9a gene, the number of normal rice tillers can be increased, the number of grains per plant and the yield per plant can be increased. The OsNRT1.9a gene can be used in rice breeding to improve rice yield. The OsNRT1.9a gene has important application value in elucidating the effects of nitrogen on plant growth and development and in improving rice plant type.

Description

硝酸根运输基因OsNRT1.9a在水稻选育中的应用Application of Nitrate Transport Gene OsNRT1.9a in Rice Breeding

技术领域technical field

本发明属于植物基因工程领域,具体涉及硝酸根运输基因OsNRT1.9a在水稻选育中的应用。The invention belongs to the field of plant genetic engineering, and in particular relates to the application of a nitrate transport gene OsNRT1.9a in rice breeding.

背景技术Background technique

中国水稻种植面积占世界作物总种植面积的20%,但氮肥施用量却占到世界总施用量的37%;1995年中国氮肥生产量和使用量已达世界第一位,但氮肥使用效率较低,氮肥的施用量已较50年前增长20倍,按这种趋势,预计到2050年,将会再翻3倍。氮肥施用过量会导致水体富营养化等生态污染问题[徐国华,范晓荣.水稻硝转运蛋白基因OsNRT1.1a和OsNRT1.1b的功能研究.南京农业大学,2011:4-6]。更多的氮素营养通过反硝化作用、水土流失、自然挥发、微生物利用等途径遭到浪费。China's rice planting area accounts for 20% of the world's total crop planting area, but nitrogen fertilizer application accounts for 37% of the world's total application amount; in 1995, China's nitrogen fertilizer production and use amount reached the first in the world, but nitrogen fertilizer use efficiency is low Low, the amount of nitrogen fertilizer application has increased by 20 times compared with 50 years ago. According to this trend, it is expected to triple again by 2050. Excessive application of nitrogen fertilizer will lead to ecological pollution such as eutrophication of water [Xu Guohua, Fan Xiaorong. Functional study of rice nitrate transporter genes OsNRT1.1a and OsNRT1.1b. Nanjing Agricultural University, 2011: 4-6]. More nitrogen nutrients are wasted through denitrification, soil erosion, natural volatilization, and microbial utilization.

如果将氮素的吸收效率提高1%,就相当于每年节约了十多亿美元的开支。从中国国情分析,扩大种植面积提高总产量的潜力已经很有限,唯一的出路是在有限的土地上生产出更多的稻谷,即提高单位面积产量。在过去的传统耕作中,通过选择氮利用效率更高的作物,来提高氮的利用效率;但与分子水平上的育种相比,这个过程显得缓慢而低效[张洪程,戴其根.水稻氮素利用的基因型差异与生理机理研究.扬州大学,2008:10-13]。要提高氮利用率,必须从氮的分子吸收机制中寻找突破口。硝酸根运输基因家族分为低亲和力硝酸根运输基因与高亲和力硝酸根运输基因两类[周诗毅.糖类和氨基酸对水稻诱导型高亲和力硝酸盐转运系统的影响.华中科技大学,2009:15-16]。通过氮同化作用,将硝态氮和铵态氮吸收并转化为氨基酸,称为氮的第一类吸收。通过对氮的运输使种子营养物质增加,增加饱满度,称为氮的第二类吸收,也就是氮的再利用[Kant S,Bi Y,Steven J,etal.Understanding plant response to nitrogen limitation for the improvement ofcrop nitrogen use efficiency.Journal of Experimental,2011,62(4):1499-1509]。增加氮吸收积累量或氮转运量,都可以增产。因此,在现代化农业建设中,通过分子育种手段来提高水稻对氮肥的利用效率,可以减少氮肥污染,还能增加产量。A 1% increase in nitrogen uptake efficiency equates to an annual savings of more than one billion dollars. From the analysis of China's national conditions, the potential for expanding the planting area to increase the total output is very limited. The only way out is to produce more rice on limited land, that is, to increase the output per unit area. In the past traditional farming, nitrogen use efficiency was improved by selecting crops with higher nitrogen use efficiency; but compared with molecular breeding, this process was slow and inefficient [Zhang Hongcheng, Dai Qigen. Nitrogen Utilization in Rice Genotype differences and physiological mechanism research. Yangzhou University, 2008: 10-13]. To improve nitrogen utilization, a breakthrough must be found in the molecular absorption mechanism of nitrogen. The nitrate transport gene family is divided into low-affinity nitrate transport genes and high-affinity nitrate transport genes [Zhou Shiyi. Effects of sugars and amino acids on rice-induced high-affinity nitrate transport system. Huazhong University of Science and Technology, 2009: 15- 16]. Through nitrogen assimilation, nitrate nitrogen and ammonium nitrogen are absorbed and converted into amino acids, which is called the first type of nitrogen absorption. Through the transport of nitrogen, the nutrients of seeds are increased, and the plumpness is increased, which is called the second type of nitrogen absorption, that is, the reuse of nitrogen [Kant S, Bi Y, Steven J, etal. Understanding plant response to nitrogen limitation for the Improvement of crop nitrogen use efficiency. Journal of Experimental, 2011, 62(4): 1499-1509]. Increasing nitrogen uptake and accumulation or nitrogen transport can increase yield. Therefore, in the construction of modern agriculture, improving the nitrogen utilization efficiency of rice through molecular breeding can reduce nitrogen pollution and increase yield.

NRT1/PTR家族(NRT1/PTR family,NPF)是指能够介导2-3个氨基酸残基的小分子肽及硝酸根等物质进行跨膜运输的蛋白[Rentsch D,Schmidt S,Tegeder M.Transportersfor uptake and allocation of organic nitrogen compounds in plants.FEBS Let,2007,581:2281-2289]。NRT1/PTR家族成员参与了种子形成过程中蛋白质的积累和萌发中蛋白降解后小分子多肽形式转运[Martre P,Porter J R,Jamieson P D,et al.Modelinggrain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat.Plant Physiol,2003,133:1959-1967]。目前关于NPF家族成员研究的报道很少,本发明涉及的OsNRT1.9基因是水稻NPF基因家族的一个硝酸根运输基因。本发明发现OsNRT1.9基因转录后加工能形成两种剪接,其中第一种剪接形式OsNRT1.9a对水稻分蘖有极其重要的作用,可应用于植物株型改良从而使水稻增产。NRT1/PTR family (NRT1/PTR family, NPF) refers to the protein that can mediate the transmembrane transport of substances such as small molecular peptides and nitrate radicals with 2-3 amino acid residues [Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Let, 2007, 581: 2281-2289]. NRT1/PTR family members are involved in the accumulation of proteins during seed formation and the transport of small molecule polypeptides after protein degradation during germination [Martre P, Porter J R, Jamieson P D, et al. Modelinggrain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol, 2003, 133:1959-1967]. At present, there are few reports on the research on the members of the NPF family. The OsNRT1.9 gene involved in the present invention is a nitrate transport gene of the rice NPF gene family. The present invention finds that post-transcriptional processing of the OsNRT1.9 gene can form two kinds of splicing, wherein the first splicing form OsNRT1.9a has an extremely important effect on rice tillering, and can be applied to plant type improvement to increase rice yield.

发明内容Contents of the invention

本发明的目的在于解决现有技术中存在的问题,提供水稻NPF基因家族成员硝酸根运输基因OsNRT1.9a在水稻选育中的应用。The purpose of the present invention is to solve the problems existing in the prior art, and to provide the application of the rice NPF gene family member nitrate transport gene OsNRT1.9a in rice selection and breeding.

本发明的目的通过下述技术方案实现:The object of the present invention is achieved through the following technical solutions:

本发明以水稻的NPF基因家族成员硝酸根运输基因OsNRT1.9a为对象,从水稻中花11中克隆了OsNRT1.9a的cDNA序列。通过构建OsNRT1.9a基因超表达载体,采用农杆菌EHA105介导的遗传转化方法,将超表达载体导入正常粳稻品种中花11中,得到OsNRT1.9a基因超表达植株,其分蘖数、有效穗数、灌浆籽粒数和产量与对照野生型中花11相比显著提高。通过RNAi技术构建OsNRT1.9a基因干扰表达载体,将干扰表达载体导入中花11中,得到OsNRT1.9a基因表达量下降的干扰植株,干扰植株的分蘖数、有效穗数、灌浆籽粒数和产量与中花11相比显著降低。这些结果表明,通过提高OsNRT1.9a基因的表达,可以使正常的水稻分蘖数增加,从而提高穗数、灌浆籽粒数和水稻产量。The invention takes the rice NPF gene family member nitrate transport gene OsNRT1.9a as object, and clones the cDNA sequence of OsNRT1.9a from rice Zhonghua 11. By constructing the OsNRT1.9a gene overexpression vector, using the genetic transformation method mediated by Agrobacterium EHA105, the overexpression vector was introduced into the normal japonica rice variety Zhonghua 11, and the OsNRT1.9a gene overexpression plants were obtained. Compared with the control wild type Zhonghua 11, the number of grains, grain filling and yield were significantly increased. The OsNRT1.9a gene interference expression vector was constructed by RNAi technology, and the interference expression vector was introduced into Zhonghua 11 to obtain the interference plants with decreased OsNRT1.9a gene expression. Compared with Zhonghua 11, it was significantly lower. These results indicated that by increasing the expression of the OsNRT1.9a gene, the number of tillers in normal rice can be increased, thereby increasing the number of panicles, the number of grains at filling and rice yield.

基于本发明发现的OsNRT1.9a基因的功能,OsNRT1.9a基因可用于水稻选育中。所述的水稻选育为提高水稻分蘖数,从而提高穗数、灌浆籽粒数和水稻产量。具体可通过提高OsNRT1.9a基因的表达使水稻分蘖数和每株穗数增加、灌浆籽粒数,达到提高水稻产量的目的。Based on the function of the OsNRT1.9a gene discovered in the present invention, the OsNRT1.9a gene can be used in rice breeding. The rice breeding is to increase the number of rice tillers, thereby increasing the number of panicles, the number of grains for filling and the yield of rice. Specifically, by increasing the expression of the OsNRT1.9a gene, the number of rice tillers, the number of spikes per plant, and the number of grains filling can be increased, so as to achieve the purpose of increasing rice yield.

OsNRT1.9a基因也可用于提高其他植物的产量,如通过转基因使OsNRT1.9a基因在植物中(超量)表达,来提高植物的分枝数量,进而使植物的产量得到提高。所述的植物是指单子叶植物或双子叶植物;如:小麦、番茄、草坪草或苜蓿等。The OsNRT1.9a gene can also be used to increase the yield of other plants, for example, the (over)expression of the OsNRT1.9a gene in the plant through transgenics can increase the number of branches of the plant, thereby increasing the yield of the plant. The plants refer to monocotyledonous plants or dicotyledonous plants; such as: wheat, tomato, lawn grass or alfalfa.

所述的OsNRT1.9a基因编码的OsNRT1.9a蛋白的氨基酸序列如SEQ ID NO.1所示;所述的OsNRT1.9a基因的cDNA序列优选如SEQ ID NO.2所示。The amino acid sequence of the OsNRT1.9a protein encoded by the OsNRT1.9a gene is shown in SEQ ID NO.1; the cDNA sequence of the OsNRT1.9a gene is preferably shown in SEQ ID NO.2.

应该理解为,在不影响OsNRT1.9a白活性的前提下(即不在蛋白的活性中心),本领域技术人员可对SEQ ID NO.1所示的氨基酸序列进行各种取代、添加和/或缺失一个或几个氨基酸获得具有同等功能的氨基酸序列。因此,OsNRT1.9a蛋白还包括SEQ ID NO.1所示氨基酸序列经取代、替换和/或增加一个或几个氨基酸获得的具有同等活性的蛋白质。此外,应理解,考虑到密码子的简并性以及不同物种密码子的偏爱性,本领域技术人员可以根据需要使用适合特定物种表达的密码子。It should be understood that, on the premise of not affecting the activity of OsNRT1.9a (that is, not in the active center of the protein), those skilled in the art can make various substitutions, additions and/or deletions to the amino acid sequence shown in SEQ ID NO.1 One or several amino acids obtain amino acid sequences with equivalent functions. Therefore, the OsNRT1.9a protein also includes proteins with equivalent activity obtained by substituting, substituting and/or adding one or several amino acids to the amino acid sequence shown in SEQ ID NO.1. In addition, it should be understood that, considering the degeneracy of codons and the preference of codons in different species, those skilled in the art can use codons suitable for the expression of specific species as needed.

本发明的优点和效果:Advantages and effects of the present invention:

(1)本发明克隆的OsNRT1.9a基因超表达后使水稻分蘖能力增强,说明OsNRT1.9a基因对提高水稻产量较明显,因此,通过基因工程技术提高OsNRT1.9a基因的表达能够提高植物产量。这不仅有助于通过正常施氮条件下培育高产水稻,还可以通过分子育种进行植物的品种改良。(1) After the overexpression of the OsNRT1.9a gene cloned in the present invention, the rice tillering ability is enhanced, indicating that the OsNRT1.9a gene is more obvious for improving the rice yield. Therefore, improving the expression of the OsNRT1.9a gene through genetic engineering technology can increase the plant yield. This not only helps to breed high-yielding rice under normal nitrogen fertilization conditions, but also enables plant variety improvement through molecular breeding.

(2)OsNRT1.9a基因的成功克隆,进一步证实了NPF家族在氮吸收过程中的重要作用,对阐明NPF家族的生物学功能有重要的意义,另外对进一步了解植物氮代谢途径,提高氮吸收效率有极大的推动作用。(2) The successful cloning of the OsNRT1.9a gene further confirmed the important role of the NPF family in the process of nitrogen uptake, which is of great significance for elucidating the biological functions of the NPF family, and for further understanding of plant nitrogen metabolism pathways and improving nitrogen uptake Efficiency has a huge boost.

(3)尽管目前已克隆到了一些提高植物产量的基因,但对植物增产的分子机制仍不清楚。而本发明克隆的OsNRT1.9a基因能够提高水稻的产量,对确定植物增产的关键因素有极大的推动作用。(3) Although some genes that increase plant yield have been cloned, the molecular mechanism of plant yield increase is still unclear. However, the OsNRT1.9a gene cloned in the present invention can increase the yield of rice, and has a great role in promoting the determination of key factors for plant yield increase.

附图说明Description of drawings

图1是对照中花11和OsNRT1.9a基因超表达植株3个株系的整株表型图。Fig. 1 is the whole plant phenotype diagram of 3 lines of control Zhonghua 11 and OsNRT1.9a gene overexpressed plants.

图2是对照中花11和OsNRT1.9a基因超表达植株3个株系分蘖数的统计柱状图,数据采用SPSS软件进行变量分析(ANOVA),使用Duncan’s在0.05、0.01和0.001三个水平上进行差异显著性分析,与对照相比分别用*、**和***表示。Figure 2 is a statistical histogram of the number of tillers in three strains of the control Zhonghua 11 and OsNRT1.9a gene overexpression plants. The data was analyzed by SPSS software (ANOVA), using Duncan's at three levels of 0.05, 0.01 and 0.001 Significant difference analysis, compared with the control, respectively represented by *, ** and ***.

图3是对照中花11和OsNRT1.9a基因干扰植株3个株系的整株表型图。Fig. 3 is a diagram of the whole plant phenotype of three lines of the control Zhonghua 11 and OsNRT1.9a gene interference plants.

图4是对照中花11和OsNRT1.9a基因干扰植株3个株系分蘖数的统计柱状图,数据采用SPSS软件进行变量分析(ANOVA),使用Duncan’s在0.05、0.01和0.001三个水平上进行差异显著性分析,与对照相比分别用*、**和***表示。Figure 4 is a statistical histogram of the number of tillers in the three strains of the control Zhonghua 11 and OsNRT1.9a gene interference plants. The data was analyzed by SPSS software (ANOVA), and Duncan's was used to make differences at three levels: 0.05, 0.01 and 0.001 Significant analysis, compared with the control, respectively represented by *, ** and ***.

图5是对照中花11、OsNRT1.9a基因超表达植株3个株系和OsNRT1.9a基因干扰植株3个株系的OsNRT1.9a基因表达量检测结果图,数据采用SPSS软件进行变量分析(ANOVA),使用Duncan’s在0.05、0.01和0.001三个水平上进行差异显著性分析,与对照相比分别用*、**和***表示。Figure 5 is a graph showing the detection results of OsNRT1.9a gene expression in the control Zhonghua 11, 3 lines of OsNRT1.9a gene overexpression plants and 3 lines of OsNRT1.9a gene interference plants, and the data were analyzed by SPSS software (ANOVA ), using Duncan's at three levels of 0.05, 0.01 and 0.001 to carry out significant difference analysis, compared with the control, represented by *, ** and *** respectively.

图6是对照中花11、OsNRT1.9a基因超表达植株3个株系和OsNRT1.9a基因干扰植株3个株系的每株灌浆籽粒表型图。Fig. 6 is a diagram of the grain filling phenotype of each plant of control Zhonghua 11, 3 lines of OsNRT1.9a gene overexpression plants and 3 lines of OsNRT1.9a gene interference plants.

图7是对照中花11、OsNRT1.9a基因超表达植株3个株系和OsNRT1.9a基因干扰植株3个株系的每株灌浆籽粒数量统计图。数据采用SPSS软件进行变量分析(ANOVA),使用Duncan’s在0.05、0.01和0.001三个水平上进行差异显著性分析,与对照相比分别用*、**和***表示。Fig. 7 is a statistical chart of the number of grains per plant of the control Zhonghua 11, 3 lines of OsNRT1.9a gene overexpression plants and 3 lines of OsNRT1.9a gene interference plants. The data were analyzed by SPSS software (ANOVA), and Duncan’s was used to conduct significant difference analysis at three levels of 0.05, 0.01 and 0.001, and compared with the control, they were represented by *, ** and ***, respectively.

图8是对照中花11、OsNRT1.9a基因超表达植株3个株系和OsNRT1.9a基因干扰植株3个株系的每株产量统计图,数据采用SPSS软件进行变量分析(ANOVA),使用Duncan’s在0.05、0.01和0.001三个水平上进行差异显著性分析,与对照相比分别用*、**和***表示。Fig. 8 is the yield statistical chart of each plant of the control Zhonghua 11, 3 lines of OsNRT1.9a gene overexpression plants and 3 lines of OsNRT1.9a gene interference plants. The data are analyzed by SPSS software (ANOVA), using Duncan's Significant difference analysis was carried out at three levels of 0.05, 0.01 and 0.001, which were represented by *, ** and *** respectively compared with the control.

具体实施方式Detailed ways

下面结合实施例对本发明做进一步详细的说明,但本发明的实施方式不限于此。若未特别指明,下述实施例所用的技术手段为本领域技术人员所熟知的常规手段;所用的实验方法均为常规方法,并可按照已描述的重组技术(参见分子克隆,实验室手册,第2版,冷泉港实验室出版社,冷泉港,纽约)完成;所用的材料、试剂等,均可从商业途径得到。The present invention will be described in further detail below in conjunction with the examples, but the embodiments of the present invention are not limited thereto. If not otherwise specified, the technical means used in the following examples are conventional means well known to those skilled in the art; the experimental methods used are conventional methods, and can be described in accordance with recombinant techniques (referring to molecular cloning, laboratory manual, The second edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) was completed; the materials and reagents used can be obtained from commercial channels.

实施例1 OsNRT1.9a基因超表达植株的构建Example 1 Construction of OsNRT1.9a Gene Overexpression Plants

提取水稻中花11的RNA,并将其反转录成cDNA,利用引物对:Extract the RNA of rice Zhonghua 11 and reverse transcribe it into cDNA, using the primer pair:

F1:5'-AGATCTATGGCCGCCATAGAAGAGGAG-3'(Bgl II),F1: 5'- AGATCT ATGGCCGCCATAGAAGAGGAG-3' (Bgl II),

R1:5'-CTTAAGTCATGAAGCTGTGTTCTCTCT-3'(Afl II);R1: 5'- CTTAAG TCATGAAGCTGTGTTTCTCTCT-3' (Afl II);

通过PCR扩增OsNRT1.9a基因的cDNA后,通过Bgl II、Afl II酶切后连入pCAMBIA-1301载体(pCAMBIA-1301载体购自Cambia公司),构建出OsNRT1.9a基因的超表达载体OsNRT1.9a-p1301。采用农杆菌EHA105介导的遗传转化方法,将超表达载体导入正常水稻品种中花11中。After the cDNA of the OsNRT1.9a gene was amplified by PCR, it was digested with Bgl II and Afl II and then ligated into the pCAMBIA-1301 vector (the pCAMBIA-1301 vector was purchased from Cambia Company) to construct the overexpression vector OsNRT1 of the OsNRT1.9a gene. 9a-p1301. Using the genetic transformation method mediated by Agrobacterium EHA105, the overexpression vector was introduced into the normal rice variety Zhonghua 11.

将得到的所有转基因小苗移栽于带泥土的筐中,定期浇水,施肥,待小苗长高约10cm时,种于大田中,待苗长大后,提取基因组DNA通过PCR对转基因植株进行检测,检测引物对为:Transplant all the obtained transgenic seedlings into baskets with soil, water and fertilize them regularly, and plant them in the field when the seedlings grow about 10cm in height. After the seedlings grow up, extract genomic DNA and detect the transgenic plants by PCR , the detection primer pair is:

F2:5'-GATGTTGGCGACCTCGTATT-3',F2: 5'-GATGTTGGCGACCTCGTATT-3',

R2:5'-TCGTTATGTTTATCGGCACTTT-3'。R2: 5'-TCGTTATGTTTATCGGCACTTT-3'.

若扩增出517bp的片段,则说明转基因植株为阳性植株。阳性植株单株收种并种植,直至T2代鉴定出纯合的转基因植株,即得到OsNRT1.9a基因超表达植株。OsNRT1.9a基因超表达植株的分蘖数远多于对照中花11植株,差异显著,如图1、2中所示。检测超表达植株OsNRT1.9a基因的表达量,显示OsNRT1.9a基因的表达与对照相比得到提高,如图5所示。单株收取种子统计,结果表明超表达植株每株灌浆籽粒增加,且每株产量增加,如图6、7、8所示。If a 517bp fragment is amplified, it indicates that the transgenic plant is a positive plant. Positive plants were harvested and planted until homozygous transgenic plants were identified in the T2 generation, and OsNRT1.9a gene overexpressed plants were obtained. The number of tillers in the OsNRT1.9a gene overexpressed plants was much more than that of the control Zhonghua 11 plants, and the difference was significant, as shown in Figures 1 and 2. Detection of the expression level of the OsNRT1.9a gene in the overexpressed plants showed that the expression of the OsNRT1.9a gene was increased compared with the control, as shown in FIG. 5 . Seed statistics were collected from a single plant, and the results showed that the grain filling per plant of the overexpression plant increased, and the yield per plant increased, as shown in Figures 6, 7 and 8.

实施例2 OsNRT1.9a基因干扰植株的获得Example 2 Obtaining of OsNRT1.9a gene interference plants

提取水稻中花11的RNA,并将其反转录成cDNA,利用引物对:Extract the RNA of rice Zhonghua 11 and reverse transcribe it into cDNA, using the primer pair:

F3:5'-GGTACCAGCCAGCCCTGAAGCACAGCAC-3'(Kpn I),F3: 5'- GGTACC AGCCAGCCCTGAAGCACAGCAC-3' (Kpn I),

R3:5'-GGATCCTGCACCACTCCCAAGGGCAGCA-3'(BamH I);R3: 5'- GGATCC TGCACCACTCCCAAGGGCAGCA-3' (BamH I);

F4:5'-ACTAGTAGCCAGCCCTGAAGCACAGCAC-3'(Spe I),F4: 5'- ACTAGT AGCCAGCCCTGAAGCACAGCAC-3' (Spe I),

R4:5'-GAGCTCTGCACCACTCCCAAGGGCAGCA-3'(Sac I);R4: 5'- GAGCTC TGCACCACTCCCAAGGGCAGCA-3'(Sac I);

各自PCR扩增出OsNRT1.9a基因的cDNA片段后,通过相应的限制性内切酶酶切后连入pTCK303载体,构建出OsNRT1.9a基因的干扰表达载体OsNRT1.9a-pTCK303。采用农杆菌EHA105介导的遗传转化方法,将干扰表达载体导入正常粳稻品种中花11中。After the cDNA fragments of the OsNRT1.9a gene were amplified by PCR, they were digested with corresponding restriction enzymes and then ligated into the pTCK303 vector to construct the interference expression vector OsNRT1.9a-pTCK303 of the OsNRT1.9a gene. Using the genetic transformation method mediated by Agrobacterium EHA105, the interference expression vector was introduced into the normal japonica rice variety Zhonghua 11.

将得到的所有转基因小苗移栽于带泥土的筐中,定期浇水,施肥,待小苗长高约10cm时,种于大田中,待苗长大后,提取基因组DNA通过PCR对转基因植株进行检测,检测引物对为:Transplant all the obtained transgenic seedlings into baskets with soil, water and fertilize them regularly, and plant them in the field when the seedlings grow about 10cm in height. After the seedlings grow up, extract genomic DNA and detect the transgenic plants by PCR , the detection primer pair is:

F2:5'-GATGTTGGCGACCTCGTATT-3',F2: 5'-GATGTTGGCGACCTCGTATT-3',

R2:5'-TCGTTATGTTTATCGGCACTTT-3'。R2: 5'-TCGTTATGTTTATCGGCACTTT-3'.

若扩增出517bp的片段,则说明转基因植株为阳性植株。阳性植株单株收种并种植,直至T2代鉴定出纯合的转基因植株,即得到OsNRT1.9a基因干扰植株。OsNRT1.9a基因干扰植株的分蘖数远少于对照中花11植株,差异显著,如图3、4中所示。检测干扰植株OsNRT1.9a基因的表达量,显示OsNRT1.9a基因的表达与对照相比得到降低,如图5所示。单株收取种子统计,结果表明干扰植株每株灌浆籽粒减少,且每株产量减少,如图6、7、8所示。If a 517bp fragment is amplified, it indicates that the transgenic plant is a positive plant. Positive plants were harvested and planted until a homozygous transgenic plant was identified in the T2 generation, and the OsNRT1.9a gene interference plant was obtained. The number of tillers of OsNRT1.9a gene interference plants was far less than that of the control Zhonghua 11 plants, and the difference was significant, as shown in Figures 3 and 4. Detection of the expression level of the OsNRT1.9a gene in the disturbed plants showed that the expression of the OsNRT1.9a gene was reduced compared with the control, as shown in FIG. 5 . Seed statistics were collected from a single plant, and the results showed that the grain filling per plant of the interfering plants decreased, and the yield per plant decreased, as shown in Figures 6, 7 and 8.

上述结果表明,通过提高OsNRT1.9a基因的表达,可以增加水稻的分蘖数,进而提高穗数和水稻产量。The above results indicated that by increasing the expression of OsNRT1.9a gene, the tiller number of rice can be increased, thereby increasing the panicle number and rice yield.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.

序列表 sequence listing

<110> 武汉生物工程学院<110> Wuhan Institute of Bioengineering

<120> 硝酸根运输基因OsNRT1.9a在水稻选育中的应用<120> Application of nitrate transport gene OsNRT1.9a in rice breeding

<160> 2<160> 2

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 576<211> 576

<212> PRT<212> PRT

<213> Oryza sativa<213> Oryza sativa

<400> 1<400> 1

Met Ala Ala Ile Glu Glu Glu Arg Pro Leu Leu Pro Leu Gln Ser GlnMet Ala Ala Ile Glu Glu Glu Arg Pro Leu Leu Pro Leu Gln Ser Gln

1 5 10 151 5 10 15

Asp Val Gly Ser Glu Tyr Thr Arg Asp Gly Ser Val Asp Ile Asn LysAsp Val Gly Ser Glu Tyr Thr Arg Asp Gly Ser Val Asp Ile Asn Lys

20 25 30 20 25 30

Glu Pro Ala Leu Lys His Ser Thr Gly Asn Trp Arg Ala Cys Phe LeuGlu Pro Ala Leu Lys His Ser Thr Gly Asn Trp Arg Ala Cys Phe Leu

35 40 45 35 40 45

Ile Leu Gly Val Glu Phe Cys Glu Asn Met Thr Tyr Phe Val Ile SerIle Leu Gly Val Glu Phe Cys Glu Asn Met Thr Tyr Phe Val Ile Ser

50 55 60 50 55 60

Arg Asn Leu Val Thr Phe Leu Thr Thr Val Leu His Glu Ser Lys ValArg Asn Leu Val Thr Phe Leu Thr Thr Val Leu His Glu Ser Lys Val

65 70 75 8065 70 75 80

Asp Ala Ala Arg Asn Val Ser Ala Trp Val Gly Ala Cys Phe Leu ThrAsp Ala Ala Arg Asn Val Ser Ala Trp Val Gly Ala Cys Phe Leu Thr

85 90 95 85 90 95

Pro Val Val Gly Ala Phe Leu Ala Asp Thr Tyr Trp Gly Arg Tyr TrpPro Val Val Gly Ala Phe Leu Ala Asp Thr Tyr Trp Gly Arg Tyr Trp

100 105 110 100 105 110

Thr Ile Val Val Phe Leu Pro Val Tyr Ile Thr Gly Met Leu Ile ValThr Ile Val Val Phe Leu Pro Val Tyr Ile Thr Gly Met Leu Ile Val

115 120 125 115 120 125

Thr Val Ser Ala Ser Leu Pro Met Phe Leu Thr Ser Ser Glu His GlyThr Val Ser Ala Ser Leu Pro Met Phe Leu Thr Ser Ser Glu His Gly

130 135 140 130 135 140

Asn Val His Arg Ser Val Val Tyr Leu Gly Leu Tyr Leu Ala Ala LeuAsn Val His Arg Ser Val Val Tyr Leu Gly Leu Tyr Leu Ala Ala Leu

145 150 155 160145 150 155 160

Gly Ser Gly Ala Met Lys Pro Cys Thr Ser Ser Phe Gly Ala Asp GlnGly Ser Gly Ala Met Lys Pro Cys Thr Ser Ser Phe Gly Ala Asp Gln

165 170 175 165 170 175

Phe Asp Ser Thr Asp Leu Glu Glu Leu Pro Lys Lys Ala Ser Phe PhePhe Asp Ser Thr Asp Leu Glu Glu Leu Pro Lys Lys Ala Ser Phe Phe

180 185 190 180 185 190

Ser Trp Ser Phe Tyr Met Thr Thr Val Ser Thr Leu Leu Ser Ser ThrSer Trp Ser Phe Tyr Met Thr Thr Val Ser Thr Leu Leu Ser Ser Ser Thr

195 200 205 195 200 205

Val Leu Val Trp Leu Gln Asp Asn Val Gly Trp Gly Val Gly Cys AlaVal Leu Val Trp Leu Gln Asp Asn Val Gly Trp Gly Val Gly Cys Ala

210 215 220 210 215 220

Ile Pro Thr Val Phe Met Ile Ile Ser Phe Pro Val Phe Ile Ala GlyIle Pro Thr Val Phe Met Ile Ile Ser Phe Pro Val Phe Ile Ala Gly

225 230 235 240225 230 235 240

Ser Arg Val Tyr Arg Phe Arg Asn Leu Gly Phe Ser Pro Leu Lys SerSer Arg Val Tyr Arg Phe Arg Asn Leu Gly Phe Ser Pro Leu Lys Ser

245 250 255 245 250 255

Leu Cys Gln Val Ile Val Ala Ala Val Arg Lys Cys His Leu Gln LeuLeu Cys Gln Val Ile Val Ala Ala Val Arg Lys Cys His Leu Gln Leu

260 265 270 260 265 270

Pro Glu Asn Lys Ser Leu Leu Tyr Glu Pro Ser Asn Ser Ser Ser ThrPro Glu Asn Lys Ser Leu Leu Tyr Glu Pro Ser Asn Ser Ser Ser Ser Thr

275 280 285 275 280 285

Thr Glu Ala Ser His Lys Ile Gln Pro Thr Asn Gln Phe Arg Phe LeuThr Glu Ala Ser His Lys Ile Gln Pro Thr Asn Gln Phe Arg Phe Leu

290 295 300 290 295 300

Asp Lys Ala Ala Ile Val Leu Pro Pro Ser Asp Glu Thr Cys Ile LysAsp Lys Ala Ala Ile Val Leu Pro Pro Ser Asp Glu Thr Cys Ile Lys

305 310 315 320305 310 315 320

Pro Met Ser Ser Trp Ser Leu Cys Thr Val Thr Gln Val Glu Glu LeuPro Met Ser Ser Trp Ser Leu Cys Thr Val Thr Gln Val Glu Glu Leu

325 330 335 325 330 335

Lys Met Leu Leu Arg Met Phe Pro Thr Trp Ala Ser Phe Val Ile PheLys Met Leu Leu Arg Met Phe Pro Thr Trp Ala Ser Phe Val Ile Phe

340 345 350 340 345 350

Phe Ala Val Asn Gly Gln Met Ser Ser Thr Phe Ile Glu Gln Gly MetPhe Ala Val Asn Gly Gln Met Ser Ser Thr Phe Ile Glu Gln Gly Met

355 360 365 355 360 365

Ala Met Asp Asn His Val Gly Ser Phe Ala Ile Pro Pro Ala Ser LeuAla Met Asp Asn His Val Gly Ser Phe Ala Ile Pro Pro Ala Ser Leu

370 375 380 370 375 380

Thr Ile Ile Ala Val Leu Ser Val Leu Val Leu Val Pro Val Tyr GluThr Ile Ile Ala Val Leu Ser Val Leu Val Leu Val Pro Val Tyr Glu

385 390 395 400385 390 395 400

Ile Ile Ser Val Pro Leu Val Lys His Phe Thr Gly Gln Asp Lys GlyIle Ile Ser Val Pro Leu Val Lys His Phe Thr Gly Gln Asp Lys Gly

405 410 415 405 410 415

Phe Ser His Ala Gln Arg Ile Gly Ile Gly Leu Ser Leu Ser Met IlePhe Ser His Ala Gln Arg Ile Gly Ile Gly Leu Ser Leu Ser Met Ile

420 425 430 420 425 430

Met Met Val Tyr Ala Ala Leu Leu Glu Met Lys Arg Leu Ala Ile ValMet Met Val Tyr Ala Ala Leu Leu Glu Met Lys Arg Leu Ala Ile Val

435 440 445 435 440 445

Gln Ser Ser Gly Leu Ala Asp His Asn Val Ala Ala Pro Met Ser IleGln Ser Ser Gly Leu Ala Asp His Asn Val Ala Ala Pro Met Ser Ile

450 455 460 450 455 460

Leu Trp Gln Thr Pro Ala Tyr Phe Leu Gln Gly Val Ser Glu Ile PheLeu Trp Gln Thr Pro Ala Tyr Phe Leu Gln Gly Val Ser Glu Ile Phe

465 470 475 480465 470 475 480

Ser Cys Ile Gly Met Ser Gln Phe Phe Tyr Asp Gln Ala Pro Asp SerSer Cys Ile Gly Met Ser Gln Phe Phe Tyr Asp Gln Ala Pro Asp Ser

485 490 495 485 490 495

Met Lys Ser Val Cys Ala Ala Leu Gly Gln Leu Ala Ile Ala Ser GlyMet Lys Ser Val Cys Ala Ala Leu Gly Gln Leu Ala Ile Ala Ser Gly

500 505 510 500 505 510

Ala Tyr Phe Asn Thr Phe Val Leu Gly Ala Val Ala Val Ile Thr ThrAla Tyr Phe Asn Thr Phe Val Leu Gly Ala Val Ala Val Ile Thr Thr

515 520 525 515 520 525

Ser Ser Gly Ala Pro Gly Trp Ile Pro Asp Asn Leu Asn Glu Gly HisSer Ser Gly Ala Pro Gly Trp Ile Pro Asp Asn Leu Asn Glu Gly His

530 535 540 530 535 540

Leu Asp Tyr Phe Phe Trp Met Met Ala Thr Leu Ser Leu Leu Asn LeuLeu Asp Tyr Phe Phe Trp Met Met Ala Thr Leu Ser Leu Leu Asn Leu

545 550 555 560545 550 555 560

Ala Met Phe Val Tyr Ser Ser Thr Arg His Arg Glu Asn Thr Ala SerAla Met Phe Val Tyr Ser Ser Thr Arg His Arg Glu Asn Thr Ala Ser

565 570 575 565 570 575

<210> 2<210> 2

<211> 1731<211> 1731

<212> DNA<212>DNA

<213> Oryza sativa<213> Oryza sativa

<400> 2<400> 2

atggccgcca tagaagagga gaggcctctg cttcctctcc aatctcagga tgtaggttca 60atggccgcca tagaagagga gaggcctctg cttcctctcc aatctcagga tgtaggttca 60

gaatacacaa gggatggttc agttgacatc aacaaggagc cagccctgaa gcacagcaca 120gaatacacaa gggatggttc agttgacatc aacaaggagc cagccctgaa gcacagcaca 120

gggaactgga gggcgtgctt cttgatttta ggtgttgaat tttgtgaaaa catgacctac 180gggaactgga gggcgtgctt cttgatttta ggtgttgaat tttgtgaaaa catgacctac 180

tttgtaatct cgaggaatct agtcacattc ctcaccactg tgctccacga aagcaaggtc 240tttgtaatct cgaggaatct agtcacattc ctcaccactg tgctccacga aagcaaggtc 240

gatgctgcca gaaatgtctc tgcctgggtt ggagcttgct tcctcacacc ggttgttggt 300gatgctgcca gaaatgtctc tgcctgggtt ggagcttgct tcctcacacc ggttgttggt 300

gcctttctgg cagacactta ttggggcaga tactggacaa ttgttgtttt cctcccggtg 360gcctttctgg cagacactta ttggggcaga tactggacaa ttgttgtttt cctcccggtg 360

tacatcactg gaatgctcat cgtgacagtt tcagcatcac ttccaatgtt cttgacatct 420tacatcactg gaatgctcat cgtgacagtt tcagcatcac ttccaatgtt cttgacatct 420

tctgaacatg gcaatgttca tcgttccgta gtgtatctag ggctctatct tgctgccctt 480tctgaacatg gcaatgttca tcgttccgta gtgtatctag ggctctatct tgctgccctt 480

gggagtggtg caatgaaacc atgcacttca tcctttgggg ccgaccagtt tgatagcact 540gggagtggtg caatgaaacc atgcacttca tcctttgggg ccgaccagtt tgatagcact 540

gatctggagg agttaccgaa gaaggcctcc ttcttcagtt ggtccttcta catgactact 600gatctggagg agttaccgaa gaaggcctcc ttcttcagtt ggtccttcta catgactact 600

gtcagcacct tgctgtcaag cacagtgctt gtttggttgc aagacaatgt tggatggggg 660gtcagcacct tgctgtcaag cacagtgctt gtttggttgc aagacaatgt tggatggggg 660

gtgggttgcg caatcccgac tgtgttcatg atcatcagtt tccctgtatt cattgccggc 720gtgggttgcg caatcccgac tgtgttcatg atcatcagtt tccctgtatt cattgccggc 720

tcaagagttt acaggtttag gaacctggga tttagccccc tcaagagcct ctgtcaggtg 780tcaagagttt acaggtttag gaacctggga tttagccccc tcaagagcct ctgtcaggtg 780

attgttgcag ctgttaggaa gtgccatctg caattgccag aaaataagtc acttttatat 840attgttgcag ctgttaggaa gtgccatctg caattgccag aaaataagtc acttttatat 840

gagccatcca attcatcttc aacaactgaa gcaagtcata aaattcagcc caccaatcaa 900gagccatcca attcatcttc aacaactgaa gcaagtcata aaattcagcc caccaatcaa 900

ttcaggttcc ttgacaaggc agccattgta ctgcccccat cagacgaaac gtgcatcaag 960ttcaggttcc ttgacaaggc agccattgta ctgcccccat cagacgaaac gtgcatcaag 960

cccatgagct catggtcgct ctgcacagtg acacaagttg aggagctgaa gatgctgctg 1020cccatgagct catggtcgct ctgcacagtg acacaagttg aggagctgaa gatgctgctg 1020

cggatgttcc ccacctgggc atctttcgtg atctttttcg cggtcaatgg gcagatgtcc 1080cggatgttcc ccacctgggc atctttcgtg atctttttcg cggtcaatgg gcagatgtcc 1080

tcaacgttca ttgagcaggg aatggccatg gacaaccatg ttggttcatt tgcaatccca 1140tcaacgttca ttgagcaggg aatggccatg gacaaccatg ttggttcatt tgcaatccca 1140

cctgcatccc tcaccatcat cgccgtgctc agcgtccttg tcttggttcc tgtgtatgag 1200cctgcatccc tcaccatcat cgccgtgctc agcgtccttg tcttggttcc tgtgtatgag 1200

atcatatcag tgccactggt gaagcatttc accggacagg acaaaggctt ctcacatgcg 1260atcatatcag tgccactggt gaagcatttc accggacagg acaaaggctt ctcacatgcg 1260

cagcgcatcg gaatcggcct ttcactgtcc atgatcatga tggtgtacgc agcattgctc 1320cagcgcatcg gaatcggcct ttcactgtcc atgatcatga tggtgtacgc agcattgctc 1320

gagatgaagc ggctggcaat cgtgcaatca agtggcttag cagaccacaa tgtagctgct 1380gagatgaagc ggctggcaat cgtgcaatca agtggcttag cagaccacaa tgtagctgct 1380

ccaatgagta tcctgtggca gacaccagca tactttctgc aaggggtttc agagattttc 1440ccaatgagta tcctgtggca gacaccagca tactttctgc aaggggtttc agagattttc 1440

agctgcatcg gtatgtcaca gttcttctat gaccaggcgc cagacagcat gaagagcgtt 1500agctgcatcg gtatgtcaca gttcttctat gaccaggcgc cagacagcat gaagagcgtt 1500

tgcgcagcgc ttgggcagct cgcaatcgct tcaggagctt acttcaacac gttcgtgctt 1560tgcgcagcgc ttgggcagct cgcaatcgct tcaggagctt acttcaacac gttcgtgctt 1560

ggcgctgtcg cagtgatcac gacgagcagt ggagcacctg ggtggattcc ggataatctg 1620ggcgctgtcg cagtgatcac gacgagcagt ggagcacctg ggtggattcc ggataatctg 1620

aatgagggcc atctggacta tttcttctgg atgatggcca cccttagctt acttaatctt 1680aatgagggcc atctggacta tttcttctgg atgatggcca cccttagctt acttaatctt 1680

gccatgtttg tgtattcttc cacgaggcac agagagaaca cagcttcatg a 1731gccatgtttg tgtattcttc cacgaggcac agagagaaca cagcttcatg a 1731

Claims (10)

1.OsNRT1.9a基因在水稻选育中的应用,其特征在于:所述的水稻选育为提高水稻分蘖数。1. The application of OsNRT1.9a gene in rice breeding, characterized in that: the rice breeding is to increase the tiller number of rice. 2.OsNRT1.9a基因在提高水稻穗数中的应用。2. The application of OsNRT1.9a gene in increasing the panicle number of rice. 3.OsNRT1.9a基因在提高水稻灌浆粒数中的应用。3. Application of OsNRT1.9a gene in increasing rice grain number. 4.OsNRT1.9a因在提高水稻产量中的应用。4. Application of OsNRT1.9a gene in improving rice yield. 5.OsNRT1.9a基因在提高植物产量中的应用。5. Application of OsNRT1.9a gene in improving plant yield. 6.根据权利要求1-5任一项所述的应用,其特征在于:通过提高OsNRT1.9a基因的表达实现所述应用。6. The application according to any one of claims 1-5, characterized in that: the application is realized by increasing the expression of OsNRT1.9a gene. 7.根据权利要求5所述的应用,其特征在于:所述的植物指单子叶植物或双子叶植物。7. The application according to claim 5, characterized in that: said plants refer to monocotyledonous plants or dicotyledonous plants. 8.根据权利要求5或7所述的应用,其特征在于:所述的植物包括小麦、番茄、草坪草或苜蓿。8. The application according to claim 5 or 7, characterized in that: said plants include wheat, tomato, lawn grass or alfalfa. 9.根据权利要求1-5任一项所述的应用,其特征在于:所述的OsNRT1.9a基因编码的OsNRT1.9a蛋白的氨基酸序列如SEQ ID NO.1所示;或OsNRT1.9a蛋白为SEQ ID NO.1所示氨基酸序列经取代、替换和/或增加一个或几个氨基酸获得的具有同等活性的蛋白质。9. The application according to any one of claims 1-5, characterized in that: the amino acid sequence of the OsNRT1.9a protein encoded by the OsNRT1.9a gene is shown in SEQ ID NO.1; or the OsNRT1.9a protein A protein with equivalent activity obtained by substituting, substituting and/or adding one or several amino acids to the amino acid sequence shown in SEQ ID NO.1. 10.根据权利要求9所述的应用,其特征在于:所述的OsNRT1.9a基因的cDNA序列如SEQID NO.2所示。10. The application according to claim 9, characterized in that: the cDNA sequence of the OsNRT1.9a gene is shown in SEQ ID NO.2.
CN201711378092.7A 2017-12-19 2017-12-19 Application of nitrate transport gene OsNRT1.9a in rice breeding Active CN108118062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711378092.7A CN108118062B (en) 2017-12-19 2017-12-19 Application of nitrate transport gene OsNRT1.9a in rice breeding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711378092.7A CN108118062B (en) 2017-12-19 2017-12-19 Application of nitrate transport gene OsNRT1.9a in rice breeding

Publications (2)

Publication Number Publication Date
CN108118062A true CN108118062A (en) 2018-06-05
CN108118062B CN108118062B (en) 2020-05-29

Family

ID=62229545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711378092.7A Active CN108118062B (en) 2017-12-19 2017-12-19 Application of nitrate transport gene OsNRT1.9a in rice breeding

Country Status (1)

Country Link
CN (1) CN108118062B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982828A (en) * 2020-01-02 2020-04-10 南京农业大学 A rice arbuscular mycorrhizal-specifically induced nitrate transporter gene and its application

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027397A (en) * 2004-04-23 2007-08-29 西尔斯公司 Nucleotide sequences and polypeptides encoded thereby useful for modifying nitrogen use efficiency characteristics in plants
CN101535483A (en) * 2004-12-16 2009-09-16 赛乐斯股份有限公司 Modulating plant nitrogen levels
CN106119262A (en) * 2016-07-28 2016-11-16 武汉生物工程学院 Improve Oryza sativa L. nitrogen use efficiency and the gene OsPTR10 of yield and purposes
CN106222180A (en) * 2016-07-28 2016-12-14 武汉生物工程学院 Gene OsNPF7.3 for Improving Rice Yield and Grain Protein Content and Its Application
CN106337055A (en) * 2016-10-25 2017-01-18 武汉生物工程学院 Application of nitrate radical transporter gene OsNRT1.8 in rice breeding
CN106967730A (en) * 2017-05-19 2017-07-21 武汉生物工程学院 Application of the OsNPF6.3 genes in rice tillering number is improved
CN107056909A (en) * 2017-05-23 2017-08-18 武汉生物工程学院 Application of the OsNPF5.11 genes in rice yield is improved
CN107099549A (en) * 2017-05-16 2017-08-29 武汉生物工程学院 Application of the OsNPF5.16 genes in paddy rice single plant yield is improved

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027397A (en) * 2004-04-23 2007-08-29 西尔斯公司 Nucleotide sequences and polypeptides encoded thereby useful for modifying nitrogen use efficiency characteristics in plants
CN101535483A (en) * 2004-12-16 2009-09-16 赛乐斯股份有限公司 Modulating plant nitrogen levels
CN106119262A (en) * 2016-07-28 2016-11-16 武汉生物工程学院 Improve Oryza sativa L. nitrogen use efficiency and the gene OsPTR10 of yield and purposes
CN106222180A (en) * 2016-07-28 2016-12-14 武汉生物工程学院 Gene OsNPF7.3 for Improving Rice Yield and Grain Protein Content and Its Application
CN106337055A (en) * 2016-10-25 2017-01-18 武汉生物工程学院 Application of nitrate radical transporter gene OsNRT1.8 in rice breeding
CN107099549A (en) * 2017-05-16 2017-08-29 武汉生物工程学院 Application of the OsNPF5.16 genes in paddy rice single plant yield is improved
CN106967730A (en) * 2017-05-19 2017-07-21 武汉生物工程学院 Application of the OsNPF6.3 genes in rice tillering number is improved
CN107056909A (en) * 2017-05-23 2017-08-18 武汉生物工程学院 Application of the OsNPF5.11 genes in rice yield is improved

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HSU PK ET AL: "Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth", 《PLANT PHYSIOL》 *
WANG YY ET AL: "Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport", 《PLANT CELL》 *
无: "ACCESSION NO. XM_015757658,PREDICTED: Oryza sativa Japonica Group protein NRT1/ PTR FAMILY 8.3 (LOC4347971),mRNA", 《GENBANK》 *
蔡昭艳 等: "植物寡肽运输与硝酸根运输基因家族的研究进展", 《热带亚热带植物学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982828A (en) * 2020-01-02 2020-04-10 南京农业大学 A rice arbuscular mycorrhizal-specifically induced nitrate transporter gene and its application
CN110982828B (en) * 2020-01-02 2022-08-30 南京农业大学 Nitrate transport protein gene specifically induced by rice arbuscular mycorrhiza and application thereof

Also Published As

Publication number Publication date
CN108118062B (en) 2020-05-29

Similar Documents

Publication Publication Date Title
CN106337055B (en) Application of the nitrate anion transporter gene OsNRT1.8 in rice breeding
CN106119262A (en) Improve Oryza sativa L. nitrogen use efficiency and the gene OsPTR10 of yield and purposes
CN108034672A (en) Applications of the nitrate anion transporter gene OsNRT1.9b in rice selection and breeding
CN106518993B (en) Application of the amino acid transport gene OsAAP3 in rice breeding
CN106222180B (en) Improve the gene OsNPF7.3 and purposes of rice yield and grain of rice protein content
CN107099549B (en) Application of OsNPF5.16 gene in improving rice yield per plant
CN106929522B (en) Application of amino acid transport gene OsAAP1 to promote rice growth under low nitrogen
CN106434693B (en) Application of the amino acid transport gene OsAAP4 in rice breeding
CN104450777A (en) Method for improving potassium absorption efficiency of plant and resisting against potassium deficiency stress and recombinant expression vector used therein
CN112239761B (en) Genetic engineering application of a rice grain length gene
CN106868022B (en) Nitrogen transport gene OsNPF2.4b for promoting increase of effective spike number of rice and application thereof
CN107987140B (en) Application of gibberellin transport gene OsNPF3.1 in improving rice yield
CN110819635A (en) Application of HAN homologous gene of leguminous plant in regulating and controlling number of root nodules of leguminous plant
CN106967730A (en) Application of the OsNPF6.3 genes in rice tillering number is improved
CN106591354B (en) Application of the amino acid transport gene OsAAP5 in rice breeding
CN108070601B (en) Application of OsNPF8.6b gene in improving rice yield
CN108034661A (en) Application of the OsNPF8.8b genes in rice yield and nutritional quality is improved
CN108118062A (en) Applications of the nitrate anion transporter gene OsNRT1.9a in rice selection and breeding
CN107012166A (en) Application of the rice Os AT1 albumen in plant Boron contents are improved
CN107936103A (en) Application of the OsNPF7.11b genes in rice yield is improved
CN107012153A (en) Applications of the nitrogen nutrition transporter gene OsNPF8.1 in rice tillering number is improved
CN111748560B (en) Application of rice OsNRT2.1 gene in improving manganese content in rice grains
CN107056909B (en) Application of OsNPF5.11 gene in increasing rice yield
CN102532290B (en) Proteins controlling rice grain weight and their coding genes and applications
CN106967745B (en) Application of nitrogen nutrient transport gene OsNPF7.1 in improving tiller and panicle number in rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant