[go: up one dir, main page]

CN108110043A - The optimization method of wafer bow - Google Patents

The optimization method of wafer bow Download PDF

Info

Publication number
CN108110043A
CN108110043A CN201711351515.6A CN201711351515A CN108110043A CN 108110043 A CN108110043 A CN 108110043A CN 201711351515 A CN201711351515 A CN 201711351515A CN 108110043 A CN108110043 A CN 108110043A
Authority
CN
China
Prior art keywords
wafer
layer
sin
crystal
front side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711351515.6A
Other languages
Chinese (zh)
Inventor
杨鸣鹤
陈世杰
黄晓橹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaian Imaging Device Manufacturer Corp
Original Assignee
Huaian Imaging Device Manufacturer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaian Imaging Device Manufacturer Corp filed Critical Huaian Imaging Device Manufacturer Corp
Priority to CN201711351515.6A priority Critical patent/CN108110043A/en
Publication of CN108110043A publication Critical patent/CN108110043A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02035Shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

A kind of optimization method of wafer bow, the described method comprises the following steps:Wafer is provided, the front of the wafer is formed with crystal face SiN, and the back side of the wafer is formed with the brilliant back of the body SiN, the crystal face SiN and brilliant back of the body SiN is formed in same furnace process;The front of the wafer is handled to form the protective layer of resistance to acid liquid corrosion in the front;Under the protection of the protective layer, at least a portion of the acid solution removal brilliant back of the body SiN is used.The present invention program can adjust the curvature of the wafer, and then contribute to by reducing the quality for adjusting wafer bow and improving the processing steps such as follow-up bonding.

Description

晶圆弯曲度的优化方法Optimizing Method for Wafer Bow

技术领域technical field

本发明涉及半导体制造领域,尤其是涉及一种晶圆弯曲度的优化方法。The invention relates to the field of semiconductor manufacturing, in particular to a method for optimizing wafer curvature.

背景技术Background technique

在现有的半导体器件制造技术中,容易出现晶圆表面形成整体凹陷或凸起的现象,导致晶圆在后续键合(Bonding)等工艺步骤中品质下降。In the existing manufacturing technology of semiconductor devices, it is easy to appear the phenomenon of overall depression or protrusion on the surface of the wafer, which leads to the deterioration of the quality of the wafer in subsequent process steps such as bonding (Bonding).

通常采用晶圆弯曲度(Bending of Wafer,BOW)评估晶圆凹陷或凸起的程度,所述晶圆弯曲度用于表示晶圆表面最高点与最低点之间的垂直距离。Bending of Wafer (BOW) is usually used to evaluate the degree of concave or convex of a wafer, and the BOW of wafer is used to indicate the vertical distance between the highest point and the lowest point of the wafer surface.

亟需一种晶圆弯曲度的优化方法,调节晶圆弯曲度,以提高后续键合等工艺步骤的质量。There is an urgent need for a method for optimizing the curvature of the wafer to adjust the curvature of the wafer to improve the quality of subsequent bonding and other process steps.

发明内容Contents of the invention

本发明解决的技术问题是提供一种晶圆弯曲度的优化方法,可以调整所述晶圆的弯曲度,进而有助于通过调节晶圆弯曲度提高后续键合等工艺步骤的质量。The technical problem solved by the present invention is to provide a method for optimizing the curvature of a wafer, which can adjust the curvature of the wafer, thereby helping to improve the quality of subsequent bonding and other process steps by adjusting the curvature of the wafer.

为解决上述技术问题,本发明实施例提供一种晶圆弯曲度的优化方法,包括以下步骤:提供晶圆,所述晶圆的正面形成有晶面SiN,所述晶圆的背面形成有晶背SiN,所述晶面SiN和晶背SiN是在同一炉管工艺中形成的;对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层;在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分。In order to solve the above technical problems, an embodiment of the present invention provides a method for optimizing the curvature of a wafer, which includes the following steps: providing a wafer, the front side of the wafer is formed with a SiN crystal surface, and the back side of the wafer is formed with a crystal surface Back SiN, the crystal face SiN and the crystal back SiN are formed in the same furnace tube process; the front side of the wafer is processed to form a protective layer resistant to acid corrosion on the front side; Under protection, using the acid solution to remove at least a portion of the crystal back SiN.

可选的,所述晶面SiN为浅槽隔离的硬掩膜层。Optionally, the crystal plane SiN is a hard mask layer for shallow trench isolation.

可选的,对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层包括:对所述浅槽隔离的硬掩膜层进行图形化,并以图形化后的硬掩膜层为掩膜刻蚀所述晶圆的正面以得到浅槽隔离沟槽;形成浅槽隔离填充物,所述浅槽隔离填充物填充所述浅槽隔离沟槽并覆盖所述晶圆的正面,其中,所述浅槽隔离填充物作为所述保护层。Optionally, processing the front side of the wafer to form a protective layer resistant to acid solution corrosion on the front side includes: patterning the hard mask layer of the shallow trench isolation, and using the patterned hard mask The film layer is a mask etching the front side of the wafer to obtain a shallow trench isolation trench; forming a shallow trench isolation filler, the shallow trench isolation filler fills the shallow trench isolation trench and covers the wafer The front side, wherein the shallow trench isolation filler serves as the protective layer.

可选的,所述晶圆的正面形成有栅介质层以及多晶硅层,所述晶面SiN为多晶硅栅极的硬掩膜层且堆叠于所述多晶硅层的表面。Optionally, a gate dielectric layer and a polysilicon layer are formed on the front side of the wafer, and the crystal plane SiN is a hard mask layer of the polysilicon gate and is stacked on the surface of the polysilicon layer.

可选的,对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层包括:对所述多晶硅栅极的硬掩膜层进行图形化,并以图形化后的硬掩膜层为掩膜刻蚀所述多晶硅层,以形成栅极沟槽且暴露栅介质层;在所述晶圆的正面和背面分别形成正面保护层以及背面保护层;在所述背面保护层的保护下,去除所述正面保护层以及所述硬掩膜层,以暴露所述多晶硅层,其中,所述多晶硅层与所述栅介质层作为所述保护层。Optionally, processing the front side of the wafer to form a protective layer resistant to acid solution corrosion on the front side includes: patterning the hard mask layer of the polysilicon gate, and using the patterned hard mask The film layer is used as a mask to etch the polysilicon layer to form gate trenches and expose the gate dielectric layer; respectively form a front protection layer and a back protection layer on the front and back sides of the wafer; Under protection, the front protection layer and the hard mask layer are removed to expose the polysilicon layer, wherein the polysilicon layer and the gate dielectric layer serve as the protection layer.

可选的,所述在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分包括:去除所述背面保护层;在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分。Optionally, under the protection of the protection layer, using the acid solution to remove at least a part of the SiN on the crystal back includes: removing the back protection layer; under the protection of the protection layer, using the The acid solution removes at least a portion of the crystal back SiN.

可选的,所述正面保护层以及背面保护层的材料包括:氧化硅。Optionally, the materials of the front protection layer and the back protection layer include: silicon oxide.

可选的,所述晶圆的正面形成有栅极结构,所述晶面SiN为栅极结构的侧墙。Optionally, a gate structure is formed on the front side of the wafer, and the crystal plane SiN is a side wall of the gate structure.

可选的,对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层包括:在所述晶圆的正面形成层间介质层,所述层间介质层覆盖所述晶圆的正面表面、所述栅极结构以及所述侧墙,其中,所述层间介质层作为所述保护层。Optionally, processing the front side of the wafer to form an acid solution corrosion-resistant protective layer on the front side includes: forming an interlayer dielectric layer on the front side of the wafer, and the interlayer dielectric layer covers the wafer. The round front surface, the gate structure and the sidewall, wherein the interlayer dielectric layer serves as the protection layer.

可选的,使用所述酸液去除所述晶背SiN的至少一部分包括:将所述晶圆整片放入所述酸液中,以去除所述晶背SiN的至少一部分。Optionally, using the acid solution to remove at least a part of the SiN on the crystal back includes: putting the entire wafer into the acid solution to remove at least a part of the SiN on the crystal back.

与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:

在本发明实施例中,提供一种晶圆弯曲度的优化方法,包括以下步骤:提供晶圆,所述晶圆的正面形成有晶面SiN,所述晶圆的背面形成有晶背SiN,所述晶面SiN和晶背SiN是在同一炉管工艺中形成的;对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层;在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分。采用上述方案,由于采用炉管工艺形成的SiN往往形成在晶圆的正面以及背面,通过在所述正面形成耐酸液腐蚀的保护层的保护下,去除晶背SiN的至少一部分,可以调整所述晶圆的弯曲度,进而有助于通过调节晶圆弯曲度提高后续键合等工艺步骤的质量。In an embodiment of the present invention, a method for optimizing wafer curvature is provided, comprising the following steps: providing a wafer, the front side of the wafer is formed with crystal-face SiN, and the back side of the wafer is formed with crystal-back SiN, The crystal surface SiN and the crystal back SiN are formed in the same furnace tube process; the front side of the wafer is processed to form a protective layer resistant to acid corrosion on the front side; under the protection of the protective layer, Using the acid solution to remove at least a portion of the crystal-back SiN. With the above scheme, since the SiN formed by the furnace tube process is often formed on the front and back sides of the wafer, by removing at least a part of the SiN on the back of the crystal under the protection of the acid corrosion-resistant protective layer formed on the front side, the described The curvature of the wafer, which in turn helps to improve the quality of subsequent bonding and other process steps by adjusting the curvature of the wafer.

进一步,在本发明实施例中,可以以浅槽隔离填充物作为保护层,对晶面SiN为浅槽隔离的硬掩膜层时,形成的晶背SiN的至少一部分进行去除,以调整所述晶圆的弯曲度,进而有助于通过调节晶圆弯曲度提高后续键合等工艺步骤的质量。Further, in the embodiment of the present invention, the shallow trench isolation filler can be used as a protective layer, and when the crystal plane SiN is a hard mask layer for shallow trench isolation, at least a part of the crystal back SiN formed can be removed to adjust the crystal The curvature of the circle, which in turn helps to improve the quality of subsequent bonding and other process steps by adjusting the curvature of the wafer.

进一步,在本发明实施例中,可以以多晶硅层与栅介质层作为保护层,对晶面SiN为多晶硅栅极的硬掩膜层时,形成的晶背SiN的至少一部分进行去除,以调整所述晶圆的弯曲度,进而有助于通过调节晶圆弯曲度提高后续键合等工艺步骤的质量。Further, in the embodiment of the present invention, the polysilicon layer and the gate dielectric layer can be used as protective layers, and at least a part of the SiN formed on the crystal back is removed when the SiN on the crystal plane is the hard mask layer of the polysilicon gate, so as to adjust the The curvature of the wafer can be adjusted, which in turn helps to improve the quality of subsequent bonding and other process steps by adjusting the curvature of the wafer.

进一步,在本发明实施例中,可以以覆盖晶圆的正面表面、栅极结构以及侧墙的层间介质层作为保护层,对晶面SiN为栅极结构的侧墙时,形成的晶背SiN的至少一部分进行去除,以调整所述晶圆的弯曲度,进而有助于通过调节晶圆弯曲度提高后续键合等工艺步骤的质量。Further, in the embodiment of the present invention, the interlayer dielectric layer covering the front surface of the wafer, the gate structure, and the sidewall can be used as a protective layer. At least a part of SiN is removed to adjust the curvature of the wafer, thereby helping to improve the quality of subsequent bonding and other process steps by adjusting the curvature of the wafer.

附图说明Description of drawings

图1是现有技术中一种弯曲晶圆的剖面结构示意图;Fig. 1 is a schematic cross-sectional structure diagram of a curved wafer in the prior art;

图2是本发明实施例中一种晶圆弯曲度的优化方法的流程图;2 is a flow chart of a method for optimizing wafer curvature in an embodiment of the present invention;

图3至图6是本发明实施例中一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图;3 to 6 are schematic cross-sectional structural diagrams of devices corresponding to each step in a method for optimizing wafer curvature in an embodiment of the present invention;

图7至图9是本发明实施例中另一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图;7 to 9 are schematic cross-sectional structural diagrams of devices corresponding to each step in another method for optimizing wafer curvature in an embodiment of the present invention;

图10至图14是本发明实施例中又一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图;10 to 14 are schematic cross-sectional structural diagrams of devices corresponding to each step in another method for optimizing wafer curvature in an embodiment of the present invention;

图15至图16是本发明实施例中再一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图。FIG. 15 to FIG. 16 are schematic cross-sectional structural diagrams of devices corresponding to each step in yet another wafer bow optimization method according to an embodiment of the present invention.

具体实施方式Detailed ways

在现有的半导体器件制造技术中,容易出现晶圆表面形成整体凹陷或凸起的现象,导致晶圆在后续键合等工艺步骤的步骤中品质下降。In the existing semiconductor device manufacturing technology, it is easy to appear the phenomenon that the surface of the wafer forms an overall depression or protrusion, which leads to the deterioration of the quality of the wafer in subsequent process steps such as bonding.

图1是现有技术中一种弯曲晶圆的剖面结构示意图。如图1所示,晶圆100在工艺过程中发生整体凹陷,导致在后续键合等工艺步骤的步骤中品质下降。具体地,例如当在晶圆100上形成的器件是背照式图像传感器(Backside Illumination-CMOS Image Sensors,BSI-CIS)时,需要对晶圆100与承载晶圆(Carrier Wafer)101进行键合,对于其他半导体器件,还可以需要对晶圆100与另一个器件晶圆(Device Wafer)进行键合。FIG. 1 is a schematic cross-sectional structure diagram of a curved wafer in the prior art. As shown in FIG. 1 , the overall sinking of the wafer 100 occurs during the process, resulting in quality degradation in subsequent process steps such as bonding. Specifically, for example, when the device formed on the wafer 100 is a backside illumination-CMOS Image Sensors (BSI-CIS), the wafer 100 and the carrier wafer (Carrier Wafer) 101 need to be bonded , for other semiconductor devices, it may also be necessary to bond the wafer 100 to another device wafer (Device Wafer).

其中,所述晶圆100例如可以为器件晶圆,以在所述晶圆100上形成多种半导体器件。Wherein, the wafer 100 can be, for example, a device wafer, so that various semiconductor devices can be formed on the wafer 100 .

需要指出的是,所述调节晶圆弯曲度的目的为使两片晶圆的弯曲度接近,从而提高键合品质,因此所述调节晶圆弯曲度可以包括降低弯曲度,还可以包括提高弯曲度。It should be pointed out that the purpose of adjusting the curvature of the wafer is to make the curvature of the two wafers close to improve the bonding quality. Therefore, the adjustment of the curvature of the wafer may include reducing the curvature or increasing the curvature. Spend.

通常采用晶圆弯曲度评估晶圆凹陷或凸起的程度,所述晶圆弯曲度用于表示晶圆100表面最高点与最低点之间的垂直距离,例如参照图1示出的L。Wafer curvature is generally used to evaluate the degree of wafer depression or protrusion, and the wafer curvature is used to represent the vertical distance between the highest point and the lowest point on the surface of the wafer 100 , for example, refer to L shown in FIG. 1 .

本发明的发明人经过研究发现,在现有技术中,晶圆弯曲度较高或较低的一部分原因在于晶圆100的背面形成有晶背氮化硅(SiN)110,且晶背SiN110具有较高的压应力或张应力,导致晶圆100发生整体凹陷或凸起的现象。The inventors of the present invention have found through research that in the prior art, part of the reason for the higher or lower curvature of the wafer is that silicon nitride (SiN) 110 is formed on the back side of the wafer 100, and the SiN 110 has a The relatively high compressive stress or tensile stress causes the entire wafer 100 to sag or protrude.

在本发明实施例中,提供一种晶圆弯曲度的优化方法,包括以下步骤:提供晶圆,所述晶圆的正面形成有晶面SiN,所述晶圆的背面形成有晶背SiN,所述晶面SiN和晶背SiN是在同一炉管工艺中形成的;对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层;在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分。采用上述方案,由于采用炉管工艺形成的SiN往往形成在晶圆的正面以及背面,通过在所述正面形成耐酸液腐蚀的保护层的保护下,去除晶背SiN的至少一部分,可以调整所述晶圆的弯曲度,进而有助于通过调节晶圆弯曲度提高后续键合等工艺步骤的质量。In an embodiment of the present invention, a method for optimizing wafer curvature is provided, comprising the following steps: providing a wafer, the front side of the wafer is formed with crystal-face SiN, and the back side of the wafer is formed with crystal-back SiN, The crystal surface SiN and the crystal back SiN are formed in the same furnace tube process; the front side of the wafer is processed to form a protective layer resistant to acid corrosion on the front side; under the protection of the protective layer, Using the acid solution to remove at least a portion of the crystal-back SiN. With the above scheme, since the SiN formed by the furnace tube process is often formed on the front and back sides of the wafer, by removing at least a part of the SiN on the back of the crystal under the protection of the acid corrosion-resistant protective layer formed on the front side, the said wafer can be adjusted. The curvature of the wafer, which in turn helps to improve the quality of subsequent bonding and other process steps by adjusting the curvature of the wafer.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图2是本发明实施例中一种晶圆弯曲度的优化方法的流程图。所述晶圆弯曲度的优化方法可以包括步骤S21至步骤S23:FIG. 2 is a flow chart of a wafer bow optimization method in an embodiment of the present invention. The method for optimizing wafer curvature may include step S21 to step S23:

步骤S21:提供晶圆,所述晶圆的正面形成有晶面SiN,所述晶圆的背面形成有晶背SiN,所述晶面SiN和晶背SiN是在同一炉管工艺中形成的;Step S21: providing a wafer, the front side of the wafer is formed with SiN on the crystal plane, and the back side of the wafer is formed with SiN on the crystal back, and the SiN on the crystal plane and the SiN on the crystal back are formed in the same furnace tube process;

步骤S22:对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层;Step S22: processing the front side of the wafer to form an acid corrosion-resistant protective layer on the front side;

步骤S23:在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分。Step S23: under the protection of the protection layer, using the acid solution to remove at least a part of the SiN on the crystal back.

下面结合图3至图6对上述各个步骤进行说明。The above steps will be described below with reference to FIG. 3 to FIG. 6 .

图3至图6是本发明实施例中一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图。3 to 6 are schematic cross-sectional structural diagrams of devices corresponding to each step in a method for optimizing wafer curvature in an embodiment of the present invention.

参照图3,提供晶圆200,所述晶圆200的正面形成有晶面SiN220,所述晶圆的背面形成有晶背SiN210,所述晶面SiN220和晶背SiN210是在同一炉管工艺中形成的。Referring to FIG. 3 , a wafer 200 is provided, the front side of the wafer 200 is formed with a crystal face SiN220, and the back side of the wafer is formed with a crystal back SiN210, and the crystal face SiN220 and the crystal back SiN210 are formed in the same furnace tube process Forming.

在具体实施中,所述晶圆200可以包括半导体衬底,例如为硅衬底。在其他具体实施方式中,所述半导体衬底的材料还可以为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述半导体衬底还可以为绝缘体上的硅衬底或者绝缘体上的锗衬底。In a specific implementation, the wafer 200 may include a semiconductor substrate, such as a silicon substrate. In other specific implementation manners, the material of the semiconductor substrate can also be silicon, germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, and the semiconductor substrate can also be a silicon-on-insulator substrate Or a germanium-on-insulator substrate.

具体地,所述晶圆200的正面形成有晶面SiN 220,所述晶圆的背面形成有晶背SiN210。形成所述晶面SiN 220和晶背SiN 210的目的可以为多种,例如为了形成浅槽隔离的硬掩膜层、多晶硅栅极的硬掩膜层或者栅极结构的侧墙。Specifically, crystal face SiN 220 is formed on the front side of the wafer 200 , and crystal back SiN 210 is formed on the back side of the wafer. The purpose of forming the crystal plane SiN 220 and the crystal back SiN 210 may be various, for example, to form a hard mask layer for shallow trench isolation, a hard mask layer for a polysilicon gate, or a sidewall of a gate structure.

参照图4,对所述晶圆200的正面进行处理以在所述正面形成耐酸液腐蚀的保护层230。Referring to FIG. 4 , the front side of the wafer 200 is processed to form an acid-resistant protective layer 230 on the front side.

具体地,所述保护层230可以是在半导体器件的制造工艺中需要形成的材料,例如可以包括浅槽隔离填充物或者层间介质层(Inter Layer Dielectric,ILD);所述保护层230还可以是额外形成的。Specifically, the protection layer 230 may be a material that needs to be formed in the manufacturing process of the semiconductor device, for example, may include a shallow trench isolation filler or an interlayer dielectric layer (Inter Layer Dielectric, ILD); the protection layer 230 may also be is additionally formed.

其中,所述保护层230应当可以耐酸液腐蚀,以完成在采用酸液去除晶背SIN时对晶圆表面的保护功能。Wherein, the protective layer 230 should be resistant to acid corrosion, so as to protect the surface of the wafer when the acid solution is used to remove the SIN on the back of the wafer.

参照图5,在所述保护层230的保护下,使用所述酸液去除所述晶背SiN210(参照图4)的至少一部分,以形成减薄晶背SiN 211。Referring to FIG. 5 , under the protection of the protection layer 230 , the acid solution is used to remove at least a part of the crystal back SiN 210 (refer to FIG. 4 ) to form a thinned crystal back SiN 211 .

其中,使用所述酸液去除所述晶背SiN210的至少一部分可以包括:将所述晶圆200整片放入所述酸液中,以去除所述晶背SiN210的至少一部分。Wherein, using the acid solution to remove at least a part of the crystal back SiN210 may include: putting the entire wafer 200 into the acid solution to remove at least a part of the crystal back SiN210.

可以理解的是,将所述晶圆200整片放入所述酸液中时,在晶圆200的的正面和背面形成的晶面SiN220和晶背SiN210也被放入所述酸液中。It can be understood that when the entire wafer 200 is put into the acid solution, the SiN 220 on the crystal face and the SiN 210 on the back of the wafer 200 formed on the front and back of the wafer 200 are also put into the acid solution.

具体地,为了避免伤害晶圆200正面形成的半导体器件,在去除所述晶背SiN210的至少一部分的过程中,可以采用湿法刻蚀(Wet-etch)的方法,整片放入酸液中进行去除,而尽量避免采用需要将晶圆200进行倒置的方法,例如化学机械平坦化(ChemicalMechanical Planarization,CMP)或干法刻蚀(Dry-etch)。Specifically, in order to avoid damage to the semiconductor devices formed on the front side of the wafer 200, in the process of removing at least a part of the SiN210 on the back of the wafer, a wet etching (Wet-etch) method can be used, and the whole piece is placed in an acid solution To remove the wafer 200 , and try to avoid the method that needs to turn the wafer 200 upside down, such as chemical mechanical planarization (Chemical Mechanical Planarization, CMP) or dry etching (Dry-etch).

其中,所述酸液可以包括常规的用于去除SiN的酸性溶液,例如可以包括热磷酸(H3PO4)。需要指出的是,在具体实施中,可以采用任意的对SiN以及保护层的材料具有高刻蚀比的湿法刻蚀溶液,也即对SiN具有去除作用而难以去除保护层(例如氧化硅、无定形硅或者多晶硅)的溶液。在本发明实施例中,对于具体的酸液种类不作限制。Wherein, the acid solution may include a conventional acid solution for removing SiN, such as hot phosphoric acid (H 3 PO 4 ). It should be pointed out that in specific implementation, any wet etching solution with a high etch ratio to SiN and the material of the protective layer can be used, that is, it has a removal effect on SiN and is difficult to remove the protective layer (such as silicon oxide, Amorphous silicon or polycrystalline silicon) solution. In the embodiment of the present invention, there is no limitation on the specific type of acid solution.

参照图6,如果所述保护层230是额外形成的,则为了不影响半导体器件的制造,可以在去除所述晶背SiN的适当厚度后,去除保护层230。Referring to FIG. 6 , if the protection layer 230 is additionally formed, in order not to affect the manufacture of semiconductor devices, the protection layer 230 may be removed after removing an appropriate thickness of the crystal back SiN.

需要指出的是,如果所述保护层230是在半导体器件的制造工艺中需要形成的材料,则可以不予去除。It should be pointed out that if the protective layer 230 is a material that needs to be formed in the manufacturing process of the semiconductor device, it may not be removed.

在本发明实施例中,由于采用炉管工艺形成的SiN往往形成在晶圆200的正面以及背面,通过在所述正面形成耐酸液腐蚀的保护层230的保护下,去除晶背SiN210的至少一部分,可以调整所述晶圆200的晶圆弯曲度,进而有助于通过调节晶圆弯曲度提高后续键合等工艺步骤的质量。In the embodiment of the present invention, since the SiN formed by the furnace tube process is often formed on the front and back of the wafer 200, at least a part of the SiN 210 on the back of the crystal is removed under the protection of the acid corrosion-resistant protective layer 230 formed on the front. , the wafer curvature of the wafer 200 can be adjusted, thereby helping to improve the quality of subsequent bonding and other process steps by adjusting the wafer curvature.

图7至图9是本发明实施例中另一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图。7 to 9 are schematic cross-sectional structural diagrams of devices corresponding to each step in another method for optimizing wafer curvature in an embodiment of the present invention.

其中,所述另一种晶圆弯曲度的优化方法对应的是所述晶面SiN为浅槽隔离的硬掩膜层的情况。作为一个非限制性的例子,在形成浅槽隔离的硬掩膜层时,所述晶背SiN的厚度较厚(例如可以为110纳米至130纳米),产生的应力对晶圆弯曲度影响较大。Wherein, the other method for optimizing the wafer curvature corresponds to the case where the crystal plane SiN is a hard mask layer for shallow trench isolation. As a non-limiting example, when forming the hard mask layer for shallow trench isolation, the thickness of the SiN on the crystal back is relatively thick (for example, 110 nanometers to 130 nanometers), and the stress generated has a greater impact on the wafer curvature. big.

参照图7,提供晶圆300,所述晶圆300的正面形成有晶面SiN320,所述晶圆的背面形成有晶背SiN310。Referring to FIG. 7 , a wafer 300 is provided, the front side of the wafer 300 is formed with crystal face SiN 320 , and the back side of the wafer is formed with crystal back SiN 310 .

其中,所述晶面SiN320为浅槽隔离(Shadow Trench Isolation,STI)的硬掩膜层,所述晶面SiN320和晶背SiN310是在同一炉管工艺中形成的。Wherein, the crystal plane SiN320 is a hard mask layer for shallow trench isolation (Shadow Trench Isolation, STI), and the crystal plane SiN320 and the crystal back SiN310 are formed in the same furnace tube process.

在本发明实施例的一种具体实施方式中,在晶圆300的正面形成晶面SiN320之前,还可以在晶圆300的正面形成晶面氧化层304,所述晶面氧化层304可以用于形成浅槽隔离衬垫氧化层(STI Pad Oxide);在晶圆300的背面形成晶背SiN310之前,还可以在晶圆300的背面形成晶背氧化层302,所述晶背氧化层302和晶面氧化层304可以是在同一工艺中形成的。In a specific implementation manner of the embodiment of the present invention, before forming the crystal surface SiN320 on the front surface of the wafer 300, a crystal surface oxide layer 304 can also be formed on the front surface of the wafer 300, and the crystal surface oxide layer 304 can be used for Form shallow trench isolation liner oxide layer (STI Pad Oxide); Surface oxide layer 304 may be formed in the same process.

参照图8,对所述晶面SiN320进行图形化,也即对浅槽隔离的硬掩膜层进行图形化,并以图形化后的硬掩膜层为掩膜刻蚀所述晶圆300的正面以得到浅槽隔离沟槽306。Referring to FIG. 8 , the crystal plane SiN320 is patterned, that is, the hard mask layer for shallow trench isolation is patterned, and the wafer 300 is etched using the patterned hard mask layer as a mask. Front side to obtain shallow trench isolation trenches 306 .

在本发明实施例的一种具体实施中,可以先形成图形化的光刻胶层,以所述图形化的光刻胶层为掩膜,对所述浅槽隔离的硬掩膜层进行刻蚀,进而以所述浅槽隔离的硬掩膜层为掩膜,对所述晶圆300的正面进行刻蚀,以得到浅槽隔离沟槽306。In a specific implementation of the embodiment of the present invention, a patterned photoresist layer may be formed first, and the hard mask layer of the shallow trench isolation is etched using the patterned photoresist layer as a mask. etch, and then use the hard mask layer of the shallow trench isolation as a mask to etch the front side of the wafer 300 to obtain shallow trench isolation trenches 306 .

参照图9,形成浅槽隔离填充物330,所述浅槽隔离填充物330填充所述浅槽隔离沟槽306(参照图8)并覆盖所述晶圆300的正面,其中,所述浅槽隔离填充物330作为所述保护层。Referring to FIG. 9, a shallow trench isolation filler 330 is formed, and the shallow trench isolation filler 330 fills the shallow trench isolation trench 306 (refer to FIG. 8) and covers the front side of the wafer 300, wherein the shallow trench The isolation filler 330 serves as the protective layer.

在本发明实施例的一种具体实施方式中,可以利用化学气相淀积(ChemicalVapor Deposition,CVD)的方法淀积一层较厚的氧化硅层,以形成浅槽隔离填充物330,例如可以采用高密度等离子体(High Density Plasma)化学气相淀积的方法。In a specific implementation manner of the embodiment of the present invention, a relatively thick silicon oxide layer can be deposited by chemical vapor deposition (Chemical Vapor Deposition, CVD) to form the shallow trench isolation filler 330, for example, it can be used High Density Plasma (High Density Plasma) chemical vapor deposition method.

进一步地,在所述浅槽隔离填充物330的保护下,使用酸液去除所述晶背SiN310的至少一部分。Further, under the protection of the shallow trench isolation filler 330 , acid solution is used to remove at least a part of the crystal back SiN 310 .

需要指出的是,在现有的后续工艺中,还存在对浅槽隔离填充物330进行化学机械研磨(Chemical Mechanical Polishing,CMP)然后去除晶面SiN320的步骤,在优选方案中,可以对所述晶背SiN310进行保护,以避免在后续去除晶面SiN320时,影响晶背SiN310的厚度。It should be pointed out that in the existing follow-up process, there is also a step of performing chemical mechanical polishing (CMP) on the shallow trench isolation filler 330 and then removing the crystal plane SiN320. In a preferred solution, the The crystal back SiN310 is protected to avoid affecting the thickness of the crystal back SiN310 when the crystal face SiN320 is subsequently removed.

具体地,在本发明实施例的一种具体实施方式中,可以在形成浅槽隔离填充物330之前,在所述晶圆300的正面和背面分别形成正面保护层以及背面保护层,然后去除所述正面保护层,形成浅槽隔离填充物330,进而在所述背面保护层的保护下,进行STI CMP,然后除去晶面SiN320,然后除去背面保护层,以浅槽隔离填充物330和/或晶圆300正面的其他氧化层为保护层,调节晶背SiN310的厚度。Specifically, in a specific implementation manner of the embodiment of the present invention, before forming the shallow trench isolation filler 330, a front protection layer and a back protection layer may be respectively formed on the front and back of the wafer 300, and then all the protective layers are removed. The front protection layer is used to form shallow trench isolation fillers 330, and then under the protection of the back protection layer, STI CMP is performed, and then the crystal plane SiN320 is removed, and then the back protection layer is removed, and the shallow trench isolation fillers 330 and/or the crystal surface are removed. The other oxide layer on the front side of the circle 300 is a protective layer, which adjusts the thickness of the SiN310 on the crystal back.

在本发明实施例的另一种具体实施方式中,还可以在在形成浅槽隔离填充物330,且在所述浅槽隔离填充物330的保护下,使用酸液去除所述晶背SiN310的至少一部分之后,在所述晶圆300的正面和背面分别形成正面保护层以及背面保护层,然后去除所述正面保护层,在所述背面保护层的保护下,进行STI CMP,然后除去晶面SiN320,进而除去背面保护层。In another specific implementation of the embodiment of the present invention, the shallow trench isolation filling 330 can also be formed, and under the protection of the shallow trench isolation filling 330, acid solution can be used to remove the crystal back SiN310 After at least a part, form a front protection layer and a back protection layer on the front and back sides of the wafer 300 respectively, then remove the front protection layer, perform STI CMP under the protection of the back protection layer, and then remove the crystal plane SiN320, and then remove the back protection layer.

需要指出的是,在现有技术中,难以仅在晶圆300的背面形成保护层,因此在本发明实施例中,均在晶圆300的正面和背面分别形成正面保护层以及背面保护层为例进行描述,然而本发明实施例对于是否在形成背面保护层的同时形成有正面保护层不作限制。It should be pointed out that in the prior art, it is difficult to form a protective layer only on the back of the wafer 300, so in the embodiment of the present invention, a front protective layer and a back protective layer are respectively formed on the front and back of the wafer 300. However, the embodiment of the present invention does not limit whether the front protective layer is formed at the same time as the back protective layer is formed.

在具体实施中,使用酸液去除所述晶背SiN310的至少一部分的更多详细内容请参照图5中的描述进行执行,此处不再赘述。In a specific implementation, please refer to the description in FIG. 5 for more detailed content of removing at least a part of the SiN 310 on the crystal back by using an acid solution, and details will not be repeated here.

在具体实施中,有关所述另一种晶圆弯曲度的优化方法的更多详细内容请参照图2至图8示出的晶圆弯曲度的优化方法的描述进行执行,此处不再赘述。In specific implementation, for more details about the other method for optimizing the curvature of the wafer, please refer to the description of the optimization method for the curvature of the wafer shown in FIGS. .

图10至图14是本发明实施例中又一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图。10 to 14 are schematic cross-sectional structural diagrams of devices corresponding to each step in yet another method for optimizing wafer curvature in an embodiment of the present invention.

其中,所述又一种晶圆弯曲度的优化方法对应的是所述晶面SiN为多晶硅栅极的硬掩膜层的情况。由于在形成多晶硅栅极的硬掩膜层时,所述晶背SiN具有一定厚度,产生的应力对晶圆弯曲度具有一定影响。Wherein, the yet another wafer curvature optimization method corresponds to the case where the crystal plane SiN is a hard mask layer of a polysilicon gate. Since the SiN on the crystal back has a certain thickness when forming the hard mask layer of the polysilicon gate, the stress generated has a certain influence on the curvature of the wafer.

参照图10,提供晶圆400,所述晶圆400的正面形成有晶面SiN420,所述晶圆的背面形成有晶背SiN410。Referring to FIG. 10 , a wafer 400 is provided, the front side of the wafer 400 is formed with crystal face SiN420 , and the back side of the wafer is formed with crystal back SiN410 .

其中,所述晶面SiN420为多晶硅栅极的硬掩膜层,所述晶面SiN420和晶背SiN410是在同一炉管工艺中形成的。Wherein, the crystal plane SiN420 is a hard mask layer of the polysilicon gate, and the crystal plane SiN420 and the crystal back SiN410 are formed in the same furnace tube process.

具体地,在晶圆400的正面形成晶面SiN420之前,还可以在晶圆400的正面形成栅介质层402以及晶面多晶硅层406,以在后续工艺中形成多晶硅栅极;在晶圆400的背面形成晶背SiN410之前,还可以在晶圆400的背面形成晶背SiN淀积膜401以及晶背多晶硅层404,其中,所述晶背多晶硅层404和晶面多晶硅层406可以是在同一工艺中形成的。Specifically, before forming the crystal plane SiN420 on the front side of the wafer 400, a gate dielectric layer 402 and a crystal plane polysilicon layer 406 may also be formed on the front side of the wafer 400, so as to form a polysilicon gate in a subsequent process; Before forming the crystal back SiN 410 on the back, a crystal back SiN deposition film 401 and a crystal back polysilicon layer 404 can also be formed on the back of the wafer 400, wherein the crystal back polysilicon layer 404 and the crystal surface polysilicon layer 406 can be formed in the same process formed in.

具体地,所述晶背SiN淀积膜401可以是在形成晶面SiN淀积膜(图未示)时在同一工艺中形成的。更具体地,在晶圆400的正面形成晶面SiN420之前,还可以在晶圆400的正面通过热氧化生长形成氧化硅膜(如SiO2)以及通过淀积形成的SiN淀积膜,所述氧化硅膜和SiN淀积膜的应力作用相反,有助于相互补偿,以减小半导体衬底受到的应力。需要指出的是,所述SiN淀积膜往往是通过炉管工艺淀积形成,因此在晶圆400的背面,也会形成晶背SiN淀积膜401。Specifically, the crystal back SiN deposition film 401 may be formed in the same process when the crystal face SiN deposition film (not shown) is formed. More specifically, before forming the crystal plane SiN420 on the front side of the wafer 400, a silicon oxide film (such as SiO 2 ) and a SiN deposition film formed by deposition can also be formed on the front side of the wafer 400 by thermal oxidation growth. The stress effects of the silicon oxide film and the SiN deposited film are opposite, which help to compensate each other, so as to reduce the stress on the semiconductor substrate. It should be pointed out that the SiN deposited film is often formed by depositing in a furnace tube process, so on the back side of the wafer 400 , a crystal-back SiN deposited film 401 is also formed.

参照图11,对晶面SiN420进行图形化,也即对多晶硅栅极的硬掩膜层进行图形化,并以图形化后的硬掩膜层为掩膜刻蚀所述多晶硅层406,以形成栅极沟槽408且暴露栅介质层402。Referring to FIG. 11, the crystal plane SiN420 is patterned, that is, the hard mask layer of the polysilicon gate is patterned, and the polysilicon layer 406 is etched using the patterned hard mask layer as a mask to form The gate trench 408 exposes the gate dielectric layer 402 .

在本发明实施例的一种具体实施中,可以先形成图形化的光刻胶层,以所述图形化的光刻胶层为掩膜,对所述多晶硅栅极的硬掩膜层进行刻蚀,进而以所述多晶硅栅极的硬掩膜层为掩膜,对所述晶圆400的正面进行刻蚀,以得到栅极沟槽408。In a specific implementation of the embodiment of the present invention, a patterned photoresist layer may be formed first, and the hard mask layer of the polysilicon gate is etched using the patterned photoresist layer as a mask. etch, and then use the hard mask layer of the polysilicon gate as a mask to etch the front side of the wafer 400 to obtain gate trenches 408 .

参照图12,在所述晶圆400的正面和背面分别形成正面保护层432以及背面保护层431。Referring to FIG. 12 , a front protection layer 432 and a back protection layer 431 are respectively formed on the front and back of the wafer 400 .

其中,所述正面保护层432以及背面保护层431的材料可以包括:氧化硅或者其他适当的材料,从而通过选择适当的酸液,可以在去除晶背SiN410时尽可能地对晶圆400正面的半导体器件进行保护。Wherein, the material of the front protection layer 432 and the back protection layer 431 may include: silicon oxide or other appropriate materials, so that by selecting an appropriate acid solution, the front side of the wafer 400 can be protected as much as possible when removing the SiN410 on the crystal back. Semiconductor devices are protected.

需要指出的是,在其他额外形成保护层的方法中,还可以采用无定形硅材料或者多晶硅材料形成所述保护层。It should be noted that, in other methods for additionally forming the protective layer, amorphous silicon material or polysilicon material may also be used to form the protective layer.

需要指出的是,在本发明实施例的另一种具体实施方式中,可以在对晶面SiN420进行图形化,形成栅极沟槽408之前,在所述晶圆400的正面和背面分别形成正面保护层432以及背面保护层431。也即在本发明实施例中,对于图11和图12示出的步骤的先后执行顺序不作限制。It should be pointed out that, in another specific implementation manner of the embodiment of the present invention, before patterning the crystal plane SiN420 to form the gate trench 408, a front surface can be formed on the front surface and the back surface of the wafer 400 respectively. The protection layer 432 and the back protection layer 431 . That is, in the embodiment of the present invention, there is no limitation on the execution order of the steps shown in FIG. 11 and FIG. 12 .

需要指出的是,在现有技术中,难以仅在晶圆400的背面形成背面保护层431,因此在本发明实施例中,均在晶圆400的正面和背面分别形成正面保护层432以及背面保护层431为例进行描述,然而本发明实施例对于是否在形成背面保护层431的同时形成有正面保护层432不作限制。It should be pointed out that in the prior art, it is difficult to form the back protective layer 431 only on the back of the wafer 400, so in the embodiment of the present invention, the front protective layer 432 and the back of the wafer 400 are respectively formed on the front and the back. The protection layer 431 is described as an example, but the embodiment of the present invention does not limit whether the front protection layer 432 is formed at the same time as the back protection layer 431 is formed.

参照图13,在所述背面保护层431的保护下,去除所述正面保护层432以及所述晶面SiN420,以暴露所述多晶硅层406,其中,所述多晶硅层406与所述栅介质层402作为所述保护层。Referring to FIG. 13 , under the protection of the back protection layer 431, the front protection layer 432 and the crystal plane SiN420 are removed to expose the polysilicon layer 406, wherein the polysilicon layer 406 and the gate dielectric layer 402 as the protective layer.

在本发明实施例的一种具体实施方式中,可以采用氢氟酸(HF)去除所述正面保护层432,具体地,可以在所述背面保护层431的保护下,通过在晶圆400的正面表面喷涂适量的氢氟酸,以去除所述正面保护层432。In a specific implementation manner of the embodiment of the present invention, the front protection layer 432 can be removed by using hydrofluoric acid (HF). Specifically, under the protection of the back protection layer 431, the wafer 400 can be An appropriate amount of hydrofluoric acid is sprayed on the front surface to remove the front protection layer 432 .

需要指出的是,在其他额外形成保护层的方法中,如果采用无定形硅材料形成所述保护层,则可以采用氢氟酸(HF)结合硝酸(HNO3)去除所述保护层,具体地,可以通过在晶圆400的正面表面喷涂适量的氢氟酸以及硝酸,以去除保护层。It should be pointed out that, in other additional methods for forming a protective layer, if an amorphous silicon material is used to form the protective layer, the protective layer can be removed by using hydrofluoric acid (HF) combined with nitric acid (HNO 3 ), specifically , the protective layer can be removed by spraying an appropriate amount of hydrofluoric acid and nitric acid on the front surface of the wafer 400 .

参照图14,在所述多晶硅层406与所述栅介质层402的保护下,使用所述酸液去除所述晶背SiN410(参照图13)的至少一部分,以形成减薄晶背SiN411。Referring to FIG. 14 , under the protection of the polysilicon layer 406 and the gate dielectric layer 402 , the acid solution is used to remove at least a part of the crystal back SiN410 (refer to FIG. 13 ) to form a thinned crystal back SiN411.

在具体实施中,使用酸液去除所述晶背SiN410的至少一部分的更多详细内容请参照图5中的描述进行执行,此处不再赘述。In a specific implementation, please refer to the description in FIG. 5 for more detailed content of removing at least a part of the SiN410 on the crystal back by using an acid solution, and details will not be repeated here.

在具体实施中,有关所述又一种晶圆弯曲度的优化方法的更多详细内容请参照图2至图9示出的晶圆弯曲度的优化方法的描述进行执行,此处不再赘述。In specific implementation, for more detailed content about another optimization method of wafer curvature, please refer to the description of the optimization method of wafer curvature shown in FIGS. .

图15至图16是本发明实施例中再一种晶圆弯曲度的优化方法中各步骤对应的器件的剖面结构示意图。FIG. 15 to FIG. 16 are schematic cross-sectional structural diagrams of devices corresponding to each step in yet another wafer bow optimization method according to an embodiment of the present invention.

其中,所述再一种晶圆弯曲度的优化方法对应的是所述晶面SiN为栅极结构的侧墙的情况。由于在形成栅极结构的侧墙时,所述晶背SiN具有一定厚度,产生的应力对晶圆弯曲度具有一定影响。Wherein, the further method for optimizing wafer curvature corresponds to the case where the crystal plane SiN is a side wall of a gate structure. Since the SiN on the crystal back has a certain thickness when forming the sidewall of the gate structure, the stress generated has a certain influence on the curvature of the wafer.

参照图15,提供晶圆500,所述晶圆500的正面形成有晶面SiN520,所述晶圆的背面形成有晶背SiN510。Referring to FIG. 15 , a wafer 500 is provided, the front side of the wafer 500 is formed with crystal face SiN520 , and the back side of the wafer is formed with crystal back SiN510 .

其中,所述晶面SiN520为栅极结构506的侧墙,所述晶面SiN520和晶背SiN510是在同一炉管工艺中形成的。Wherein, the crystal plane SiN520 is the side wall of the gate structure 506 , and the crystal plane SiN520 and the crystal back SiN510 are formed in the same furnace tube process.

具体地,在晶圆500的正面形成晶面SiN520之前,还可以在晶圆500的正面形成栅介质层502、栅极结构506以及晶面氧化物侧墙508;在晶圆500的背面形成晶背SiN510之前,还可以在晶圆500的背面形成晶背SiN淀积膜501、晶背多晶硅层504、晶背氧化层507。Specifically, before forming the crystal plane SiN 520 on the front side of the wafer 500, a gate dielectric layer 502, a gate structure 506, and a crystal plane oxide spacer 508 may also be formed on the front side of the wafer 500; Before the back SiN 510 , a crystal back SiN deposition film 501 , a crystal back polysilicon layer 504 , and a crystal back oxide layer 507 may also be formed on the back of the wafer 500 .

其中,有关所述晶背SiN淀积膜501的更多详细内容请参照图10对应的描述,此处不再赘述。Wherein, for more details about the deposited SiN film 501 on the crystal back, please refer to the description corresponding to FIG. 10 , which will not be repeated here.

晶背多晶硅层504可以是在晶圆500的正面形成栅极结构506时,在形成多晶硅层的同一工艺中形成的。The back polysilicon layer 504 may be formed in the same process of forming the polysilicon layer when the gate structure 506 is formed on the front side of the wafer 500 .

晶背氧化层507可以是在晶圆500的正面形成晶面氧化物侧墙508时,在形成氧化层的同一工艺中形成的。The crystal back oxide layer 507 may be formed in the same process of forming the oxide layer when the crystal plane oxide sidewall 508 is formed on the front side of the wafer 500 .

参照图15,在所述晶圆500的正面形成层间介质层530,所述层间介质层530覆盖所述晶圆500的正面表面、所述栅极结构506以及所述侧墙520,其中,所述层间介质层530作为所述保护层。Referring to FIG. 15, an interlayer dielectric layer 530 is formed on the front surface of the wafer 500, and the interlayer dielectric layer 530 covers the front surface of the wafer 500, the gate structure 506, and the spacer 520, wherein , the interlayer dielectric layer 530 serves as the protective layer.

在本发明实施例的一种具体实施方式中,可以利用化学气相淀积的方法淀积一层较厚的氧化硅层,以形成层间介质层530。进一步地,为了提高所述层间介质层530的介电特性,还可以对所述氧化硅层进行磷或硼轻掺杂。In a specific implementation manner of the embodiment of the present invention, a relatively thick silicon oxide layer may be deposited by chemical vapor deposition to form the interlayer dielectric layer 530 . Further, in order to improve the dielectric properties of the interlayer dielectric layer 530, the silicon oxide layer may also be lightly doped with phosphorous or boron.

进一步地,在所述层间介质层530的保护下,使用酸液去除所述晶背SiN510的至少一部分。Further, under the protection of the interlayer dielectric layer 530 , acid solution is used to remove at least a part of the crystal back SiN 510 .

在具体实施中,使用酸液去除所述晶背SiN510的至少一部分的更多详细内容请参照图5中的描述进行执行,此处不再赘述。In a specific implementation, please refer to the description in FIG. 5 for more detailed content of removing at least a part of the SiN510 on the crystal back by using an acid solution, and details will not be repeated here.

在具体实施中,有关所述再一种晶圆弯曲度的优化方法的更多详细内容请参照图2至图14示出的晶圆弯曲度的优化方法的描述进行执行,此处不再赘述。In specific implementation, for more detailed content about the optimization method of wafer curvature, please refer to the description of the optimization method of wafer curvature shown in FIGS. .

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (10)

1.一种晶圆弯曲度的优化方法,其特征在于,包括以下步骤:1. a method for optimizing wafer curvature, is characterized in that, comprises the following steps: 提供晶圆,所述晶圆的正面形成有晶面SiN,所述晶圆的背面形成有晶背SiN,所述晶面SiN和晶背SiN是在同一炉管工艺中形成的;Providing a wafer, the front side of the wafer is formed with SiN on the crystal face, and the back side of the wafer is formed with SiN on the crystal back, and the SiN on the crystal face and the SiN on the crystal back are formed in the same furnace tube process; 对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层;processing the front side of the wafer to form an acid-resistant protective layer on the front side; 在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分。Under the protection of the protection layer, at least a part of the crystal back SiN is removed by using the acid solution. 2.根据权利要求1所述的晶圆弯曲度的优化方法,其特征在于,2. the optimization method of wafer curvature according to claim 1, is characterized in that, 所述晶面SiN为浅槽隔离的硬掩膜层。The crystal plane SiN is a hard mask layer for shallow trench isolation. 3.根据权利要求2所述的晶圆弯曲度的优化方法,其特征在于,对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层包括:3. The method for optimizing wafer curvature according to claim 2, wherein processing the front side of the wafer to form an acid-resistant protective layer on the front side comprises: 对所述浅槽隔离的硬掩膜层进行图形化,并以图形化后的硬掩膜层为掩膜刻蚀所述晶圆的正面以得到浅槽隔离沟槽;Patterning the hard mask layer of the shallow trench isolation, and etching the front side of the wafer with the patterned hard mask layer as a mask to obtain shallow trench isolation trenches; 形成浅槽隔离填充物,所述浅槽隔离填充物填充所述浅槽隔离沟槽并覆盖所述晶圆的正面,其中,所述浅槽隔离填充物作为所述保护层。A shallow trench isolation filling is formed, the shallow trench isolation filling fills the shallow trench isolation trench and covers the front surface of the wafer, wherein the shallow trench isolation filling serves as the protection layer. 4.根据权利要求1所述的晶圆弯曲度的优化方法,其特征在于,4. the optimization method of wafer curvature according to claim 1, is characterized in that, 所述晶圆的正面形成有栅介质层以及多晶硅层,所述晶面SiN为多晶硅栅极的硬掩膜层且堆叠于所述多晶硅层的表面。A gate dielectric layer and a polysilicon layer are formed on the front side of the wafer, and the crystal plane SiN is a hard mask layer of the polysilicon gate and is stacked on the surface of the polysilicon layer. 5.根据权利要求4所述的晶圆弯曲度的优化方法,其特征在于,对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层包括:5. The method for optimizing wafer curvature according to claim 4, wherein processing the front side of the wafer to form an acid-resistant protective layer on the front side comprises: 对所述多晶硅栅极的硬掩膜层进行图形化,并以图形化后的硬掩膜层为掩膜刻蚀所述多晶硅层,以形成栅极沟槽且暴露栅介质层;Patterning the hard mask layer of the polysilicon gate, and etching the polysilicon layer using the patterned hard mask layer as a mask to form gate trenches and expose the gate dielectric layer; 在所述晶圆的正面和背面分别形成正面保护层以及背面保护层;Forming a front protective layer and a back protective layer on the front and back of the wafer respectively; 在所述背面保护层的保护下,去除所述正面保护层以及所述硬掩膜层,以暴露所述多晶硅层,其中,所述多晶硅层与所述栅介质层作为所述保护层。Under the protection of the back protection layer, the front protection layer and the hard mask layer are removed to expose the polysilicon layer, wherein the polysilicon layer and the gate dielectric layer serve as the protection layer. 6.根据权利要求5所述的晶圆弯曲度的优化方法,其特征在于,所述在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分包括:6. The method for optimizing wafer curvature according to claim 5, wherein, under the protection of the protective layer, using the acid solution to remove at least a part of the SiN on the crystal back comprises: 去除所述背面保护层;removing the back protection layer; 在所述保护层的保护下,使用所述酸液去除所述晶背SiN的至少一部分。Under the protection of the protection layer, at least a part of the crystal back SiN is removed by using the acid solution. 7.根据权利要求6所述的晶圆弯曲度的优化方法,其特征在于,所述正面保护层以及背面保护层的材料包括:氧化硅。7. The method for optimizing wafer curvature according to claim 6, wherein the material of the front protection layer and the back protection layer comprises: silicon oxide. 8.根据权利要求1所述的晶圆弯曲度的优化方法,其特征在于,所述晶圆的正面形成有栅极结构,所述晶面SiN为栅极结构的侧墙。8 . The method for optimizing wafer curvature according to claim 1 , wherein a gate structure is formed on the front side of the wafer, and the crystal surface SiN is a side wall of the gate structure. 9.根据权利要求8所述的晶圆弯曲度的优化方法,其特征在于,对所述晶圆的正面进行处理以在所述正面形成耐酸液腐蚀的保护层包括:9. The method for optimizing wafer curvature according to claim 8, wherein processing the front side of the wafer to form an acid-resistant protective layer on the front side comprises: 在所述晶圆的正面形成层间介质层,所述层间介质层覆盖所述晶圆的正面表面、所述栅极结构以及所述侧墙,其中,所述层间介质层作为所述保护层。An interlayer dielectric layer is formed on the front surface of the wafer, and the interlayer dielectric layer covers the front surface of the wafer, the gate structure and the sidewall, wherein the interlayer dielectric layer serves as the The protective layer. 10.根据权利要求1至9任一项所述的晶圆弯曲度的优化方法,其特征在于,使用所述酸液去除所述晶背SiN的至少一部分包括:10. The method for optimizing wafer curvature according to any one of claims 1 to 9, wherein using the acid solution to remove at least a portion of the SiN on the crystal back comprises: 将所述晶圆整片放入所述酸液中,以去除所述晶背SiN的至少一部分。Putting the entire wafer into the acid solution to remove at least a part of the SiN on the crystal back.
CN201711351515.6A 2017-12-15 2017-12-15 The optimization method of wafer bow Pending CN108110043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711351515.6A CN108110043A (en) 2017-12-15 2017-12-15 The optimization method of wafer bow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711351515.6A CN108110043A (en) 2017-12-15 2017-12-15 The optimization method of wafer bow

Publications (1)

Publication Number Publication Date
CN108110043A true CN108110043A (en) 2018-06-01

Family

ID=62217311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711351515.6A Pending CN108110043A (en) 2017-12-15 2017-12-15 The optimization method of wafer bow

Country Status (1)

Country Link
CN (1) CN108110043A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065508A (en) * 2018-08-14 2018-12-21 济南晶正电子科技有限公司 A kind of reversed table top composite construction ultra thin wafer and preparation method thereof
CN110828298A (en) * 2019-11-14 2020-02-21 济南晶正电子科技有限公司 Single crystal thin film composite substrate and method for manufacturing same
CN112635477A (en) * 2020-12-07 2021-04-09 华虹半导体(无锡)有限公司 Method for manufacturing flash memory device
CN112992948A (en) * 2021-02-04 2021-06-18 华虹半导体(无锡)有限公司 Backside illuminated image sensor and manufacturing method thereof
CN113035688A (en) * 2019-12-09 2021-06-25 华润微电子(重庆)有限公司 Semiconductor structure and manufacturing method thereof
CN113224187A (en) * 2020-01-21 2021-08-06 济南晶正电子科技有限公司 Composite film and method for producing same
CN113223943A (en) * 2020-01-21 2021-08-06 济南晶正电子科技有限公司 Piezoelectric thin film composite substrate and preparation method thereof
CN118888511A (en) * 2024-09-23 2024-11-01 粤芯半导体技术股份有限公司 Isolation structure forming method, semiconductor device manufacturing method and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468171A (en) * 2010-11-05 2012-05-23 中芯国际集成电路制造(上海)有限公司 Method for improving stress effect of stress layer
CN103972082A (en) * 2013-01-30 2014-08-06 无锡华润上华科技有限公司 Method for preventing pattern loss and wafer manufacturing method capable of preventing pattern loss
US20170179046A1 (en) * 2011-11-18 2017-06-22 Invensas Corporation High yield substrate assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468171A (en) * 2010-11-05 2012-05-23 中芯国际集成电路制造(上海)有限公司 Method for improving stress effect of stress layer
US20170179046A1 (en) * 2011-11-18 2017-06-22 Invensas Corporation High yield substrate assembly
CN103972082A (en) * 2013-01-30 2014-08-06 无锡华润上华科技有限公司 Method for preventing pattern loss and wafer manufacturing method capable of preventing pattern loss

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065508A (en) * 2018-08-14 2018-12-21 济南晶正电子科技有限公司 A kind of reversed table top composite construction ultra thin wafer and preparation method thereof
CN110828298A (en) * 2019-11-14 2020-02-21 济南晶正电子科技有限公司 Single crystal thin film composite substrate and method for manufacturing same
CN113035688A (en) * 2019-12-09 2021-06-25 华润微电子(重庆)有限公司 Semiconductor structure and manufacturing method thereof
CN113035688B (en) * 2019-12-09 2023-02-28 华润微电子(重庆)有限公司 Semiconductor structure and manufacturing method thereof
CN113224187A (en) * 2020-01-21 2021-08-06 济南晶正电子科技有限公司 Composite film and method for producing same
CN113223943A (en) * 2020-01-21 2021-08-06 济南晶正电子科技有限公司 Piezoelectric thin film composite substrate and preparation method thereof
CN113223943B (en) * 2020-01-21 2023-03-24 济南晶正电子科技有限公司 Piezoelectric thin film composite substrate and preparation method thereof
CN112635477A (en) * 2020-12-07 2021-04-09 华虹半导体(无锡)有限公司 Method for manufacturing flash memory device
CN112992948A (en) * 2021-02-04 2021-06-18 华虹半导体(无锡)有限公司 Backside illuminated image sensor and manufacturing method thereof
CN118888511A (en) * 2024-09-23 2024-11-01 粤芯半导体技术股份有限公司 Isolation structure forming method, semiconductor device manufacturing method and semiconductor device
CN118888511B (en) * 2024-09-23 2025-01-14 粤芯半导体技术股份有限公司 Isolation structure forming method, semiconductor device manufacturing method and semiconductor device

Similar Documents

Publication Publication Date Title
CN108110043A (en) The optimization method of wafer bow
US11551979B2 (en) Method for manufacturing semiconductor structure
US9224696B2 (en) Integrated semiconductor device and method for fabricating the same
CN101459115A (en) Shallow groove isolation construction manufacturing method
US20140273480A1 (en) Method for producing a substrate provided with edge protection
CN101770974B (en) Method for fabricating shallow-trench isolation structure
CN103377912B (en) Shallow trench isolation chemical mechanical planarization method
US11456367B2 (en) Trench gate structure and method of forming a trench gate structure
CN103560106B (en) Method for manufacturing semiconductor substrate with low warping degree
JP5264018B2 (en) Method for manufacturing semiconductor substrate
CN104217986B (en) The preparation method of fleet plough groove isolation structure and the preparation method of nand flash memory
CN103855074B (en) A kind of manufacture method of semiconductor device
CN102956535A (en) Semiconductor device and manufacturing method thereof
CN114695096B (en) Method for manufacturing semiconductor device
CN204516724U (en) a semiconductor structure
CN104241099A (en) Self-aligning dual-graph process
CN112117192B (en) Method for forming semiconductor structure
CN103545243B (en) A kind of forming method of fleet plough groove isolation structure
CN111326426A (en) Method and semiconductor device for trench filling and control of wafer warpage
CN105161414B (en) The minimizing technology of gate hard mask layer
CN104810268A (en) Groove-type power device gate oxide layer preparation method
CN104425354A (en) Method for manufacturing shallow trench isolation structure
CN102543743A (en) Manufacturing method of MOS (metal oxide semiconductor) device
CN103515291A (en) Forming method of shallow trench isolation structure
CN107919347A (en) The forming method of fin resistive element and semiconductor devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180601

WD01 Invention patent application deemed withdrawn after publication