[go: up one dir, main page]

CN108085288B - 一种利用重组微生物发酵生产1,3-丙二醇的方法 - Google Patents

一种利用重组微生物发酵生产1,3-丙二醇的方法 Download PDF

Info

Publication number
CN108085288B
CN108085288B CN201711405440.5A CN201711405440A CN108085288B CN 108085288 B CN108085288 B CN 108085288B CN 201711405440 A CN201711405440 A CN 201711405440A CN 108085288 B CN108085288 B CN 108085288B
Authority
CN
China
Prior art keywords
recombinant microorganism
gene
hydroxypropionyl
propanediol
coa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711405440.5A
Other languages
English (en)
Other versions
CN108085288A (zh
Inventor
陈振
刘德华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG TSINGHUA SMART BIOTECH Co.,Ltd.
Original Assignee
Guangdong Tsinghua Smart Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Tsinghua Smart Biotech Co ltd filed Critical Guangdong Tsinghua Smart Biotech Co ltd
Priority to CN201711405440.5A priority Critical patent/CN108085288B/zh
Publication of CN108085288A publication Critical patent/CN108085288A/zh
Priority to US16/957,081 priority patent/US11542533B2/en
Priority to RU2020124095A priority patent/RU2757790C1/ru
Priority to EP18892142.3A priority patent/EP3730602A4/en
Priority to BR112020012391-9A priority patent/BR112020012391A2/pt
Priority to PCT/CN2018/095893 priority patent/WO2019119789A1/zh
Priority to ZA2020/04214A priority patent/ZA202004214B/en
Application granted granted Critical
Publication of CN108085288B publication Critical patent/CN108085288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012983-Hydroxypropionate dehydrogenase (NADP+) (1.1.1.298)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01075Malonyl CoA reductase (malonate semialdehyde-forming)(1.2.1.75)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01084Acrylyl-CoA reductase (NADPH) (1.3.1.84)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04009Biotin--[methylmalonyl-CoA-carboxytransferase] ligase (6.3.4.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012021,3-Propanediol dehydrogenase (1.1.1.202)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/011163-Hydroxypropionyl-CoA dehydratase (4.2.1.116)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/010363-Hydroxypropionyl-CoA synthase (6.2.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01002Acetyl-CoA carboxylase (6.4.1.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种利用重组微生物发酵生产1,3‑丙二醇的方法。本发明首先提供一种重组微生物,该微生物能够过表达乙酰辅酶A羧化酶基因accBC和accDA、表达丙二酰辅酶A合成酶基因mcr、表达3‑羟基丙酰辅酶A合成酶基因pcs、3‑羟基丙酰辅酶A还原酶基因pduP和1,3‑丙二醇还原酶基因yqhD。将该重组微生物在摇瓶或者发酵罐中以葡萄糖为底物进行发酵培养获得1,3‑丙二醇。本发明的重组微生物在发酵过程中可以利用廉价的葡萄糖,蔗糖,糖蜜,木糖等为原料且无需添加昂贵的辅酶B12,因此可以显著降低生产成本,具有良好的市场应用前景。

Description

一种利用重组微生物发酵生产1,3-丙二醇的方法
技术领域
本发明属于基因工程和生物发酵技术领域,具体地说,本发明涉及无需添加辅酶维生素B12、通过单一重组微生物将可发酵糖高效生物转化为1,3-丙二醇的方法。
背景技术
1,3-丙二醇是一种重要的化工原料,可作为有机溶剂应用于油墨、印染、涂料、润滑剂、抗冻剂等行业,其最主要的用途是作为聚酯和聚氨酯合成的单体,特别是与对苯二甲酸聚合生成聚对苯二甲酸丙二酯(PTT)。PTT与PET(聚对苯二甲酸乙二醇酯)、PBT(聚对苯二甲酸丁二醇酯)相比具有更优良的性能,例如更好的耐污染性、韧性和回弹性以及抗紫外性能等,此外还具有耐磨、吸水性低、低静电等优点。因此PTT被认为是PET的升级产品,具有广阔的市场前景。
目前,1,3-丙二醇的生产方法主要包括化学法和生物法。化学法通常是以环氧丙烷或者丙烯为原料通过复杂的催化过程合成1,3-丙二醇。化学合成法的缺点是副产物多,选择性差,操作条件需高温高压,设备投资巨大,原料为不可再生资源。因此,化学法生产1,3-丙二醇的工艺技术路线目前基本已经淘汰。
生物法生产1,3-丙二醇目前主要包含两条技术路线:一、以甘油为原料利用天然微生物生产1,3-丙二醇;二、以葡萄糖为原料利用重组微生物生产1,3-丙二醇。具体介绍如下。
一种是以甘油为原料利用天然微生物生产1,3-丙二醇,如克雷伯氏肺炎杆菌(Klebsiella pneumoniae)、丁酸梭状芽胞杆菌(Clostridium butyricum)及弗氏柠檬酸菌(Citrobacter freundii)可以在厌氧或者微氧的条件下将甘油转化为1,3-丙二醇。这个工艺路线的主要缺点是:1、常用的1,3-丙二醇生产菌株克雷伯氏肺炎杆菌为条件致病菌,其生产过程中生物安全性需要严格控制;2、大量副产物如乙酸、乳酸,丁二酸,2,3-丁二醇的合成,使得整个后提取过程变得十分复杂;3、甘油价格受到市场的波动较大。
现有技术中还有一种是以葡萄糖为原料利用重组微生物生产1,3-丙二醇的方法,如杜邦公司通过在大肠杆菌中外源表达来自酿酒酵母的甘油合成途径(甘油3-磷酸脱氢酶及甘油3-磷酸甘油脂酶)和来自克雷伯氏肺炎杆菌的甘油脱水酶及其激活因子并利用大肠杆菌自身的NADPH依赖的醇脱氢酶YqhD,实现了从葡萄糖到1,3-丙二醇的一步转化(CN200380104657.2)。这一工艺路线的缺点是甘油脱水酶是一种需要辅酶B12为辅因子的酶,而大肠杆菌无法合成辅酶B12,因此在发酵过程中需要添加昂贵的辅酶B12,极大提高了1,3-丙二醇的生产成本,不利于产业化规模化生产。
发明内容
本发明的目的是提供一种生产成本低、无需添加昂贵的辅酶B12、利用重组微生物直接将可发酵糖转化成1,3-丙二醇的新方法。
本发明首先提供一种重组微生物,该重组微生物能够过表达:
(1)乙酰辅酶A羧化酶基因accBC和accDA;
(2)丙二酰辅酶A合成酶基因mcr;
(3)3-羟基丙酰辅酶A合成酶基因pcs;
(4)3-羟基丙酰辅酶A还原酶基因pduP;
(5)1,3-丙二醇还原酶基因yqhD。
本领域技术人员应当理解,本发明所述微生物可选择常用的模式微生物,包括但不限于为大肠杆菌、谷氨酸棒杆菌、枯草芽孢杆菌或酿酒酵母。
本发明的重组微生物能够表达乙酰辅酶A羧化酶基因accBC和accDA,其核苷酸序列分别如SEQ ID NO.1-2所示。
在本发明的实施例中,乙酰辅酶A羧化酶基因accBC和accDA来源于谷氨酸棒杆菌。
进一步地,本发明的重组微生物能够表达丙二酰辅酶A合成酶基因mcr的核苷酸序列如SEQ ID NO.3所示。在本发明的实施例中,丙二酰辅酶A合成酶基因mcr来源于嗜热光合绿曲菌。
更进一步地,本发明的重组微生物能够表达3-羟基丙酰辅酶A合成酶基因pcs、3-羟基丙酰辅酶A还原酶基因pduP、1,3-丙二醇还原酶基因yqhD;在本发明的实施例中,所述3-羟基丙酰辅酶A合成酶基因pcs来源于Metallosphaera sedula,其核苷酸序列如SEQ IDNO.4所示;所述3-羟基丙酰辅酶A还原酶基因pduP来源于克雷伯氏肺炎杆菌,其核苷酸序列如SEQ ID NO.5所示;所述1,3-丙二醇还原酶基因yqhD来源于大肠杆菌,其核苷酸序列如SEQ ID NO.6所示。本领域技术人员应当理解,本申请不限于实施例来源的菌株的酶,其他来源具有相同功能的酶也可以实现相同的技术效果。
在本发明的实施例中,所述重组微生物通过以下方法构建得到:
(1)将序列如SEQ ID NO.1所示的accBC基因和如SEQ ID NO.2所示的accDA基因连接到pACYCDuet上,获得的重组质粒pACYC-accDABC;
(2)以SEQ ID NO.3所示的片段为模板,SEQ ID NO.11-12所述序列为引物PCR扩增得到的3.7kb的mcr片段连接到pACYC-accDABC上,获得的重组质粒pACYC-accDABC-mcr;将该重组质粒转入到大肠杆菌中,筛选获得重组菌E.coli/pACYC-accDABC-mcr;
(3)以SEQ ID NO.4所示的片段为模板,SEQ ID NO.13-14所述序列为引物PCR扩增得到的2.0kb的pcs片段;将pcs片段、SEQ ID NO.5所示的pduP片段和SEQ ID NO.6所示的yqhD片段连接到pET28a上,获得的重组质粒pET-pcs-pduP-yqhD;
(4)将pET-pcs-pduP-yqhD转入步骤(2)的重组菌E.coli/pACYC-accDABC-mcr中,筛选获得重组菌E.coli/pACYC-accDABC-mcr/pET-pcs-pduP-yqhD,即为本发明所述的重组微生物。
本发明提供了上述重组微生物在发酵糖类生产1,3-丙二醇中的应用。
本发明提供了一种利用所述的重组微生物发酵生产1,3-丙二醇的方法,包括以下步骤:
(1)构建能够过表达乙酰辅酶A羧化酶基因accBC和accDA、丙二酰辅酶A合成酶基因mcr、3-羟基丙酰辅酶A合成酶基因pcs、3-羟基丙酰辅酶A还原酶基因pduP、1,3-丙二醇还原酶基因yqhD的重组微生物;
(2)以含可发酵糖的原料为底物进行好氧发酵,发酵过程无需添加辅酶维生素B12。
步骤(2)所述含可发酵糖的原料为糖蜜,蔗糖、葡萄糖、淀粉水解液、玉米浆、木糖、甘露糖或甘油;
步骤(2)的发酵条件为,28-37℃,pH值5-8,溶氧值大于10%。
优选地,步骤(2)的发酵条件为,30-37℃,pH值6-7,溶氧值大于10%。
步骤(2)发酵底物还含有Na2HPO4,KH2PO4,MgSO4,NaCl,酵母粉,NH4Cl,盐酸硫胺素,生物素。
本发明提出了1,3-丙二醇的合成路线如图1所示:首先葡萄糖(或其他可发酵糖)在微生物自身糖酵解途径的作用下生成乙酰辅酶A;乙酰辅酶A在乙酰辅酶A羧化酶的催化下生成丙二酰辅酶A;丙二酰辅酶A在丙二酰辅酶A还原酶的催化下生成丙二酸半醛;丙二酸半醛在丙二酸半醛还原酶的作用下生成3-羟基丙酸;3-羟基丙酸在3-羟基丙酸辅酶A合成酶的作用下生成3-羟基丙酸辅酶A;3-羟基丙酸辅酶A在3-羟基丙酸辅酶A还原酶的作用下生成3-羟基丙醛;3-羟基丙醛在1,3-丙二醇还原酶的作用下生成1,3-丙二醇。
本发明利用能够过表达乙酰辅酶A羧化酶基因accBC和accDA、丙二酰辅酶A合成酶基因mcr、3-羟基丙酰辅酶A合成酶基因pcs、3-羟基丙酰辅酶A还原酶基因pduP和1,3-丙二醇还原酶基因yqhD的重组微生物在摇瓶或者发酵罐中以葡萄糖为底物进行发酵培养获得1,3-丙二醇。本发明的重组微生物在发酵过程中可以利用廉价的葡萄糖为原料且无需添加昂贵的辅酶B12,可以显著降低生产成本,具有良好的市场应用前景。本发明方法操作简单,成本低廉,1,3-丙二醇得率高,副产物少,有利于进一步简化1,3-丙二醇的分离过程。
附图说明
图1为本发明利用重组微生物发酵葡萄糖生产1,3-丙二醇方法的流程图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。
若未特别指明,实施例中所用的化学试剂均为常规市售试剂,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1过表达乙酰辅酶A羧化酶基因accBC和accDA重组质粒的构建
以谷氨酸棒杆菌ATCC 13032的基因组为模板,以引物accBC-F(tagcgcagtaaAAGGAGATATACCatgtcagtcgagactaggaaga)和accBC-R(CTGCAGGCGCGCCGAGCTCGttacttgatctcgaggagaacaacgcc)为引物进行PCR,获得accBC基因(accBC基因序列如SEQ ID NO.1所示)约1.8kb并进行PCR产物纯化。
以谷氨酸棒杆菌ATCC 13032的基因组为模板,以引物accDA-F(GTTTAACTTTAATAAGGAGATATACatggtgtggggcatggaac)和accDA-R(TATATCTCCTTttactgcgctaaacgctcaaatcg)为引物进行PCR,获得accDA基因(accDA基因序列如SEQ ID NO.2所示)约1.5kb并进行PCR产物纯化。将pACYCDuet(Novagen)质粒用NcoI和EcoRI进行双酶切,利用Gibson Assembly试剂盒(NEB)将纯化获得的accBC片段和accDA片段一步连接到pACYCDuet上,获得的重组质粒命名为pACYC-accDABC。
实施例2过表达丙二酰辅酶A合成酶基因mcr质粒的构建
根据嗜热光合绿曲菌的丙二酰辅酶A合成酶的氨基酸序列人工设计优化的基因核酸序列(基因序列如SEQ ID NO.3所示),并委托青兰生物公司进行合成,以该基因片段为模板以引物mcr-F(GCGATCGCTGACGTCGGTACAAGGAGATATACATATGTCGGGCACTG)和mcr-R(TTTACCAGACTCGAGGGTACTTAAACGGTGATTGCGCGTCC)为引物进行PCR,获得约3.7kb的mcr片段并进行PCR纯化。实施例1制得的pACYC-accDABC质粒用KpnI进行酶切,利用Gibson Assembly试剂盒(NEB)将mcr片段一步连接到pACYC-accDABC上,获得的重组质粒命名为pACYC-accDABC-mcr。通过热转化法将pACYC-accDABC-mcr转入到大肠杆菌BL21(DE3)中,在含25mg/L的氯霉素LB平板上筛选获得重组菌,命名为E.coli/pACYC-accDABC-mcr。
实施例3过表达3-羟基丙酰辅酶A合成酶基因pcs、3-羟基丙酰辅酶A还原酶基因pduP和1,3-丙二醇还原酶基因yqhD的重组质粒的构建
根据Metallosphaera sedula的3-羟基丙酰辅酶A合成酶的氨基酸序列人工设计优化的基因核酸序列(基因序列如SEQ ID NO.4所示),委托青兰生物公司进行合成,以该基因片段为模板以引物pcs-F(CTTTAAGAAGGAGATATACCaggaggaaacagaaccATGTTTATGCGC)和pcs-R(TTTACCAGACTCGAGGGTACTTAAACGGTGATTGCGCGTCC)为引物进行PCR,获得约2.0kb的pcs片段并进行PCR纯化。以克雷伯氏肺炎杆菌DSM2026的基因组为模板,以引物pduP-F(GACTTCCTAAccattaacgtgagaactcatcaatgaatacag)和pduP-R(atATGTATATCTCCTTCTTAAAGTTttagcgaatggaaaaaccgttggt)为引物进行PCR,获得pduP基因(pduP基因序列如SEQ ID NO.5所示)约1.5kb并进行PCR产物纯化。以大肠杆菌W3110的基因组为模板,以引物yqhD-F(TAAGAAGGAGATATACATatgAACAACTTTAATCTGCACACC)和yqhD-R(CAAGCTTGTCGACGGAGCTCGCGGGCGGCTTCGTATATACG)为引物进行PCR,获得yqhD基因(yqhD基因序列如SEQ ID NO.6所示)约1.2kb并进行PCR产物纯化。将pET32a(Novagen)质粒用NcoI和EcoRI进行双酶切,利用Gibson Assembly试剂盒(NEB)将pcs片段、pduP片段和yqhD片段一步连接到pET28a上,获得的重组质粒命名为pET-pcs-pduP-yqhD。通过热转化法将pET-pcs-pduP-yqhD转入到实施例2得到的大肠杆菌E.coli/pACYC-accDABC-mcr中,在含25mg/L的氯霉素和25mg/L卡那霉素的LB平板上筛选获得重组菌,命名为E.coli/pACYC-accDABC-mcr/pET-pcs-pduP-yqhD。
实施例4重组大肠杆菌发酵培养生产1,3-丙二醇
将实施例3获得的重组菌株E.coli/pACYC-accDABC-mcr/pET-pcs-pduP-yqhD在含25mg/L氯霉素和25mg/L卡那霉素LB平板上过夜培养,从该新鲜平板上单菌落接种到含有30ml种子培养基的250ml带档板摇瓶中,30℃,200rpm培养16小时。
种子培养基的配方包括(g/L):葡萄糖20,酵母粉5.0,蛋白胨10,氯化钠5.0,氯霉素0.025,卡那霉素0.025。
以10%的接种量将种子液接种到含有100ml发酵培养基的1000mL带挡板摇瓶中,控制温度为30℃,转速为200rpm,发酵6h时加入0.5mM的IPTG进行诱导,并继续发酵48h。
发酵培养基配方包括(g/L):葡萄糖20,Na2HPO4·7H2O 12.8,K2HPO4 3.0,MgSO40.5,NaCl 0.5,NH4Cl 0.5,酵母粉10,生物素0.001,盐酸硫胺素0.001,氯霉素0.025,卡那霉素0.025。
发酵24h时检测实施例3获得的重组菌E.coli/pACYC-accDABC-mcr/pET-pcs-pduP-yqhD的乙酰辅酶A羧化酶,丙二酰辅酶A合成酶,3-羟基丙酰辅酶A合成酶,3-羟基丙酰辅酶A还原酶,1,3-丙二醇还原酶的酶活,分别达到0.24U/mg,0.12U/mg,0.38U/mg,0.97U/mg和1.72U/mg,说明所有的重组酶都可以正常表达。而对照的野生的大肠杆菌BL21(DE3)的基本检测不到对应的酶活。
发酵48小时后,实施例3获得的重组菌株E.coli/pACYC-accDABC-mcr/pET-pcs-pduP-yqhD可以生产2.1g/L的1,3-丙二醇,质量转化率达到0.105g/g葡萄糖,说明构建的重组菌株在不添加辅酶B12的情况下能够转化葡萄糖直接生产1,3-丙二醇。在同样条件的对照实验中,野生的大肠杆菌BL21(DE3),以及实施例2得到的E.coli/pACYC-accDABC-mcr都不能生产1,3-丙二醇。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 清华大学
<120> 一种利用重组微生物发酵生产1,3-丙二醇的方法
<130> KHP171118623.0
<160> 18
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1776
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgtcagtcg agactaggaa gatcaccaag gttcttgtcg ctaaccgtgg tgagattgca 60
atccgcgtgt tccgtgcagc tcgagatgaa ggcatcggat ctgtcgccgt ctacgcagag 120
ccagatgcag atgcaccatt cgtgtcatat gcagacgagg cttttgccct cggtggccaa 180
acatccgctg agtcctacct tgtcattgac aagatcatcg atgcggcccg caagtccggc 240
gccgacgcca tccaccccgg ctacggcttc ctcgcagaaa acgctgactt cgcagaagca 300
gtcatcaacg aaggcctgat ctggattgga ccttcacctg agtccatccg ctccctcggc 360
gacaaggtca ccgctcgcca catcgcagat accgccaagg ctccaatggc tcctggcacc 420
aaggaaccag taaaagacgc agcagaagtt gtggctttcg ctgaagaatt cggtctccca 480
atcgccatca aggcagcttt cggtggcggc ggacgtggca tgaaggttgc ctacaagatg 540
gaagaagtcg ctgacctctt cgagtccgca acccgtgaag caaccgcagc gttcggccgc 600
ggcgagtgct tcgtggagcg ctacctggac aaggcacgcc acgttgaggc tcaggtcatc 660
gccgataagc acggcaacgt tgttgtcgcc ggaacccgtg actgctccct gcagcgccgt 720
ttccagaagc tcgtcgaaga agcaccagca ccattcctca ccgatgacca gcgcgagcgt 780
ctccactcct ccgcgaaggc tatctgtaag gaagctggct actacggtgc aggcaccgtt 840
gagtacctcg ttggctccga cggcctgatc tccttcctcg aggtcaacac ccgcctccag 900
gtggaacacc cagtcaccga agagaccacc ggcatcgacc tggtccgcga aatgttccgc 960
atcgcagaag gccacgagct ctccatcaag gaagatccag ctccacgcgg ccacgcattc 1020
gagttccgca tcaacggcga agacgctggc tccaacttca tgcctgcacc aggcaagatc 1080
accagctacc gcgagccaca gggcccaggc gtccgcatgg actccggtgt cgttgaaggt 1140
tccgaaatct ccggacagtt cgactccatg ctggcaaagc tgatcgtttg gggcgacacc 1200
cgcgagcagg ctctccagcg ctcccgccgt gcacttgcag agtacgttgt cgagggcatg 1260
ccaaccgtta tcccattcca ccagcacatc gtggaaaacc cagcattcgt gggcaacgac 1320
gaaggcttcg agatctacac caagtggatc gaagaggttt gggataaccc aatcgcacct 1380
tacgttgacg cttccgagct cgacgaagat gaggacaaga ccccagcaca gaaggttgtt 1440
gtggagatca acggccgtcg cgttgaggtt gcactcccag gcgatctggc actcggtggc 1500
accgctggtc ctaagaagaa ggccaagaag cgtcgcgcag gtggtgcaaa ggctggcgta 1560
tccggcgatg cagtggcagc tccaatgcag ggcactgtca tcaaggtcaa cgtcgaagaa 1620
ggcgctgaag tcaacgaagg cgacaccgtt gttgtcctcg aggctatgaa gatggaaaac 1680
cctgtgaagg ctcataagtc cggaaccgta accggcctta ctgtcgctgc aggcgagggt 1740
gtcaacaagg gcgttgttct cctcgagatc aagtaa 1776
<210> 2
<211> 1455
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atggtgtggg gcatggaaca cacttcagca ttgacgctca tagactcggt tttggaccct 60
gacagcttca tttcttggaa tgaaactccc caatatgaca acctcaatca aggctatgca 120
gagaccttgg agcgggctcg aagcaaggcc aaatgcgatg aatcggtaat tactggagaa 180
ggcaccgtgg agggcattcc ggtagccgtt attttgtccg atttttcctt cctcggcggt 240
tctttgggca cggtcgcgtc ggtgcgcatc atgaaggcga ttcaccgcgc cacagagctg 300
aaactcccac tgctggtctc ccctgcttcc ggtggtgcgc gcatgcagga agacaatcga 360
gcttttgtca tgatggtgtc cataaccgcg gctgtgcagc gtcaccgcga ggcgcatttg 420
ccgttcctgg tgtatttgcg caatcccacg atgggtggcg ccatggcctc gtggggttca 480
tctgggcatc tcacttttgc ggaacccggc gcgcagatag gtttcctggg tcctcgcgtg 540
gtggagttaa ccactgggca tgcgcttcca gacggtgtgc agcaggcgga gaatttggtg 600
aaaactggtg tgattgatgg aattgtgtcg ccactccaat tgcgtgcagc ggtggcaaaa 660
accctcaagg ttattcagcc ggtagaggca acggatcgtt tttctccaac aactcctggc 720
gtggcacttc cggtgatgga ggcgattgcg cgttctcgtg acccgcagag gcctggaatc 780
ggggagatta tggaaacgtt gggggcagac gtcgtcaagc tttctggtgc gcgtgctggc 840
gcattgagcc cggctgtgcg cgttgccctg gcgcgcatcg ggggccggcc cgtggtgctg 900
attgggcagg atcgccgctt cacgcttggg ccgcaggagc tgcgttttgc gcgtcgtggc 960
atttcgctgg cgcgcgagct aaacctgccg atcgtgtcca tcatcgacac ctccggcgcc 1020
gaattgtcgc aggcggctga ggagctcggc atcgcaagct cgattgcgcg caccttgtcc 1080
aagcttatcg acgctcccct ccccaccgtt tcggtcatta ttggtcaggg cgttggcggt 1140
ggcgcgctgg ccatgctgcc cgccgatctg gtctacgcgg ccgaaaacgc gtggctgtcc 1200
gcattgccac cagagggcgc ctcggccatc ctcttccgcg acaccaacca cgccgcggaa 1260
atcatagagc gacaaggcgt gcaggcgcac gcacttttaa gccaagggct tatcgacggg 1320
atcgtcgccg aaaccgagca ctttgttgaa gaaattctcg gcacaatcag caacgccctc 1380
tccgaattgg ataacaatcc ggagagggcg ggacgcgaca gtcgcttcac acgatttgag 1440
cgtttagcgc agtaa 1455
<210> 3
<211> 3663
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgtcgggca ctgggcgttt agccggtaaa atcgcgttga tcacgggcgg agcgggtaac 60
attggttctg aattgacgcg tcgctttttg gcggagggcg cgacggtcat catttctgga 120
cgcaaccgcg ccaaactgac ggcgttggct gagcgcatgc aagccgaagc aggagtgcct 180
gctaaacgca tcgatctgga agtcatggac ggttcggatc ccgtggcagt acgcgcgggt 240
atcgaagcaa ttgtagcacg ccacggacag attgatattt tagtcaacaa cgctggttcg 300
gcgggggcgc agcgccgtct ggcagaaatc ccattaactg aggcagagtt agggcccggt 360
gcagaagaga ccttacatgc gtccattgct aacctgcttg ggatgggctg gcacttgatg 420
cgcatcgcgg ctccacacat gcctgtaggc tctgccgtga ttaatgtaag cacaatcttt 480
tcacgcgccg agtactatgg tcgtatccct tatgtaacgc caaaggcagc ccttaatgca 540
cttagtcagc ttgcggcgcg cgagttaggt gctcgtggca tccgtgtgaa tacgattttt 600
ccagggccaa ttgagtccga tcgcattcgt acggtgtttc agcgcatgga tcagttgaag 660
ggccgcccgg aaggagacac agcacaccac tttctgaata ctatgcgcct ttgtcgtgcg 720
aacgaccaag gagctttgga acgccgtttc ccgagcgtcg gagacgtggc agatgctgcc 780
gtgtttttgg ccagtgccga gagtgctgcg ctttcgggag agactatcga ggtcactcac 840
ggtatggaac ttccagcgtg ctccgagaca tcacttctgg cacgtactga cttgcgtact 900
attgacgcgt caggccgtac taccctgatt tgcgcgggag atcaaattga agaggtcatg 960
gcgttgaccg gcatgctgcg cacatgtggg agtgaagtaa tcatcggatt ccgttccgca 1020
gcagcgttgg cgcagtttga acaggctgtt aacgaatccc gccgtttggc aggggctgac 1080
ttcactcctc ctatcgccct gccattagat ccacgtgatc cggctacaat cgatgcagtg 1140
ttcgattggg gtgcaggaga aaacacgggc gggatccacg ctgctgtaat cttaccggcg 1200
accagtcacg agcccgctcc ctgtgtcatc gaggtcgatg acgagcgtgt ccttaatttt 1260
ctggctgatg aaattacagg gaccattgta atcgcatctc gccttgcccg ttattggcaa 1320
agtcagcgtt tgacgcctgg tgcgcgtgcg cgcgggccac gtgtaatttt tctgtcgaat 1380
ggcgctgacc aaaatggcaa tgtgtacgga cgcattcaga gcgcagcaat tgggcaactt 1440
atccgtgtgt ggcgtcatga ggctgaattg gattatcagc gtgcaagtgc tgcgggggat 1500
cacgttttac ctcccgtgtg ggcaaaccag attgttcgct ttgccaaccg tagtctggag 1560
ggtctggagt ttgcctgtgc ttggacggcg caacttctgc actcacagcg ccacattaac 1620
gagattactc tgaacatccc tgctaacatt tccgcgacca ccggcgcccg ttcggcttcg 1680
gtggggtggg cggaatcatt aatcgggctg catcttggta aggtggcgtt aattactgga 1740
ggtagcgccg gcattggagg gcaaattggg cgcctgcttg ctttatctgg ggcccgtgtg 1800
atgttggcgg cgcgcgaccg tcataagctg gaacagatgc aggctatgat tcagagcgag 1860
ttagccgaag tagggtatac cgacgttgaa gatcgcgtcc acattgcacc gggttgcgat 1920
gtatcaagcg aagctcaatt agccgattta gttgagcgca ccttgtccgc atttggtacc 1980
gtcgattatt taatcaataa tgcgggcatt gcgggcgtag aggagatggt tatcgacatg 2040
ccagtcgaag gctggcgcca cacgcttttt gcgaatctga tcagtaatta tagtttgatg 2100
cgcaaattag ctccgttaat gaagaagcaa ggatccggct acatcctgaa tgtatcatct 2160
tatttcggcg gagaaaaaga tgcggcgatt ccatacccga accgtgcgga ttacgctgta 2220
tcgaaggctg gtcaacgcgc tatggccgag gtatttgccc gtttcttagg tccagagatt 2280
cagatcaatg ccattgcacc aggccccgtt gagggcgatc gcttacgcgg gactggggag 2340
cgcccagggt tgtttgcgcg ccgcgcccgc cttatccttg agaataaacg cttaaacgaa 2400
ttgcacgcag ctcttatcgc cgctgcccgc actgacgagc gtagcatgca cgagttagtg 2460
gaactgttgt taccaaacga tgttgctgcg ctggagcaga atcctgccgc tcccactgcc 2520
ttgcgtgaat tagcacgccg ttttcgtagc gaaggtgacc ctgctgcctc gtcgtcatcc 2580
gcccttctta accgctccat tgctgccaag ttgctggccc gtttacacaa cggcgggtat 2640
gtgctgcccg ctgacatctt cgcgaatctg ccgaatccac ccgatccctt cttcacccgt 2700
gctcaaatcg accgcgaagc gcgcaaagtt cgcgatggta tcatgggcat gctgtacttg 2760
cagcgcatgc cgactgaatt tgatgtagcc atggcgaccg tgtactattt ggctgatcgc 2820
aacgtcagcg gagagacctt tcacccgtcc gggggattac gttatgagcg tactcctacg 2880
gggggagaat tgtttggcct gccttcacca gagcgccttg ccgaacttgt gggttcgact 2940
gtatacttaa tcggagaaca cttaactgaa catctgaatc tgctggcacg cgcatatctt 3000
gagcgttatg gagcgcgtca agtggtcatg attgtcgaaa ctgagaccgg tgccgagacg 3060
atgcgtcgtt tattacacga ccacgtggaa gccggacgct taatgacaat cgtagctggg 3120
gatcaaatcg aagcagcaat cgaccaagcg attacccgtt acggtcgccc ggggccggtc 3180
gtgtgcaccc cttttcgtcc tcttcccact gtccctttag tagggcgtaa ggacagtgac 3240
tggagtaccg tgctttcaga agccgagttt gctgagttgt gcgagcatca attaacacat 3300
catttccgcg tagcccgtaa gatcgcgtta tcagatggtg catctttggc tcttgttact 3360
ccagaaacaa ctgctacctc tacgaccgag cagtttgctt tggccaactt tattaagaca 3420
acattacatg ccttcacggc caccatcggc gttgagagcg aacgcaccgc tcagcgtatt 3480
ctgattaatc aggtggactt gactcgccgt gcgcgtgcgg aagagccgcg tgatccacat 3540
gagcgtcaac aagaattgga acgttttatt gaagcggttt tacttgttac agctcctctt 3600
cccccagagg ctgatactcg ctacgcgggt cgcattcacc gcggacgcgc aatcaccgtt 3660
taa 3663
<210> 4
<211> 1986
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atgtttatgc gctacatcat ggtggaagag cagactttga aaactggaag ccaagagctt 60
gaagaaaaag ctgattataa tatgcgttac tacgcacacc ttatgaagct gtctaaagaa 120
aagcctgccg aattttgggg ctctttggcg caagatcttc tggattggta tgagccctgg 180
aaggaaacga tgcgccaaga ggaccccatg acgcgctggt tcattggcgg gaagattaat 240
gcgtcctaca atgctgtgga ccgtcatttg aacggccccc gcaaattcaa agctgcggta 300
atctgggaga gtgagttggg ggaacgtaaa atcgttactt accaagacat gttctacgaa 360
gtcaaccgct gggcaaacgc cttacgcagt cttggcgtag gtaaaggaga tcgcgtgacc 420
atttatatgc cgctgacccc agaaggaatc gcggccatgc tggcgtcagc tcgtattgga 480
gcgattcatt cagttatctt cgccggattt ggatcgcaag ccatcgccga ccgcgttgag 540
gacgccaagg caaaagtcgt aatcaccgct gacgcatatc ctcgtcgtgg taaagtagtt 600
gaactgaaaa agacagtgga cgaggccctt aattctttag gtgaacgtag tccagtgcaa 660
cacgtcctgg tctatcgccg catgaagaca gacgttaaca tgaaagaagg gcgcgacgtt 720
ttcttcgacg aagtgggcaa ataccgctat gtggagcctg aacgtatgga ttctaacgac 780
cccttattta ttctgtacac gtcaggtact acaggtaaac caaaggggat tatgcactcg 840
actggaggat atttgaccgg gacggcggtt atgctgcttt ggtcatatgg actgtcgcag 900
gagaatgatg tattattcaa tacttcagac atcggctgga tcgtgggtca ctcttacatc 960
acttactcgc cgttaatcat gggtcgcacg gtggtgatct atgagtctgc ccccgattac 1020
ccatatcccg ataagtgggc ggagatcatt gagcgttatc gcgctacaac ttttggtact 1080
tcagccacgg cgttgcgcta tttcatgaaa tacggggacg aatatgttaa gaatcatgat 1140
ttaagttcta ttcgtattat cgttacgaat ggcgaagttt tgaactatag cccctggaaa 1200
tggggcttgg aagtgcttgg tggcggcaag gtattcatgt cgcatcaatg gtggcaaacg 1260
gagaccggag cacctaattt aggctacctg cctggcatta tttatatgcc gatgaaatct 1320
gggccagcgt ctggctttcc tctgcctgga aatttcgttg aagtccttga cgagaatggt 1380
aacccgagtg cgcctcgtgt acgtggctac cttgtaatgc gtccaccctt ccccccaaac 1440
atgatgatgg gcatgtggaa tgacaacgga gagcgcctga agaaaactta tttctcaaaa 1500
tttggaagct tatactaccc cggagacttc gctatggttg atgaagacgg ttatatctgg 1560
gtactgggtc gtgcggacga gacgttaaag atcgcggcac atcgtatcgg tgccggcgag 1620
gtcgaaagcg caatcacctc tcacccatca gttgcagaag ccgcagttat tggagttccg 1680
gattcagtga agggcgagga ggtgcatgcc ttcgtggttc tgaaacaagg gtacgctccg 1740
tcctctgagc ttgcaaagga cattcaaagt catgtccgta aagtcatggg ccctattgta 1800
tcgccacaga ttcactttgt tgataaactt cctaagactc gctcgggtaa ggtgatgcgc 1860
cgtgtcatta aggccgtgat gatgggatcg tcggcaggcg accttaccac gattgaagac 1920
gaagcaagca tggatgaaat caagaaggcg gtggaagaac tgaagaagga attaaagact 1980
tcctaa 1986
<210> 5
<211> 1389
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atgaatacag cagaactgga aacccttatc cgcaccatcc tcagtgaaaa gctcgcgccg 60
acgccccctg cccctcagca agagcagggc attttctgcg atgtcggcag cgccatcgac 120
gccgctcatc aggcttttct ccgctatcag cagtgtccgc taaaaacccg cagcgccatt 180
atcagcgccc tgcgggagac gctggccccc gagctggcga cgctggcgga agagagcgcc 240
acggaaaccg gcatgggcaa caaagaagat aaatatctga aaaataaagc cgctcttgaa 300
aacacgccgg gcatagagga tctcactacc agcgccctca ccggcgatgg cgggatggtg 360
ctgtttgagt actcgccgtt cggggttatt ggcgccgtgg cgcccagcac caacccaacg 420
gaaaccatta tcaacaacag tatcagcatg ctggcggcgg gtaacagcgt ctatttcagc 480
ccccatcccg gcgcgaaaaa ggtctcgttg aagcttatcg ccaggatcga agagatcgcc 540
taccgctgca gcgggatccg taacctggtg gtgaccgttg ccgagccgac ctttgaagcc 600
acccagcaaa tgatgtccca cccgctgatt gccgttctgg ctatcaccgg cggccctggc 660
attgtggcga tgggcatgaa aagcggtaaa aaagtgatcg gcgctggcgc cggcaatccg 720
ccgtgcatcg ttgatgaaac cgccgatctc gtcaaagccg ccgaagatat catcagcggc 780
gccgccttcg attacaacct gccctgtatc gccgaaaaaa gcctgatcgt cgtcgcctcc 840
gtcgctgacc gcctgatcca gcagatgcag gattttgacg cgctgctgtt gagccgacag 900
gaggccgata ccctgcgtgc cgtctgcctg cccgacggcg cggcgaataa aaaactggtc 960
ggtaaaagcc cggctgcgct gctggcggcg gcgggtctcg ccgttccgcc tcgcccccct 1020
cgcctgctga tagccgaggt ggaggcgaac gacccctggg tgacctgcga gcagctgatg 1080
ccggtgctgc cgatcgtcag ggtcgccgac tttgacagcg ccctggcgct ggccctgcgc 1140
gttgaggagg gtctgcacca caccgccatt atgcactcgc agaatgtctc gcggctcaat 1200
ctggcggcac gcacgctgca gacctccatt tttgtcaaaa atggcccgtc ttacgcggga 1260
atcggcgtcg gcggcgaagg gtttaccacc ttcaccatcg ccacgccaac cggagaaggc 1320
accacctccg cgcggacgtt cgcccgcctg cggcgctgcg tgttgaccaa cggtttttcc 1380
attcgctaa 1389
<210> 6
<211> 1164
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
atgaacaact ttaatctgca caccccaacc cgcattctgt ttggtaaagg cgcaatcgct 60
ggtttacgcg aacaaattcc tcacgatgct cgcgtattga ttacctacgg cggcggcagc 120
gtgaaaaaaa ccggcgttct cgatcaagtt ctggatgccc tgaaaggcat ggacgtgctg 180
gaatttggcg gtattgagcc aaacccggct tatgaaacgc tgatgaacgc cgtgaaactg 240
gttcgcgaac agaaagtgac tttcctgctg gcggttggcg gcggttctgt actggacggc 300
accaaattta tcgccgcagc ggctaactat ccggaaaata tcgatccgtg gcacattctg 360
caaacgggcg gtaaagagat taaaagcgcc atcccgatgg gctgtgtgct gacgctgcca 420
gcaaccggtt cagaatccaa cgcaggcgcg gtgatctccc gtaaaaccac aggcgacaag 480
caggcgttcc attctgccca tgttcagccg gtatttgccg tgctcgatcc ggtttatacc 540
tacaccctgc cgccgcgtca ggtggctaac ggcgtagtgg acgcctttgt acacaccgtg 600
gaacagtatg ttaccaaacc ggttgatgcc aaaattcagg accgtttcgc agaaggcatt 660
ttgctgacgc taatcgaaga tggtccgaaa gccctgaaag agccagaaaa ctacgatgtg 720
cgcgccaacg tcatgtgggc ggcgactcag gcgctgaacg gtttgattgg cgctggcgta 780
ccgcaggact gggcaacgca tatgctgggc cacgaactga ctgcgatgca cggtctggat 840
cacgcgcaaa cactggctat cgtcctgcct gcactgtgga atgaaaaacg cgataccaag 900
cgcgctaagc tgctgcaata tgctgaacgc gtctggaaca tcactgaagg ttccgatgat 960
gagcgtattg acgccgcgat tgccgcaacc cgcaatttct ttgagcaatt aggcgtgccg 1020
acccacctct ccgactacgg tctggacggc agctccatcc cggctttgct gaaaaaactg 1080
gaagagcacg gcatgaccca actgggcgaa aatcatgaca ttacgttgga tgtcagccgc 1140
cgtatatacg aagccgcccg ctaa 1164
<210> 7
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tagcgcagta aaaggagata taccatgtca gtcgagacta ggaaga 46
<210> 8
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ctgcaggcgc gccgagctcg ttacttgatc tcgaggagaa caacgcc 47
<210> 9
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gtttaacttt aataaggaga tatacatggt gtggggcatg gaac 44
<210> 10
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tatatctcct tttactgcgc taaacgctca aatcg 35
<210> 11
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gcgatcgctg acgtcggtac aaggagatat acatatgtcg ggcactg 47
<210> 12
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tttaccagac tcgagggtac ttaaacggtg attgcgcgtc c 41
<210> 13
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ctttaagaag gagatatacc aggaggaaac agaaccatgt ttatgcgc 48
<210> 14
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
tttaccagac tcgagggtac ttaaacggtg attgcgcgtc c 41
<210> 15
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gacttcctaa ccattaacgt gagaactcat caatgaatac ag 42
<210> 16
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
atatgtatat ctccttctta aagttttagc gaatggaaaa accgttggt 49
<210> 17
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
taagaaggag atatacatat gaacaacttt aatctgcaca cc 42
<210> 18
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
caagcttgtc gacggagctc gcgggcggct tcgtatatac g 41

Claims (9)

1.一种重组微生物,其特征在于,该重组微生物能够过表达:
(1)乙酰辅酶A羧化酶基因accBC和accDA;
(2)丙二酰辅酶A合成酶基因mcr;
(3)3-羟基丙酰辅酶A合成酶基因pcs;
(4)3-羟基丙酰辅酶A还原酶基因pduP;
(5)1,3-丙二醇还原酶基因yqhD;
所述微生物为大肠杆菌。
2.如权利要求1所述的重组微生物,其特征在于,accBC和accDA的核苷酸序列如SEQ IDNO.1-2所示。
3.如权利要求1或2所述的重组微生物,其特征在于,丙二酰辅酶A合成酶基因mcr的核苷酸序列如SEQ ID NO.3所示。
4.如权利要求1或2所述的重组微生物,其特征在于,3-羟基丙酰辅酶A合成酶基因pcs的核苷酸序列如SEQ ID NO.4所示。
5.如权利要求1或2所述的重组微生物,其特征在于,3-羟基丙酰辅酶A还原酶基因pduP的核苷酸序列如SEQ ID NO.5所示。
6.如权利要求1或2所述的重组微生物,其特征在于,1,3-丙二醇还原酶基因yqhD的核苷酸序列如SEQ ID NO.6所示。
7.权利要求1-6任一所述的重组微生物在发酵糖类生产1,3-丙二醇中的应用。
8.一种利用权利要求1-6任一所述的重组微生物发酵生产1,3-丙二醇的方法,其特征在于,包括以下步骤:
(1)构建能够过表达乙酰辅酶A羧化酶基因accBC和accDA、丙二酰辅酶A合成酶基因mcr、3-羟基丙酰辅酶A合成酶基因pcs、3-羟基丙酰辅酶A还原酶基因pduP、1,3-丙二醇还原酶基因yqhD的重组微生物;
(2)以含可发酵糖的原料为底物进行好氧发酵,发酵过程无需添加辅酶维生素B12。
9.如权利要求8所述的方法,其特征在于,步骤(2)所述含可发酵糖的原料为糖蜜,蔗糖、葡萄糖、淀粉水解液、玉米浆、木糖、甘露糖或甘油;步骤(2)的发酵条件为,28-37℃,pH值5-8,溶氧值大于10%。
CN201711405440.5A 2017-12-22 2017-12-22 一种利用重组微生物发酵生产1,3-丙二醇的方法 Active CN108085288B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201711405440.5A CN108085288B (zh) 2017-12-22 2017-12-22 一种利用重组微生物发酵生产1,3-丙二醇的方法
US16/957,081 US11542533B2 (en) 2017-12-22 2018-07-17 Method for producing 1,3-propanediol by fermentation of a recombinant microorganism
RU2020124095A RU2757790C1 (ru) 2017-12-22 2018-07-17 Способ получения 1,3-пропандиола путем ферментации рекомбинантного микроорганизма
EP18892142.3A EP3730602A4 (en) 2017-12-22 2018-07-17 PROCESS FOR THE PRODUCTION OF 1,3-PROPYLENEGLYCOL BY FERMENTATION OF A RECOMBINATED MICRO-ORGANISM
BR112020012391-9A BR112020012391A2 (pt) 2017-12-22 2018-07-17 método para a produção de 1,3-propanodiol por fermentação de um microrganismo recombinante
PCT/CN2018/095893 WO2019119789A1 (zh) 2017-12-22 2018-07-17 一种利用重组微生物发酵生产1,3-丙二醇的方法
ZA2020/04214A ZA202004214B (en) 2017-12-22 2020-07-09 Method for producing 1,3-propylene glycol by means of fermentation of recombinant microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711405440.5A CN108085288B (zh) 2017-12-22 2017-12-22 一种利用重组微生物发酵生产1,3-丙二醇的方法

Publications (2)

Publication Number Publication Date
CN108085288A CN108085288A (zh) 2018-05-29
CN108085288B true CN108085288B (zh) 2021-03-09

Family

ID=62178654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711405440.5A Active CN108085288B (zh) 2017-12-22 2017-12-22 一种利用重组微生物发酵生产1,3-丙二醇的方法

Country Status (7)

Country Link
US (1) US11542533B2 (zh)
EP (1) EP3730602A4 (zh)
CN (1) CN108085288B (zh)
BR (1) BR112020012391A2 (zh)
RU (1) RU2757790C1 (zh)
WO (1) WO2019119789A1 (zh)
ZA (1) ZA202004214B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085288B (zh) * 2017-12-22 2021-03-09 广东清大智兴生物技术有限公司 一种利用重组微生物发酵生产1,3-丙二醇的方法
CN114806984B (zh) * 2022-02-28 2024-04-09 江苏大学 一种联产3-羟基丙酸和1,3-丙二醇的基因工程菌ec01 s7、构建方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012833A3 (en) * 1999-08-18 2001-08-30 Du Pont Process for the biological production of 1,3-propanediol
CN105189757A (zh) * 2013-03-15 2015-12-23 嘉吉公司 乙酰辅酶a羧化酶突变

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556855A (zh) * 2000-11-20 2004-12-22 卡吉尔公司 3-羟基丙酸及其它有机化合物
US6545190B2 (en) * 2001-03-15 2003-04-08 Shell Oil Company One step process for preparing a 1,3-diol
KR100864672B1 (ko) * 2003-04-02 2008-10-23 씨제이제일제당 (주) 클렙시엘라 뉴모니아를 이용한 1,2-프로판디올의 생산방법
KR20120099315A (ko) * 2011-01-26 2012-09-10 삼성전자주식회사 3-하이드록시프로피온산 및 1,3-프로판디올 동시 생산용 재조합미생물
EP3013966A2 (en) * 2013-06-28 2016-05-04 Metabolix, Inc. Genetically engineered methylotrophs for the production of pha biopolymers and c3, c4, and c5 biochemicals from methanol or methane as sole carbon feedstock
CN106906248A (zh) * 2017-03-28 2017-06-30 清华大学 一种利用重组微生物发酵生产1,3‑丙二醇的方法
CN107400652B (zh) 2017-07-09 2023-11-24 东北林业大学 一种动态调控3-羟基丙酸合成的工程菌构建方法
CN108085288B (zh) 2017-12-22 2021-03-09 广东清大智兴生物技术有限公司 一种利用重组微生物发酵生产1,3-丙二醇的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012833A3 (en) * 1999-08-18 2001-08-30 Du Pont Process for the biological production of 1,3-propanediol
CN105189757A (zh) * 2013-03-15 2015-12-23 嘉吉公司 乙酰辅酶a羧化酶突变

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dual synthetic pathway for 3-hydroxypropionic acid production in engineered Escherichia coli;Hiroshi Honjo;《Journal of Bioscience and Bioengineering》;20150130;第120卷(第2期);第199-204页 *
Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae;Lian Hua Luo 等;《Bioresource Technology》;20120131;第103卷(第1期);第1-6页 *

Also Published As

Publication number Publication date
BR112020012391A2 (pt) 2020-11-24
US20210123079A1 (en) 2021-04-29
ZA202004214B (en) 2022-06-29
EP3730602A4 (en) 2021-10-27
CN108085288A (zh) 2018-05-29
WO2019119789A1 (zh) 2019-06-27
US11542533B2 (en) 2023-01-03
RU2757790C1 (ru) 2021-10-21
EP3730602A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN111712570B (zh) 一种生产阿洛酮糖及其衍生物的工程菌株及其构建方法和应用
CN107384846A (zh) 生产1,4‑丁二醇的微生物和相关方法
CN104059872A (zh) 高产n-乙酰氨基葡萄糖代谢工程菌及其构建方法和应用
CN112280722B (zh) 用于生产光学纯1,3-丁二醇的重组菌及其应用
CN105647844B (zh) 一种利用木糖生产乙醇酸的重组菌及其构建方法与应用
AU2015293864A1 (en) Method for producing acetoin
JP5496356B2 (ja) アラビノース代謝経路が導入されたキシリトール生産菌株及びそれを用いたキシリトール生産方法
CN107384847B (zh) 一种高效转化木糖生产乙二醇的重组菌及其应用
WO2024066822A1 (zh) 发酵生产γ-丁内酯或1,4-丁二醇的方法
CN108085288B (zh) 一种利用重组微生物发酵生产1,3-丙二醇的方法
CN112280723B (zh) 联产1,3-丙二醇和1,3-丁二醇的重组菌及其应用
CN112126609B (zh) 一种利用乙醇生产聚羟基丁酸的重组菌及其构建方法与应用
CN115975964B (zh) 一种高活性酮基泛解酸内酯还原酶突变体及其编码基因和应用
CN105441372A (zh) 一种重组谷氨酸棒杆菌与应用
CN113025546B (zh) 一种多酶级联转化l-酪氨酸生产酪醇的方法
CN111394396B (zh) 一种微生物利用甘油发酵生产1,3-丙二醇的方法
CN110643585B (zh) 一种利用氨基酸脱氨酶生产α-酮-β-甲基正戊酸的方法
CN114806998A (zh) 产葡萄糖的罗尔斯通氏菌工程菌及发酵生产方法
CN112921012A (zh) 谷氨酸棒杆菌meso-2,6-二氨基庚二酸脱氢酶突变体及其应用
CN113528366A (zh) 一种产beta-丙氨酸酵母菌及其构建方法
CN113122563A (zh) 构建r-3-氨基丁酸生产菌的方法
CN101265474A (zh) 产气荚膜梭菌甘油脱水酶激活因子基因及其1,3-丙二醇的生产方法
CN114350583B (zh) 一种发酵生产1,2-丁二醇的方法、重组微生物及其应用
CN114107147B (zh) 一种可利用甲醇生产光学纯1,3-丁二醇的重组微生物及其应用
CN1935991B (zh) 产气荚膜梭菌甘油脱水酶基因及其1,3-丙二醇的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210125

Address after: 523000 room 507, building 1, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Applicant after: GUANGDONG TSINGHUA SMART BIOTECH Co.,Ltd.

Address before: 100084 mailbox, 100084-82 Tsinghua Yuan, Beijing, Haidian District, Beijing

Applicant before: TSINGHUA University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant