[go: up one dir, main page]

CN108112253B - 抗癌融合多肽 - Google Patents

抗癌融合多肽 Download PDF

Info

Publication number
CN108112253B
CN108112253B CN201680028941.3A CN201680028941A CN108112253B CN 108112253 B CN108112253 B CN 108112253B CN 201680028941 A CN201680028941 A CN 201680028941A CN 108112253 B CN108112253 B CN 108112253B
Authority
CN
China
Prior art keywords
seq
gpc3
fusion protein
fusion polypeptides
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680028941.3A
Other languages
English (en)
Other versions
CN108112253A (zh
Inventor
M·欣纳
R·S·贝莱巴
C·罗特
S·奥威尔
C·施洛瑟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pieris Pharmaceuticals GmbH
Original Assignee
Pieris Pharmaceuticals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pieris Pharmaceuticals GmbH filed Critical Pieris Pharmaceuticals GmbH
Publication of CN108112253A publication Critical patent/CN108112253A/zh
Application granted granted Critical
Publication of CN108112253B publication Critical patent/CN108112253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70575NGF/TNF-superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

本公开内容提供了对CD137和GPC3两者特异的融合多肽,所述融合多肽可用于将CD137聚集和活化导向至GPC3阳性肿瘤细胞。这种融合多肽可用于许多制药应用中,例如用作用于治疗或预防人类疾病如各种肿瘤的抗癌剂和/或免疫调节剂。本公开内容还涉及制备本文所述的融合多肽的方法以及包含这种融合多肽的组合物。本公开内容还涉及编码这种融合多肽的核酸分子以及用于产生这种融合多肽和核酸分子的方法。此外,本申请公开了这种融合多肽以及包含一种或多种这种融合多肽的组合物的治疗和/或诊断用途。

Description

抗癌融合多肽
背景技术
磷脂酰肌醇蛋白聚糖3(GPC3)是属于糖基-磷脂酰肌醇-锚定硫酸肝素 蛋白聚糖的磷脂酰肌醇蛋白聚糖家族的癌胚抗原。在发育过程中,GPC3在 胎肝和胎盘中表达,并在正常成人组织中下调或沉默。GPC3基因中的突变 和缺失负责人的辛普森-戈拉比-贝默尔或辛普森畸形综合征。GPC3在各种 癌症,特别是肝细胞癌(“HCC”)、黑素瘤、Merkel细胞癌、WiIm肿瘤和 肝母细胞瘤中表达(He,H.等人Applied Immunohistochem Mol Morphol. 17:40-6(2009);Jakubovic和Jothy;Ex.MoI.Path.82:184-189(2007);Nakatsura 和Nishimura,Biodrugs 19(2):71-77(2005))。HCC是全球癌症相关死亡的 第三大原因。每年由于HCC约有100万人死亡。(Nakatsura和Nishimura, Biodrugs 19(2):71-77(2005))。
针对GPC3表达的癌症诸如HCC的有效治疗需要靶向GPC3并且还产 生抗肿瘤作用的治疗化合物。
CD137是共刺激免疫受体,是肿瘤坏死因子受体(TNFR)超家族的成 员。它主要在活化的CD4+和CD8+T细胞、活化的B细胞以及天然杀伤(NK) 细胞上表达,但也可以被发现于静息的单核细胞和树突状细胞(Li,S.Y.等 人,Clin Pharmacol,20135(Suppl 1):47-53)或内皮细胞上(Snell,L.M.等人, Immunol Rev 2011 Nov;244(1):197-217)。CD137在调节免疫应答中起重要 作用,因此是癌症免疫治疗的靶标。CD137配体(CD137L)是唯一已知的CD137天然配体,并在APC的几种类型如活化的B细胞、单核细胞和脾脏 树突状细胞上组成型表达,还可在T淋巴细胞上被诱导。
CD137L是以膜结合形式和可溶性变体存在的三聚体蛋白。但是,可溶 性CD137L在例如CD137表达淋巴细胞上活化CD137的能力有限,并且需 要大的浓度以引发作用(Wyzgol,A.等人,J Immunol 2009 Aug 1;183(3): 1851-1861)。CD137活化的自然途径通过CD137阳性细胞与CD137L阳性 细胞的接合。认为然后CD137活化是通过经由相对细胞上CD137L的聚集 来诱导的,从而导致经由TRAF1、2和3的信号传导(Snell,L.M.等人,ImmunolRev 2011 Nov;244(1):197-217;Yao,S.等人,Nat Rev Drug Disc 2013 Feb; 12(2):130-146)以及在CD137阳性T细胞中进一步伴随的下游效应。在通过 识别它们各自的同源靶标而活化T细胞的情况下,通过CD137的共刺激引 发的效果为进一步的活化增强、生存和增殖的增强、产生促炎细胞因子以及 杀死能力的提高。
已经在许多临床前的体内模型中证实了CD137共刺激用于消除癌细胞 的益处。例如,CD137L在肿瘤上的强制表达导致肿瘤排斥(Melero,I.等人, Eur J Immunol 1998Mar:28(3):1116-1121)。同样,抗CD137 scFv在肿瘤上 的强制表达引起CD4+ T细胞和NK细胞依赖性肿瘤消除(Ye,Z.等人,Nat Med 2002 4:8(4):343-348;Zhang,H.等人,Mol CancTher 2006 Jan:5(1): 149-155;Yang,Y.等人,Canc Res 2007 Mar 1:67(5):2339-2344)。还证实了 全身施用的抗CD137抗体引起肿瘤生长迟延(Martinet,O.等人,Gene Ther 2002Jun:9(12):786-792)。
已经表明CD137是人肿瘤中天然存在的肿瘤反应性T细胞的优良标记 物(Ye,Q.等人,Clin Canc Res:2014 Jan 1:20(1):44-55),可在过继性T细 胞疗法的应用中使用抗CD137抗体来改善CD8+黑素瘤肿瘤浸润淋巴细胞的 扩增和活性(Chacon,J.A.等人,PloSOne 2013 8(4):e60031)。
CD137共刺激的潜在治疗好处的临床前示范促进了靶向CD137、 BMS-663513(Jure-Kunkel,M.等人,美国专利7288638)和PF-05082566(Fisher, T.S.等人,CancImmunol Immunother 2012 Oct:61(10):1721-1733)的治疗性 抗体的开发;目前两者都处于早期的临床试验中。
然而,仅近来已发现如抗体这样的二价CD137结合剂本身可能不足以 将CD137聚集在T细胞或NK细胞上并导致有效的活化,类似于三价可溶 性CD137L缺乏活性。在最近利用临床前的小鼠模型的出版物中,已经提供 了体内证据,即其他抗TNFR抗体的作用模式实际上需要抗体通过它们的 Fc部分与Fc-γ受体表达细胞上的Fc-γ受体的相互作用(Bulliard,Y.等人,J Exp Med 2013 Aug 26:210(9):1685-1693;Bulliard,Y.等人,Immunol Cell Biol 2014 Jul:92(6):475-480)。因此,目前临床开发中抗体的作用模式可以通过 经由Fc-γ受体的非靶向聚集来主导,其几乎可随机地依赖于肿瘤附近Fc表 达细胞的存在。
因此,以特异性肿瘤靶向作用模式聚集和活化CD137的疗法的产生尚 未满足需求。
为了满足这种未满足的需求,本申请提供了一种通过具有以下特性的融 合多肽同时接合CD137和肿瘤抗原GPC3的新方法:
(a)对CD137的结合特异性;以及
(b)对GPC3的结合特异性;
该融合多肽被设计为通过肿瘤细胞上表达的GPC3来提供淋巴细胞上 CD137的肿瘤靶标依赖性活化。预期这样的分子进一步活化位于GPC3阳性 肿瘤附近的T细胞和/或NK细胞。这样的双特异性物可以显示出比抗GPC3 或抗CD137抗体改进的治疗效果。
定义
以下列表定义了贯穿于本说明书所使用的术语、短语和缩写。本文列出 和定义的所有术语旨在涵盖所有的语法形式。
如本文所使用,除非另有说明,“CD137”是指人CD137以及包括人Cd137 的变体、同种型和物种同系物。CD137也被称为“4-1BB”或“肿瘤坏死因子受 体超家族成员9(TNFRSF9)”或“由淋巴细胞活化诱导的(ILA)”)。人 CD137是指由UniProt Q07011定义的全长蛋白质、其片段或其变体。
如本文所使用,除非另有说明,“GPC3”是指人GPC3以及包括人GPC3 的变体、同种型和物种同系物。GPC3也被称为“磷脂酰肌醇蛋白聚糖3 (Glypican-3)”、“磷脂酰肌醇蛋白聚糖3(glypican proteoglycan 3)”、“GPC3”、 “OTTHUMP00000062492”、“GTR2-2”、“SGB”、“DGSX”、“SDYS”、“SGBS”、 “OCI-5”、“SGBS1”,可互换使用。人GPC3是指由UniProtP51654定义的全 长蛋白质、其片段或其变体。如本文所使用,“可检测的亲和力”是指以通常 至少约10-5M或更低的亲和力常数结合所选靶标的能力。更低的亲和力通常 不能通过常规方法诸如ELISA测量,因此是次要的。
如本文所使用,本公开内容的蛋白质(例如脂质运载蛋白的突变蛋白) 或其融合多肽与所选靶标(在本情况下,CD137和/或GPC3)的“结合亲和 力”,能够通过本领域技术人员已知的许多方法测量(由此测定突变蛋白-配 体复合物的KD值)。这样的方法包括但不限于荧光滴定、竞争ELISA、量 热法诸如等温滴定量热法(ITC)和表面等离子体共振(BIAcore)。这样的 方法在本领域中已经完全建立,其实例也在以下详细描述。
还注意到的是,在各自的结合剂和其配体之间形成复合物受许多不同因 素的影响,诸如各自结合配偶体的浓度、竞争剂的存在、所用的缓冲体系的 pH和离子强度以及用于测定解离常数KD的实验方法(例如荧光滴定、竞争 ELISA或表面等离子体共振,仅举几例)或甚至用于评估实验数据的数学算 法。
因此,还对于本领域技术人员显而易见的是,该KD值(在各自的结合 剂和其靶标/配体之间形成的复合物的解离常数)可以在一定实验范围内变 化,这取决于用于测定特定脂质运载蛋白突变蛋白对于给定配体的亲和力的 方法和实验设置。这意味着在测得的KD值中可能会有轻微偏差或公差范围, 这取决于KD值是由表面等离子共振(Biacore)、竞争ELISA还是“直接 ELISA”测定的。
如本文所使用,“突变蛋白”、“突变的”实体(无论蛋白质还是核酸)或“突 变体”是指相比于天然存在的(野生型)核酸或蛋白质“参照”骨架,一个或 多个核苷酸或氨基酸的交换、缺失或插入。所述术语还包括如本文所述的突 变蛋白的片段和变体。本发明的脂质运载蛋白突变蛋白、其片段或变体优选 保持如本文所述的结合于CD137和/或GPC3的功能。
本文所使用的与本公开内容的突变蛋白有关的术语“片段”,涉及来源于 全长成熟人泪脂质运载蛋白或人脂质运载蛋白2的蛋白质或肽,该蛋白质或 肽为N末端和/或C末端缩短的,即缺少至少一个N末端和/或C末端氨基 酸。这样的片段可以包括成熟脂质运载蛋白的一级序列的至少10个、更多 如20或30或更多个连续氨基酸,并且通常可在成熟脂质运载蛋白的免疫测 定中被检测到。一般而言,如本文使用的关于本公开内容的脂质运载蛋白突 变蛋白的、或根据本公开内容的组合的或本文所述融合蛋白的相应的蛋白质 配体CD137和/或GPC3的术语“片段”,涉及N末端和/或C末端缩短的蛋白 质或肽配体,其保持全长配体被根据本公开内容的突变蛋白识别和/或结合的 能力。
本文所使用的术语“诱变”是指选择实验条件,以使得天然存在于成熟脂 质运载蛋白的给定序列位置处的氨基酸可被至少一个在各自的天然多肽序 列中的该具体位置处并不存在的氨基酸取代。术语“诱变”还包括通过缺失或 插入一个或多个氨基酸对序列片段长度的(另外的)修饰。因此,在本公开 内容的范围内的是,例如在所选序列位置处的一个氨基酸被三个随机突变的 一段所替代,导致相比于野生型蛋白质的相应片段的长度的两个氨基酸残基 的插入。这样的插入或缺失可以在本公开内容中的任何能够进行诱变的肽片 段中彼此独立地被引入。在本公开内容的一个示例性实施方案中,多个突变 的插入可以被引入所选择的脂质运载蛋白骨架的AB环中(参见国际专利申 请WO2005/019256,其全部内容通过引用并入本文)。
术语“随机诱变”是指在某一序列位置处不存在预定的单个氨基酸(突 变),但是在诱变期间可在预先确定的序列位置处以一定概率引入至少两个 氨基酸。
“同一性”是量度序列的相似性或关系的序列的属性。本公开内容使用的 术语“序列同一性”或“同一性”是指在本公开内容的多肽序列与所讨论序列进 行(同源性)比对之后,成对相同残基相对于这两个序列中较长一个的残基 数的百分比。通过将相同氨基酸残基的数目除以残基总数并将结果乘以100 来测量序列同一性。
术语“同源性”在本文中以其通常的含义使用,并且包括在本公开内容的 多肽(例如本公开内容的任意脂质运载蛋白突变蛋白)的线性氨基酸序列中 等同位置处的相同氨基酸以及被认为是保守取代(例如,通过天冬氨酸残基 交换谷氨酸残基)的氨基酸。
例如,本文可以使用BLASTP程序,blastp 2.2.5版本(2002年11月16 日;参见Altschul,S.F.等人(1997)Nucl.Acids Res.25,3989-3402)来确定序 列同源性或序列同一性的百分比。在这个实施方案中,同源性百分比基于整 个多肽序列(包括多肽序列,优选在成对比较中使用野生型蛋白质骨架作为 参照)的比对(矩阵:BLOSUM 62;空位罚分:11.1;截止值设置为10-3)。 这被计算为按照BLASTP程序输出结果显示的“阳性”(同源氨基酸)的数量 除以该程序选择用于比对的氨基酸总数的百分比。
具体地,为了确定不同于野生型脂质运载蛋白的脂质运载蛋白(突变蛋 白)的氨基酸序列的氨基酸残基是否对应于野生型脂质运载蛋白的氨基酸序 列中的某一位置,技术人员可使用本领域公知的手段和方法,如手动或通过 使用计算机程序的比对,计算机程序如代表碱基局部比对检索工具的 BLAST2.0或ClustalW或适用于生成序列比对的任何其他合适的程序。因此, 野生型脂质运载蛋白可以作为“目标序列”或“参照序列”,而与本文所述的野 生型脂质运载蛋白不同的脂质运载蛋白的氨基酸序列作为“查询序列”。术语“参照序列”和“野生型序列”在本文中可互换使用。优选的野生型脂质运载蛋 白分别显示于SEQ ID NO:1(Tlc)或SEQ ID NO:2(NGAL)中。分别 取决于本发明的脂质运载蛋白突变蛋白是基于Tlc还是基于NGAL,相应的 野生型脂质运载蛋白可以用作参照序列或野生型序列。
“空位”是在比对中由于氨基酸的添加或缺失导致的空间。因此,完全相 同序列的两个副本具有100%的同一性,但是较不高度保守的并且具有缺失、 添加或替代的序列可能具有较低程度的序列同一性。本领域技术人员将认识 到,几个计算机程序可用于使用标准参数来测定序列同一性,例如Blast (Altschul等人(1997)Nucleic Acids Res.25,3389-3402)、Blast2(Altschul 等人(1990)J.Mol.Biol.215,403-410)和Smith-Waterman(Smith等人(1981) J.Mol.Biol.147,195-197)。
本公开内容所使用的术语“变体”涉及蛋白质或肽的衍生物,其包括氨基 酸序列的修饰,例如通过取代、缺失、插入或化学修饰。在一些实施方案中, 这样的修饰不降低所述蛋白质或肽的功能性。这样的变体包括这样的蛋白 质:在所述蛋白质中一个或多个氨基酸已经被它们各自的D-立体异构体替 代,或者被除了天然存在的20个氨基酸之外的氨基酸替代,诸如例如鸟氨 酸、羟脯氨酸、瓜氨酸、高丝氨酸、羟赖氨酸、正缬氨酸。然而,这样的取 代也可以是保守的,即氨基酸残基被化学上相似的氨基酸残基替代。保守取 代的例子为以下组的成员之间的替代:1)丙氨酸、丝氨酸和苏氨酸;2)天 冬氨酸和谷氨酸;3)天冬酰胺和谷氨酰胺;4)精氨酸和赖氨酸;5)异亮 氨酸、亮氨酸、甲硫氨酸和缬氨酸;以及6)苯丙氨酸、酪氨酸和色氨酸。 本文所使用的关于本公开内容的脂质运载蛋白突变蛋白的、或根据本公开内 容的组合的或本文所述的融合蛋白的相应的蛋白质配体CD137和/或GPC3 的术语“变体”,分别涉及CD137或其片段,其与野生型CD137或GPC3蛋 白质相比较分别具有一个或多个如1、2、3、4、5、6、7、8、9、10、12、 14、16、18、20、22、24、26、28、30、40、50、60、70、80或更多个氨基 酸取代、缺失和/或插入,所述野生型CD137或GPC3蛋白质例如如本文所 述采用UniProt保藏的CD137或GPC3参照蛋白质。CD137变体分别与野生 型人CD137或GPC3具有优选至少50%、60%、70%、80%、85%、90%或 95%的氨基酸同一性,所述野生型人CD137或GPC3例如如本文所述采用 UniProt保藏的CD137或GPC3参照蛋白。
“天然序列”脂质运载蛋白是指与来源于自然的相应的多肽具有相同的 氨基酸序列的脂质运载蛋白。因此,自然序列脂质运载蛋白可具有来自任何 生物体、特别是哺乳动物的各自天然存在的脂质运载蛋白的氨基酸序列。这 样的天然序列多肽可从自然分离出来,或者可通过重组或合成方式产生。术 语“天然序列”多肽特别地涵盖脂质运载蛋白的天然存在的截短或隐藏形式、 天然存在的变体形式例如脂质运载蛋白的可选剪接形式和天然存在的等位 基因变体。多肽“变体”是指与天然序列多肽具有至少约50%、60%、70%、80%或至少约85%的氨基酸序列同一性的生物活性多肽。这样的变体包括例 如这样的多肽:在所述多肽中一个或多个氨基酸残基在所述多肽的N或C 末端被添加或缺失。通常地,变体与天然序列多肽具有至少约70%、包括至 少约80%、如至少约85%的氨基酸序列同一性,包括至少约90%的氨基酸序 列同一性或至少约95%的氨基酸序列同一性。作为说明性实例,前4个N 末端氨基酸残基(His-His-Leu-Leu)和最后2个C末端氨基酸残基(Ser-Asp)可在本公开内容的泪脂质运载蛋白(Tlc)突变蛋白中被缺失而不影响该蛋 白质的生物学功能。此外,作为另一个说明性实例,某些氨基酸残基可以在 本公开内容的脂质运载蛋白2(NGAL)突变蛋白中被缺失而不影响该蛋白 质的生物学功能,例如(Lys-Asp-Pro,位置46-48)。
根据本公开内容所使用的术语“位置”是指本文描述的氨基酸序列内的 氨基酸的位置,或本文描述的核酸序列内的核苷酸的位置。为了理解在一个 或多个脂质运载蛋白突变蛋白的氨基酸序列位置的上下文中本文所使用的 术语“对应”或“相应的”,相应的位置不仅由前面的核苷酸/氨基酸的数量所决 定。相应地,根据本公开内容的可能被取代的给定氨基酸的位置可能由于(突 变体或野生型)脂质运载蛋白中其它地方的氨基酸的缺失或添加而变化。类 似地,根据本公开内容的可能被取代的给定核苷酸的位置可能由于突变蛋白 或野生型脂质运载蛋白5′非翻译区(UTR)(包括启动子和/或任何其他调节 序列或基因(包括外显子和内含子))中其它地方的核苷酸的缺失或添加而 变化。
因此,对于根据本公开内容的相应位置,优选应当理解的是,核苷酸/ 氨基酸的位置可能在指定的数目上与相类似的相邻核苷酸/氨基酸不同,但是 所述相邻核苷酸/氨基酸(可以交换、缺失或添加)也由一个或多个相应位置 所包含。
此外,对于基于根据本公开内容的参照骨架的脂质运载蛋白突变蛋白中 的相应位置,优选应当理解的是,核苷酸/氨基酸的位置在结构上对应于(突 变体或野生型)脂质运载蛋白中其它地方的位置,即使它们可能在指定的数 目上不同,正如本领域技术人员根据脂质运载蛋白中高度保守的整体折叠模 式所认识到的。
本文所使用的词语“检测”或“可检测的”在定量和定性水平两者以及在它 们的组合上被理解。因此,这包括感兴趣的分子的定量、半定量和定性测量。
“受试者”为脊椎动物,优选哺乳动物,更优选人。本文使用术语“哺乳 动物”指分类为哺乳动物的任何动物,包括但不限于人、家畜和农场动物, 以及动物园、运动或宠物动物,例如羊、狗、马、猫、牛、大鼠、猪、猿诸 如食蟹猴等,仅举几个说明性实例。优选地,本文所述哺乳动物是人。
“有效量”是足以实现有益或期望结果的量。有效量可在一次或多次给药 中施用。
“样品”被定义为从任何受试者取得的生物样品。生物样品包括但不限于 血液、血清、尿液、粪便、精液或组织。
本文所公开的融合多肽的“亚基”被定义为多肽的一段氨基酸,该段定义 所述多肽的独特的功能单元,例如提供朝向靶标的结合基序。
如本文所述的“融合多肽”包含两个或更多个亚基,这些亚基中的至少一 个结合GPC3,另一个亚基结合CD137。在所述融合多肽内,这些亚基可以 通过共价键或非共价键连接。优选地,所述融合多肽是两个或更多亚基之间 的翻译融合。所述翻译融合可以通过将一个亚基的编码序列遗传工程化在与 另一个亚基的编码序列的框架中而产生。两个亚基均可以由编码连接子的核 苷酸序列散布。然而,本公开内容的融合多肽的亚基也可以通过化学连接子 连接。
可能包含于本公开内容的融合多肽的“连接子”连接本文所述融合多肽 的两个或更多个亚基。该连接子可以是共价或非共价的。优选的共价连接键 是通过肽键诸如氨基酸之间的肽键。因此,在优选的实施方案中,所述连接 子包含一个或多个氨基酸,诸如1、2、3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19、20或更多个氨基酸。本文描述了优选的连接 子。其它优选的连接子是化学连接子。
附图说明
图1:提供了本申请中描述的融合多肽的设计的概述,所述融合多肽是 关于靶标GPC3和CD137双特异性的。采用了三种不同的方法:在图1(A) 中,第一组融合多肽基于对CD137特异性的抗体(例如SEQ ID NOs:34和 35的抗体)和对GPC3特异性的脂质运载蛋白突变蛋白(例如SEQ ID NO: 10的脂质运载蛋白突变蛋白)。所产生的多肽是所述脂质运载蛋白突变蛋白 与所述抗体的四个末端中的任一个的单一融合物。所有融合物都通过诸如柔性(G4S)3连接子(例如,SEQ ID NO:49的连接子)的连接子连接;在图1 (B)中,第二组融合多肽基于两个脂质运载蛋白突变蛋白(例如SEQ ID NO: 10的GPC3特异性脂质运载蛋白突变蛋白和SEQ ID NO:26的CD137特异 性脂质运载蛋白突变蛋白),其与工程化的IgG4-Fc片段(SEQ ID NO:73) 融合;以及在图1(C)中,第三组融合蛋白基于两个脂质运载蛋白突变蛋白(例如SEQ ID NO:10和SEQ ID NO:26),其通过一个或多个连接子 如(G4S)2连接子(例如,SEQ ID NO:48的连接子)连接,由此将GPC3 特异性脂质运载蛋白突变蛋白与CD137特异性脂质运载蛋白突变蛋白(例 如在SEQ ID NO:46中)或GPC3特异性脂质运载蛋白突变蛋白融合,并 且将两个CD137特异性脂质运载蛋白突变蛋白融合在一起(例如在SEQ ID NO:47中)。
图2:提供了代表性实验,其中测定了SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs:40和41、SEQ ID NOs:42和43的融合多肽 和SEQ ID NO:10的脂质运载蛋白突变蛋白针对靶标GPC3的特异性。将 GPC3涂覆在微量滴定板上并滴定测试的分子。如实施例2中描述通过HRP 标记的抗人NGAL特异性抗体检测结合的分子。使用1∶1结合模型拟合数据, 其中EC50值和最大信号作为自由参数,斜率固定为1。所得到的EC50值 在表1中提供。
图3:提供了代表性实验,其中测定了SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs:40和41的融合多肽以及SEQ ID NOs:34和 35的抗体针对靶标CD137的特异性。将人CD137的Fc融合物涂覆在微量 滴定板上并滴定测试的分子。如实施例3中描述通过HRP标记的抗人IgG Fc 抗体检测结合的分子。使用1∶1结合模型拟合数据,其中EC50值和最大信 号作为自由参数,斜率固定为1。所得到的EC50值在表2中提供。
图4:提供了代表性实验,其中测定了SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs:40和41的融合多肽同时结合靶标GPC3和 CD137的能力。将重组CD137-Fc融合蛋白涂覆在微量滴定板上,然后滴定 所述融合蛋白。随后,加入恒定浓度的生物素化的人GPC3,其如实施例4 中描述通过HRP标记的extravidin检测。使用1∶1结合模型拟合数据,其中 EC50值和最大信号作为自由参数,斜率固定为1。所得到的EC50值在表3 中提供。
图5:提供了代表性实验,其中通过表面等离子体共振(SPR)测定了 SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs:40和41的 融合多肽以及SEQ ID NO:10的脂质运载蛋白突变蛋白对于靶标GPC3的 亲和力。将生物素化的GPC3固定在传感器芯片上,并如实施例5中描述分 析在不同浓度下的所述融合多肽和脂质运载蛋白突变蛋白的结合。所得到的 KD值在表4中提供。
图6:提供了代表性实验,其中通过表面等离子体共振(SPR)测定了 SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs:40和41的 融合多肽以及SEQ ID NOs:34和35的抗体对于生物素化的CD137-Fc融合 物的亲和力。将生物素化的CD137-Fc固定在传感器芯片上,并如实施例6 中描述分析在不同浓度下的融合蛋白的结合。所得到的KD值在表5中提供。
图7:提供了代表性实验,其中测定了SEQ ID NO:44和SEQ ID NO: 45的脂质运载蛋白突变蛋白-Fc融合多肽以及SEQ ID NO:10的脂质运载蛋 白突变蛋白针对靶标GPC3的特异性。将GPC3涂覆在微量滴定板上并滴定 测试的分子。如实施例7中描述通过HRP标记的抗人NGAL特异性抗体检 测结合的分子。使用1∶1结合模型拟合数据,其中EC50值和最大信号作为 自由参数,斜率固定为1。所得到的EC50值在表6中提供。
图8:提供了代表性实验,其中测定了SEQ ID NO:44和SEQ ID NO: 45的脂质运载蛋白突变蛋白-Fc融合多肽以及SEQ ID NO:26的脂质运载蛋 白突变蛋白针对CD137的特异性。将人CD137的Fc融合物涂覆在微量滴定 板上并滴定测试的分子。如实施例8中描述通过HRP标记的抗人IgG Fc抗 体检测结合的分子。使用1∶1结合模型拟合数据,其中EC50值和最大信号 作为自由参数,斜率固定为1。所得到的EC50值在表7中提供。
图9:提供了代表性实验,其中测定了SEQ ID NO:44和SEQ ID NO: 45的脂质运载蛋白突变蛋白-Fc融合多肽同时结合靶标GPC3和CD137的能 力。将重组CD137-Fc融合蛋白涂覆在微量滴定板上,然后滴定脂质运载蛋 白突变蛋白-Fc融合多肽。随后,加入恒定浓度的生物素化的人GPC3,其如 实施例9中描述通过HRP标记的extravidin检测。使用1∶1结合模型拟合数 据,其中EC50值和最大信号作为自由参数,斜率固定为1。所得到的EC50 值在表8中提供。
图10:提供了代表性实验,其中通过表面等离子体共振(SPR)测定了 SEQ ID NO:44和SEQ ID NO:45的脂质运载蛋白突变蛋白-Fc融合多肽以 及SEQ ID NO:10的脂质运载蛋白突变蛋白对靶标GPC3的亲和力。将生 物素化的GPC3固定在传感器芯片上,并分析在不同浓度下的所述融合多肽 和脂质运载蛋白突变蛋白的结合。所得到的KD值在表9中提供。
图11:提供了代表性实验,其中通过表面等离子体共振(SPR)测定了 SEQ ID NO:44和SEQ ID NO:45的脂质运载蛋白突变蛋白-Fc融合多肽以 及SEQ ID NO:26的脂质运载蛋白突变蛋白对于生物素化的CD137-Fc的亲 和力。将生物素化的CD137-Fc固定在传感器芯片上,并分析在不同浓度下 的所述融合多肽和脂质运载蛋白突变蛋白的结合。所得到的KD值在表10中 提供。
图12:提供了代表性实验,其中测定了SEQ ID NOs:53和54的融合 多肽以及SEQID NO:10的脂质运载蛋白突变蛋白针对靶标GPC3的特异 性。将GPC3涂覆在微量滴定板上并滴定测试的分子。如实施例12中描述 通过HRP标记的抗人NGAL特异性抗体检测结合的分子。使用1∶1结合模 型拟合数据,其中EC50值和最大信号作为自由参数,斜率固定为1。所得到的EC50值在表11中提供。
图13:提供了代表性实验,其中测定了SEQ ID NOs:53和54的融合 多肽同时结合靶标GPC3和CD137的能力。将重组CD137-Fc融合蛋白涂覆 在微量滴定板上,然后滴定所述融合蛋白。随后,加入恒定浓度的生物素化 的人GPC3,其如实施例13中描述通过HRP标记的extravidin检测。使用 1∶1结合模型拟合数据,其中EC50值和最大信号作为自由参数,斜率固定 为1。
图14:提供了代表性实验,其中测定了两个双特异性融合多肽SEQ ID NO:46和SEQID NO:47以及SEQ ID NO:8的脂质运载蛋白突变蛋白针 对靶标GPC3的特异性。将GPC3涂覆在微量滴定板上并滴定测试的分子。 如实施例14中描述通过HRP标记的人NGAL特异性抗体检测结合的分子。 使用1∶1结合模型拟合数据,其中EC50值和最大信号作为自由参数,斜率固定为1。所得到的EC50值在表12中提供。
图15:提供了代表性实验,其中测定了SEQ ID NO:46和SEQ ID NO: 47的两个双特异性融合多肽以及SEQ ID NO:26的脂质运载蛋白突变蛋白 针对靶标CD137的特异性。将人CD137的Fc-融合物涂覆在微量滴定板上 并滴定测试的分子。如实施例15中描述通过HRP标记的抗人IgG Fc抗体检 测结合的分子。使用1∶1结合模型拟合数据,其中EC50值和最大信号作为 自由参数,斜率固定为1。所得到的EC50值在表13中提供。
图16:提供了代表性实验,其中测定了SEQ ID NO:46和SEQ ID NO: 47的两个双特异性融合多肽同时结合靶标GPC3和CD137的能力。将重组 CD137-Fc融合蛋白涂覆在微量滴定板上,然后滴定所述融合蛋白。随后, 加入恒定浓度的生物素化的人GPC3,其如实施例16中描述通过HRP标记 的extravidin检测。使用1∶1结合模型拟合数据,其中EC50值和最大信号作 为自由参数,斜率固定为1。所得到的EC50值在表14中提供。
图17:提供了代表性实验,其中通过表面等离子体共振(SPR)测定了 SEQ ID NO:46和SEQ ID NO:47的两个双特异性融合多肽以及SEQ ID NO: 8的脂质运载蛋白突变蛋白对靶标GPC3的亲和力。将生物素化的GPC3固 定在传感器芯片上,并分析在不同浓度下的所述融合多肽的结合。所得到的 KD值在表15中提供。
图18:提供了代表性实验,其中通过表面等离子体共振(SPR)测定了 SEQ ID NO:46和SEQ ID NO:47的两个双特异性融合多肽以及脂质运载 蛋白突变蛋白SEQ ID NO:26对CD137-Fc的亲和力。将人CD137-Fc固定 在传感器芯片上,并分析在不同浓度下的所述融合蛋白的结合。所得到的 KD值在表16中提供。
图19:提供了代表性实验,其中研究了当SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs:40和41以及SEQ ID NOs:42和43的融 合多肽涂覆在塑料培养皿上时共刺激T-细胞应答的能力。将不同浓度的融合 多肽与抗人CD3抗体一起涂覆在塑料皿上,随后在可溶性抗人CD28抗体的 存在下在涂覆的表面上孵育纯化的T细胞。通过如实施例19中描述的电化 学发光(ELC)测定来测量上清液白细胞介素2(IL-2)水平。作为阴性对 照,利用人IgG4同种型对照。
图20:提供了代表性实验,其中研究了SEQ ID NOs:36和37、SEQ ID NO:44和SEQID NO:45的融合多肽以GPC3靶标依赖性方式共刺激T细 胞活化的能力。作为对照,我们使用SEQ ID NOs:34和35的单特异性的 CD137结合抗体。在实验中,将抗人CD3抗体(+)或同种型对照(-)涂 覆在塑料培养皿上,随后将GPC3阳性HepG2细胞在培养皿上孵育过夜。 第二天,在1μg/mL的SEQ ID NOs:36和37、SEQ ID NO:44、SEQ ID NO: 45的双特异性融合多肽或SEQ ID NOs:34和35的对照抗体的存在下,在 涂覆的表面上孵育纯化的T细胞。如实施例20中描述通过电化学发光(ELC) 试验测量上清液白细胞介素2(IL-2)水平。
图21:提供了代表性实验,其中研究了SEQ ID NO:44和SEQ ID NO: 45的融合多肽以GPC3靶标依赖性方式共刺激T细胞活化的能力。在实验 中,将抗人CD3抗体涂覆在塑料培养皿上,随后将GPC3阳性Hep3B细胞 在培养皿上培养过夜。第二天,在各种浓度的SEQ IDNO:44(A)和SEQ ID NO:45(C)的双特异性融合多肽的存在下,在涂覆的表面上孵育纯化 的T细胞。通过ELISA测定上清液白细胞介素2(IL-2)。为了阻断双特异 性融合多肽与GPC3的结合,实验还在对于SEQ ID NO:44(B)和SEQ ID NO:45(D)均过量的SEQ ID NO:10的存在下进行。使用1∶1结合模型 拟合数据。
图22:提供了代表性实验,其中用不同细胞系研究了测试物共刺激T 细胞活化的能力。所使用的细胞系是GPC3阳性HepG2和GPC3阴性SKBR-3 和MCF7。在实验中,将抗人CD3抗体涂覆在塑料培养皿上,随后将研究的 细胞系在培养皿中培养过夜。第二天,在各种浓度的双特异性融合多肽的存 在下,在涂覆的表面上孵育纯化的T细胞三天,所述双特异性融合多肽如下: (A)SEQ ID NO:44(圆),SEQ ID NO:45(正方形)或对照抗体曲妥 珠单抗(三角形)。(B)抗CD137抗体SEQ ID NOs:74和75。通过基于 电化学发光的试验测定上清液白细胞介素2水平。绘制的相对IL-2应答对应 于在存在和不存在(“背景”)测试品的情况下获得的应答的比率。
图23:提供了双特异性融合多肽、曲妥珠单抗的对照抗体和阳性对照匙 孔血蓝蛋白(KLH)的体外T细胞免疫原性评估结果。如实施例23中描述 使用基于PBMC的形式进行试验,其中采用32个供体和反映了全球人口分 布的人类白细胞抗原(HLA)同种异型:(A)刺激指数(在测试品存在下 相对于不存在下的增殖)。以条形指示平均应答。以虚线指示定义应答供体 (刺激指数>2)的阈值。(B)应答者数量。
图24:提供了如实施例24和25中描述的关于多肽对FcgRI、FcgRIII 和FcRn的亲和力的代表性实验。
图25:提供了小鼠中双特异性融合多肽SEQ ID NO:44和SEQ ID NO: 45的药代动力学分析结果。给雄性CD-1小鼠(每个时间点3只小鼠)以 10mg/kg的剂量静脉内注射融合多肽。使用通过靶标GPC3和CD137检测完 整的双特异性构建体的夹心ELISA检测了药物水平。使用二室模型拟合数 据。
图26:提供了食蟹猴中双特异性融合多肽SEQ ID NO:44和SEQ ID NO:45的药代动力学分析的结果。雄性食蟹猴以3mg/kg的剂量接受测试品, 静脉内输注持续60分钟。使用通过靶标GPC3和CD137检测完整的双特异 性构建体的夹心ELISA检测了药物水平。使用二室模型拟合数据。
具体实施方式
在一些实施方案中,所述融合多肽包含至少两个任意顺序的亚基:包含 对GPC3特异的全长免疫球蛋白、其抗原结合结构域或脂质运载蛋白突变蛋 白的第一亚基,以及包含对CD137特异的全长免疫球蛋白、其抗原结合结 构域或脂质运载蛋白突变蛋白的第二亚基。
在一些实施方案中,所述融合多肽还可以包含第三亚基。例如,所述多 肽可以包含对CD137特异的亚基。在一些实施方案中,所述第三亚基包含 对CD137特异的脂质运载蛋白突变蛋白。
在一些实施方案中,一个亚基可基本如图1中描述连接至另一个亚基。
例如,一个脂质运载蛋白突变蛋白可通过肽键连接至所述免疫球蛋白重 链结构域(VH)的C末端、VH的N末端、免疫球蛋白轻链(VL)的C末 端和/或VL的N末端,如图1A中描述。在一些具体的实施方案中,脂质运 载蛋白突变蛋白亚基可在其N末端和/或其C末端融合至免疫球蛋白亚基。 例如,所述脂质运载蛋白突变蛋白可以通过肽键被连接至免疫球蛋白的重链 恒定区(CH)的C末端和/或轻链恒定区(CL)的C末端。在更进一步的一 些实施方案中,肽键可以是连接子,特别是非结构化的(G4S)3连接子,例如, 如SEQ ID NO:49所示。
作为另一个说明性实例,一个脂质运载蛋白突变蛋白可以通过肽键被连 接至免疫球蛋白-Fc片段的C末端或N末端,如图1B所示。
作为另外的实例,一个脂质运载蛋白突变蛋白可以通过肽键被连接至一 个或多个其它脂质运载蛋白突变蛋白,如图1C所示。
在这方面,一个亚基可以在其N末端和/或其C末端融合至另一个亚基。 例如,当一个亚基包含全长免疫球蛋白时,另一个亚基可以通过肽键被连接 至第二亚基的N末端和所述免疫球蛋白的重链恒定区(CH)的C末端。在 进一步的一些实施方案中,第三亚基可以通过肽键被连接至第三结合结构域 的N末端和所述免疫球蛋白的轻链恒定区(CL)的C末端。在更进一步的 一些实施方案中,肽键可以是连接子,特别是非结构化的(G4S)3连接子,例如,如SEQ ID NO:49所示,或者可以是非结构化的(G4S)2连接子,例如, 如SEQ ID NO:48所示。
在一些实施例中,第三亚基通过肽键被连接至第一亚基,所述肽键结合 到第三亚基的脂质运载蛋白突变蛋白的N末端和第一亚基的免疫球蛋白的 轻链恒定区(CL)的C末端。
在关于本公开内容的融合多肽的一些实施方案中,其亚基之一包含全长 免疫球蛋白,而所述多肽同时接合GPC3和CD137,同时可以保存全长免疫 球蛋白的Fc区对Fc受体阳性细胞的Fc功能。
在关于本公开内容的融合多肽的一些其它实施方案中,其亚基之一包含 全长免疫球蛋白,而所述多肽同时接合GPC3和CD137,通过蛋白质工程化 可以减少或完全抑制全长免疫球蛋白的Fc区的Fc功能,即与Fcγ或FcRn 受体阳性细胞的结合。这可以通过例如采用显示与Fc-γ或FcRn受体(例如 IgG2或IgG4)的低相互作用的主链来实现。为了减少与Fc-y受体的残留结 合,可以将突变引入IgG主链中,如F234A突变和/或L235A突变。此外,关于IgG4主链,可以引入S228P突变以最小化IgG4半抗体的交换。在另外 一些实施方案中,在所述融合多肽的免疫球蛋白重链中可能存在另外的 N297A突变以便去除天然糖基化基序。
在一些实施方案中,由于同时结合肿瘤细胞上的GPC3和来自免疫系统 的效应细胞(例如T细胞或NK细胞)的表面上的CD137,本公开内容的融 合多肽可以表现出GPC3依赖性的效应细胞活化,由此所述免疫系统的效应 细胞积极地裂解表达GPC3的肿瘤细胞。
在另外一些实施方案中,例如,当在基本如Chacon,J.A.等人PloS one 20138(4):e60031中描述的显示靶标依赖性肿瘤浸润淋巴细胞离体扩增的试 验中测量时,所述融合多肽能够显示出与这样的融合多肽中包含的免疫球蛋 白相当的或更优的GPC3依赖性CD137活化水平。在另外一些实施方案中, 例如,当在类似于Kohrt,H.等人,J ClinInvest.2012 Mar;122(3):1066-75中 描述内容的人肝细胞癌(“HCC”)、黑素瘤、Merkel细胞癌、WiIm's肿瘤 和肝母细胞瘤的体内异种移植模型中测量时,所述融合多肽能够显示出与这 样的融合多肽中包含的免疫球蛋白相当的或更优的GPC3依赖性CD137活 化水平。
在一些实施方案中,包含于本公开内容的融合多肽中的免疫球蛋白的Fc 部分可有助于维持所述融合多肽的血清水平,这对于其在体内的稳定性和持 久性至关重要。例如,当Fc部分结合到内皮细胞上的和吞噬细胞上的Fc受 体时,所述融合多肽可变得内化并再循环回到血流中,从而增加其在体内的 半衰期。
在一些实施方案中,包含于本公开内容的融合多肽中的CD137特异性 亚基可以是对CD137特异的脂质运载蛋白突变蛋白,例如SEQ ID NO:26 的脂质运载蛋白突变蛋白。在一些实施方案中,包含于本公开内容的融合多 肽中的CD137特异性亚基可以是对CD137特异的全长免疫球蛋白或其抗原 结合结构域,例如单克隆抗体(例如SEQ ID NOs:34和35的抗体或SEQ ID NOs:51和52的抗体)。
在一些实施方案中,包含于本公开内容的融合多肽中的GPC3特异性亚 基可以是对GPC3特异的脂质运载蛋白突变蛋白,例如SEQ ID NO:8的脂 质运载蛋白突变蛋白或SEQID NO:10的脂质运载蛋白突变蛋白。在一些 实施方案中,包含于本公开内容的融合多肽中的CD137特异性亚基可以是 对GPC3特异的全长免疫球蛋白或其抗原结合结构域。
在一些实施方案中,在本公开内容的融合多肽中,CD137特异性亚基融 合至GPC3特异性亚基。
在一些更具体的实施方案中,GPC3特异性亚基包含脂质运载蛋白突变 蛋白,以及CD137特异性亚基包含单克隆抗体。
在另外一些实施方案中,本公开内容的融合多肽具有两个GPC3特异性 亚基和一个CD137特异性亚基。在一些更具体的实施方案中,每一个GPC3 特异性亚基包含脂质运载蛋白突变蛋白,以及每一个CD137特异性亚基包 含单克隆抗体。在进一步的一些实施方案中,两个GPC3特异性亚基是相同 的。在更进一步的一些实施方案中,所述三个亚基彼此融合,如图1A的结 构性描述所示。在一些实施方案中,所述融合多肽包含选自SEQ ID NOs:36和37、38和39、40和41或42和43的氨基酸序列。
在其它一些具体实施方案中,GPC3特异性亚基包含脂质运载蛋白突变 蛋白,以及CD137特异性亚基包含脂质运载蛋白突变蛋白。在进一步的一 些实施方案中,所述两个亚基彼此融合,如图1C的结构性描述所示。在一 些实施方案中,所述融合多肽包含SEQ IDNO:46的氨基酸序列。
在另外一些具体实施方案中,本公开内容的融合多肽具有两个CD137 特异性亚基和一个GPC3特异性亚基。在一些更具体的实施方案中,GPC3 特异性亚基包含脂质运载蛋白突变蛋白,以及每一个CD137特异性亚基包 含脂质运载蛋白突变蛋白。在进一步的一些实施方案中,两个CD137特异 性亚基是相同的。在进一步的一些实施方案中,所述三个亚基彼此融合,如 图1C的结构性描述所示。在一些实施方案中,所述融合多肽包含SEQ ID NO:47的氨基酸序列。
在另外一些实施方案中,在本公开内容的融合多肽中,所述GPC3特异 性亚基包含脂质运载蛋白突变蛋白,以及CD137特异性亚基包含脂质运载 蛋白突变蛋白,并且所述两个亚基融合至免疫球蛋白-Fc片段。在进一步的 一些实施方案中,如图1B的结构性描述所示,所述两个亚基各自融合至所 述免疫球蛋白-Fc片段。在一些具体的实施方案中,所述免疫球蛋白-Fc片段 是IgG4-Fc片段。在另外一些实施方案中,将IgG4-Fc片段工程化为具有S228P突变,并最小化在体外和体内的IgG4半抗体交换。在一些实施方案 中,所述IgG4-Fc片段具有SEQ ID NO:73的氨基酸序列。在一些实施方案 中,所述融合多肽包含SEQ ID NO:44或SEQ ID NO:45的氨基酸序列。
在一些实施方案中,包含于本公开内容的融合多肽中的免疫球蛋白具有 IgG2或IgG4主链。在另外一些实施方案中,所述IgG4主链具有以下选自 S228P、N297A、F234A和L235A的突变中的任一个。在另外一些实施方案 中,所述IgG2主链具有以下选自N297A、F234A和L235A的突变中的任一 个。
在一些实施方案中,例如,当在基本如实施例3、实施例8或实施例15 中描述的ELISA试验中测量所述多肽时,所述融合多肽可能够以至少约5nM 或甚至更低诸如约1nM或更低、约0.6nM或更低、约0.5nM或更低、约0.4nM 或更低、或者约0.3nM或更低的EC50值结合CD137。
在一些实施方案中,例如,当在基本如实施例8或实施例15中描述的 ELISA试验中测量包含于本公开内容的融合多肽中的对CD137特异的脂质 运载蛋白突变蛋白(诸如SEQID NO:26的脂质运载蛋白突变蛋白)或包 含于本公开内容的融合多肽中的对CD137特异的抗体(诸如SEQ ID NOs: 34和35的抗体或SEQ ID NOs:51和52的抗体)和所述融合多肽时,所述 融合多肽可能够以与所述脂质运载蛋白突变蛋白或所述抗体的EC50值至少 一样好或更优的EC50值结合CD137。
在一些实施方案中,例如,当通过基本如实施例6、实施例11或实施例 18中描述的表面等离子体共振(SPR)分析测量时,所述融合多肽可能够以 至少约5nM或甚至更低,诸如约1nM或更低、约0.6nM或更低、约0.5nM 或更低、约0.3nM或更低、约200pM或更低、约150pM或更低、约100pM 或更低、或约70pM或更低、或约2pM或更低的KD的亲和力结合CD137。
另一方面,例如,当在基本如实施例2、实施例7、实施例12或实施例 14中描述的ELISA试验中测量所述融合多肽时,所述融合多肽可能够以至 少约5nM或甚至更低,诸如约1nM或更低、约0.6nM或更低、约0.5nM或 更低、约0.4nM或更低、约0.3nM或更低、或约0.2nM或更低的EC50值结 合GPC3。
在一些实施方案中,例如,当在基本如实施例7、实施例12或实施例 14中描述的ELISA试验中测量包含于本公开内容的融合多肽中的对GPC3 特异的脂质运载蛋白突变蛋白(诸如SEQ ID NO:8的脂质运载蛋白突变蛋 白或SEQ ID NO:10的脂质运载蛋白突变蛋白)和所述融合多肽时,所述 融合多肽可能够以与所述脂质运载蛋白突变蛋白的EC50值相当的EC50值 结合GPC3。
在一些实施方案中,例如,当通过基本如实施例5、实施例10或实施例 17中描述的表面等离子体共振(SPR)分析测量时,所述融合多肽可能够以 至少约5nM或甚至更低,诸如约1nM、约0.3nM、约100pM、约50pM或 更低、约20pM或更低、或约10pM或更低的KD的亲和力结合GPC3。
在一些实施方案中,例如,当在基本如实施例4、实施例9、实施例13 或实施例16中描述的ELISA试验中测量所述融合多肽时,本公开内容的对 CD137和GPC3两者特异的融合多肽可能够同时结合CD137和GPC3。
在一些实施方案中,例如,当在基本如实施例4、实施例9、实施例13 或实施例16中描述的ELISA试验中测量所述融合多肽时,本公开内容的对 CD137和GPC3两者特异的融合多肽可以以至少约10nM或甚至更低,诸如 约8nM或更低、约5nM或更低、约2.5nM或更低、约2nM或更低或约1.5nM 或更低的EC50值同时结合CD137和GPC3。
在一些实施方案中,本公开内容的对CD137和GPC3两者特异的融合 多肽可能够在基本如实施例19中描述的功能性T细胞活化试验中共刺激T 细胞应答。在一些实施方案中,本公开内容的融合多肽可能够在基本如实施 例19中描述的功能性T细胞活化试验中,在存在T细胞的刺激的情况下诱 导IL-2产生,并且甚至可以显示出在较高的涂覆浓度下趋于更强的IL-2诱 导的趋势。在一些实施方案中,本公开内容的融合多肽在基本如实施例19 中描述的功能性T细胞活化试验中,在不存在T细胞的抗CD3刺激的情况 下不诱导IL-2产生。在进一步的一些实施方案中,本公开内容的对CD137 和GPC3两者特异的融合多肽可能够在基本如实施例19中描述的功能性T 细胞活化试验中,共刺激采用次最佳浓度的抗CD3和抗CD28抗体刺激的T 细胞的活化。
在一些实施方案中,本公开内容的对CD137和GPC3两者特异的融合 多肽可能够在基本如实施例20中描述的功能性T细胞活化试验中共刺激T 细胞应答。在一些实施方案中,本公开内容的融合多肽可能够在基本如实施 例20中描述的功能性T细胞活化试验中诱导IL-2产生。在一些实施方案中, 本公开内容的融合多肽在基本如实施例20中描述的功能性T细胞活化试验 中以GPC3靶标依赖性方式共刺激T细胞活化。
A.包含于所述融合多肽中的示例性免疫球蛋白
在一些实施方案中,关于所述融合多肽,第一结合结构域包含全长免疫 球蛋白或其对GPC3或CD137特异的抗原结合结构域。所述免疫球蛋白例 如可以是IgG1、IgG2或IgG4。在进一步的实施方案中,所述免疫球蛋白是 针对GPC3或CD137的单克隆抗体。GPC3结合免疫球蛋白的说明性实例是 GC33(Cancer Sci.2014 Apr;105(4):455-62)。CD137结合抗体的说明性实例 是BMS-663513(Jure-Kunkel,M.等人,美国专利7288638)和PF-05082566(Fisher,T.S.等人,Canc Immunol Immunother 2012 Oct;61(10):1721-1733)。 B.包含于所述融合多肽中的示例性GPC3特异性脂质运载蛋白突变蛋白
本公开内容的一方面提供了能够以通过约1nM或更低的KD量度的亲 和力结合人磷脂酰肌醇蛋白聚糖-3(GPC3)的脂质运载蛋白突变蛋白。更优 选地,所述突变蛋白能够具有通过约1nM或0.2nM或更低的KD量度的亲 和力。
在另一个实施方案中,本公开内容涉及脂质运载蛋白突变蛋白,其中所 述突变蛋白在对应于hNGAL(SEQ ID NO:2)的线性多肽序列的位置36、 40、41、49、52、65、68、70、72、73、77、79、81、87、96、100、103、 105、106、125、127、132、134、136和/或175的一个或多个位置处包含取 代,优选为如本文所述的取代。
在具体实施方案中,本公开内容的突变蛋白在对应于成熟hNGAL(SEQ ID NO:2)的线性多肽序列的序列位置36、40、41、49、52、65、68、70、 72、73、77、79、81、87、96、100、103、105、106、125、127、132、134、 136和/或175的序列位置处包含至少1、2、3、4、5、6、7、8、9、10、11、 12、13、14、15、16、17、18、19或20或甚至更多个如21、22、23、24、 25和26个取代。
在进一步的具体实施方案中,根据本公开内容的脂质运载蛋白突变蛋白 包含选自SEQ ID NOs:4-17的氨基酸序列。在另一个实施方案中,所述突 变蛋白与成熟hNGAL(SEQID NO:2)的序列具有至少70%的同一性。优 选地,所述突变蛋白在成熟hNGAL(SEQ ID NO:2)的线性多肽序列的序 列位置36、40、41、49、52、65、68、70、72、73、77、79、81、87、96、 100、103、105、106、125、127、132、134、136和/或175处包含1、2、3、 4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20或甚 至更多个例如21、22、23、24、25和26个突变的氨基酸残基。
在另外一些实施方案中,为了促进在真核细胞中的表达,在根据本公开 内容的脂质运载蛋白突变蛋白的相应序列位置处,在成熟hNGAL(SEQ ID NO:2)的线性多肽序列的位置65处的天然N-糖基化位点Asn例如通过在 位置65处的从Asn到Asp的突变而被去除。此外,优选在根据本公开内容 的脂质运载蛋白突变蛋白上不存在N-糖基化位点(Asn-X-Ser/Thr)。
在其它一些实施方案中,根据公开内容的脂质运载蛋白突变蛋白在对应 于成熟hNGAL(SEQ ID NO:2)的线性多肽序列的序列位置28的序列位 置处不包含突变,例如,为了进一步优化稳定性。
在另一个实施方案中,本公开内容的突变蛋白是GPC3的拮抗剂。
如本文所使用的,本公开内容的脂质运载蛋白突变蛋白“特异性结合”靶 标(此处为GPC3),如果它能够区分该靶标和一个或多个参照靶标的话, 因为结合特异性不是绝对的,而是相对的性质。能够例如根据Western印迹、 ELISA-、RIA-、ECL-、IRMA-测试、FACS、IHC和肽扫描来确定“特异性 结合”。
同样,另一方面,本公开内容涉及一种hNGAL突变蛋白,其中所述突 变蛋白在对应于成熟hNGAL(SEQ ID NO:2)的线性多肽序列的位置36、 40、41、49、52、68、70、72、73、77、79、81、96、100、103、106、125、 127、132和/或134的一个或多个位置处包含取代,优选如本文所述的取代。
另一方面,本公开内容涉及包含hNGAL突变蛋白的多肽,其中所述 hNGAL突变蛋白在对应于成熟hNGAL(SEQ ID NO:2)的线性多肽序列 的位置36、40、41、49、52、65、68、70、72、73、77、79、81、87、96、 100、103、105、106、125、127、132、134、136和/或175的1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20或甚至更 多个诸如21、22、23、24、25和26个氨基酸位置处包含取代,优选如本文 所述的取代。
类似地,本公开内容涉及源自具有圆柱形β折叠片超二次结构区的 hNGAL的脂质运载蛋白突变蛋白,该区包含通过在一端由四个环成对地连 接的八个β链,由此定义结合袋,其中所述四个环中的至少三个中的每一个 的至少一个氨基酸已经突变,并且其中所述脂质运载蛋白以可检测的亲和力 有效地结合作为给定非天然靶标的GPC3。有利地,所述脂质运载蛋白突变 蛋白在对应于在hNGAL(SEQ ID NO:1)的线性多肽序列的位置36、40、 41、49、52、65、68、70、72、73、77、79、81、87、96、100、103、105、 106、125、127、132、134、136和/或175处的氨基酸的1、2、3、4、5、6、 7、8、9、10、11、12、13、14、15、16、17、18、19或20个氨基酸位置处 包含取代,优选如本文所述的取代。本公开内容还涉及编码这些蛋白的核酸。
鉴于上述,本领域技术人员因此可容易地确定如本文所述在hNGAL中 突变的哪个氨基酸位置对应于骨架中除了hNGAL之外的氨基酸。具体地, 本领域技术人员可以将如本文所述的突变蛋白的氨基酸序列、特别是本公开 内容的hNGAL突变蛋白与不同的突变蛋白的氨基酸序列进行比对,以确定 所述突变蛋白的哪一个(哪一些)氨基酸对应于所述不同的脂质运载蛋白的 氨基酸序列的各自的氨基酸。更具体地,本领域技术人员因此可以确定所述 不同的脂质运载蛋白的氨基酸序列的哪一个氨基酸对应于在hNGAL(SEQ ID NO:2)的线性多肽序列的位置36、40、41、49、52、65、68、70、72、 73、77、79、81、87、96、100、103、105、106、125、127、132、134、136 和/或175处的氨基酸。
本公开内容的针对GPC3或对GPC3特异的蛋白质包括基于定义的蛋白 质骨架的任何数量的特异性结合蛋白质突变蛋白。如本文所使用的,“突变 蛋白”、“突变的”实体(无论是蛋白质还是核酸)或“突变体”是指分别与天然 存在的(野生型)核酸或蛋白质“参照”骨架相比的一个或多个核苷酸或氨基 酸的交换、缺失或插入。优选地,分别经交换、缺失或插入的核苷酸或氨基 酸的数目是1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、 17、18、19、20或甚至更多个诸如21、22、23、24、25和26个。然而,优 选本公开内容的突变蛋白仍然能够结合GPC3。
在一些优选的实施方案中,根据本公开内容的突变蛋白以约1nM或更 低,包括0.5nM或更低、0.3nM或更低和或0.2nM或更低的KD结合人或小 鼠GPC3。本公开内容的突变蛋白可以特异性地结合成熟、折叠生物活性形 式的GPC3的一个或多个连续、不连续或构象表位。
本公开内容的蛋白质(例如脂质运载蛋白的突变蛋白)与所选的靶标(在 本例中为GPC3)的结合亲和力可通过本领域技术人员已知的众多方法测量 (并由此确定突变蛋白-配体复合物的KD值)。这些方法包括但不限于荧光 滴定、竞争ELISA、量热法诸如等温滴定量热法(ITC)以及表面等离子体 共振(BIAcore)。这样的方法在本领域中已经完全建立,其实例也在以下 详细描述。
本公开内容的突变蛋白的氨基酸序列可以与成熟人脂质运载蛋白2具有 高序列同一性。在本文中,本公开内容的蛋白质可以与选自SEQ ID NO:2 的序列的蛋白质具有至少70%、至少75%、至少80%、至少82%、至少85%、 至少87%、至少90%的同一性,包括至少95%的同一性,例如选自SEQ ID NOs:4-17的氨基酸序列的突变蛋白。
本公开内容还包括选自SEQ ID NOs:4-17的序列的蛋白质的结构同系 物,所述结构同系物具有关于其的大于约60%、优选大于65%、大于70%、 大于75%、大于80%、大于85%、大于90%、大于92%和最优选大于95% 的氨基酸序列同源性或序列同一性。
根据上述,本公开内容的突变蛋白优选起到GPC3的拮抗剂的作用。在 一些实施方案中,本公开内容的突变蛋白可以通过抑制GPC3分子与其同源 配体结合或以其它方式相互作用的能力来起到GPC3的拮抗剂的作用。
另一方面,本公开内容包括特异性结合GPC3的人脂质运载蛋白2的突 变蛋白。在这个意义上,GPC3可被认为是野生型人脂质运载蛋白2的非天 然配体,其中“非天然配体”是指在生理条件下不结合人脂质运载蛋白2的化 合物。通过在某些位置处以突变工程化野生型脂质运载蛋白诸如人脂质运载 蛋白2,本发明人已经证明了对非天然配体的高亲和力和高特异性是可能的。 一方面,至少在编码成熟人脂质运载蛋白(SEQ ID NO:2)的线性多肽序 列的序列位置36、40、41、49、52、65、68、70、72、73、77、79、81、87、 96、100、103、105、106、125、127、132、134、136和/或175中任一个的 1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19 和/或20个核苷酸三联体处,可通过核苷酸三联体的子集在这些位置处进行 取代来进行随机诱变。
此外,所述脂质运载蛋白可用于产生突变蛋白,该突变蛋白在对应于成 熟人脂质运载蛋白2(SEQ ID NO:2)的线性多肽序列的序列位置36、40、 41、49、52、65、68、70、72、73、77、79、81、87、96、100、103、105、 106、125、127、132、134、136和/或175的序列位置中的任一个或多个, 包括至少任2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、 12个、13个、14个、15个、16个、17个、18个、19个或20个处具有突 变的氨基酸残基。
在序列位置36处的取代可以例如为取代Leu 36→Val或Arg。在序列位 置40处的取代可以例如为取代Ala 40→Leu、Val或Gly。在序列位置41处 的取代可以例如为取代Ile41→Leu、Arg、Met、Gly或Ala。在序列位置49 处的取代可以例如为取代Gln 49→Pro或Leu。在序列位置52处的取代可以 例如为Tyr 52→Arg或Trp。在序列位置68处的取代可以例如为取代Asn 65 →Asp。在序列位置68处的取代可以例如为取代Ser 68→Val、Gly、Asn 或Ala。在序列位置70处的取代可以例如为取代Leu 70→Arg、Ser、Ala 或Val。在序列位置72处的取代可以例如为取代Arg 72→Asp、Trp、Ala 或Gly。在序列位置73处的取代可以例如为取代Lys 73→Gly、Arg、Asn、 Glu或Ser。在序列位置76处的取代可以例如为取代Cys 76→Val或Ile。 在序列位置77处的取代可以例如为取代Asp 77→His、Met、Val、Leu、Thr 或Lys。在序列位置79处的取代可以例如为取代Trp 79→Lys、Ser或Thr。 在序列位置81处的取代可以例如为取代Arg 81→Gly。在序列位置81处的 取代可以例如为取代Cys 87→Ser。在序列位置96处的取代可以例如为取 代Asn 96→Arg、Asp、Gln或Pro。在序列位置100处的取代可以例如为取 代Tyr 100→Gly、Glu、Pro或Gln。在序列位置103处的取代可以例如为取代Leu 103→Glu、Gln、Asn、Gly、Ser或Tyr。在序列位置106处的取 代可以例如为取代Ser105→Ala。在序列位置106处的取代可以例如为取代 Tyr 106→Asn、Ser或Thr。在序列位置125处的取代可以例如为取代Lys 125 →Glu。在序列位置127处的取代可以例如为取代Ser 127→Arg或Tyr。在 序列位置132处的取代可以例如为取代Tyr 132→Trp或Ile。在序列位置134 处的取代可以例如为取代Lys 134→Ala或Phe。在序列位置134处的取代 可以例如为取代Thr 136→Ile。在序列位置175处的取代可以例如为取代 Cys 175→Ala。需要注意的是,任何取代参照序列中的相应氨基酸的氨基酸 可以被相应的保守氨基酸交换。特别地,保守取代是以下组的成员之间的替 代:1)丙氨酸、丝氨酸和苏氨酸;2)天冬氨酸和谷氨酸;3)天冬酰胺和 谷氨酰胺;4)精氨酸和赖氨酸;5)异亮氨酸、亮氨酸、甲硫氨酸和缬氨酸; 以及6)苯丙氨酸、酪氨酸和色氨酸。
在一个实施方案中,本公开内容的结合GPC3的突变蛋白包含以下氨基 酸替代:
(a)Leu 36→Val;Ile 41→Leu;Gln 49→Leu;Tyr 52→Arg;Asn 65 →Asp;Ser68→Val;Leu 70→Ser;Arg 72→Trp;Lys 73→Arg;Asp 77 →His;Trp 79→Lys;Arg 81→Gly;Cys 87→Ser;Asn 96→Asp;Tyr 100 →Gly;Leu 103→Gln;Tyr 106→Asn;Lys 125→Glu;Ser 127→Arg; Tyr 132→Trp;Lys 134→Ala;
(b)Leu 36→Val;Ala 40→Val;Ile 41→Arg;Gln 49→Pro;Tyr 52 →Arg;Asn65→Asp;Ser 68→Gly;Leu 70→Ser;Lys 73→Gly;Asp 77 →His;Trp 79→Lys;Arg 81→Gly;Cys 87→Ser;Asn 96→Asp;Tyr 100 →Glv;Leu 103→Glu;Tyr 106→Asn;Lys 125→Glu;Ser 127→Arg; Tyr 132→Trp;Lys 134→Phe;
(c)Leu 36→Val;Ala 40→Gly;Ile 41→Met;Gln 49→Leu;Tyr 52→Arg;Asn 65→Asp;Leu 70→Ala;Lys 73→Asn;Asp 77→His; Trp 79→Lys;Arg 81→Gly;Cys 87→Ser;Asn 96→Gln;Tyr 100→Gly; Leu 103→Glu;Tyr 106→Asn;Lys 125→Glu;Ser 127→Arg;Tyr 132→ Trp;Lys 134→Phe;
(d)Leu 36→Arg;Ala 40→Val;Ile 41→Gly;Gln 49→Pro;Tyr 52 →Trp;Asn65→Asp;Ser 68→Asn;Leu 70→Arg;Arg 72→Ala;Lys 73 →Arg;Asp 77→Leu;Trp 79→Ser;Arg 81→Gly;Cys 87→Ser;Asn 96 →Gln;Tyr 100→Glu;Leu 103→Asn;Ser 105→Ala;Tyr 106→Asn; Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe;Thr 136→Ile;
(e)Leu 36→Arg;Ala 40→Val;Ile 41→Gly;Gln 49→Pro;Tyr 52 →Trp;Asn65→Asp;Ser 68→Asn;Leu 70→Arg;Arg 72→Ala;Lys 73 →Arg;Asp 77→Thr;Trp 79→Ser;Arg 81→Gly;Cys 87→Ser;Asn 96 →Gln;Tyr 100→Glu;Leu 103→Gly;Ser 105→Ala;Tyr 106→Asn; Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe;Thr 136→Ile;
(f)Leu 36→Arg;Ala 40→Gly;Ile 41→Ala;Gln 49→Pro;Tyr 52 →Trp;Asn65→Asp;Ser 68→Asn;Leu 70→Arg;Arg 72→Ala;Lys 73 →Arg;Asp 77→Val;Trp 79→Ser;Arg 81→Gly;Cys 87→Ser;Asn 96 →Pro;Tyr 100→Glu;Leu 103→Asn;Ser 105→Ala;Tyr 106→Ser; Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe;Thr 136→Ile;
(g)Leu 36→Arg;Ala 40→Val;Ile 41→Ala;Gln 49→Pro;Tyr 52 →Arg;Asn65→Asp;Ser 68→Ala;Leu 70→Arg;Arg 72→Ala;Lys 73 →Arg;Asp 77→Leu;Trp 79→Ser;Arg 81→Gly;Cys 87→Ser;Asn 96 →Arg;Tyr 100→Glu;Leu 103→Tyr;Ser 105→Ala;Tyr 106→Asn; Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe;Thr 136→Ile;
(h)Leu 36→Arg;Ala 40→Val;Ile 41→Ala;Gln 49→Pro;Tyr 52 →Arg;Asn65→Asp;Ser 68→Asn;Leu 70→Val;Arg 72→Ala;Lys 73 →Gly;Asp 77→Lys;Trp 79→Ser;Arg 81→Gly;Cys 87→Ser;Asn 96 →Arg;Tyr 100→Pro;Leu 103→Asn;Ser 105→Ala;Tyr 106→Asn; Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe;Thr 136→Ile;
(i)Leu 36→Arg;Ala 40→Leu;Ile 41→Gly;Gln 49→Pro;Tyr 52 →Trp;Asn65→Asp;Ser 68→Asn;Leu 70→Arg;Arg 72→Ala;Lys 73 →Arg;Asp 77→Met;Trp 79→Ser;Arg 81→Gly;Cys 87→Ser;Asn 96 →Gln;Tyr 100→Glu;Leu 103→Ser;Ser 105→Ala;Tyr 106→Asn; Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe;
(j)Leu 36→Arg;Ala 40→Val;Ile 41→Gly;Gln 49→Pro;Tyr 52 →Trp;Asn65→Asp;Ser 68→Asn;Leu 70→Arg;Arg 72→Ala;Lys 73 →Gly;Cys 76→Val;Asp 77→Lys;Trp 79→Thr;Arg 81→Gly;Cys 87 →Ser;Asn 96→Gln;Tyr 100→Glu;Leu 103→Asn;Ser 105→Ala;Tyr 106→Thr;Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe; Cys 175→Ala;
(k)Leu 36→Arg;Ala 40→Val;Ile 41→Gly;Gln 49→Pro;Tyr 52 →Arg;Asn65→Asp;Ser 68→Gly;Leu 70→Arg;Arg 72→Gly;Lys 73 →Glu;Cys 76→Ile;Asp 77→Lys;Trp 79→Ser;Arg 81→Gly;Cys 87 →Ser;Asn 96→Gln;Tyr 100→Gln;Leu 103→Asp;Ser 105→Ala;Tyr 106→Thr;Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe; Thr 136→Ile;Cys 175→Ala;或
(1)Leu 36→Arg;Ala 40→Val;Ile 41→Gly;Gln 49→Pro;Tyr 52 →Arg;Asn65→Asp;Ser 68→Gly;Leu 70→Arg;Arg 72→Asp;Lys 73 →Ser;Cys 76→Val;Asp 77→Thr;Trp 79→Ser;Arg 81→Gly;Cys 87 →Ser;Asn 96→Gln;Tyr 100→Glu;Leu 103→Asn;Ser 105→Ala;Tyr 106→Thr;Lys 125→Glu;Ser 127→Tyr;Tyr 132→Ile;Lys 134→Phe; Thr 136→Ile;Cys 175→A1a。
编号优选与成熟hNGAL(SEQ ID NO:2)的线性多肽序列相关。因此, 鉴于本公开内容的教导,技术人员可以容易地确定成熟hNGAL(SEQ ID NO: 2)的优选参照序列中哪些氨基酸对应于上述(a)至(1)中所述的那些氨基 酸;从而使参照序列中的所述氨基酸突变。
C.包含于所述融合多肽中的示例性CD137特异性脂质运载蛋白突变蛋白。
一方面,本公开内容提供了结合CD137的人脂质运载蛋白突变蛋白及 其有用应用。本公开内容还提供了制备本文所述CD137结合蛋白的方法以 及包含这样的蛋白质的组合物。本公开内容的CD137结合蛋白及其组合物 可以用于检测样品中CD137的方法或者在受试者中结合CD137的方法。先 前并未描述这样具有与本公开内容提供的用途相关的这些特征的人脂质运 载蛋白突变蛋白。
本公开内容的另一个实施方案提供了能够通过结合CD137来活化 CD137的下游信号传导通路的脂质运载蛋白突变蛋白。
在一个实施方案中,本公开内容提供了结合CD137的人泪脂蛋白突变 蛋白。
在这方面,本公开内容提供了一种或多种能够以通过约300nM或更低、 甚至约100nM或更低的KD量度的亲和力结合CD137的Tlc突变蛋白。
在一些实施方案中,这样的Tlc突变蛋白在对应于成熟人泪脂质运载蛋 白(SEQID NO:1)的线性多肽序列的位置5、26-31、33-34、42、46、52、 56、58、60-61、65、71、85、94、101、104-106、108、111、114、121、133、 148、150和153的一个或多个位置处包含突变的氨基酸残基。
在一些具体实施方案中,这样的Tlc突变蛋白可以在对应于成熟人泪脂 质运载蛋白的线性多肽序列的位置26-34、55-58、60-61、65、104-106和108 的一个或多个位置处含有突变的氨基酸残基。
在进一步的具体实施方案中,这样的Tlc突变蛋白还可以在对应于成熟 人泪脂质运载蛋白的线性多肽序列的位置101、111、114和153的一个或多 个位置处包含突变的氨基酸残基。
在其他具体实施方案中,这种Tlc突变蛋白可以在对应于成熟人泪脂质 运载蛋白的线性多肽序列的位置5、26-31、33-34、42、46、52、56、58、 60-61、65、71、85、94、101、104-106、108、111、114、121、133、148、 150和153的一个或多个位置处含有突变的氨基酸残基。
在一些进一步的实施方案中,这种Tlc突变蛋白可以在对应于成熟人泪 脂质运载蛋白的线性多肽序列的序列位置5、26-31、33-34、42、46、52、 56、58、60-61、65、71、85、94、101、104-106、108、111、114、121、133、 148、150和153的一个或多个序列位置处包含至少1、2、3、4、5、6、7、 8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、 25、26或甚至更多个突变的氨基酸残基,并且其中所述多肽结合CD137, 特别是人CD137。
在一些更进一步的实施方案中,本公开内容涉及多肽,其中所述多肽为 Tlc突变蛋白,与成熟人泪脂质运载蛋白的线性多肽序列相比较,其在序列 位置5、26-34、55-58、60-61、65、104-106和108处包含至少1、2、3、4、 5、6、7、8、9、10、11、12或更多个突变的氨基酸残基,并且其中所述多 肽结合CD137,特别是人CD137。
在一些实施方案中,根据本公开内容的脂质运载蛋白突变蛋白可以包含 天然半胱氨酸残基被例如丝氨酸残基的至少一个氨基酸取代。在一些实施方 案中,根据本公开内容的Tlc突变蛋白包含在位置61和/或153处的天然半 胱氨酸残基被另一个氨基酸例如丝氨酸残基的氨基酸取代。这方面注意到的 是,已经发现去除野生型泪脂质运载蛋白的由半胱氨酸残基61和153形成 的结构二硫键(在各自的初始核酸文库的水平上)(参见Breustedt等人, 2005,见上文)可以提供这样的泪脂质运载蛋白突变蛋白:该泪脂质运载蛋 白突变蛋白不仅稳定地折叠,而且能够以高亲和力结合给定非天然配体。在 一些具体实施方案中,根据本公开内容的Tlc突变蛋白包含氨基酸取代Cys 61→Ala、Phe、Lys、Arg、Thr、Asn、Gly、Gln、Asp、Asn、Leu、Tyr、 Met、Ser、Pro或Trp和Cys 153→Ser或Ala。已经证明这样的取代可用于 防止连接Cys 61和Cys 153的天然存在的二硫键的形成,从而有助于处理突 变蛋白。然而,结合CD137并且具有在Cys 61和Cys 153之间形成的二硫 键的泪脂质运载蛋白突变蛋白也是本公开内容的一部分。
在一些实施方案中,消除结构性二硫键可提供进一步的优点,即允许非 天然人造二硫键(自发)生成或有意引入到本公开内容的突变蛋白中,由此 增加突变蛋白的稳定性。例如,在一些实施方案中,在位置61、101和153 处的半胱氨酸密码子中的任两个或全部三个被另一个氨基酸的密码子替代。 此外,在一些实施方案中,根据本公开内容的Tlc突变蛋白包含在位置101 处的天然半胱氨酸残基被丝氨酸残基或组氨酸残基的氨基酸取代。
在一些实施方案中,根据本公开内容的突变蛋白包含在关于成熟人泪脂 质运载蛋白的氨基酸序列的位置28或105处的天然氨基酸被半胱氨酸残基 的氨基酸取代。
此外,在一些实施方案中,根据本公开内容的突变蛋白包含在位置111 处的天然精氨酸残基被脯氨酸残基的氨基酸取代。此外,在一些实施方案中, 根据本公开内容的突变蛋白包含在位置114处的天然赖氨酸残基被色氨酸残 基或谷氨酸的氨基酸取代。
在一些实施方案中,根据本公开内容的结合CD137的Tlc突变蛋白在对 应于成熟人泪脂质运载蛋白(SEQ ID NO:1)的线性多肽序列的位置5、 26-31、33-34、42、46、52、56、58、60-61、65、71、85、94、101、104-106、 108、111、114、121、133、148、150和153的一个或多个位置处包含以下 突变的氨基酸残基中的一个或多个:Ala 5→Val或Thr;Arg 26→Glu;Glu 27 →Gly;Phe 28→Cys;Pro 29→Arg;Glu 30→Pro;Met 31→Trp;Leu 33→Ile; Glu34→Phe;Thr 42→Ser;Gly 46→Asp;Lys 52→Glu;Leu 56→Ala;Ser 58 →Asp;Arg 60→Pro;Cys 61→Ala;Lys 65→Arg或Asn;Thr 71→Ala;Val 85→Asp;Lys 94→Arg或Glu;Cys101→Ser;Glu 104→Val;Leu 105→Cys; His 106→Asp;Lys 108→Ser;Arg 111→Pro;Lys 114→Trp;Lys 121→Glu; Ala 133→Thr;Arg 148→Ser;Ser150→Ile和Cys 153→Ser。在一些实施方 案中,根据本公开内容的Tlc突变蛋白在成熟人泪脂质运载蛋白的这些序列 位置处包含两个或更多个诸如3、4、5、6、7、8、9、10、11、12、甚至更 多个诸如13、14、15、16、17、18、19、20、21、22、23、24、25、26个 或所有突变的氨基酸残基。
在另外一些实施方案中,与成熟人泪脂质运载蛋白的线性多肽序列相比 较,结合CD137的Tlc突变蛋白包含以下氨基酸取代组之一:
1.Arg 26→Glu;Glu 27→Gly;Phe 28→Cys;Pro 29→Arg;Glu 30 →Pro;Met 31→Trp;Leu 33→Ile;Glu 34→Phe;Leu 56→Ala;Ser 58 →Asp;Arg 60→Pro;Cys 61→Ala;Cys 101→Ser;Glu 104→Val;Leu 105→Cys;His 106→Asp;Lys 108→Ser;Arg 111→Pro;Lys 114→Trp; Cys 153→Ser;
2.Ala 5→Thr;Arg 26→Glu;Glu 27→Gly;Phe 28→Cys;Pro 29→ Arg;Glu 30→Pro;Met 31→Trp;Leu 33→Ile;Glu 34→Phe;Leu 56→ Ala;Ser 58→Asp;Arg 60→Pro;Cys 61→Ala;Lys 65→Arg;Val 85→ Asp;Cys 101→Ser;Glu 104→Val;Leu 105→Cys;His 106→Asp;Lys 108→Ser;Arg 111→Pro;Lys 114→Trp;Lys 121→Glu;Ala 133→Thr; Cys 153→Ser;157→Pro;
3.Arg 26→Glu;Glu 27→Gly;Phe 28→Cys;Pro 29→Arg;Glu 30 →Pro;Met 31→Trp;Leu 33→Ile;Glu 34→Phe;Leu 56→Ala;Ser 58 →Asp;Arg 60→Pro;Cys 61→Ala;Lys 65→Asn;Lys 94→Arg;Cys 101 →Ser;Glu 104→Val;Leu 105→Cys;His 106→Asp;Lys 108→Ser; Arg 111→Pro;Lys 114→Trp;Lys 121→Glu;Ala 133→Thr;Cys 153→ Ser;
4.Ala 5→Val;Arg 26→Glu;Glu 27→Gly;Phe 28→Cys;Pro 29→ Arg;Glu 30→Pro;Met 31→Trp;Leu 33→Ile;Glu 34→Phe;Leu 56→ Ala;Ser 58→Asp;Arg 60→Pro;Cys 61→Ala;Lys 65→Arg;Lys 94→ Glu;Cys 101→Ser;Glu 104→Val;Leu 105→Cys;His 106→Asp;Lys 108→Ser;Arg 111→Pro;Lys 114→Trp;Lys 121→Glu;Ala 133→Thr; Cys 153→Ser;157→Pro;
5.Arg 26→Glu;Glu 27→Gly;Phe 28→Cys;Pro 29→Arg;Glu 30 →Pro;Met 31→Trp;Leu 33→Ile;Glu 34→Phe;Thr 42→Ser;Leu 56 →Ala;Ser 58→Asp;Arg 60→Pro;Cys 61→Ala;Cys 101→Ser;Glu 104 →Val;Leu 105→Cys;His 106→Asp;Lys 108→Ser;Arg 111→Pro; Lys 114→Trp;Ser 150→Ile;Cys 153→Ser;157→Pro;
6.Arg 26→Glu;Glu 27→Gly;Phe 28→Cys;Pro 29→Arg;Glu 30 →Pro;Met 31→Trp;Leu 33→Ile;Glu 34→Phe;Lys 52→Glu;Leu 56 →Ala;Ser 58→Asp;Arg 60→Pro;Cys 61→Ala;Thr 71→Ala;Cys 101 →Ser;Glu 104→Val;Leu 105→Cys;His 106→Asp;Lys 108→Ser; Arg 111→Pro;Lys 114→Trp;Ala 133→Thr;Arg 148→Ser;Ser 150→ Ile;Cys 153→Ser;157→Pro;或
7.Ala 5→Thr;Arg 26→Glu;Glu 27→Gly;Phe 28→Cys;Pro 29→ Arg;Glu 30→Pro;Met 31→Trp;Leu 33→Ile;Glu 34→Phe;Gly 46→ Asp;Leu 56→Ala;Ser 58→Asp;Arg 60→Pro;Cys 61→Ala;Thr 71→ Ala;Cys 101→Ser;Glu 104→Val;Leu 105→Cys;His 106→Asp;Lys 108→Ser;Arg 111→Pro;Lys 114→Trp;Ser 150→Ile;Cys 153→Ser; 157→Pro。
在剩余区域中,即不同于序列位置5、26-31、33-34、42、46、52、56、 58、60-61、65、71、85、94、101、104-106、108、111、114、121、133、 148、150和153的区域,本公开内容的Tlc突变蛋白可以在突变的氨基酸序 列位置之外包含野生型(天然)氨基酸序列。
在更进一步的实施方案中,根据本公开内容的Tlc突变蛋白与成熟人泪 脂质运载蛋白(SEQ ID NO:1)的序列具有至少70%的序列同一性或至少 70%的序列同源性。
根据本公开内容的Tlc突变蛋白可以通过诱变人泪脂质运载蛋白的天然 存在形式而获得。在诱变的一些实施方案中,取代(或替代)是保守取代。 不过,可以设想任何取代(包括非保守取代或来自以下示例性取代中的一个 或多个),只要脂质运载蛋白突变蛋白保留其结合CD137的能力,和/或其 与然后被取代的序列具有序列同一性,即所述序列同一性为与成熟人泪脂质 运载蛋白(SWISS-PROT数据库登录号P31025)的氨基酸序列至少60%诸 如至少65%、至少70%、至少75%、至少80%、至少85%或更高的序列同 一性即可。
另一方面,本公开内容涉及针对CD137或对CD137特异的新型特异性 结合的hNGAL突变蛋白。
在这方面,本公开内容提供了一种或多种能够以通过200nM或更低、 约140nM或更低、约50nM或更低和甚至约10nM或更低的KD量度的亲和 力结合CD137的hNGAL突变蛋白。更优选地,所述hNGAL突变蛋白可以 具有通过约5nM或更低的KD量度的亲和力。
在一些实施方案中,本公开内容的hNGAL突变蛋白在对应于成熟 hNGAL(SEQ IDNO:2)的线性多肽序列的位置28、36、40-41、49、52、 65、68、70、72-73、77、79、81、83、87、94、96、100、103、106、125、 127、132和134的一个或多个位置处包含取代。
在具体实施方案中,本公开内容的脂质运载蛋白突变蛋白在对应于成熟 hNGAL(SWISS-PROT数据库登录号P80188;SEQ ID NO:2)的线性多肽 序列的序列位置28、36、40-41、49、52、65、68、70、72-73、77、79、81、 83、87、94、96、100、103、106、125、127、132和134的序列位置处包含 至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、 19、20、21或甚至更多个取代。优选地,设想本公开内容涉及脂质运载蛋白 突变蛋白,其(除了在对应于成熟人NGAL的线性多肽序列的位置36、87 和/或96的位置处的一个或多个取代)在对应于成熟hNGAL的线性多肽序 列的位置28、40-41、49、52、65、68、70、72-73、77、79、81、83、94、100、103、106、125、127、132和134的一个或多个位置处包含取代。
在更进一步的实施方案中,本公开内容涉及多肽,其中所述多肽为 hNGAL突变蛋白,与成熟hNGAL(SWISS-PROT数据库登录号P80188; SEQ ID NO:2)的线性多肽序列相比较,其在序列位置28、36、40-41、49、 52、65、68、70、72-73、77、79、81、87、96、100、103、106、125、127、 132和134处包含至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、 15、16、17、18、19、20、21或甚至更多个突变的氨基酸残基,并且其中所 述多肽结合CD137,特别是人CD137。
在一些实施方案中,本公开内容的结合CD137的hNGAL突变蛋白在成 熟hNGAL(SEQID NO:2)的线性多肽序列的序列位置28、36、40-41、 49、52、65、68、70、72-73、77、79、81、83、87、94、96、100、103、 106、125、127、132和134中的任一个或多个处包含以下突变的氨基酸残基 中的一个或多个:Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Arg或 Lys;Gln 49→Val,Ile,His,Ser或Asn;Tyr 52→Met;Asn 65→Asp;Ser 68 →Met,Ala或Gly;Leu 70→Ala,Lys,Ser或Thr;Arg 72→Asp;Lys 73 →Asp;Asp 77→Met,Arg,Thr或Asn;Trp 79→Ala或Asp;Arg 81→Met, Trp或Ser;Phe 83→Leu;Cys 87→Ser;Leu 94→Phe;Asn 96→Lys;Tyr 100 →Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser 127→Phe;Tyr 132 →Glu和Lys 134→Tyr。
在一些实施方案中,本公开内容的hNGAL突变蛋白在成熟hNGAL的 这些序列位置处包含两个或更多个诸如3、4、5、6、7、8、9、10、11、12、 甚至更多个诸如13、14、15、16、17、18、19、20、21、22、23、24个或 全部突变的氨基酸残基。
在另外一些实施方案中,本公开内容的结合CD137的hNGAL突变蛋白 与所述成熟hNGAL的线性多肽序列相比较,包含以下氨基酸替代:
(a)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Lys;Gln 49 →Asn;Tyr52→Met;Ser 68→Gly;Leu 70→Thr;Arg 72→Asp;Lys 73 →Asp;Asp 77→Thr;Trp 79→Ala;Arg 81→Ser;Cys 87→Ser;Asn 96 →Lys;Tyr 100→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe; Ser 127→Phe;Tyr 132→Glu;Lys 134→Tyr;
(b)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Arg;Gln 49 →Ile;Tyr52→Met;Asn 65→Asp;Ser 68→Met;Leu 70→Lys;Arg 72 →Asp;Lys 73→Asp;Asp 77→Met;Trp 79→Asp;Arg 81→Trp;Cys 87→Ser;Asn 96→Lys;Tyr 100→Phe;Leu 103→His;Tyr 106→Ser; Lys 125→Phe;Ser 127→Phe;Tyr 132→Glu;Lys 134→Tyr;
(c)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Arg;Gln 49 →Asn;Tyr52→Met;Asn 65→Asp;Ser 68→Ala;Leu 70→Ala;Arg 72 →Asp;Lys 73→Asp;Asp 77→Thr;Trp 79→Asp;Arg 81→Trp;Cys 87 →Ser;Asn 96→Lys;Tyr 100→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser 127→Phe;Tyr 132→Glu;Lys 134→Tyr;
(d)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Lys;Gln 49 →Asn;Tyr52→Met;Asn 65→Asp;Ser 68→Ala;Leu 70→Ala;Arg 72 →Asp;Lys 73→Asp;Asp 77→Thr;Trp 79→Asp;Arg 81→Trp;Cys 87 →Ser;Asn 96→Lys;Tyr100→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser 127→Phe;Tyr 132→Glu;Lys 134→Tyr;
(e)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Lys;Gln 49 →Ser;Tyr52→Met;Asn 65→Asp;Ser 68→Gly;Leu 70→Ser;Arg 72 →Asp;Lys 73→Asp;Asp 77→Thr;Trp 79→Ala;Arg 81→Met;Cys 87 →Ser;Asn 96→Lys;Tyr 100→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser 127→Phe;Tyr 132→Glu;Lys 134→Tyr;
(f)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Lys;Gln 49 →Val;Tyr52→Met;Asn 65→Asp;Ser 68→Gly;Leu 70→Thr;Arg 72 →Asp;Lys 73→Asp;Asp 77→Arg;Trp 79→Asp;Arg 81→Ser;Cys 87 →Ser;Leu 94→Phe;Asn 96→Lys;Tyr l00→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser l27→Phe;Tyr l32→Glu;Lys 134→Tyr;
(g)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Arg;Gln 49 →His;Tyr52→Met;Asn 65→Asp;Ser 68→Gly;Leu 70→Thr;Arg 72 →Asp;Lys 73→Asp;Asp 77→Thr;Trp 79→Ala;Arg 81→Ser;Cys 87 →Ser;Asn 96→Lys;Tyr 100→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser l27→Phe;Tyr 132→Glu;Lys 134→Tyr;
(h)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Lys;Gln 49 →Asn;Tyr52→Met;Asn 65→Asp;Ser 68→Gly;Leu 70→Thr;Arg 72 →Asp;Lys 73→Asp;Asp 77→Thr;Trp 79→Ala;Arg 81→Ser;Phe 83 →Leu;Cys 87→Ser;Leu 94→Phe;Asn 96→Lys;Tyr 100→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser 127→Phe;Tyr 132→Glu; Lys 134→Tyr;或
(i)Gln 28→His;Leu 36→Gln;Ala 40→Ile;Ile 41→Arg;Gln 49 →Ser;Tyr52→Met;Asn 65→Asp;Ser 68→Ala;Leu 70→Thr;Arg 72 →Asp;Lys 73→Asp;Asp 77→Asn;Trp 79→Ala;Arg 81→Ser;Cys 87 →Ser;Asn 96→Lys;Tyr 100→Phe;Leu 103→His;Tyr 106→Ser;Lys 125→Phe;Ser 127→Phe;Tyr 132→Glu;Lys 134→Tyr。
在剩余区域中,即不同于序列位置28、36、40-41、49、52、65、68、 70、72-73、77、79、81、83、87、94、96、100、103、106、125、127、132 和134的区域,本公开内容的hNGAL突变蛋白可以在突变的氨基酸序列位 置之外包含野生型(天然)氨基酸序列。
在另一个实施方案中,所述hNGAL突变蛋白与成熟人脂质运载蛋白2 的氨基酸序列(SWISS-PROT数据库登录号P80188)具有至少70%或更高 的序列同一性。
在进一步的具体实施方案中,根据本公开内容的结合CD137的脂质运 载蛋白突变蛋白包含选自SEQ ID NOs:18-33的氨基酸序列或其片段或变 体。
本公开内容的结合CD137的脂质运载蛋白突变蛋白的氨基酸序列与选 自SEQ IDNOs:18-33的序列可以具有高序列同一性,诸如至少70%、至少 75%、至少80%、至少82%、至少85%、至少87%、至少90%的同一性,包 括至少95%的同一性。
本公开内容还包括具有选自SEQ ID NOs:18-33的氨基酸序列的脂质运 载蛋白突变蛋白的结构同系物,所述结构同系物关于所述突变蛋白具有超过 约60%、优选超过65%、超过70%、超过75%、超过80%、超过85%、超 过90%、超过92%和最优选超过95%的氨基酸序列同源性或序列同一性。
D.所述融合多肽的示例性用途、应用和生产
在一些实施方案中,本公开内容的融合多肽可以经由双重靶向CD137 和GPC3产生协同效应。
因此,在医学中存在本公开内容的融合多肽的许多可能的应用。
一方面,本公开内容涉及本文所公开的融合多肽用于检测样品中CD137 和GPC3的用途以及相应的诊断方法。
另一方面,本公开内容以本文所公开的一种或多种融合多肽用于同时结 合CD137和GPC3的用途为特征,或者以一种或多种包含这样的多肽的组 合物用于同时结合CD137和GPC3的用途为特征。
本公开内容还涉及一种或多种所述融合多肽用于与CD137和GPC3形 成复合物的用途。
因此,在本公开内容的更进一步的方面,所公开的一种或多种融合多肽 用于CD137和GPC3的检测。这样的用途可以包括以下步骤:在合适的条 件下使一种或多种所述融合多肽与怀疑含有CD137和GPC3的样品接触的 步骤,由此允许在融合多肽与CD137和GPC3之间形成复合物;和通过合 适的信号检测所述复合物。该可检测的信号可由如上所述的标记或者由于结 合本身即复合物形成导致的物理性质的变化所引起。一个实例是表面等离子 体共振,表面等离子体共振的值在结合配偶体(其中之一固定在例如金箔的 表面上)的结合期间发生变化。
本文所公开的融合多肽还可用于CD137和GPC3的分离。这样的用途 可以包括以下步骤:在合适的条件下使一种或多种所述融合多肽与料想含有 CD137和GPC3的样品接触,由此允许在融合多肽与CD137和GPC3之间 形成复合物;和将该复合物从所述样品中分离。
另一方面,本公开内容以包括根据本公开内容的融合多肽的诊断或分析 试剂盒为特征。
除了它们在诊断中使用之外,另一方面,本公开内容预期一种包含本公 开内容的融合多肽和药学可接受的赋形剂的药物组合物。
此外,本公开内容提供同时结合CD137和GPC3的用作抗癌剂和免疫 调节剂的融合多肽。因此,设想本公开内容的融合多肽用于治疗或预防人疾 病的方法中,所述疾病例如多种肿瘤,包括肝细胞癌(“HCC”)、黑素瘤、 Merkel细胞癌、WiIm's肿瘤和肝母细胞瘤。因此,还提供了在有此需要的 受试者中治疗或预防人疾病(如各种肿瘤,包括肝细胞癌(“HCC”)、黑素 瘤、Merkel细胞癌、WiIm's肿瘤和肝母细胞瘤)的方法,其包括向所述受 试者施用治疗有效量的本公开内容的一种或多种融合多肽。
通过同时靶向在该处表达GPC3的肿瘤细胞(诸如肝细胞癌(“HCC”)、 黑素瘤、Merkel细胞癌、WiIm's肿瘤和肝母细胞瘤)并且活化宿主先天免 疫系统中与这样的肿瘤细胞相邻的天然杀伤(NK)细胞或适应性免疫系统 的T细胞,本公开内容的融合多肽可以增加靶向的抗肿瘤淋巴细胞的活性, 增强抗肿瘤免疫力,同时对肿瘤生长具有直接的抑制作用,由此产生协同的 抗肿瘤结果。此外,通过局部抑制致癌基因的活性,并且诱导通过NK细胞 和/或T细胞的细胞介导的细胞毒性,本公开内容的融合多肽可以减少效应 淋巴细胞对健康细胞的副作用,即减少脱靶毒性。
在T细胞中CD137介导的信号传导引起TRAF家族成员的募集和几种 激酶的活化,所述激酶包括ASK-1、MKK、MAPK3/MAPK4、p38和 JNK/SAPK。激酶活化之后为几种转录因子的活化和核移位,所述转录因子 包括ATF-2、Jun和NF-κB。除了增加次优TCR诱导的增殖,CD137介导的 信号传导保护T细胞、特别是CD8+ T细胞免于活化诱导的细胞死亡 (AICD)。
本公开内容涵盖本公开内容的融合多肽或包含这样的融合多肽的组合 物用于当接合表达GPC3的肿瘤细胞时共刺激T细胞和/或活化CD137的下 游信号传导通路的用途,所述肿瘤细胞诸如肝细胞癌(“HCC”)、黑素瘤、 Merkel细胞癌、WiIm's肿瘤和肝母细胞瘤。
本公开内容还以当接合在该处表达GPC3的肿瘤细胞时共刺激T细胞和 /或活化CD137的下游信号传导通路的方法为特征,所述肿瘤细胞诸如肝细 胞癌(“HCC”)、黑素瘤、Merkel细胞癌、WiIm's肿瘤和肝母细胞瘤,所 述方法包括应用本公开内容的一种或多种融合多肽或包含这样的融合多肽 的一种或多种组合物。
此外,本公开内容涉及当接合在该处表达GPC3的肿瘤细胞时活化 CD137的下游信号传导通路的方法,所述肿瘤细胞诸如肝细胞癌(“HCC”)、 黑素瘤、Merkel细胞癌、WiIm’s肿瘤和肝母细胞瘤,所述方法包括应用本 公开内容的一种或多种融合多肽或包含这样的融合多肽的一种或多种组合 物。
本公开内容还预期当接合在该处表达GPC3的肿瘤细胞时诱导T淋巴细 胞增殖的方法,所述肿瘤细胞诸如肝细胞癌(“HCC”)、黑素瘤、Merkel 细胞癌、WiIm’s肿瘤和肝母细胞瘤,所述方法包括应用本公开内容的一种 或多种融合多肽或包含这样的融合多肽的一种或多种组合物。
本公开内容涵盖本公开内容的融合多肽或包含这样的融合多肽的组合 物用于将T细胞上的CD137聚集和活化导向至在该处表达GPC3的肿瘤细 胞的用途,所述肿瘤细胞诸如肝细胞癌(“HCC”)、黑素瘤、Merkel细胞癌、 WiIm's肿瘤和肝母细胞瘤。
在另一个实施方案中,本公开内容还涉及包含编码本文所公开的融合多 肽的核苷酸序列的核酸分子(DNA和RNA)。在另外一个实施方案中,本 公开内容涵盖含有所述核酸分子的宿主细胞。由于遗传密码的简并性允许某 些密码子被指定同一氨基酸的其他密码子取代,本公开内容不限于编码如本 文所述融合多肽的特定核酸分子,而是涵盖包含编码功能性多肽的核苷酸序 列的所有核酸分子。在这方面,本公开内容还涉及编码本公开内容的融合多 肽的核苷酸序列。
在一些实施方案中,编码本申请中所公开的脂质运载蛋白突变蛋白的核 酸分子(例如DNA)可以与编码本公开内容的免疫球蛋白的另一个核酸分 子“可操作地连接”,以允许表达本文所公开的融合多肽。在这方面,可操 作的连接是这样的连接:在所述连接中,一个核酸分子的序列元件和另一个 核酸分子的序列元件以使融合多肽能够表达为单个多肽的方式连接。
本公开内容还涉及用于生产本公开内容的融合多肽的方法,通过基因工 程方法从编码多肽或其中任何亚基的核酸开始生产本公开内容的融合多肽。 在一些实施方案中,该方法可以在体内进行,所述多肽可以例如在细菌或真 核宿主生物体中产生,然后从该宿主生物或其培养物中分离。也可以在体外 产生本公开内容的融合多肽,例如通过使用体外翻译系统。
当在体内产生所述融合多肽时,通过重组DNA技术(如上所述)将编 码这样的多肽的核酸引入到合适的细菌或真核宿主生物体中。为此目的,使 用已建立的标准方法,首先用包含编码如本文所述融合多肽的核酸分子的克 隆载体转化所述宿主细胞。然后在允许表达异源DNA并且因此合成相应的 多肽的条件下培养宿主细胞。随后,从细胞或培养基中回收所述多肽。
在本公开内容的一个实施方案中,该方法包括使至少一个编码hNGAL 的核酸分子在核苷酸三联体处经受诱变,该核苷酸三联体编码对应于 hNGAL(SEQ ID NO:2)的线性多肽序列的序列位置28、40-52、60、68、 65、70、71-81、87、89、96、98、100-106、114、118、120、125-137和145 的序列位置中的至少一个、有时甚至更多个。
此外,在一些实施方案中,可以在本公开内容的hNGAL突变蛋白中去 除在Cys 76和Cys 175之间的天然存在的二硫键。因此,这样的突变蛋白可 在具有减少的氧化还原环境(redox milieu)的细胞区室中产生,例如在革兰氏 阴性细菌的细胞质中。
本公开内容还包括编码本公开内容的脂质运载蛋白突变蛋白的核酸分 子,其在实验性诱变的指定序列位置之外包含另外的突变。这样的突变通常 是可容忍的或甚至被证明是有利的,例如,如果它们有助于提高脂质运载蛋 白突变蛋白的折叠效率、血清稳定性、热稳定性或配体结合亲和力。
本申请中所公开的核酸分子可以“可操作地连接”至调节序列(或多个 调节序列)以允许表达该核酸分子。
核酸分子,例如DNA,如果它包含含有关于转录和/或翻译调节的信息 的序列元件,并且这样的序列“可操作地连接”至编码所述多肽的核苷酸序 列,则被称为“能够表达核酸分子”或能够“允许表达核苷酸序列”。可操 作的连接是这样的连接:在所述连接中,调节序列元件和要表达的序列以能 够进行基因表达的方式连接。基因表达所必需的调节区域的确切性质可能因 物种而异,但是通常这些区域包括启动子,所述启动子在原核生物中含有启 动子本身(即引导转录起始的DNA元件)以及当转录成RNA时将发出翻译 起始信号的DNA元件。这样的启动子区域通常包括涉及转录和翻译起始的 5′非编码序列,例如原核生物中的-35/-10盒和Shine-Dalgarno元件或真核生 物中的TATA盒、CAAT序列和5′-封端元件。这些区域还可以包括增强子 或阻遏子元件以及用于将天然多肽靶向到宿主细胞的特定区室的被翻译信 号和前导序列。
此外,所述3′非编码序列可能含有涉及转录终止、聚腺苷酸化等的调节 元件。然而,如果这些终止序列在特定宿主细胞中不是令人满意的功能性的, 则它们可能被该细胞中功能性的信号取代。
因此,本公开内容的核酸分子可以包含调节序列例如启动子序列。在一 些实施方案中,本公开内容的核酸分子包含启动子序列和转录终止序列。合 适的原核启动子例如为tet启动子、lacUV5启动子或T7启动子。可用于在 真核细胞中表达的启动子的实例是SV40启动子或CMV启动子。
本公开内容的核酸分子还可以是载体或任何其他种类的克隆载体的一 部分,所述克隆载体例如质粒、噬菌粒、噬菌体、杆状病毒、粘粒或人造染 色体。
在一个实施方案中,核酸分子包含在噬菌粒中。噬菌粒载体表示编码温 和噬菌体(例如M13或f1)的基因间区域的载体,或其融合至感兴趣的cDNA 的功能部分。细菌宿主细胞经这样的噬菌粒载体和适当的辅助噬菌体(例如 M13K07、VCS-M13或R408)超感染后,产生完整噬菌体颗粒,由此使所 编码的异源cDNA能够与其相应的展示在噬菌体表面上的多肽物理偶联(参 见例如Lowman,H.B.(1997)Annu.Rev.Biophys.Biomol.Struct.26,401-424; 或Rodi,D.J.和Makowski,L.(1999)Curr.Opin.Biotechnol.10,87-93)。
除了上述调节序列以及编码如本文所述的融合多肽的核酸序列之外,这 样的克隆载体可以包含来源于与用于表达的宿主细胞相容的物种的复制和 控制序列,以及在转化或转染的细胞上赋予可选表型的选择标记物。大量的 合适的克隆载体是本领域已知的,并且是可商购的。
编码如本文所述的融合多肽的DNA分子(例如,SEQ ID NOs:20和 31),特别是含有这样的多肽的编码序列的克隆载体可转化到能够表达该基 因的宿主细胞中。可使用标准技术进行转化。因此,本公开内容还涉及含有 如本文所述的核酸分子的宿主细胞。
所述转化的宿主细胞在适用于表达编码本公开内容的融合多肽的核苷 酸序列的条件下培养。合适的宿主细胞能够是原核的诸如大肠杆菌(E.coli) 或枯草芽孢杆菌,或真核的诸如酿酒酵母、巴斯德毕赤酵母、SF9或High5 昆虫细胞、永生化哺乳动物细胞系(例如HeLa细胞或CHO细胞)或原代 哺乳动物细胞。
在一些实施方案(其中本公开内容的脂质运载蛋白突变蛋白(包括包含 在本文所公开的融合多肽中的)包括分子内二硫键)中,可以优选使用适当 的信号序列将新生多肽引导至具有氧化还原环境的细胞区室。这样的氧化环 境可以由革兰氏阴性细菌诸如大肠杆菌的周质,在革兰氏阳性细菌的细胞外 环境中,或在真核细胞的内质网的内腔中提供,通常有利于结构二硫键的形 成。
在一些实施方案中,还可以在宿主细胞优选大肠杆菌的胞质溶胶中产生 本公开内容的融合多肽。在这种情况下,所述多肽能够以可溶性的和折叠的 状态直接获得,或者以包涵体的形式被回收,然后在体外复性。另一个选择 是使用特定宿主菌株,所述菌株具有氧化细胞内环境,这因此可允许在胞质 溶胶中形成二硫键(Venturi等人(2002)J.Mol.Biol.315,1-8)。
在一些实施方案中,如本文所述的本公开内容的融合多肽可能不一定是 通过使用遗传工程生成或产生的。而是,这样的多肽还能通过化学合成诸如 Merrifield固相多肽合成或通过体外转录和翻译获得。例如有可能的是,使 用分子建模鉴定出有前途的突变,然后在体外合成所需(设计的)突变蛋白 或多肽,并且研究对感兴趣的靶标的结合活性。用于蛋白质的固相和/或溶液 相合成的方法是本领域熟知的(参见例如Bruckdorfer,T.等人(2004)Curr. Pharm.Biotechnol.5,29-43)。
在另一个实施方案中,本公开内容的融合多肽可以通过使用本领域技术 人员已知的已充分建立的方法的体外转录/翻译产生。
本领域技术人员将领会可用于制备本公开内容所预期的、但其蛋白质或 核酸序列未在本文中明确公开的融合多肽的方法。作为概述,氨基酸序列的 这种修饰包括例如单个氨基酸位置的定向诱变,以便通过引入某些限制酶的 切割位点来简化多肽基因或其部分的亚克隆。此外,还能够引入这些突变以 进一步提高融合多肽对其靶标(例如CD137和GPC3)的亲和力。此外,能 够引入突变以调节所述多肽的某些特征,例如如果需要,以改善折叠稳定性、 血清稳定性、蛋白质抗性或水溶性或降低聚集倾向。例如,天然存在的半胱氨酸残基可以突变成其它氨基酸以防止二硫键的形成。
对于本领域技术人员来说,在审查以下实施例及其附图后,本公开内容 的另外的目标、优点和特征将变得显而易见,而这些实施例和附图并不旨在 是限制性的。因此应该理解的是,尽管通过示例性实施方案和可选特征具体 公开了本公开内容,本领域技术人员可以对本文公开的在其中实施的公开内 容进行修改和改变,并且这样的修改和改变被认为是在本公开内容的范围 内。
实施例
实施例1:抗体-脂质运载蛋白突变蛋白融合多肽的表达与分析
我们使用三种方案来生成能够同时结合靶标GPC3和CD137的双特异 性构建体。
在第一种方案中,我们基于CD137特异性抗体(例如具有由SEQ ID NOs:34和35提供的重链和轻链)和例如SEQ ID NO:10的GPC3脂质运 载蛋白突变蛋白生成抗体-脂质运载蛋白突变蛋白融合多肽。在所有情况下, 使用非结构化的对蛋白酶不敏感的(G4S)3连接子(SEQ ID NO:49)使所述 蛋白质彼此融合。所设计的不同形式如图1A所示。所产生的变体是脂质运 载蛋白突变蛋白与抗体的四个末端中的任一个的融合物,所述抗体包含被突 变以最小化半抗体交换的IgG4主链(S228P突变,参见SEQ ID NO:34): SEQ ID NOs:36和37,SEQID NOs:38和39,SEQ ID NOs:40和41, SEQ ID NOs:42和43。
在第二种方案中,我们生成了两种脂质运载蛋白突变蛋白(结合GPC3 的SEQ IDNO:10和结合CD137的SEQ ID NO:26)与工程化的IgG4-Fc 片段(SEQ ID NO:73)的融合物,所述IgG4-Fc片段包含S228P突变以在 体外和体内最小化IgG4半抗体交换(参见Silva2015)以及包含F234A和 L235A突变以降低Fc-γ受体相互作用(Alegre 1992)。所得到的融合多肽 (SEQ ID NO:44和SEQ ID NO:45)如图1B的结构性描述所示。
第一种和第二种方案的构建体通过基因合成而产生并被克隆到哺乳动 物表达载体中。然后将它们在CHO细胞中瞬时表达。细胞培养基中的抗体- 脂质运载蛋白突变蛋白融合多肽和IgG4Fc-脂质运载蛋白突变蛋白融合多肽 的浓度使用ForteBio蛋白A传感器(Pall Corp.)进行测量,并使用人IgG1 标准物进行定量(数据未显示)。
在第三种方案中,我们生成两种脂质运载蛋白突变蛋白(SEQ ID NO: 10和SEQ IDNO:26)通过一个或多个(G4S)2连接子(SEQ ID NO:48) 连接的融合物,并使用了两种个不同的设计,如图1C所示。在第一种设计 中,SEQ ID NO:26C末端融合至SEQ ID NO:10,得到SEQ ID NO:46 的融合多肽;在第二种设计中,SEQ ID NO:26的两个拷贝C末端融合至 SEQID NO:10,得到SEQ ID NO:47的融合多肽。所述构建体包含用于亲 和层析纯化的Strep标签(SEQ ID NO:50)。使用标准方法克隆所述构建 体,并利用周质分泌在大肠杆菌中表达。
使用蛋白A色谱法、然后通过在10mM的组氨酸pH 5.5,150mM的NaCl 或PBS,pH7.4中的尺寸排阻色谱法(SEC)纯化所述抗体-脂质运载蛋白突 变蛋白融合多肽和IgG4Fc片段-脂质运载蛋白突变蛋白融合多肽。经SEC纯 化后,汇集含有单体蛋白的级分,并再次使用分析型SEC进行分析。根据 这一分析,所述融合多肽完全是单体的,没有可检测的多聚物种类或聚合物 (数据未显示)。
实施例2:融合多肽对于GPC3的特异性
我们采用ELISA试验来测定SEQ ID NOs:36和37、SEQ ID NOs:38 和39、SEQ IDNOs:40和41以及SEQ ID NOs:42和43的融合多肽对重 组人GPC3(R&D Systems#2119-GP-050/CF)的特异性。将所述靶标溶解 于PBS(1μg/mL)中,并在4℃下涂覆于微量滴定板上过夜。在每个孵育步 骤后,用补充有0.1%(v/v)吐温20的100μL的PBS(PBS-T)洗涤板5次。 将板用在PBS-T中的2%BSA(w/v)在室温下封闭1小时,随后洗涤。将 不同浓度的脂质运载蛋白突变蛋白(SEQ ID NO:10)或融合多肽加入到孔 中并在室温下孵育1小时,随后进行洗涤步骤。用在补充有2%(w/v)BSA 的PBS-T(PBS-TB)中1∶1000稀释的与HRP缀合的抗人NGAL抗体孵育 后,检测到结合的融合蛋白或脂质运载蛋白突变蛋白。在另外的洗涤步骤之 后,向每个孔中加入荧光HRP底物(QuantaBlu,Thermo),并使用荧光酶 标仪检测荧光强度。
实验结果如图2所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在表1 中提供,包括数据的S形拟合的误差,这是本文表中总结的所有数据的情况。 观察到的所有抗体-脂质运载蛋白突变蛋白融合多肽的EC50值处于相似的 范围(0.25-0.28nM)内,全部稍好于脂质运载蛋白突变蛋白(SEQ ID NO: 10)(其为0.55nM)。实验表明,当包含于上述融合多肽中时,所述脂质 运载蛋白突变蛋白可以与抗体的四个末端中的任一个融合,而不丧失对于 GPC3的活性。
表1-GPC3结合的ELISA数据
名称 EC50 GPC3[nM]
SEQ ID NOs:42和43 0.27±0.03
SEQ ID NOs:40和41 0.25±0.02
SEQ ID NOs:38和39 0.26±0.02
SEQ ID NOs:36和37 0.28±0.02
SEQ ID NO:10 0.55±0.03
实施例3:融合多肽对于人CD137的特异性
我们采用ELISA试验来测定SEQ ID NOs:36和37、SEQ ID NOs:38 和39、SEQ IDNOs:40和41以及SEQ ID NOs:42和43的融合多肽对重 组CD137-Fc融合蛋白(#838-4B-100,R&D Systems)的特异性。SEQ ID NOs:34和35的抗体作为阳性对照。将靶标溶解于PBS(1μg/mL)中,并 在4℃下在微量滴定板上涂覆过夜。在每个孵育步骤后,用100μL的PBS-T 洗涤板5次。将板用在PBS-T中的2%BSA(w/v)在室温下封闭1小时, 随后洗涤。将不同浓度的CD137特异性抗体或所述融合多肽加入到孔中并 在室温下孵育1小时,随后进行洗涤步骤。在室温下用在PBS-TB中1∶5000 稀释的与HRP(Jackson Laboratories)缀合的小鼠抗人IgG Fab抗体孵育1 小时后检测所结合的融合蛋白。在另外的洗涤步骤之后,向每个孔中加入荧 光HRP底物(QuantaBlu,Thermo),并使用荧光酶标仪检测荧光强度。
实验结果如图3所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在表2 中提供。对于所有测试的分子所观察到的EC50值非常相似,范围为1.5nM 至2.3nM。实验表明,当包含于所述融合多肽中时,所述抗体可与所述脂质 运载蛋白突变蛋白在抗体的四个末端中的任一个处融合,而不丧失对于 CD137的活性。
表2:CD137结合的ELISA数据
名称 EC50 CD137[nM]
SEQ ID NOs:42和43 2.1±0.03
SEQ ID NOs:40和41 2.0±0.02
SEQ ID NOs:38和39 2.3±0.02
SEQ ID NOs:36和37 1.6±0.02
SEQ ID NOs:34和35 1.5±0.03
实施例4:在基于ELISA的设置中融合多肽的同时靶标结合的证明
为了证明SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs: 40和41以及SEQID NOs:42和43的融合多肽同时结合到GPC3和CD137 两者,使用双重结合的ELISA形式。将PBS中的重组人CD137-Fc融合蛋 白(R&D Systems)(1μg/mL)在4℃下在微量滴定板上涂覆过夜。在每个 孵育步骤后,用100μLPBS-T洗涤板5次。将板用在PBS-T中的2%BSA(w/v) 在室温下封闭1小时,然后再次洗涤。将不同浓度的融合多肽加入到孔中并 在室温下孵育1小时,随后进行洗涤步骤。随后,将生物素化的人GPC3以 在PBS-TB中1μg/mL的恒定浓度加入1小时。洗涤后,向孔中加入 Extravidin-HRP(Sigma-Aldrich,PBS-TB中1∶5000)1小时。在另外的洗涤 步骤之后,向每个孔中加入荧光HRP底物(QuantaBlu,Thermo),并使用 荧光酶标仪检测荧光强度。
实验结果如图4所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在表3 中提供。所有的融合多肽均显示出清晰的结合信号,其EC50值范围为 1.7-2.1nM,证明所述融合多肽能够同时接合GPC3和CD137。
表3:同时靶标结合的ELISA数据
Figure RE-BPA0000250872330000451
Figure RE-BPA0000250872330000461
实施例5:抗体和融合多肽对人GPC3的亲和力
使用Biacore T200仪器(GE Healthcare),通过表面等离子体共振(SPR) 测定SEQID NO:10的脂质运载蛋白突变蛋白与SEQ ID NOs:36和37、 SEQ ID NOs:38和39、SEQ IDNOs:40和41以及SEQ ID NOs:42和43 的融合多肽与重组人GPC3(R&D Systems#2119-GP-050/CF)的结合亲和 力。在SPR亲和力试验中,使用Biotin CAPture试剂盒(GEHealthcare)将 生物素化的GPC3捕获在传感器芯片(“CAP芯片”)上:传感器芯片CAP 使用ssDNA寡核苷酸预固定。以2μL/min的流速施加未稀释的生物素 CAPture试剂(与互补的ss-DNA寡核苷酸缀合的链霉亲和素)300秒。使用 浓度为1μg/mL的生物素化的GPC3分析所述脂质运载蛋白突变蛋白,使用 浓度为0.25μg/mL的生物素化的GPC3分析所述融合蛋白。以5μL/min的流 速施加所述生物素化的GPC3 300秒。通过在室温下用
Figure RE-BPA0000250872330000462
NHS-PEG4- 生物素(5倍摩尔过量(Thermo Scientific))孵育2小时来生物素化GPC3。 通过将反应混合物装载到ZebaTM旋转脱盐板(Thermo Scientific)上,除去 未反应的过量生物素试剂。参照通道仅装载Biotin CAPture试剂。
为了测定亲和力,将GCP3固定在芯片表面上,在运行缓冲液(10mM HEPES,150mMNaCl,0.05%v/v表面活性剂P20,3mM EDTA,pH 7.4(GE Healthcare))中制备四种不同浓度(11.1、3.7、1.2和0.4nM))的每种测 试的试剂(融合多肽或脂质运载蛋白突变蛋白),并施加于所述芯片表面。 应用30μL/min的流速,样品接触时间为180秒,解离时间为1200秒。所有 的测量在25℃下进行。通过注射含有0.25M NaOH的6M盐酸胍,然后用运 行缓冲液进行额外洗涤并且进行120秒的稳定期来实现传感器芯片CAP表 面的再生。在蛋白质测量之前,进行三个再生循环用于调节目的。使用Biacore T200评估软件(V 2.0)评估数据。使用双重参照,并使用1∶1结合模型来 拟合原始数据。
数据如图5所示,表4中总结了拟合结果。从数据可以得出结论,所述 融合多肽结合GPC3的亲和力与SEQ ID NO:10的脂质运载蛋白突变蛋白 非常相似。所述融合多肽的表观结合亲和力在17-30pM的范围内,SEQ ID NO:10的脂质运载蛋白突变蛋白的表观结合亲和力为12pM。
表4:对GPC3的结合亲和力
名称 K<sub>D</sub>[pM]
SEQ ID NO:10 12
SEQ ID NOs:36和37 24
SEQ ID NOs:42和43 30
SEQ ID NOs:40和41 17
SEQ ID NOs:38和39 20
实施例6:抗体和融合多肽对人CD137的亲和力
类似于实施例5,通过表面等离子体共振(SPR)测定SEQ ID NOs:34 和35的抗体与SEQ ID NOs:36和37、SEQ ID NOs:38和39、SEQ ID NOs: 40和41以及SEQ ID NOs:42和43的融合多肽与重组人CD137-Fc融合蛋 白(#838-4B-100,R&D Systems)的结合亲和力。简言之,将生物素化的 CD137-Fc捕获在传感器芯片CAP上,在运行缓冲液中制备每种测试的试剂 (融合蛋白或SEQ ID NOs:34和35)的四种稀释液(20、5、1.3和0.3nM), 并施加于所述芯片表面。应用30μL/min的流速,样品接触时间为180秒, 解离时间为600秒。如实施例5所述,另外实施和分析所有的测量。
表5中总结了结果,数据显示了所述融合多肽结合CD137的亲和力与 所述抗体非常相似。所述融合蛋白的表观结合亲和力在71-179pM范围内, 所述抗体20H4.9(SEQ IDNOs:34和35)的表观结合亲和力为92pM。
表5:对CD137的结合亲和力
名称 K<sub>D</sub>[pM]
SEQ ID NOs:34和35 92
SEQ ID NOs:36和37 71
SEQ ID NOs:42和43 62
SEQ ID NOs:40和41 101
SEQ ID NOs:38和39 179
实施例7:脂质运载蛋白突变蛋白Fc-融合多肽对于GPC3的特异性
我们采用如实施例2所述的ELISA试验来测定融合多肽SEQ ID NO: 44和SEQ IDNO:45对重组人GPC3的特异性。
实验结果如图7所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在表6 中提供。观察到的脂质运载蛋白突变蛋白Fc-融合多肽的EC50值均优于观 察到的结合GPC3的脂质运载蛋白突变蛋白(SEQ ID NO:10)的EC50值。
表6:GPC3结合的ELISA数据
名称 EC50 GPC3[nM]
SEQ ID NO:44 0.07±0.04
SEQ ID NO:45 0.12±0.02
SEQ ID NO:10 0.32±0.04
实施例8:脂质运载蛋白突变蛋白Fc-融合多肽对于人CD137的特异性
我们采用ELISA试验来测定SEQ ID NO:44和SEQ ID NO:45的脂质 运载蛋白突变蛋白Fc-融合多肽对重组CD137-Fc融合多肽的特异性,如实 施例3所述。
实验结果如图8所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在表7 中提供。观察到的脂质运载蛋白突变蛋白Fc-融合多肽的EC50值均优于观 察到的结合GPC3的脂质运载蛋白突变蛋白(SEQ ID NO:26)的EC50值。
表7:CD137结合的ELISA数据
Figure RE-BPA0000250872330000481
实施例9:在基于ELISA的设置中脂质运载蛋白突变蛋白Fc-融合多肽的同 时靶标结合的证明
为了证明SEQ ID NO:44和SEQ ID NO:45的融合多肽同时结合到 GPC3和CD137两者,类似于实施例4使用双重结合的ELISA形式。
实验结果如图9所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在表8 中提供。两种融合多肽显示出清晰的的结合信号,其EC50值接近1.7nM, 证明所述融合多肽能够同时接合GPC3和CD137。
表8:同时靶标结合的ELISA数据
名称 EC50双重结合[nM]
SEQ ID NO:44 1.72±0.26
SEQ ID NO:45 1.70±0.30
实施例10:抗体和融合多肽对人GPC3的亲和力
通过如实施例5所述的表面等离子体共振测定SEQ ID NO:10的结合 GPC3的脂质运载蛋白突变蛋白与SEQ ID NO:44和SEQ ID NO:45的融 合多肽与重组人GPC3的结合亲和力。
数据如图10所示,表9中总结了拟合的KD值。数据显示所述融合多肽 结合GPC3的亲和力与所述脂质运载蛋白突变蛋白非常相似。相比于所述脂 质运载蛋白突变蛋白的33pM的表观结合亲和力,所述融合多肽的表观结合 亲和力分别为23pM和29pM。
表9:对GPC3的结合亲和力
名称 K<sub>D</sub>[pM]
SEQ ID NO:10 33
SEQ ID NO:44 29
SEQ ID NO:45 23
实施例11:抗体和融合多肽对人CD137的亲和力
类似于实施例6,测定SEQ ID NO:26的结合CD137的脂质运载蛋白突 变蛋白以及SEQ ID NO:44和SEQ ID NO:45的融合多肽与重组人CD137-Fc 融合蛋白的结合亲和力。
图11中显示了SEQ ID NO:44和SEQ ID NO:45的融合多肽的数据, 表10中是所有测试的分子的拟合的KD值。数据显示所述融合多肽结合 CD137的亲和力分别为1nM或1.1nM,优于所述脂质运载蛋白突变蛋白的 KD值,其值为2.3nM。
表10:对CD137的结合亲和力
名称 K<sub>D</sub>[nM]
SEQ ID NO:26 2.3
SEQ ID NO:44 1.1
SEQ ID NO:45 1.0
实施例12:融合多肽对于GPC3的特异性
我们基于SEQ ID NOs:51和52的CD137结合抗体和SEQ ID NO:10 的结合GPC3的脂质运载蛋白突变蛋白,生成另外的融合多肽。使用(G4S)3 连接子将脂质运载蛋白突变蛋白C末端融合至重链而得到SEQ ID NOs:53 和54的融合多肽。
我们采用如实施例2所述的ELISA试验来测定SEQ ID NOs:53和54 的融合多肽对重组人GPC3的特异性。
实验结果如图12所示,连同由1∶1结合S形拟合所产生的拟合曲线, 其中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在 表11中提供。所述融合多肽和所述脂质运载蛋白突变蛋白的对于GPC3的 EC50是相当的。数据显示,当包含于所述融合多肽中时,所述脂质运载蛋 白突变蛋白能够被融合至所述抗体,而不丧失对于GPC3的活性。
表11:GPC3结合的ELISA数据
名称 EC50 GPC3[nM]
SEQ ID NOs:53和54 0.62±0.05
SEQ ID NO:10 0.55±0.03
实施例13:在基于ELISA的设置中融合多肽的同时靶标结合的证明
类似于实施例4,为了证明SEQ ID NOs:53和54的融合多肽同时结合 到GPC3和CD137两者,使用双重结合的ELISA形式。
实验结果如图13所示,连同由1∶1结合S形拟合所产生的拟合曲线, 其中EC50值和最大信号为自由参数,斜率固定为1。所述融合多肽显示出 清晰的结合信号,其EC50值为4.66±0.65nM,证明所述多肽能够同时接合 GPC3和CD137。
实施例14:融合多肽对于GPC3的特异性
我们采用如实施例2所述的ELISA试验来测定SEQ ID NO:46和SEQ ID NO:47的双特异性融合多肽以及所述SEQ ID NO:8的脂质运载蛋白突 变蛋白对重组人GPC3的特异性。
实验结果如图14所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在表 12中提供。所述融合多肽的EC50值与所述脂质运载蛋白突变蛋白的EC50 值至少一样好或甚至更优。数据表明,当包含于两种融合多肽中时,所述脂 质运载蛋白突变蛋白能够被融合至所述抗体,而不丧失对于GPC3的活性。
表12:GPC3结合的ELISA数据
名称 EC50 GPC3[nM]
SEQ ID NO:46 0.14±0.02
SEQ ID NO:47 0.16±0.03
SEQ ID NO:8 0.24±0.02
实施例15:融合多肽对于人CD137的特异性
我们采用ELISA试验来测定SEQ ID NO:46和SEQ ID NO:47的双特 异性多肽以及SEQ ID NO:26的脂质运载蛋白突变蛋白对重组CD137-Fc融 合蛋白的特异性,如实施例3所述。
实验结果如图15所示,连同由1∶1结合S形拟合所产生的拟合曲线, 其中EC50值和最大信号为自由参数,斜率固定为1。所得到的EC50值在 表13中提供。所述融合多肽的EC50值与所述脂质运载蛋白突变蛋白的EC50 值至少一样好或甚至更优。数据表明,当包含于两种融合多肽中时,所述抗 体能够被融合至所述脂质运载蛋白突变蛋白,而不丧失对于CD137的活性。
表13:CD137结合的ELISA数据
名称 EC50 CD137[nM]
SEQ ID NO:46 0.20±0.02
SEQ ID NO:47 0.26±0.01
SEQ ID NO:26 0.28±0.02
实施例16:基于ELISA的设置中融合多肽的同时靶标结合的证明
类似于实施例4,为了证明SEQ ID NO:46和SEQ ID NO:47的双特 异性多肽同时结合到GPC3和CD137,使用双重结合的ELISA形式。
实验结果如图16所示,连同由1∶1结合S形拟合所产生的拟合曲线,其 中EC50值和最大信号为自由参数,斜率固定为1。两种融合多肽均显示出 清晰的结合信号,其EC50值为7.3-7.5nM,证明所述两种融合多肽能够同时 接合GPC3和CD137。
表14:同时靶标结合的ELISA数据
名称 EC50双重结合[nM]
SEQ ID NO:46 7.30±0.94
SEQ ID NO:47 7.47±0.79
实施例17:融合多肽对人GPC3的亲和力
类似于实施例5中描述的程序,使用HBS-EP+(1x;BR-1006-69;GE Healthcare)作为运行缓冲液,通过在Biacore T200仪器(GE Healthcare)上 的表面等离子体共振来测定结合GPC3的脂质运载蛋白突变蛋白以及SEQ ID NO:46和SEQ ID NO:47的双特异性多肽与重组人GPC3和重组人CD137 的结合亲和力。
使用Biotin CAPture试剂盒(GE Healthcare)将生物素化的双特异性多 肽固定在芯片表面上。使用标准NHS化学生物素化所述双特异性多肽。未 稀释的Biotin CAPture试剂(与ss-DNA寡核苷酸缀合的链霉亲和素)被捕 获在具有预固定的互补的ss-DNA寡核苷酸的传感器芯片CAP上。之后,以 5μL/min的流速施加1μg/ml的生物素化的突变蛋白300秒。
以30μL/min的流速、以4种浓度(300nM、100nM、33nM和11nM) 施加GPC3。注射所述GPC3180秒,随后的解离时间设定为1200秒。通过 以10μL/min的流速注射6M盐酸胍+0.25MNaOH(120秒)来实现芯片表 面的再生。注射再生溶液之后,用HBS-EP+(1x;BR-1006-69;GEHealthcare) 运行缓冲液进行额外的洗涤并且进行120秒的稳定期。
通过从结合应答中减去对照通道(仅装载Biotin CAPture试剂)测量的 相应信号和减去缓冲液注射测量的相应信号,双重参照所述数据。使用 Biacore T200评估软件V2.0进行数据处理和动力学拟合,测定结合反应的结 合速率常数ka和解离速率常数kd
各自的传感图如图17所示。表15中总结了结果。数据显示所述双特异 性多肽分别以4.3nM(SEQ ID NO:46)和3.5nM(SEQ ID NO:47)的亲 和力结合GPC3。
表15:对GPC3的结合亲和力
名称 K<sub>D</sub>[nM]
SEQ ID NO:46 4.3
SEQ ID NO:47 3.5
实施例18:融合多肽对人CD137的亲和力
类似于实施例6,通过使用Biacore T200仪器(GE Healthcare)的表面 等离子体共振测定所述结合CD137的脂质运载蛋白突变蛋白以及SEQ ID NO:46和SEQ ID NO:47的双特异性多肽与重组人CD137-Fc融合蛋白(# 838-4B-100,R&D Systems)的结合亲和力。在SPR亲和力试验之前,根据 制造商的说明书,使用人抗体捕获试剂盒(GE Healthcare#BR-1008-39), 用抗人Fc抗体衍生化CM5传感器芯片。
为了测定亲和力,将人CD137-Fc融合蛋白以0.25mg/lm的浓度、 10μL/min的流速和180的接触时间固定在芯片上。在运行缓冲液(10mM HEPES,150mM NaCl,0.05%v/v表面活性剂P20,3mM EDTA,pH 7.4(GE Healthcare))中制备四种不同浓度(1000nM、200nM、40nM和8nM)的 双特异性多肽,并施加于芯片表面。应用30μL/min的流速,样品接触时间 为180秒,解离时间为600秒。所有的测量在25℃下进行。通过注射10mM 的甘氨酸pH 1.7,然后用运行缓冲液进行额外洗涤并且进行120秒的稳定期 来实现传感器芯片表面的再生。在蛋白质测量之前,进行三个再生循环用于 调节目的。使用Biacore T200评估软件(V 2.0)评估数据。使用双重参照, 并使用1∶1结合模型来拟合原始数据。
结果如图18所示,表16中进行了总结。数据显示所述双特异性多肽结 合CD137的亲和力与所述脂质运载蛋白突变蛋白对于CD137的亲和力至少 一样好。
表16:对CD137的结合亲和力
名称 K<sub>D</sub>[nM]
SEQ ID NO:26 2.3
SEQ ID NO:46 1.6
SEQ ID NO:47 0.6
实施例19:使用涂覆的融合多肽进行功能性T细胞活化试验
我们使用T细胞活化试验来评估SEQ ID NOs:36和37、SEQ ID NOs: 38和39、SEQID NOs:40和41以及SEQ ID NOs:42和43的融合多肽共 刺激T细胞应答的能力。为此目的,将不同浓度的融合多肽与抗人CD3抗 体(OKT3,eBioscience)一起涂覆在塑料皿上,然后在可溶性抗人CD28 抗体(Clone 28.2;eBioscience)的存在下,将纯化的T细胞在涂覆的表面上孵育。作为读出结果,我们测量了上清液白细胞介素2(IL-2)水平。使 用人IgG4同种型作为阴性对照。在下文中,我们提供了实验的详细描述。
遵循Biochrom的方案,通过经聚蔗糖(Polysucrose)密度梯度(Biocoll 1.077g/mL,Biochrom)离心从血沉棕黄层中分离出来自健康志愿者供体的 人外周血单核细胞(PBMC)。使用Pan T细胞纯化试剂盒(Miltenyi Biotec GmbH)和制造商的方案从所得PBMC分离出T淋巴细胞。将纯化的T细胞 在由90%FCS和10%DMSO组成的缓冲液中重新悬浮,立即用液氮冷冻并 储存在液氮中直至进一步使用。对于该试验,将T细胞解冻16小时,并在补充有10%FCS和1%青霉素-链霉素(Life Technologies)的培养基(RPMI 1640,LifeTechnologies)中培养。
对于每个实验条件使用一式三份样品进行以下程序。将平底组织培养板 在4℃下使用200μL的0.5μg/mL的抗CD3抗体和SEQ ID NOs:36和37、 SEQ ID NOs:38和39、SEQ IDNOs:40和41以及SEQ ID NOs:42和43 的融合多肽的一系列稀释物(25μg/mL、2.5μg/mL和0.25μg/mL)或所述IgG4 同种型阴性对照(25μg/mL)涂覆过夜。在具有相同实验条件的另一个设置 中,所述融合多肽与IgG1同种型(作为另外的阴性对照)而非抗CD3抗体 一起进行涂覆。第二天,用PBS洗涤孔两次,并向每个孔中加入100μL的 在补充有2μg/mL的抗hCD28抗体的培养基中的T细胞悬液(相当于5×104个T细胞)。板用透气密封件(4titude)覆盖,并在37℃下、加湿的5%CO2气氛中孵育3天。随后,评估上清液中的IL-2浓度以及细胞增殖。
使用来自R&D Systems的IL-2 DuoSet DuoSet试剂盒对合并的细胞培养 上清液中的人IL-2水平进行定量。如下描述进行该过程。在第一步中,用在 PBS中稀释的1μg/mL的“人IL-2捕获抗体”(R&D System)在室温下涂覆 384孔板2小时。随后,使用Biotek EL405选择CW洗涤器(Biotek),用 80μL的PBS-T(含有0.05%Tween20的PBS)洗涤孔5次。在另外含有1% 酪蛋白(w/w)的PBS-T中封闭1小时后,将合并的上清液和在培养基中稀 释的系列浓度的IL-2标准品在384孔板中、4℃下孵育过夜。为了允许检测 和定量所捕获的IL-2,将100ng/mL的生物素化的山羊抗hIL-2-Bio检测抗体 (R&D System)和1μg/mL的Sulfotag标记的链霉亲和素(Mesoscale Discovery)的混合物加入含有0.5%的酪蛋白的PBS-T中,并在室温下孵育 1小时。洗涤后,向每个孔中加入25μL读数缓冲液,并使用MesoscaleDiscovery读数器读取每个孔的电化学发光(ECL)信号。使用Mesoscale Discovery软件进行分析和定量。
图19中描述了实验结果。与阴性对照同种型IgG4相比,对于所有的四 种融合多肽(SEQ ID NOs:36和37,SEQ ID NOs:38和39,SEQ ID NOs: 40和41以及SEQ ID NOs:42和43),存在通过使用的T细胞的清晰的IL-2 产生诱导。数据进一步显示在多肽融合物的更高涂覆浓度下朝向更强的IL-2 诱导的趋势。在不存在T细胞的抗CD3刺激的情况下,所述融合多肽不诱 导通过T细胞的IL-2产生。这表明了所述融合多肽能够共刺激采用次最佳 浓度的抗CD3和抗CD28抗体刺激的T细胞的活化。
实施例20:使用肿瘤细胞结合的融合多肽进行功能性T细胞活化试验
我们采用靶细胞依赖性T细胞活化试验来评估SEQ ID NOs:36和37、 SEQ ID NOs:44和SEQ ID NO:45的融合多肽(能够同时结合CD137和 GPC3)当固定在GPC3阳性细胞系上时共刺激T细胞应答的能力。作为阴 性对照,我们使用SEQ ID NOs:34和35的单特异性CD137结合抗体。在 实验中,将抗人CD3抗体(OKT3,eBioscience)涂覆在塑料培养皿上,随后将GPC3阳性HepG2细胞在培养皿上孵育过夜。第二天,在1μg/mL的 SEQ ID NOs:36和37、SEQ ID NO:44和SEQ ID NO:45的融合多肽或 SEQ ID NOs:34和35的对照抗体的存在下,将纯化的T细胞在涂覆的表面 上孵育。作为读出结果,我们测量了上清液白细胞介素2(IL-2))水平。 在下文中详细描述该实验。
遵循Biochrom的方案,通过经聚蔗糖密度梯度(Biocoll 1.077g/mL,来 自Biochrom)离心从血沉棕黄层中分离出来自健康志愿者供体的人外周血单 核细胞(PBMC)。使用Pan T细胞纯化试剂盒(Miltenyi Biotec GmbH)和 制造商的方案从所得PBMC分离出T淋巴细胞。将纯化的T细胞在由90% FCS和10%DMSO组成的缓冲液中重新悬浮,立即用液氮冷冻并储存在液 氮中直至进一步使用。对于该试验,将T细胞解冻16小时,并在补充有10%FCS和1%青霉素-链霉素(Life Technologies)的培养基(RPMI 1640,Life Technologies)中培养。
对于每个实验条件使用一式三份样品进行以下程序。在37℃下,使用 200μL的0.25μg/mL抗CD3抗体预先涂覆平底组织培养板1小时或不涂覆。 随后用PBS洗涤板两次。每孔涂板接种1.25×104个HepG2肿瘤细胞,并在 37℃下、加湿的5%CO2气氛中,使其粘附过夜。之前已经在标准条件下使 HepG2细胞在培养物中生长,使用Accutase分离,并重新悬浮于培养基中。
在接下来的几天中,在37℃下用浓度为10μg/ml的丝裂霉素C(Sigma Aldrich)处理肿瘤细胞2小时以便阻断其增殖。用PBS洗涤板两次,并向 每个孔中加入100μL的T细胞悬浮液(相当于5×104个T细胞)和浓度为 1μg/mL的融合多肽或阴性对照。板用透气密封件(4titude)覆盖,并在37℃ 下、加湿的5%CO2气氛中孵育3天。随后,如下所述评估上清液中的IL-2 浓度。
使用来自R&D Systems的IL-2DuoSet试剂盒对细胞培养上清液中的人 IL-2水平进行定量。以下进行和描述该过程。在第一步中,用在PBS中稀 释的1μg/mL的“人IL-2捕获抗体”(R&D System)在室温下涂覆384孔板2 小时。随后,使用Biotek EL405选择CW洗涤器(Biotek),用80μl的PBS-T (含有0.05%Tween20的PBS)洗涤孔5次。在另外含有1%酪蛋白(w/w) 的PBS-T中封闭1小时后,将合并的上清液和在培养基中稀释的系列浓度的 IL-2标准品在384孔板中、4℃下孵育过夜。为了允许检测和定量捕获的IL-2, 将100ng/mL的生物素化的山羊抗hIL-2-Bio检测抗体(R&D System)和 1μgg/mL的Sulfotag标记的链霉亲和素(Mesoscale Discovery)的混合物加入 含有0.5%的酪蛋白的PBS-T中,并在室温下孵育1小时。洗涤后,向每个 孔中加入25μL读数缓冲液,并使用Mesoscale Discovery读数器读取每个孔 的电化学发光(ECL)信号。使用Mesoscale Discovery软件进行分析和定量。
图20中描述了实验结果。与SEQ ID NOs:34和35的对照抗体相比, 对于SEQ IDNOs:36和37、SEQ ID NO:44和SEQ ID NO:45的这三种 融合多肽,存在通过使用的T细胞的清晰的IL-2产生诱导。正如所述GPC3 结合融合多肽表现出比所述对照抗体更高水平的IL-2产生所证明的,这显示 本公开内容的融合多肽能够以靶标依赖性方式共刺激T细胞活化。
实施例21:在阻断和不阻断双特异性结合的情况下使用肿瘤细胞结合的融 合多肽进行功能性T细胞活化试验
我们采用类似于实施例20中描述的实验的靶细胞依赖性T细胞活化试 验来评估SEQ ID NO:44和SEQ ID NO:45的融合多肽(能够同时结合CD137 和GPC3)当结合于GPC3阳性细胞系时共刺激T细胞应答的能力。作为对 照,实验在过量的SEQ ID NO:10的单特异性结合GPC3的Anticalin的存 在下进行,以便从结合于所述GPC3阳性细胞中替换出双特异性构建体SEQ ID NO:44或SEQ ID NO:45。在实验中,将抗人CD3抗体(OKT3, eBioscience)涂覆在塑料培养皿上,随后将GPC3阳性Hep3B细胞在培养皿 上孵育过夜。第二天,在四种浓度的SEQ ID NO:44和SEQ ID NO:45的 融合多肽(1μg/mL、0.1μg/mL、0.01μg/mL、0.001μg/mL)的存在下,将纯 化的T细胞在涂覆的表面上孵育。同时,通过加入过量的SEQ ID NO:10(1mg/mL)进行实验。作为读出结果,我们测量了上清液白细胞介素2(IL-2) 水平。在下文中详细描述该实验。
遵循Biochrom的方案,通过经聚蔗糖密度梯度(Biocoll 1.077g/mL,来 自Biochrom)离心从血沉棕黄层中分离出来自健康志愿者供体的人外周血单 核细胞(PBMC)。使用Pan T细胞纯化试剂盒(Miltenyi Biotec GmbH)和 制造商的方案从所得PBMC分离出T淋巴细胞。将纯化的T细胞在补充有 10%FCS和1%青霉素-链霉素(Life Technologies)的培养基(RPMI 1640, Life Technologies)中培养。
对于每个实验条件使用一式三份样品进行以下程序。在37℃下,使用 200μL的0.25μg/mL抗CD3抗体预先涂覆平底组织培养板1小时。随后用 PBS洗涤板两次。每孔涂板接种1.25×104个Hep3B肿瘤细胞,并在37℃下、 加湿的5%CO2气氛中,使其粘附过夜。之前已经在标准条件下使Hep3B细 胞在培养物中生长,使用Accutase分离,并重新悬浮于培养基中。
在第二天,使用浓度为10μg/ml的丝裂霉素C(Sigma Aldrich)处理肿 瘤细胞2小时以便阻断其增殖。用PBS洗涤板两次,在存在或不存在过量的 SEQ ID NO:10(1mg/mL)的情况下,加入100μL的T细胞悬液(相当于 5×104个T细胞)和浓度为1μg/mL、0.1μg/mL、0.01μg/mL、0.001μg/mL的 SEQ ID NO:44和SEQ ID NO:45的融合多肽。板用透气密封件(4titude) 覆盖,并在37℃下、加湿的5%CO2气氛中孵育3天。随后,根据制造商的 说明书,使用BD Bioscience的人IL-2ELISA设置通过ELISA来测定所述上 清液中的IL-2浓度。
图21中描述了实验结果。对于SEQ ID NO:44(图21A)和SEQ ID NO: 45(图21C)的两种融合多肽,存在通过使用的T细胞的清晰的IL-2产生 诱导,其随着浓度升高而增加。相比之下,在过量的SEQ ID NO:10的存 在下,IL-2产生诱导被消除,所示SEQ ID NO:10抑制了双特异性物SEQ ID NO:44和SEQ ID NO:45与Hep3B细胞的结合。这显示本公开内容的融合多肽能够以靶标依赖性方式共刺激T细胞活化。
值得注意的是,与SEQ ID NO:45相比,SEQ ID NO:44的IL-2诱导 的量更高,这表明双特异性GPC3/CD137融合物的几何结构在测定T细胞活 化的强度方面起重要作用。
实施例22:使用具有高和低GPC3水平的肿瘤细胞进行功能性T细胞活化 试验
我们采用类似于实施例20中描述的实验的靶细胞依赖性T细胞活化试 验,来评估SEQ ID NO:44和SEQ ID NO:45的融合多肽依赖于所用细胞 系的GPC3水平共刺激T细胞应答的能力。我们使用HER2结合抗体曲妥珠 单抗作为阴性对照。为了比较,我们研究了SEQID NOs:74和75的参照抗 CD137单克隆抗体的行为。在实验中,将抗人CD3抗体(OKT3,eBioscience) 涂覆在塑料培养皿上,随后将HepG2、SKBR3或MCF7细胞在培养皿中分 别培养过夜。第二天,在各种浓度的SEQ ID NO:44、SEQ ID NO:45的融 合多肽、参照抗体SEQ IDNOs:74和75以及阴性对照曲妥珠单抗和溶媒(即 不添加测试品)的存在下,将纯化的T细胞在涂覆的表面上孵育。作为读出 结果,我们测量了上清液白细胞介素2(IL-2)水平。在下文中详细描述该 实验。
遵循Biochrom的方案,通过经聚蔗糖密度梯度(Biocoll 1.077g/mL,来 自Biochrom)离心从血沉棕黄层分离出来自健康志愿者供体的人外周血单核 细胞(PBMC)。使用Pan T细胞纯化试剂盒(Miltenyi Biotec GmbH)和制 造商的方案从所得PBMC分离T淋巴细胞。将纯化的T细胞在由90%FCS 和10%DMSO组成的缓冲液中重新悬浮,立即用液氮冷冻并储存在液氮中 直至进一步使用。对于该试验,将T细胞解冻16小时,并在补充有10%FCS和1%青霉素-链霉素(Life Technologies)的培养基(RPMI 1640,Life Technologies)中培养。
对于每个实验条件使用一式三份样品进行以下程序。在37℃下,使用 200μL的0.25μg/mL抗CD3抗体预先涂覆平底组织培养板1小时。随后用 PBS洗涤板两次。每孔接种5×104个靶肿瘤细胞,并在37℃下、加湿的5% CO2气氛中,使其粘附过夜。之前已经在标准条件下使所述靶细胞在培养物 中生长,使用Accutase分离,并重新悬浮于培养基中。
第二天,在37℃下使用浓度为30μg/ml的丝裂霉素C(Sigma Aldrich) 处理肿瘤细胞2小时以便阻断其增殖。用PBS洗涤板两次,将100μtL的T 细胞悬液(相当于5×104个T细胞)连同浓度范围为0.05nM至5nM的测试 品SEQ ID NO:44和SEQ ID NO:45、参照抗体SEQID NOs:74和75以 及阴性对照曲妥珠单抗加入每个孔中。板用透气密封件(4titude)覆盖,并 在37℃下、加湿的5%CO2气氛中孵育3天。随后,如下所述评估所述上清 液中的IL-2浓度。
使用来自R&D Systems的IL-2 DuoSet试剂盒对细胞培养上清液中的人 IL-2水平进行定量。以下进行和描述该过程。在第一步中,用在PBS中稀 释的1μg/mL的“人IL-2捕获抗体”(R&D System)在室温下涂覆384孔板2 小时。随后,使用Biotek EL405选择Cw洗涤器(Biotek),用80μl的PBS-T (含有0.05%Tween20的PBS)洗涤孔5次。在另外含有1%酪蛋白(w/w) 的PBS-T中封闭1小时后,将合并的上清液和在培养基中稀释的系列浓度的 IL-2标准品在384孔板中、4℃下孵育过夜。为了允许检测和定量捕获的IL-2, 将100ng/mL的生物素化的山羊抗hIL-2-Bio检测抗体(R&D System)和 1μg/mL的Sulfotag标记的链霉亲和素(Mesoscale Discovery)的混合物加入 含有0.5%的酪蛋白的PBS-T中,并在室温下孵育1小时。洗涤后,向每个 孔中加入25μL读数缓冲液,并使用Mesoscale Discovery读数器读取每个孔 的电化学发光(ECL)信号。使用Mesoscale Discovery软件进行分析和定量。
图22中绘制了代表性实验的结果。在该图中,在没有测试品的情况下, 相对于背景IL-2产生绘制数值,因此该数值代表与背景相比较的倍数变化。 虽然阴性对照曲妥珠单抗(图22A,三角形)不在三种细胞系中任一种的情 况下导致T细胞上的IL-2诱导,双特异性融合多肽SEQ ID NO:44(图22A, 圆圈)和SEQ ID NO:45(图22A,正方形)的上升浓度在GPC3表达的 HepG2细胞的存在下诱导T细胞产生IL-2。然而,对于GPC3阴性SKBR3 和MCF7细胞,没有明显的由于SEQ ID NO:44和SEQ ID NO:45的IL-2 增加(图22)。这种行为显著不同于抗CD137抗体SEQ ID NO:74和75 (其在所有三种细胞系的存在下在T细胞上诱导IL-2(图22B))。
所述实验清楚地表明,SEQ ID NO:44和SEQ ID NO:45以依赖于靶 细胞上GPC3的存在的方式活化T细胞。虽然GPC3阳性HepG2细胞系如 通过IL-2产生测量的显示了清晰的T细胞活化,但是这种效应不在SKBR3 和MCF7细胞的情况下发生,所述SKBR3和MCF7细胞不表达可检测的 GPC3水平。这种效应可归因于GPC3的存在而不是由于所研究的GPC3阴 性细胞系(其潜在地使得CD137信号传导失效)导致的,前述情况通过以 下事实变得显而易见:抗CD137抗体SEQ ID NOs:74和75能够在所有三 种细胞类型的情况下通过CD137信号传导来活化T细胞。
实施例23:融合多肽的离体T细胞免疫原性评估
为了研究在人体中形成抗药抗体的风险,进行双特异性融合多肽SEQ ID NO:44和SEQ ID NO:45、对照抗体曲妥珠单抗和阳性对照钥孔血蓝蛋 白(KLH)的体外T细胞免疫原性评估。为了进行实验,将来自被选择为涵 盖反映全球人口分布的HLA同种异型的32个供体的PBMC解冻、洗涤并 以每孔3×105个细胞的密度接种到96孔板上。将在试验介质中稀释的测试品 以30μg/mL的浓度加入到细胞中。单独使用试验介质作为空白,并使用钥孔 血蓝蛋白(KLH)作为天然阳性对照。PBMC在37℃下、5%CO2的加湿气 氛中孵育7天。在第7天,标记PBMC的表面表型CD3+和CD4+标志物和 掺入DNA的EdU(5-乙炔基-2′-脱氧尿苷),用作细胞增殖标记物。使用 Guava easyCyte 8HT流式细胞仪测量CD3+CD4+EdU+增殖细胞的百分比,并 使用GuavaSoft InCyte软件进行分析。
图23提供了所有32个供体和所研究的所有测试分子的该试验的结果。 在图23A中,绘制刺激指数,其通过在测试品存在下相对于不存在下的增殖 比率获得。以虚线指示定义应答供体的阈值(刺激指数>2)。在图23B中, 绘制了由该阈值定义的应答供体的数量。显然,应答参照参照曲妥珠单抗的 供体的数量是1个,因此是小的,而所有32个供体均以阈值以上的强增殖 应答阳性对照KLH。对于双特异性融合多肽SEQ ID NO:44和SEQ IDNO: 45,在两种情况下,应答供体的数目也是1个。
因此实验证明了所述双特异性融合多肽在体外T细胞免疫原性评估中 诱导很小的应答,这表明诱导免疫原性应答的风险很低。
实施例24:对Fc-γ受体hFcγ RI/CD64和hFcγ RIIIA/CD16a的亲和力
为了测量具有工程化的基于IgG4的主链的多肽融合物(SEQ ID NO: 44和SEQ IDNO:45)与Fc-γ受体hFcγ RI/CD64(R&D Systems)和hFcγ RIIIA/CD16a(R&D Systems)的结合亲和力,采用基于表面等离子体共振 (SPR)的试验。曲妥珠单抗用作具有IgG1主链的单特异性抗体的对照。 在SPR亲和力试验中,多肽融合物是生物素化的并使用BiotinCAPture试剂 盒(GE Healthcare)捕获在传感器芯片CAP上。用ssDNA寡核苷酸预固定 传感器芯片CAP。以2μL/min的流速施加未稀释的Biotin CAPture试剂(与 互补的ss-DNA寡核苷酸缀合的链霉亲和素)300秒。随后,以5μL/min的 流速施加10μg/mL的生物素化的多肽融合物300秒。曲妥珠单抗和所述多肽 融合物通过使用
Figure RE-BPA0000250872330000622
NHS-PEG4-Biotin(ThermoScientific)在室温下孵 育2小时而生物素化。通过将反应混合物装载到ZebaTM旋转脱盐板(Thermo Scientific)上除去过量的未反应的生物素试剂。参照通道仅装载BiotinCAPture试剂。
为了测定亲和力,在运行缓冲液(10mM HEPES,150mM NaCl,0.05% v/v表面活性剂P20,3mM EDTA,pH7.4(GE Healthcare))中准备hFcγ RI/CD64的四个稀释液(在100、25、6.25和1.6nM),或hFcγ RIIIA/CD16a 的四至五个稀释液(在1000、333、111、37、12nM),并将其施加到芯片 表面。应用30μL/min的流速,样品接触时间为180秒,hFcγ RI/CD64的解离时间为1800/2700秒,或者hFcγ RIIIA/CD16a的解离时间为300秒。所有 的测量在25℃下进行。通过注射含有0.25M NaOH的6M Gua-HCl,然后用 运行缓冲液进行额外洗涤并且进行120秒的稳定期来实现传感器芯片CAP 表面的再生。在蛋白质测量之前,进行三个再生循环用于调节目的。使用 Biacore T200评估软件(V 2.0)进行数据评估。使用双重参照。对于hFcγ RI/CD64,使用1∶1结合模型拟合原始数据。对于hFcγ RIIIA/CD16a,采用 稳态亲和力模型拟合原始数据。
表17显示hFcγ RI/CD64的数据的拟合结果。基于IgG1的测试品曲妥 珠单抗显示出0.3nM的亲和力。多肽融合物SEQ ID NO:44和SEQ ID NO: 45未显示与hFcγ RI/CD64的显著结合。这些数据表明,通过将同种型从IgG1 转换为工程化的IgG4,与hFcγ RI/CD64的结合可降低到不明显水平。
表17:
Figure RE-BPA0000250872330000621
Figure RE-BPA0000250872330000631
表18显示hFcγ RIIIA/CD16a的数据的拟合结果。所得到的基于IgG1 的测试品曲妥珠单抗与hFcγ RIIIA/CD16a的结合亲和力为约350nM,而多 肽融合物SEQ ID NO:44和SEQ ID NO:45未显示出与hFcγ RIIIA/CD16a 的显著结合。这些数据表明,通过将同种型从IgG1转换为工程化的IgG4, 与hFcγ RI/CD16的结合可降低到不明显水平。
表18:
名称 KD[nM]
曲妥珠单抗 335±64
SEQ ID NO:44 不可测定
SEQ ID NO:45 不可测确定
实施例25:对新生儿Fc受体的亲和力
为了测量具有工程化的基于IgG4的主链的多肽融合物(SEQ ID NOs: 44和45)与新生儿Fc受体(FcRn,Sino Biologicals,#CT009-H08H)的 结合亲和力,采用基于表面等离子体共振(SPR)的试验。曲妥珠单抗用作 具有IgG1主链的单特异性抗体的对照。在SPR亲和力试验中,根据制造商 的说明书,将FcRn共价固定在CM5传感器芯片(GE Healthcare)上。简言 之,在用1-乙基-3-(3-二甲基氨基丙基)-碳二亚胺(EDC)和N-羟基琥珀酰 亚胺(NHS)活化葡聚糖基质的羧基后,使FcRn蛋白的伯胺与表面上的NHS 酯反应,直到达到~200RU的信号。最后,通过使1M乙醇胺溶液通过表面 来阻断未反应的NHS-酯。整个固定程序中的流速为10μl/min。
为了测定它们的亲和力,在运行缓冲液(10mM HEPES,150mM NaCl, 0.05%v/v表面活性剂P20,3mM EDTA,pH 6.0)中制备所有构建体的六个 稀释液(1000nM、333nM、111nM、37nM、12nM和4nM)并施加到芯片 表面。应用30μL/min的流速,样品接触时间为180秒,解离时间为30秒。 所有的测量在25℃下进行。通过注射10mM甘氨酸pH 3.0来实现传感器芯 片CAP表面的再生。在蛋白质测量之前,进行三个再生循环用于调节目的。 使用双重参照的Biacore T200评估软件(V 2.0)进行数据评估。采用稳态亲 和力模型拟合原始数据。
在表19中反映出,所得到的所有多肽融合物与FcRn的结合亲和力为约 2μM,这表明将同种型从IgG1转化为工程化的IgG4主链对FcRn结合没有 可检测的影响。
表19:
名称 KD[μM]
曲妥珠单抗 2.0
SEQ ID NO:44 2.1
SEQ ID NO:45 1.9
实施例26:小鼠中融合多肽的药代动力学
在小鼠中进行由SEQ ID NO:44和SEQ ID NO:45定义的融合多肽的 药代动力学分析。约5周龄的雄性CD-1小鼠(每个时间点3只小鼠;Charles River Laboratories,Research Models and Services,Germany GmbH)以10mg/kg 的剂量在尾部静脉注射融合多肽。测试品以5mL/kg的体积作为大剂量(bolus) 施用。在时间点5分钟、1小时、2小时、4小时、8小时、24小时、48小 时、4天、8天和14天获得来自小鼠的血浆样品。收集足够的全血(在异氟 烷麻醉下采集)以获得至少100μL的Li-Heparin血浆/动物和时间。使用通 过靶标GPC3和CD137检测完整的双特异性构建体的夹心ELISA检测了药 物水平。通过使用PrismGraphPad 5软件的二室模型拟合数据。
图25显示构建体SEQ ID NO:44和SEQ ID NO:45的血浆浓度随时间 的曲线图,其中插图在半对数图中显示相同的数据。在这两种情况下,药代 动力学看起来相似。从约150μg/mL的血浆浓度开始,血浆水平在约100小 时内降至背景水平。二室模型的双指数衰减成功地被应用于准确描述数据, 使用该模型的数据拟合(图25)得到SEQ ID NO:44的终末半衰期为13.7 小时以及SEQ ID NO:45的终末半衰期为10.0小时。
数据表明所述双特异性融合物具有的半衰期在对于Fc融合蛋白可预期 的那种的中间范围内。
实施例27:融合多肽在食蟹猴中的药代动力学
在食蟹猴中进行由SEQ ID NO:44和SEQ ID NO:45定义的融合多肽 的药代动力学分析。雄性食蟹猴在60分钟内接受静脉输注剂量为3mg/kg的 测试品。在时间点15分钟、2小时、4小时、8小时、24小时、48小时、3 天、4天、5天、6天、7天、9天、11天、14天、18天和24天获得来自食 蟹猴的血浆样品。使用通过靶标HER2和CD137检测完整的双特异性构建 体的夹心ELISA检测了药物水平。使用采用靶标HER2和人Fc的夹心ELISA 测定了曲妥珠单抗血浆水平。通过使用Prism GraphPad 5软件的二室模型拟 合数据。
图26显示构建体SEQ ID NO:44和SEQ ID NO:45的血浆浓度随时间 的曲线图,其中插图在半对数图中显示相同的数据。在两种情况下,药代动 力学看起来相似,其中SEQID NO:44显示出明显更长的半衰期。从约 70μg/mL的血浆浓度开始,血浆水平在200h的时间内下降到接近零。二室 模型的双指数衰减成功地被应用于准确描述数据,使用该模型的数据拟合 (图26)得到分别为39小时的终末半衰期(SEQ ID NO:44)和24.1小时 的终末半衰期(SEQ ID NO:45)。
因此,数据表明所述双特异性融合体在食蟹猴中具有的终末半衰期与在 小鼠中的半衰期相比增加,并且在生物治疗剂的合理范围内。
本文中说明性描述的实施方式可以适当地在没有本文中未具体公开的 任何一个或多个元素、一个或多个限制的情况下实施。因此,例如,术语“包 括”、“包含”、“含有”等应作扩大而不限制的理解。此外,本文使用的术语和 表达被用作说明性而非限制性的术语,并且不旨在这样的术语和表达的使用 排除所示和所述特征的任何等同物或其部分,而是应理解,在本发明所要求 保护的的范围内可以进行各种修改。因此,应当理解的是,虽然本发明实施 方案已经通过优选实施方案和可选特征进行了具体公开,但是本领域技术人 员可以采用对其的修改和变化,并且这样的修改和变化被认为在本发明的范 围内。本文所描述的所有专利、专利申请、教科书和同行评议的出版物的全 部内容均通过引用并入本文。此外,如果在通过引用并入本文的参考文献中 的术语的定义或用途与本文中提供的该术语的定义不一致或相矛盾,则应用 本文中提供的该术语的定义而不应用在参考文献中的该术语的定义。落入一 般公开内容内的较窄种类和亚属分组中的每一个也构成了本发明的一部分。 这包括具有从属类中去除任何主题的附带条件或负面限制的本发明的一般 描述,而不管所删除的材料是否在本文中具体叙述。另外,当按照马库什组 的方式描述特征时,本领域技术人员将认识到,本公开内容也由此根据该马 库什组的任何个别成员或成员亚组来描述。其他实施方案将由以下权利要求 变得显而易见。
等同物:本领域技术人员将认识到或能够使用不超过常规实验来确定本 文描述的本发明的具体实施方案的许多等同物。这样的等同物旨在被所附权 利要求涵盖。本说明书中提及的所有出版物、专利和专利申请均通过引用并 入本说明书中,其程度如同每个单独的出版物、专利或专利申请被具体和单 独地指明通过引用并入本文。
Figure IPA0000250872290000011
Figure IPA0000250872290000021
Figure IPA0000250872290000031
Figure IPA0000250872290000041
Figure IPA0000250872290000051
Figure IPA0000250872290000061
Figure IPA0000250872290000071
Figure IPA0000250872290000081
Figure IPA0000250872290000091
Figure IPA0000250872290000101
Figure IPA0000250872290000111
Figure IPA0000250872290000121
Figure IPA0000250872290000131
Figure IPA0000250872290000141
Figure IPA0000250872290000151
Figure IPA0000250872290000161
Figure IPA0000250872290000171
Figure IPA0000250872290000181
Figure IPA0000250872290000191
Figure IPA0000250872290000201
Figure IPA0000250872290000211
Figure IPA0000250872290000221
Figure IPA0000250872290000231
Figure IPA0000250872290000241
Figure IPA0000250872290000251
Figure IPA0000250872290000261
Figure IPA0000250872290000271
Figure IPA0000250872290000281
Figure IPA0000250872290000291
Figure IPA0000250872290000301
Figure IPA0000250872290000311
Figure IPA0000250872290000321
Figure IPA0000250872290000331
Figure IPA0000250872290000341
Figure IPA0000250872290000351
Figure IPA0000250872290000361
Figure IPA0000250872290000371
Figure IPA0000250872290000381
Figure IPA0000250872290000391
Figure IPA0000250872290000401
Figure IPA0000250872290000411
Figure IPA0000250872290000421
Figure IPA0000250872290000431
Figure IPA0000250872290000441
Figure IPA0000250872290000451
Figure IPA0000250872290000461
Figure IPA0000250872290000471
Figure IPA0000250872290000481
Figure IPA0000250872290000491
Figure IPA0000250872290000501
Figure IPA0000250872290000511
Figure IPA0000250872290000521
Figure IPA0000250872290000531
Figure IPA0000250872290000541
Figure IPA0000250872290000551
Figure IPA0000250872290000561
Figure IPA0000250872290000571
Figure IPA0000250872290000581
Figure IPA0000250872290000591
Figure IPA0000250872290000601
Figure IPA0000250872290000611
Figure IPA0000250872290000621
Figure IPA0000250872290000631
Figure IPA0000250872290000641
Figure IPA0000250872290000651
Figure IPA0000250872290000661
Figure IPA0000250872290000671
Figure IPA0000250872290000681
Figure IPA0000250872290000691
Figure IPA0000250872290000701
Figure IPA0000250872290000711
Figure IPA0000250872290000721
Figure IPA0000250872290000731
Figure IPA0000250872290000741
Figure IPA0000250872290000751
Figure IPA0000250872290000761
Figure IPA0000250872290000771
Figure IPA0000250872290000781
Figure IPA0000250872290000791
Figure IPA0000250872290000801
Figure IPA0000250872290000811
Figure IPA0000250872290000821
Figure IPA0000250872290000831
Figure IPA0000250872290000841
Figure IPA0000250872290000851
Figure IPA0000250872290000861
Figure IPA0000250872290000871
Figure IPA0000250872290000881
Figure IPA0000250872290000891
Figure IPA0000250872290000901
Figure IPA0000250872290000911
Figure IPA0000250872290000921
Figure IPA0000250872290000931
Figure IPA0000250872290000941
Figure IPA0000250872290000951
Figure IPA0000250872290000961
Figure IPA0000250872290000971
Figure IPA0000250872290000981
Figure IPA0000250872290000991
Figure IPA0000250872290001001
Figure IPA0000250872290001011
Figure IPA0000250872290001021
Figure IPA0000250872290001031
Figure IPA0000250872290001041
Figure IPA0000250872290001051
Figure IPA0000250872290001061
Figure IPA0000250872290001071
Figure IPA0000250872290001081
Figure IPA0000250872290001091
Figure IPA0000250872290001101
Figure IPA0000250872290001111
Figure IPA0000250872290001121
Figure IPA0000250872290001131
Figure IPA0000250872290001141
Figure IPA0000250872290001151
Figure IPA0000250872290001161
Figure IPA0000250872290001171
Figure IPA0000250872290001181
Figure IPA0000250872290001191
Figure IPA0000250872290001201

Claims (17)

1.一种融合蛋白,其特征在于,所述融合蛋白能够结合CD137和GPC3两者,并且所述融合蛋白包含至少两个任意顺序的亚基,其中第一亚基是对CD137特异性的,第二亚基是对GPC3特异性的,并且其中
(a)所述融合蛋白由两条重链和两条轻链组成,其中,所述重链和所述轻链的氨基酸序列分别如SEQ ID NO:36和SEQ ID NO:37所示,所述重链和所述轻链的氨基酸序列分别如SEQ ID NO:38和SEQ ID NO:39所示,所述重链和所述轻链的氨基酸序列分别如SEQ ID NO:40和SEQ ID NO:41所示,所述重链和所述轻链的氨基酸序列分别如SEQ ID NO:42和SEQ IDNO:43所示,或所述重链和所述轻链的氨基酸序列分别如SEQ ID NO:53和SEQ ID NO:54所示;
(b)所述融合蛋白由两条相同的多肽链组成,其中所述多肽链的氨基酸序列如SEQ IDNO:44所示或如SEQ ID NO:45所示;或者
(c)所述融合蛋白的氨基酸序列如SEQ ID NO:46所示或如SEQ ID NO:47所示。
2.根据权利要求1所述的融合蛋白,其中所述融合蛋白能够共刺激T细胞应答。
3.根据权利要求1所述的融合蛋白,其中所述融合蛋白能够诱导IL-2产生。
4.根据权利要求1所述的融合蛋白,其中所述融合蛋白能够以GPC3依赖性方式共刺激T细胞活化。
5.一种核酸分子,其包含编码权利要求1至4中任一项所述的蛋白的核苷酸序列。
6.根据权利要求5所述的核酸分子,其中所述核酸分子可操作地连接至调节序列以允许所述核酸分子的表达。
7.根据权利要求5或6所述的核酸分子,其中所述核酸分子包含在载体中。
8.根据权利要求5或6所述的核酸分子,其中所述核酸分子包含在噬菌粒载体中。
9.一种宿主细胞,其含有权利要求5至8中任一项所述的核酸分子。
10.一种生产权利要求1至4中任一项所述的融合蛋白的方法,其中通过基因工程方法从编码所述融合蛋白的核酸开始生产所述融合蛋白。
11.根据权利要求10所述的方法,其中所述融合蛋白在细菌或真核宿主生物体中产生,并从该宿主生物体或其培养物中分离。
12.根据权利要求1至4中任一项所述的融合蛋白或包含所述融合蛋白的组合物在制备用于同时活化CD137的下游信号传导通路和接合GPC3阳性肿瘤细胞的药物中的用途。
13.根据权利要求1至4中任一项所述的融合蛋白或包含所述融合蛋白的组合物在制备用于同时共刺激T细胞和接合GPC3阳性肿瘤细胞的药物中的用途。
14.根据权利要求1至4中任一项所述的融合蛋白或包含所述融合蛋白的组合物在制备用于同时诱导T淋巴细胞增殖和接合GPC3阳性肿瘤细胞的药物中的用途。
15.根据权利要求1至4中任一项所述的融合蛋白或包含所述融合蛋白的组合物在制备用于将CD137聚集诱导的活化的T-细胞导向至GPC3阳性肿瘤细胞的药物中的用途。
16.一种药物组合物,其包含权利要求1至4中任一项所述的融合蛋白。
17.根据权利要求1至4中任一项所述的融合蛋白或包含所述融合蛋白的组合物在制备用于预防、改善或治疗表达GPC3的癌症细胞的药物中的用途。
CN201680028941.3A 2015-05-18 2016-05-18 抗癌融合多肽 Active CN108112253B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP15167927.1 2015-05-18
EP15167927 2015-05-18
EP16150508 2016-01-08
EP16150508.6 2016-01-08
PCT/EP2016/061071 WO2016184882A1 (en) 2015-05-18 2016-05-18 Anti-cancer fusion polypeptide

Publications (2)

Publication Number Publication Date
CN108112253A CN108112253A (zh) 2018-06-01
CN108112253B true CN108112253B (zh) 2022-09-23

Family

ID=56134305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680028941.3A Active CN108112253B (zh) 2015-05-18 2016-05-18 抗癌融合多肽

Country Status (23)

Country Link
US (2) US10913778B2 (zh)
EP (2) EP4219535A1 (zh)
JP (1) JP6947642B2 (zh)
KR (1) KR102685748B1 (zh)
CN (1) CN108112253B (zh)
AU (1) AU2016262845B2 (zh)
BR (1) BR112017020445A2 (zh)
CA (1) CA2980838A1 (zh)
DK (1) DK3298030T5 (zh)
ES (1) ES2938525T3 (zh)
FI (1) FI3298030T3 (zh)
HR (1) HRP20230145T1 (zh)
HU (1) HUE061108T2 (zh)
LT (1) LT3298030T (zh)
MX (1) MX390894B (zh)
PL (1) PL3298030T3 (zh)
RS (1) RS64002B1 (zh)
RU (2) RU2754466C2 (zh)
SG (1) SG11201707426SA (zh)
SI (1) SI3298030T1 (zh)
SM (1) SMT202300026T1 (zh)
WO (1) WO2016184882A1 (zh)
ZA (1) ZA201706061B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2936611A1 (en) * 2014-01-13 2015-07-16 Pieris Pharmaceuticals Gmbh Multi-specific polypeptide useful for localized tumor immunomodulation
AU2016258952C1 (en) * 2015-05-04 2020-12-24 Pieris Pharmaceuticals Gmbh Proteins specific for CD137
WO2017009456A1 (en) 2015-07-15 2017-01-19 Pieris Pharmaceuticals Gmbh Novel proteins specific for lag-3
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
WO2018127473A1 (en) * 2017-01-03 2018-07-12 F. Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising anti-4-1bb clone 20h4.9
WO2018127710A1 (en) 2017-01-06 2018-07-12 Crescendo Biologics Limited Single domain antibodies to programmed cell death (pd-1)
CA3050194A1 (en) 2017-01-18 2018-07-26 Pieris Pharmaceuticals Gmbh Lipocalin muteins with binding affinity for lag-3
WO2018134279A1 (en) * 2017-01-18 2018-07-26 Pieris Pharmaceuticals Gmbh Novel fusion polypeptides specific for lag-3 and pd-1
WO2019092452A1 (en) * 2017-11-13 2019-05-16 Crescendo Biologics Limited Molecules that bind to cd137 and psma
GB201802573D0 (en) 2018-02-16 2018-04-04 Crescendo Biologics Ltd Therapeutic molecules that bind to LAG3
MX2020010015A (es) 2018-03-26 2021-01-15 4Sc Ag Combinacion que comprende inhibidor de hdac y agonista de cd137 para la terapia del cancer.
AU2019315703A1 (en) * 2018-07-31 2020-12-10 Les Laboratoires Servier Novel fusion protein specific for CD137 and PD-L1
JP7476219B2 (ja) * 2019-02-26 2024-04-30 ピエリス ファーマシューティカルズ ゲーエムベーハー Cd137およびgpc3に特異的な新規融合タンパク質
EP3946417A1 (en) * 2019-03-29 2022-02-09 Pieris Pharmaceuticals GmbH Inhaled administration of lipocalin muteins
CN113677403B (zh) * 2019-04-12 2024-12-27 豪夫迈·罗氏有限公司 包含脂质运载蛋白突变蛋白的双特异性抗原结合分子
WO2020218827A1 (ko) * 2019-04-23 2020-10-29 주식회사 엘지화학 면역글로불린의 Fc 영역 및 GDF15를 포함하는 융합 폴리펩타이드
PH12021553256A1 (en) * 2019-06-25 2022-08-08 Gilead Sciences Inc Flt3l-fc fusion proteins and methods of use
TWI862640B (zh) * 2019-07-30 2024-11-21 英商拜西可泰克斯有限公司 異質雙環肽複合物
CN115960242B (zh) * 2021-09-09 2023-10-17 广东东阳光药业股份有限公司 抗癌结合分子及其应用
KR20250071257A (ko) * 2022-09-21 2025-05-21 씨젠 인크. Cd137 및 cd228에 특이적인 신규한 융합 단백질

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3779221D1 (de) 1986-08-19 1992-06-25 Genentech Inc Einrichtung und dispersion zum intrapulmonalen eingeben von polypeptidwuchsstoffen und -zytokinen.
JPH01215289A (ja) 1988-02-22 1989-08-29 Toa Nenryo Kogyo Kk 遺伝子組換えによる正常ヒト血清アルブミンaの製造方法
FR2649991B2 (fr) 1988-08-05 1994-03-04 Rhone Poulenc Sante Utilisation de derives stables du plasmide pkd1 pour l'expression et la secretion de proteines heterologues dans les levures du genre kluyveromyces
US5728553A (en) 1992-09-23 1998-03-17 Delta Biotechnology Limited High purity albumin and method of producing
CA2190502A1 (en) 1994-05-18 1995-11-23 Robert M. Platz Methods and compositions for the dry powder formulation of interferons
DE4417598A1 (de) 1994-05-19 1995-12-14 Max Planck Gesellschaft Verwendung des Tetracyclinpromotors zur stringent regulierten Produktion von rekombinanten Proteinen in prokaryontischen Zellen
AU5132096A (en) 1995-01-30 1996-08-21 Terrapin Technologies, Inc. Glubodies - multiplicities of proteins capable of binding a variety of small molecules
US5908621A (en) 1995-11-02 1999-06-01 Schering Corporation Polyethylene glycol modified interferon therapy
US6620413B1 (en) 1995-12-27 2003-09-16 Genentech, Inc. OB protein-polymer chimeras
DE19641876B4 (de) 1996-10-10 2011-09-29 Iba Gmbh Streptavidinmuteine
WO1998016873A1 (fr) 1996-10-14 1998-04-23 Firm Forsat Ltd. Procede de preparation de dispersions a base de composants chromogenes
DE19742706B4 (de) 1997-09-26 2013-07-25 Pieris Proteolab Ag Lipocalinmuteine
GB9722131D0 (en) 1997-10-20 1997-12-17 Medical Res Council Method
CA2233725A1 (en) 1998-03-31 1999-09-30 Hemosol Inc. Hemoglobin-hydroxyethyl starch complexes
ATE307597T1 (de) 1998-06-08 2005-11-15 Hoffmann La Roche Verwendung von peg-ifn-alpha und ribavirin zur behandlung chronischer hepatitis c
US6403564B1 (en) 1998-10-16 2002-06-11 Schering Corporation Ribavirin-interferon alfa combination therapy for eradicating detectable HCV-RNA in patients having chronic hepatitis C infection
DE19926068C1 (de) 1999-06-08 2001-01-11 Arne Skerra Muteine des Bilin-Bindungsproteins
WO2002024866A2 (en) 2000-09-21 2002-03-28 University Of Massachusetts Method of inducing apoptosis in lymphoid cells
CA2440582A1 (en) 2001-03-09 2002-10-03 Dyax Corp. Serum albumin binding moieties
WO2003029462A1 (en) 2001-09-27 2003-04-10 Pieris Proteolab Ag Muteins of human neutrophil gelatinase-associated lipocalin and related proteins
EP1430136A1 (en) 2001-09-27 2004-06-23 Pieris ProteoLab AG Muteins of apolipoprotein d
WO2005019254A1 (en) 2003-08-25 2005-03-03 Pieris Proteolab Ag Muteins of a bilin-binding protein with affinity for a given target
AU2003275958A1 (en) 2003-08-25 2005-03-10 Pieris Proteolab Ag Muteins of tear lipocalin
US7288638B2 (en) 2003-10-10 2007-10-30 Bristol-Myers Squibb Company Fully human antibodies against human 4-1BB
JP2007284351A (ja) 2004-07-27 2007-11-01 Osaka Bioscience Institute アミロイド蛋白質の凝集を抑制する物質とその作用
US7892827B2 (en) 2004-11-26 2011-02-22 Pieris Ag Compound with affinity for the cytotoxic T lymphocyte-associated antigen (CTLA-4)
US20070191272A1 (en) 2005-09-27 2007-08-16 Stemmer Willem P Proteinaceous pharmaceuticals and uses thereof
US20070087005A1 (en) 2005-10-14 2007-04-19 Lazar Gregory A Anti-glypican-3 antibody
WO2007137170A2 (en) 2006-05-20 2007-11-29 Seattle Genetics, Inc. Anti-glypican-3 antibody drug conjugates
ES2354653T3 (es) 2006-08-01 2011-03-16 Pieris Ag Muteínas de lipocalina lacrimal y procedimientos para obtener las mismas.
ATE485304T1 (de) * 2006-08-01 2010-11-15 Pieris Ag Muteine von tearlipocalin und verfahren zu deren gewinnung
US8680247B2 (en) 2007-07-17 2014-03-25 Medarex, L.L.C. Monoclonal antibodies against glypican-3
WO2009052400A1 (en) 2007-10-19 2009-04-23 Abbott Laboratories Antibodies that bind to mammalian ngal and uses thereof
US8420051B2 (en) 2008-06-24 2013-04-16 Technische Universitaet Meunchen Muteins of hNGAL and related proteins with affinity for a given target
KR101974044B1 (ko) 2009-12-07 2019-04-30 피어이스 파마슈티컬즈 게엠베하 주어진 표적에 대한 친화성을 갖는 인간의 리포칼린 2의 뮤테인
EP3299386A1 (en) 2010-08-16 2018-03-28 Pieris Pharmaceuticals GmbH Binding proteins for hepcidin
KR101527297B1 (ko) 2010-09-09 2015-06-26 화이자 인코포레이티드 4-1bb 결합 분자
US9260492B2 (en) 2010-11-15 2016-02-16 Pieris Ag Muteins of human lipocalin 2 with affinity for glypican-3 (GPC-3)
US9522940B2 (en) * 2012-05-23 2016-12-20 Pieris Pharmaceuticals Gmbh Lipocalin muteins with binding-affinity for glypican-3 (GPC-3) and use of lipocalin muteins for target-specific delivery to cells expressing GPC-3
RU2015126650A (ru) * 2012-12-10 2017-01-12 Фред Хатчинсон Кэнсер Рисёрч Сентер Партнеры липокалина по слиянию
WO2014116846A2 (en) * 2013-01-23 2014-07-31 Abbvie, Inc. Methods and compositions for modulating an immune response
CN107460201A (zh) * 2013-05-08 2017-12-12 科济生物医药(上海)有限公司 编码gpc‑3嵌合抗原受体蛋白的核酸及表达gpc‑3嵌合抗原受体蛋白的t淋巴细胞
CA2936611A1 (en) * 2014-01-13 2015-07-16 Pieris Pharmaceuticals Gmbh Multi-specific polypeptide useful for localized tumor immunomodulation
PL3130606T3 (pl) * 2014-04-07 2022-02-07 Chugai Seiyaku Kabushiki Kaisha Przeciwciała dwuswoiste aktywujące układ odpornościowy
CA2973640A1 (en) 2015-01-28 2016-08-04 Rachida Siham Bel Aiba Novel proteins specific for angiogenesis
BR112017017530A2 (pt) 2015-02-18 2018-04-17 Sanofi proteínas específicas para pioverdina e pioquelina
RU2727165C2 (ru) * 2015-05-04 2020-07-21 ПИЕРИС ФАРМАСЬЮТИКАЛС ГмбХ Слитый полипептид с противораковой активностью
AU2016258952C1 (en) 2015-05-04 2020-12-24 Pieris Pharmaceuticals Gmbh Proteins specific for CD137
BR112017020961A2 (pt) * 2015-05-18 2018-07-10 Pieris Pharmaceuticals Gmbh muteína, molécula de ácido nucleico, célula hospedeira, método de produção de uma muteína e método de ligação
TW201725212A (zh) 2015-12-10 2017-07-16 第一三共股份有限公司 特異性於降鈣素基因相關胜肽的新穎蛋白

Also Published As

Publication number Publication date
MX390894B (es) 2025-03-21
BR112017020445A2 (pt) 2018-07-03
PL3298030T3 (pl) 2023-05-08
LT3298030T (lt) 2023-02-27
CN108112253A (zh) 2018-06-01
RU2017135539A (ru) 2019-06-18
JP2018519803A (ja) 2018-07-26
KR102685748B1 (ko) 2024-07-18
CA2980838A1 (en) 2016-11-24
JP6947642B2 (ja) 2021-10-13
RU2021119777A (ru) 2021-08-16
RS64002B1 (sr) 2023-03-31
ZA201706061B (en) 2022-05-25
KR20180002855A (ko) 2018-01-08
DK3298030T3 (en) 2023-02-06
ES2938525T3 (es) 2023-04-12
SMT202300026T1 (it) 2023-03-17
SG11201707426SA (en) 2017-10-30
SI3298030T1 (sl) 2023-05-31
MX2017014716A (es) 2018-06-28
EP3298030B1 (en) 2023-01-18
RU2754466C2 (ru) 2021-09-02
US20180148485A1 (en) 2018-05-31
EP3298030A1 (en) 2018-03-28
HUE061108T2 (hu) 2023-05-28
RU2017135539A3 (zh) 2019-11-29
US10913778B2 (en) 2021-02-09
FI3298030T3 (fi) 2023-02-22
AU2016262845A1 (en) 2018-01-04
US11919931B2 (en) 2024-03-05
US20210403516A1 (en) 2021-12-30
WO2016184882A1 (en) 2016-11-24
EP4219535A1 (en) 2023-08-02
AU2016262845B2 (en) 2020-07-23
DK3298030T5 (en) 2024-10-07
HRP20230145T1 (hr) 2023-04-28

Similar Documents

Publication Publication Date Title
CN108112253B (zh) 抗癌融合多肽
US20210198380A1 (en) Anti-cancer fusion polypeptide
RU2628699C2 (ru) Trail r2-специфические мультимерные скаффолды
EP3830120B9 (en) Novel fusion protein specific for cd137 and pd-l1
CA3124441A1 (en) Novel fusion proteins specific for cd137 and gpc3
HK40044273A (zh) 一种用於cd137和pd-l1的新型融合蛋白
HK40044273B (zh) 一种用於cd137和pd-l1的新型融合蛋白
HK40053668A (zh) 对cd137和pd-l1特异性的新型融合蛋白
HK1249526B (zh) 抗癌融合多肽

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant