[go: up one dir, main page]

CN108074814B - Semiconductor structure and method of forming the same - Google Patents

Semiconductor structure and method of forming the same Download PDF

Info

Publication number
CN108074814B
CN108074814B CN201611002333.3A CN201611002333A CN108074814B CN 108074814 B CN108074814 B CN 108074814B CN 201611002333 A CN201611002333 A CN 201611002333A CN 108074814 B CN108074814 B CN 108074814B
Authority
CN
China
Prior art keywords
layer
forming
stress
substrate
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611002333.3A
Other languages
Chinese (zh)
Other versions
CN108074814A (en
Inventor
邓浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201611002333.3A priority Critical patent/CN108074814B/en
Publication of CN108074814A publication Critical patent/CN108074814A/en
Application granted granted Critical
Publication of CN108074814B publication Critical patent/CN108074814B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor structure and a method of forming the same, the method comprising: providing a substrate, wherein the substrate is provided with a plurality of isolation structures; forming a gate structure on the substrate between adjacent isolation structures; forming stress layers in the substrate on two sides of the gate structure; and forming a cap layer on the stress layer, wherein the process for forming the cap layer comprises a spin coating process. According to the technical scheme, after the stress layer is formed, the cap layer is formed on the stress layer, and the process for forming the cap layer comprises a spin coating process. The cap layer is formed through a spin coating process, so that the appearance of the formed cap layer cannot change along with the change of the appearance of the stress layer, and a plurality of cap layers between the gate structures have flush surfaces, so that the formed cap layer can better repair the appearance of the stress layer, the surface appearance of the formed cap layer can be improved, and the electrical performance of the formed semiconductor structure can be improved.

Description

半导体结构及其形成方法Semiconductor structure and method of forming the same

技术领域technical field

本发明涉及半导体制造领域,特别涉及一种半导体结构及其形成方法。The present invention relates to the field of semiconductor manufacturing, in particular to a semiconductor structure and a method for forming the same.

背景技术Background technique

晶体管作为最基本的半导体器件目前正被广泛应用。随着集成电路中元器件密度和集成度的提高,晶体管的尺寸越来越小。随着晶体管尺寸的缩小,晶体管沟道长度、栅极长度也随之缩短。晶体管沟道长度的缩短使缓变沟道的近似不再成立,引起短沟道效应,进而产生漏电流,影响半导体器件的性能。通过对晶体管沟道区引入应力,能够提高沟道内载流子的迁移率,进而提高晶体管的驱动电流,从而抑制晶体管的漏电流。As the most basic semiconductor device, transistors are being widely used. With the increase in the density and integration of components in integrated circuits, the size of transistors is getting smaller and smaller. As transistor size shrinks, transistor channel length and gate length also shorten. The shortening of the channel length of the transistor makes the approximation of the graded channel no longer tenable, causing the short channel effect, which in turn generates leakage current and affects the performance of the semiconductor device. By introducing stress to the channel region of the transistor, the mobility of carriers in the channel can be improved, thereby increasing the driving current of the transistor, thereby suppressing the leakage current of the transistor.

对晶体管沟道区引入应力的方法为,在晶体管内形成应力层,用于向PMOS晶体管的沟道区提供压应力、向NMOS晶体管的沟道区引入拉应力,以提高晶体管沟道区内载流子的迁移率,进而改善晶体管的性能。具体的,应力层通常由锗硅材料或碳硅材料形成,通过应力层与硅晶体之间的晶格失配而形成压应力或拉应力。The method of introducing stress to the channel region of the transistor is to form a stress layer in the transistor to provide compressive stress to the channel region of the PMOS transistor and to introduce tensile stress to the channel region of the NMOS transistor to improve the load in the channel region of the transistor. The mobility of the carriers, thereby improving the performance of the transistor. Specifically, the stress layer is usually formed of a silicon germanium material or a silicon carbon material, and compressive stress or tensile stress is formed through lattice mismatch between the stress layer and the silicon crystal.

但是现有技术所形成的具有应力层的半导体结构往往存在电学性能欠佳的问题。However, the semiconductor structure with the stress layer formed in the prior art often has the problem of poor electrical performance.

发明内容SUMMARY OF THE INVENTION

本发明解决的问题是提供一种半导体结构及其形成方法,以提高所形成半导体结构的电学性能。The problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, so as to improve the electrical properties of the formed semiconductor structure.

为解决上述问题,本发明提供一种半导体结构的形成方法,包括:In order to solve the above problems, the present invention provides a method for forming a semiconductor structure, comprising:

提供衬底,所述衬底内具有多个隔离结构;形成位于相邻隔离结构之间衬底上的栅极结构;在所述栅极结构两侧的衬底内形成应力层;在所述应力层上形成帽层,形成帽层的工艺包括旋涂工艺。providing a substrate with a plurality of isolation structures in the substrate; forming a gate structure on the substrate between adjacent isolation structures; forming a stress layer in the substrate on both sides of the gate structure; A cap layer is formed on the stress layer, and the process of forming the cap layer includes a spin coating process.

可选的,在所述应力层上形成帽层的步骤包括:通过旋涂工艺在所述应力层上形成前驱层;对所述前驱层进行固化处理,形成所述帽层。Optionally, the step of forming a cap layer on the stress layer includes: forming a precursor layer on the stress layer through a spin coating process; and curing the precursor layer to form the cap layer.

可选的,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述前驱层为聚硅烷层。Optionally, in the step of forming a precursor layer on the stressor layer by a spin coating process, the precursor layer is a polysilane layer.

可选的,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述前驱层的材料包括聚乙硅烷和环戊硅烷中的一种或两种。Optionally, in the step of forming a precursor layer on the stressor layer by a spin coating process, the material of the precursor layer includes one or both of polydisilane and cyclopentasilane.

可选的,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述前驱层还包括溶剂,所述溶剂为碳氢化合物,所述碳氢化合物中碳的原子数大于4。Optionally, in the step of forming a precursor layer on the stressor layer by a spin coating process, the precursor layer further includes a solvent, the solvent is a hydrocarbon, and the number of carbon atoms in the hydrocarbon is greater than 4.

可选的,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述碳氢化合物为C5H12Optionally, in the step of forming a precursor layer on the stressor layer by a spin coating process, the hydrocarbon is C 5 H 12 .

可选的,形成所述前驱层之后,固化处理之前,所述形成方法还包括:通过回刻的方式去除部分厚度的所述前驱层。Optionally, after the precursor layer is formed and before the curing process, the forming method further includes: removing a part of the thickness of the precursor layer by etching back.

可选的,回刻所述前驱层的步骤包括:通过干法刻蚀的方式回刻所述前驱层。Optionally, the step of etching back the precursor layer includes: etching back the precursor layer by dry etching.

可选的,对所述前驱层进行固化处理的步骤包括:对所述前驱层进行烘焙处理;对经烘焙处理的前驱层进行退火处理,以形成所述帽层。Optionally, the step of curing the precursor layer includes: baking the precursor layer; and annealing the baked precursor layer to form the cap layer.

可选的,对所述前驱层进行烘焙处理的步骤中,所述烘焙处理的温度在150℃到350℃范围内,所述烘焙处理的时间在5分钟到15分钟范围内。Optionally, in the step of baking the precursor layer, the temperature of the baking treatment is in the range of 150°C to 350°C, and the time of the baking treatment is in the range of 5 minutes to 15 minutes.

可选的,对经烘焙处理的前驱层进行退火处理的步骤中,所述退火处理的温度在350℃到800℃范围内,所述退火处理的时间在2分钟到8分钟范围内。Optionally, in the step of annealing the baked precursor layer, the temperature of the annealing treatment is in the range of 350° C. to 800° C., and the time of the annealing treatment is in the range of 2 minutes to 8 minutes.

可选的,通过旋涂工艺在所述应力层上形成前驱层的步骤和对所述前驱层进行固化处理的步骤中的一个或两个步骤包括:在惰性气体气氛下进行所述旋涂工艺或所述固化处理,所述惰性气体的压强在200Torr到500Torr范围内。Optionally, one or both of the step of forming a precursor layer on the stressor layer by a spin coating process and the step of curing the precursor layer include: performing the spin coating process in an inert gas atmosphere. Or in the curing process, the pressure of the inert gas is in the range of 200 Torr to 500 Torr.

可选的,形成应力层的步骤包括:在所述栅极结构两侧的衬底内形成开口;向所述开口内填充应力材料,形成所述应力层。Optionally, the step of forming the stress layer includes: forming an opening in the substrate on both sides of the gate structure; filling the opening with a stress material to form the stress layer.

可选的,形成应力层的步骤包括:形成“∑”形的应力层。Optionally, the step of forming the stress layer includes: forming a "Σ"-shaped stress layer.

可选的,形成应力层的步骤包括:所述应力层的材料为锗硅材料。Optionally, the step of forming the stress layer includes: a material of the stress layer is silicon germanium material.

可选的,向所述开口内填充应力材料的步骤包括:通过外延生长的方式向所述开口内填充应力材料。Optionally, the step of filling the opening with a stress material includes: filling the opening with a stress material by means of epitaxial growth.

可选的,形成帽层之后,所述形成方法还包括:形成覆盖所述帽层的金属层。Optionally, after forming the cap layer, the forming method further includes: forming a metal layer covering the cap layer.

可选的,形成所述金属层的步骤中,所述金属层的材料为镍。Optionally, in the step of forming the metal layer, the material of the metal layer is nickel.

相应的,本发明还提供一种半导体结构,包括:Correspondingly, the present invention also provides a semiconductor structure, comprising:

衬底,所述衬底内具有多个隔离结构;位于相邻隔离结构之间衬底上的栅极结构;位于栅极结构两侧衬底内的应力层;位于所述应力层上的帽层,所述帽层为通过旋涂工艺所形成的帽层。a substrate with a plurality of isolation structures in the substrate; gate structures located on the substrate between adjacent isolation structures; stress layers located in the substrate on both sides of the gate structure; caps located on the stress layer layer, the cap layer is a cap layer formed by a spin coating process.

可选的,所述帽层的材料包括硅。Optionally, the material of the cap layer includes silicon.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明技术方案,在形成应力层后,在所述应力层上形成帽层,形成所述帽层的工艺包括旋涂工艺。由于形成所述帽层的工艺包括旋涂工艺,所以所形成帽层的形貌不会随着所述应力层形貌的变化而变化,而且栅极结构之间的多个帽层具有齐平的表面,所以所形成的帽层能够较好实现对所述应力层形貌的修复,从而有利于提高所形成帽层的表面形貌,有利于改善所形成半导体结构的电学性能。According to the technical solution of the present invention, after the stress layer is formed, a cap layer is formed on the stress layer, and the process of forming the cap layer includes a spin coating process. Since the process of forming the capping layer includes a spin coating process, the topography of the formed capping layer will not change with the change of the topography of the stressing layer, and the plurality of capping layers between the gate structures have a flush level Therefore, the formed cap layer can better repair the morphology of the stress layer, thereby improving the surface morphology of the formed cap layer and improving the electrical properties of the formed semiconductor structure.

本发明可选方案中,形成聚硅烷材料的所述帽层之后,形成覆盖所述帽层的金属层,以形成金属硅化物减小接触电阻。形成修复层的技术方案相比,本发明技术方案直接通过帽层实现对所述应力层形貌的修复,简化了工艺步骤,有利于降低工艺难度,提高良率。In an optional solution of the present invention, after the cap layer of the polysilane material is formed, a metal layer covering the cap layer is formed to form a metal silicide to reduce contact resistance. Compared with the technical solution of forming the repair layer, the technical solution of the present invention directly realizes the repair of the stress layer morphology through the cap layer, which simplifies the process steps, is beneficial to reduce the process difficulty and improve the yield.

附图说明Description of drawings

图1至图3是一种具有应力层的半导体结构形成方法各个步骤对应的结构示意图;1 to 3 are schematic structural diagrams corresponding to each step of a method for forming a semiconductor structure with a stress layer;

图4至图9是本发明半导体结构形成方法一实施例各个步骤对应的结构示意图。4 to 9 are schematic structural diagrams corresponding to each step of an embodiment of a method for forming a semiconductor structure of the present invention.

具体实施方式Detailed ways

由背景技术可知,现有技术中具有应力层的半导体结构存在电学性能不良的问题。现结合一种具有应力层的半导体结构的形成方法分析其性能不良问题的原因:It can be known from the background art that the semiconductor structure with the stress layer in the prior art has the problem of poor electrical performance. Now combined with a method of forming a semiconductor structure with a stress layer to analyze the reasons for its poor performance:

参考图1至图3,示出了一种具有应力层的半导体结构形成方法各个步骤对应的结构示意图。Referring to FIG. 1 to FIG. 3 , schematic structural diagrams corresponding to each step of a method for forming a semiconductor structure with a stress layer are shown.

参考图1,提供衬底10,所述衬底10内具有隔离结构11;形成位于相邻隔离结构11之间衬底10上的栅极结构12;在栅极结构12两侧的衬底100内形成应力层13;在所述应力层13上形成帽层14。Referring to FIG. 1 , a substrate 10 is provided having isolation structures 11 therein; gate structures 12 are formed on the substrate 10 between adjacent isolation structures 11 ; substrates 100 on both sides of the gate structures 12 are formed A stress layer 13 is formed inside; a cap layer 14 is formed on the stress layer 13 .

具体的,形成所述应力层13的步骤包括:在栅极结构12两侧的衬底100内形成开口;向所述开口内填充应力材料,形成所述应力层13。Specifically, the step of forming the stress layer 13 includes: forming an opening in the substrate 100 on both sides of the gate structure 12 ; filling the opening with a stress material to form the stress layer 13 .

所述应力层12的材料为锗硅。外延生长填充锗硅材料的过程中,锗硅材料在硅衬底不同晶面上的生长速度不相同,在(100)面上的生长速度大于在(111)面上的生长速度。因此在形成的应力层13过程中,与所述隔离结构11相邻接的应力层13往往会出现比较严重的小平面效应(facet effect),造成与所述隔离结构13相邻接的应力层13无法完全填充开口,从而使所形成应力层13的形貌出现缺陷(如图1中圈15内所示)。The material of the stress layer 12 is silicon germanium. In the process of epitaxial growth filling of SiGe material, the growth rate of SiGe material on different crystal planes of the silicon substrate is different, and the growth rate on the (100) plane is greater than that on the (111) plane. Therefore, in the process of forming the stress layer 13 , the stress layer 13 adjacent to the isolation structure 11 tends to have a relatively serious facet effect, resulting in the stress layer adjacent to the isolation structure 13 . 13 cannot completely fill the opening, so that the morphology of the formed stress layer 13 is defective (as shown in the circle 15 in FIG. 1 ).

应力层13形貌出现缺陷,会使在所述应力层13上所形成的帽层14也容易随之出现缺陷,会增大形成所述帽层13的工艺难度,难以保证所形成帽层14的形貌;因此在后续工艺中,特别是在形成接触孔的过程中帽层14很容易出现损伤而露出所述应力层13。应力层13的暴露,会增加应力层13受损的可能,从而影响形成半导体结构的良率,影响半导体结构的性能。Defects in the morphology of the stress layer 13 will cause the cap layer 14 formed on the stress layer 13 to be prone to defects, which will increase the difficulty of the process of forming the cap layer 13, and it is difficult to guarantee the cap layer 14 formed. Therefore, in the subsequent process, especially in the process of forming the contact hole, the cap layer 14 is easily damaged and the stress layer 13 is exposed. The exposure of the stressor layer 13 increases the possibility of damage to the stressor layer 13 , thereby affecting the yield of the semiconductor structure and the performance of the semiconductor structure.

为了改善应力层13形貌的缺陷,一种方法是通过控制应力层13生长的工艺条件,尽量减少应力层13出现小平面效应,以提高应力层13的形貌。但是这种做法对应力层13形貌缺陷的改善效果有限。In order to improve the defects of the stress layer 13 morphology, one method is to reduce the facet effect of the stress layer 13 as much as possible by controlling the process conditions of the stress layer 13 growth, so as to improve the morphology of the stress layer 13 . However, the improvement effect of this method on the morphology defects of the stress layer 13 is limited.

另一种方法是,如图2所示,在所述栅极结构12和所述应力层13上形成多晶硅的修复层15;之后如图3所示,再通过回刻的方式去除所述栅极结构12顶部和侧壁的修复层15(如图2所示),使剩余位于所述应力层13上的所述修复层15修正所述应力层13的形貌。Another method is, as shown in FIG. 2 , to form a polysilicon repair layer 15 on the gate structure 12 and the stressor layer 13 ; then, as shown in FIG. 3 , remove the gate by etching back. The repairing layer 15 on the top and sidewalls of the pole structure 12 (as shown in FIG. 2 ) allows the repairing layer 15 remaining on the stressing layer 13 to modify the morphology of the stressing layer 13 .

但是,采用修复层15修复所述应力层13形貌的做法中,所述修复层15厚度的控制难度以及对回刻修复层15工艺的控制难度均较大:However, in the method of using the repair layer 15 to repair the morphology of the stress layer 13, the difficulty of controlling the thickness of the repair layer 15 and the control difficulty of the process of engraving the repair layer 15 back are relatively high:

如果形成修复层15的厚度过大,或者回刻所述修复层15的厚度太小,由于多晶硅材料的修复层15常常是保形覆盖于所述栅极结构12和所述应力层13上的,因此在回刻所述修复层15时,往往很容易在所述栅极结构12侧壁残留修复层15(如图3中圈18内所示)。在后续形成插塞时,在所述栅极结构12侧壁残留的修复层15很容易形成金属硅化物,从而引起所形成插塞和栅极结构12之间出现短接,影响所形成半导体结构的性能。If the thickness of the repair layer 15 is too large, or the thickness of the repair layer 15 is too small to be etched back, the repair layer 15 of polysilicon material is often conformally covered on the gate structure 12 and the stress layer 13 . Therefore, when the repair layer 15 is etched back, it is easy to leave the repair layer 15 on the sidewall of the gate structure 12 (as shown in the circle 18 in FIG. 3 ). When the plug is subsequently formed, metal silicide is easily formed on the repair layer 15 remaining on the sidewall of the gate structure 12 , which causes a short circuit between the formed plug and the gate structure 12 and affects the formed semiconductor structure. performance.

如果形成修复层15的厚度过小,或者回刻所述修复层15的厚度太大,则被去除的所述修复层15过多,剩余的所述修复层15太少,所述修复层15修复所述应力层13缺陷的功能不明显(如图3中圈17内所示)。If the thickness of the repairing layer 15 is too small, or the thickness of the repairing layer 15 is too large, the repairing layer 15 is removed too much, and the remaining repairing layer 15 is too little, and the repairing layer 15 The function of repairing the defects of the stress layer 13 is not obvious (as shown in the circle 17 in FIG. 3 ).

为解决所述技术问题,本发明提供一种半导体结构的形成方法,包括:In order to solve the technical problem, the present invention provides a method for forming a semiconductor structure, including:

提供衬底,所述衬底内具有多个隔离结构;形成位于相邻隔离结构之间衬底上的栅极结构;在所述栅极结构两侧的衬底内形成应力层;在所述应力层上形成帽层,形成帽层的工艺包括旋涂工艺。providing a substrate with a plurality of isolation structures in the substrate; forming a gate structure on the substrate between adjacent isolation structures; forming a stress layer in the substrate on both sides of the gate structure; A cap layer is formed on the stress layer, and the process of forming the cap layer includes a spin coating process.

本发明技术方案,在形成应力层后,在所述应力层上形成帽层,形成所述帽层的工艺包括旋涂工艺。由于所述帽层是通过旋涂工艺形成的,所以所形成帽层的形貌不会随着所述应力层形貌的变化而变化,而且栅极结构之间的多个帽层具有齐平的表面,所以所形成的帽层能够较好实现对所述应力层形貌的修复,从而有利于提高所形成帽层的表面形貌,有利于改善所形成半导体结构的电学性能。According to the technical solution of the present invention, after the stress layer is formed, a cap layer is formed on the stress layer, and the process of forming the cap layer includes a spin coating process. Since the capping layer is formed by a spin coating process, the topography of the formed capping layer will not change with the change of the topography of the stressing layer, and the plurality of capping layers between the gate structures are flush with each other. Therefore, the formed cap layer can better repair the morphology of the stress layer, thereby improving the surface morphology of the formed cap layer and improving the electrical properties of the formed semiconductor structure.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

参考图4至图9,示出了本发明半导体结构形成方法一实施例各个步骤所对应的结构示意图。Referring to FIG. 4 to FIG. 9 , schematic structural diagrams corresponding to each step of an embodiment of a method for forming a semiconductor structure of the present invention are shown.

参考图4,提供衬底100,所述衬底100内具有多个隔离结构101。Referring to FIG. 4, a substrate 100 is provided having a plurality of isolation structures 101 therein.

所述衬底100用于提供工艺操作平台。The substrate 100 is used to provide a process operating platform.

本实施例中,所述衬底100的材料为单晶硅。在本发明的其他实施例中,所述衬底的材料还可以选自多晶硅或者非晶硅;所述衬底也可以选自硅、锗、砷化镓或硅锗化合物;所述衬底还可以是其他半导体材料,或者,所述衬底还可以选自具有外延层或外延层上硅结构。In this embodiment, the material of the substrate 100 is single crystal silicon. In other embodiments of the present invention, the material of the substrate can also be selected from polysilicon or amorphous silicon; the substrate can also be selected from silicon, germanium, gallium arsenide or silicon-germanium compounds; the substrate also Other semiconductor materials may be used, or the substrate may also be selected from having an epitaxial layer or a silicon-on-epitaxial layer structure.

所述隔离结构101用于电隔离相邻有源区(Active Area,AA)。The isolation structure 101 is used to electrically isolate adjacent active areas (Active Area, AA).

所述隔离结构101的材料为氧化硅。本发明其他实施例中,所述隔离结构101的材料还可以为氟硅玻璃、氟掺杂的硅酸盐玻璃和正硅酸四乙酯等其他绝缘材料。The material of the isolation structure 101 is silicon oxide. In other embodiments of the present invention, the material of the isolation structure 101 may also be other insulating materials such as fluorosilicate glass, fluorine-doped silicate glass, and tetraethyl orthosilicate.

形成所述隔离结构101的步骤包括:在所述衬底100上形成隔离图形层;以所述隔离图形层为掩膜,刻蚀所述衬底100,在所述衬底100内形成隔离开口;向所述隔离开口内填充介质材料,形成所述隔离结构101。The steps of forming the isolation structure 101 include: forming an isolation pattern layer on the substrate 100 ; using the isolation pattern layer as a mask, etching the substrate 100 to form an isolation opening in the substrate 100 ; Fill dielectric material into the isolation opening to form the isolation structure 101 .

需要说明的是,本实施例中,所述半导体结构为平面晶体管,因此所述衬底100为平面衬底。在其他实施例中,所述半导体结构还可以为鳍式场效应管;相应的,所述衬底上具有分立的鳍部。所述隔离结构位于鳍部露出的衬底上。所述隔离结构顶部表面低于所述鳍部的顶部表面,且覆盖所述鳍部部分侧壁的表面。It should be noted that, in this embodiment, the semiconductor structure is a planar transistor, so the substrate 100 is a planar substrate. In other embodiments, the semiconductor structure may also be a fin field effect transistor; correspondingly, the substrate has discrete fins. The isolation structure is located on the substrate exposed by the fins. The top surface of the isolation structure is lower than the top surface of the fin and covers the surface of the side wall of the fin portion.

继续参考图4,形成位于相邻隔离结构101之间衬底100上的栅极结构112。With continued reference to FIG. 4 , gate structures 112 on the substrate 100 between adjacent isolation structures 101 are formed.

所述栅极结构112用于控制所形成半导体结构中沟道的导通和截断。本实施例中,所述栅极结构112为所形成半导体结构的栅极结构。本发明其他实施例中,所述栅极结构还可以为“后栅工艺”中的伪栅结构,用于为后续所形成的栅极占据空间位置。The gate structure 112 is used to control the turn-on and turn-off of the channel in the formed semiconductor structure. In this embodiment, the gate structure 112 is the gate structure of the formed semiconductor structure. In other embodiments of the present invention, the gate structure may also be a dummy gate structure in a "gate last process", which is used to occupy a space for a gate to be formed subsequently.

需要说明的是,本实施例中,所述形成方法还包括:在形成所述栅极结构112的过程中,形成位于所述隔离结构101上的伪栅结构111。本实施例中,所述栅极结构112和所述伪栅结构111的结构相同,包括栅极层以及位于所述栅极层侧壁的侧墙。It should be noted that, in this embodiment, the forming method further includes: in the process of forming the gate structure 112 , forming a dummy gate structure 111 on the isolation structure 101 . In this embodiment, the gate structure 112 and the dummy gate structure 111 have the same structure, including a gate layer and spacers located on the sidewalls of the gate layer.

所述栅极层可以为单层结构或叠层结构。所述栅极层包括电极层;或者所述栅极层包括位于所述衬底上的栅介质层以及位于所述栅介质层上的电极层。其中,所述电极层的材料为多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳,所述栅介质层的材料为氧化硅或氮氧化硅。所述侧墙可以为单层结构或叠层结构。所述侧墙的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,本实施例中,所述栅极结构112和所述伪栅结构111均由多晶硅的电极层、氧化硅的栅介质层以及氮化硅的侧墙构成。The gate layer may have a single-layer structure or a stacked-layer structure. The gate layer includes an electrode layer; or the gate layer includes a gate dielectric layer on the substrate and an electrode layer on the gate dielectric layer. Wherein, the material of the electrode layer is polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride or amorphous carbon, and the material of the gate dielectric layer is silicon oxide or Silicon oxynitride. The sidewalls may be of a single-layer structure or a laminated structure. The material of the sidewall can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or carbonitride. The structure 112 and the dummy gate structure 111 are both composed of an electrode layer of polysilicon, a gate dielectric layer of silicon oxide, and a spacer of silicon nitride.

所述栅极结构112和所述伪栅结构111可以同时形成。具体的,形成所述栅极结构112和所述伪栅结构111的步骤包括:在所述衬底100上形成栅极材料层;在所述栅极材料层上形成栅极图形层;以所述栅极图形层为掩膜,刻蚀所述栅极材料层,去除部分衬底100上的栅极材料层形成栅极层;形成覆盖所述衬底100以及所述栅极层的侧墙材料层;去除所述衬底100上以及所述栅极层上的侧墙材料层,形成所述侧墙。The gate structure 112 and the dummy gate structure 111 may be formed simultaneously. Specifically, the steps of forming the gate structure 112 and the dummy gate structure 111 include: forming a gate material layer on the substrate 100; forming a gate pattern layer on the gate material layer; The gate pattern layer is a mask, the gate material layer is etched, and part of the gate material layer on the substrate 100 is removed to form a gate layer; the sidewalls covering the substrate 100 and the gate layer are formed material layer; removing the spacer material layer on the substrate 100 and the gate layer to form the spacer.

本发明其他实施例中,所述半导体结构为鳍式场效应晶体管;相应的,形成所述栅极结构的步骤中,所述栅极结构横跨所述鳍部且覆盖所述鳍部顶部和侧壁的部分表面。In other embodiments of the present invention, the semiconductor structure is a fin field effect transistor; correspondingly, in the step of forming the gate structure, the gate structure spans the fin and covers the top and the top of the fin. part of the surface of the side wall.

结合参考图4和图5,在所述栅极结构112两侧的衬底100内形成应力层130。Referring to FIG. 4 and FIG. 5 in combination, stress layers 130 are formed in the substrate 100 on both sides of the gate structure 112 .

所述应力层130用于形成晶体管的源区或漏区。The stressor layer 130 is used to form the source region or the drain region of the transistor.

具体的,所述半导体结构为P型晶体管,所以所述应力层130的材料为锗硅材料。本实施例中,形成应力层130的步骤包括:形成“∑”形的应力层130,从而所述应力层130具有指向沟道区域的凸出尖端,向所述沟道区域引入更大的应力。Specifically, the semiconductor structure is a P-type transistor, so the material of the stressor layer 130 is silicon germanium. In this embodiment, the step of forming the stressing layer 130 includes: forming the stressing layer 130 in a “Σ” shape, so that the stressing layer 130 has a protruding tip pointing to the channel region, which introduces greater stress to the channel region .

形成所述应力层130的步骤包括:如图4所示,刻蚀所述栅极结构112两侧的衬底100,在所述栅极结构112两侧的衬底100内形成开口120;如图5所示,向所述开口120内填充应力材料,形成所述应力层130。The step of forming the stress layer 130 includes: as shown in FIG. 4 , etching the substrate 100 on both sides of the gate structure 112 , and forming openings 120 in the substrate 100 on both sides of the gate structure 112 ; As shown in FIG. 5 , the stress material is filled into the opening 120 to form the stress layer 130 .

所述开口120用于为应力层的形成提供工艺空间。The opening 120 is used to provide a process space for the formation of the stress layer.

由于所形成的应力层130为“∑”形,因此所述开口120的形状为“∑”形。本实施例中,所述衬底100的材料为硅,所以所述开口120底部为(100)面,所述开口120的侧壁为(111)面。Since the formed stress layer 130 is in a "Σ" shape, the shape of the opening 120 is a "Σ" shape. In this embodiment, the material of the substrate 100 is silicon, so the bottom of the opening 120 is a (100) plane, and the sidewall of the opening 120 is a (111) plane.

本实施例中,位于相邻栅极结构112之间为第一开口121。所述第一开口121位于衬底100内,即由衬底100围成;位于所述栅极结构112和所述伪栅结构111之间的开口120为第二开口122。所述第二开口122与所述隔离结构101相邻接,即所述第二开口122由所述衬底100和所述隔离结构101围成。In this embodiment, the first openings 121 are located between adjacent gate structures 112 . The first opening 121 is located in the substrate 100 , that is, surrounded by the substrate 100 ; the opening 120 located between the gate structure 112 and the dummy gate structure 111 is the second opening 122 . The second opening 122 is adjacent to the isolation structure 101 , that is, the second opening 122 is surrounded by the substrate 100 and the isolation structure 101 .

填充应力材料的步骤用于形成所述应力层130。The step of filling the stress material is used to form the stress layer 130 .

具体的,向所述开口120内填充应力材料的步骤包括:通过外延生长的方式向所述开口120内填充应力材料,以形成应力层130。由于所述应力层130的材料为锗硅材料,所以所述应力材料为锗硅材料。Specifically, the step of filling the opening 120 with the stress material includes: filling the opening 120 with the stress material by means of epitaxial growth to form the stress layer 130 . Since the material of the stressor layer 130 is SiGe material, the stress material is SiGe material.

本实施例中,位于第一开口121(如图4所示)内的应力层130为第一应力层131;位于第二开口122(如图4所示)内的应力层130为第二应力层132。In this embodiment, the stress layer 130 located in the first opening 121 (as shown in FIG. 4 ) is the first stress layer 131 ; the stress layer 130 located in the second opening 122 (as shown in FIG. 4 ) is the second stress layer Layer 132.

由于所述开口120的底部为(100)面,所述开口120的侧壁为(111)面,所以通过外延生长方式填充应力材料的过程中,所述应力层130在所述开口120侧壁上的生长速度小于所述应力层130在所述开口120底部的生长速度。此外应力层130在隔离结构101表面的生长速度小于应力层130在衬底100表面的生长速度。Since the bottom of the opening 120 is the (100) plane and the side wall of the opening 120 is the (111) plane, the stress layer 130 is formed on the side wall of the opening 120 during the process of filling the stress material by epitaxial growth. The growth rate of the stress layer 130 is lower than the growth rate of the stress layer 130 at the bottom of the opening 120 . In addition, the growth rate of the stress layer 130 on the surface of the isolation structure 101 is lower than the growth rate of the stress layer 130 on the surface of the substrate 100 .

所以所述第一应力层131两侧的生长速度相近,所以所述第一应力层131能够完全填充所述第一开口121,即所述第一应力层131的表面形貌较好;所述第二应力层132靠近隔离结构101一侧的生长速度较慢,所以所述第二应力层132无法完全填充所述第二开口132,在靠近所述隔离结构101一侧出现缺陷(如图5中圈133内所示),所述第二应力层132的形貌不佳。Therefore, the growth rates on both sides of the first stress layer 131 are similar, so the first stress layer 131 can completely fill the first opening 121, that is, the surface morphology of the first stress layer 131 is better; the The growth rate of the second stress layer 132 near the isolation structure 101 is slow, so the second stress layer 132 cannot completely fill the second opening 132, and defects appear on the side near the isolation structure 101 (as shown in FIG. 5 ). shown in the middle circle 133 ), the shape of the second stress layer 132 is not good.

需要说明的是,本实施例中,所述形成方法还包括:对所述应力层130进行离子掺杂,以形成源漏掺杂区。具体的,对所述应力层130进行离子掺杂的步骤可以通过形成应力层130的过程中,进行原位自掺杂;或者形成应力层130之后对所述应力层130进行离子注入。本实施例中,所述半导体结构为P型晶体管,所以所述掺杂离子为P型离子,例如B、Ga或In。It should be noted that, in this embodiment, the forming method further includes: performing ion doping on the stressor layer 130 to form a source-drain doped region. Specifically, the step of performing ion doping on the stressor layer 130 may be performed by in-situ self-doping during the process of forming the stressor layer 130 ; or by performing ion implantation on the stressor layer 130 after the stressor layer 130 is formed. In this embodiment, the semiconductor structure is a P-type transistor, so the doping ions are P-type ions, such as B, Ga, or In.

参考图6至图9,在所述应力层130上形成帽层140,形成所述帽层140的步骤包括旋涂工艺。Referring to FIGS. 6 to 9 , a cap layer 140 is formed on the stressor layer 130 , and the step of forming the cap layer 140 includes a spin coating process.

所述帽层140用于后续与金属反应,形成金属硅化物以减小所述应力层的接触电阻。此外,所述帽层140还用于修复所述应力层130的形貌缺陷,以提高所形成半导体结构的性能。The cap layer 140 is used for subsequent reaction with metal to form metal silicide to reduce the contact resistance of the stress layer. In addition, the cap layer 140 is also used to repair the topographical defects of the stressor layer 130 to improve the performance of the formed semiconductor structure.

由于形成所述帽层的工艺包括旋涂工艺。由于旋涂工艺是利用离心力使胶液均匀的分布在高速旋转的基片上,所以所形成帽层140的形貌不会随着所述应力层130形貌的变化而变化,而且栅极结构112之间的多个帽层140具有齐平的表面,所以所形成的帽层140能够较好实现对所述应力层130形貌的修复,从而有利于提高所形成帽层140的表面形貌,有利于改善所形成半导体结构的电学性能。Since the process of forming the cap layer includes a spin coating process. Since the spin coating process uses centrifugal force to distribute the glue evenly on the high-speed rotating substrate, the shape of the formed cap layer 140 will not change with the change of the shape of the stress layer 130, and the gate structure 112 The plurality of cap layers 140 in between have flush surfaces, so the formed cap layers 140 can better repair the topography of the stress layer 130, thereby helping to improve the surface topography of the formed cap layers 140, It is beneficial to improve the electrical properties of the formed semiconductor structure.

具体的,在所述应力层130上形成帽层140的步骤包括:Specifically, the step of forming the cap layer 140 on the stress layer 130 includes:

如图6和图7,通过旋涂工艺在所述应力层130上形成前驱层141。As shown in FIG. 6 and FIG. 7 , a precursor layer 141 is formed on the stressor layer 130 through a spin coating process.

所述前驱层141用于形成所述帽层。The precursor layer 141 is used to form the cap layer.

具体的,通过旋涂工艺在所述应力层130上形成前驱层141的步骤中,所述前驱层141为聚硅烷层。本实施例中,所述前驱层141的材料包括聚乙硅烷(Polydihydrosilance)和环戊硅烷(Crcropentasilan)中的一种或两种。Specifically, in the step of forming the precursor layer 141 on the stressor layer 130 by a spin coating process, the precursor layer 141 is a polysilane layer. In this embodiment, the material of the precursor layer 141 includes one or both of polydihydrosilance and cyclopentasilan.

此外,所述通过旋涂工艺在所述应力层130上形成前驱层141的步骤中,所述前驱层141还包括溶剂,所述溶剂为碳氢化合物,所述碳氢化合物中碳的原子数大于4,例如C5H12In addition, in the step of forming the precursor layer 141 on the stressor layer 130 by a spin coating process, the precursor layer 141 further includes a solvent, the solvent is a hydrocarbon, and the number of carbon atoms in the hydrocarbon is Greater than 4 , such as C5H12 .

所以聚乙硅烷(Polydihydrosilance)或环戊硅烷(Crcropentasilan)与碳氢化合物的溶剂形成含硅前驱物质。所述含硅前驱物质具有一定的流动性;通过旋涂工艺将具有流动性的含硅前驱物质涂覆于所述应力层130上以形成所述前驱层141。Therefore, polydihydrosilance or cyclopentasilan forms silicon-containing precursors with hydrocarbon solvents. The silicon-containing precursor material has a certain fluidity; the silicon-containing precursor material with fluidity is coated on the stress layer 130 by a spin coating process to form the precursor layer 141 .

需要说明的是,为了促使前驱层141内气体的析出,减少所述前驱层141内气泡的形成,提高所形成前驱层141的质量,本实施例中,通过旋涂工艺在所述应力层上形成前驱层的步骤包括:在充满惰性气体的低压环境下进行旋涂工艺。具体的,所述旋涂工艺在N2、He、Ne或Ar中一种或多种气体中进行。It should be noted that, in order to promote the precipitation of gas in the precursor layer 141, reduce the formation of bubbles in the precursor layer 141, and improve the quality of the formed precursor layer 141, in this embodiment, a spin coating process is used on the stress layer. The step of forming the precursor layer includes: performing a spin coating process in a low pressure environment filled with an inert gas. Specifically, the spin coating process is performed in one or more gases of N 2 , He, Ne or Ar.

所述惰性气体的压强如果太高,不利于所形成前驱层141中气体的析出,不利于减少前驱层141内气泡的形成;所述惰性气体的压强如果太低,则会造成能源浪费、增加工艺难度。本实施例中,所述惰性气体的压强范围在200Torr到500Torr范围内。If the pressure of the inert gas is too high, it is not conducive to the precipitation of gas in the formed precursor layer 141, and is not conducive to reducing the formation of bubbles in the precursor layer 141; if the pressure of the inert gas is too low, it will cause energy waste, increase Process difficulty. In this embodiment, the pressure range of the inert gas is in the range of 200 Torr to 500 Torr.

形成所述前驱层141之后,参考图8和图9,对所述前驱层141(如图7所示)进行固化处理,形成所述帽层140。After the precursor layer 141 is formed, referring to FIGS. 8 and 9 , the precursor layer 141 (as shown in FIG. 7 ) is cured to form the cap layer 140 .

需要说明的是,本实施例中,为了使所形成前驱层141完全填充于相邻栅极结构112之间,所述前驱层141覆盖所述栅极结构112。所以形成所述前驱层141之后,进行固化处理之前,所述形成方法还包括:通过回刻的方式去除部分厚度的所述前驱层141。It should be noted that, in this embodiment, in order to completely fill the formed precursor layer 141 between adjacent gate structures 112 , the precursor layer 141 covers the gate structures 112 . Therefore, after the precursor layer 141 is formed and before the curing process is performed, the formation method further includes: removing a part of the thickness of the precursor layer 141 by etching back.

回刻所述前驱层141的步骤用于去除所述前驱层141的部分材料,以使所形成的前驱层141达到目标厚度,露出所述栅极结构112和所述伪栅结构111。具体的,回刻所述前驱层141的步骤包括,通过干法刻蚀的方式回刻所述前驱层141。The step of etching back the precursor layer 141 is used to remove part of the material of the precursor layer 141 , so that the formed precursor layer 141 reaches a target thickness and exposes the gate structure 112 and the dummy gate structure 111 . Specifically, the step of etching back the precursor layer 141 includes etching back the precursor layer 141 by dry etching.

所述固化处理用于去除所述前驱层141中的溶剂等物质,使所述前驱层141固化,改善所述帽层140的晶格质量。The curing treatment is used to remove the solvent and other substances in the precursor layer 141 , so as to cure the precursor layer 141 and improve the lattice quality of the cap layer 140 .

具体的,对所述前驱层141进行固化处理的步骤包括:对所述前驱层141进行烘焙处理151;对经烘焙处理的前驱层141(如图8所示)进行退火处理152,以形成所述帽层140。Specifically, the step of curing the precursor layer 141 includes: performing a baking treatment 151 on the precursor layer 141; and performing an annealing treatment 152 on the baked precursor layer 141 (as shown in FIG. The cap layer 140 is described.

所述烘焙处理151用于去除所述前驱层141内的溶剂,提高所述前驱层141的硬度,使所述前驱层141初步固化。The baking process 151 is used for removing the solvent in the precursor layer 141 , increasing the hardness of the precursor layer 141 , and preliminarily curing the precursor layer 141 .

烘焙处理151的温度不宜过高也不宜过低。The temperature of the baking process 151 should neither be too high nor too low.

如果烘焙温度过低,不利于前驱层141内溶剂的去除,不利于所述前驱层141的初步固化,会在所述前驱层141内形成溶剂残留,影响所形成帽层140的质量,影响后续帽层140与金属层的反应;如果烘焙温度过高,则可能会引起不必要的工艺风险,可能会对所述应力层130造成损伤,也可能会影响所述衬底100上其他半导体结构。本实施例中,对所述前驱层141进行烘焙处理151的步骤中,所述烘焙处理151的温度在150℃到350℃范围内。If the baking temperature is too low, it is not conducive to the removal of the solvent in the precursor layer 141, and it is not conducive to the preliminary curing of the precursor layer 141, and solvent residues will be formed in the precursor layer 141, which will affect the quality of the formed cap layer 140 and affect the subsequent The reaction between the cap layer 140 and the metal layer; if the baking temperature is too high, unnecessary process risks may be caused, the stress layer 130 may be damaged, and other semiconductor structures on the substrate 100 may be affected. In this embodiment, in the step of performing the baking process 151 on the precursor layer 141, the temperature of the baking process 151 is in the range of 150°C to 350°C.

烘焙处理151的时间不宜过长也不宜过短。The time of the baking process 151 should not be too long nor too short.

如果烘焙处理151的时间过短,不利于前驱层141内溶剂的去除,不利于所述前驱层141的初步固化,会在所述前驱层141内形成溶剂残留,影响所形成帽层140的质量,影响后续帽层140与金属层的反应;如果烘焙处理151的时间过长,则可能会引起不必要的工艺风险,可能会对所述应力层130造成损伤,也可能会影响所述衬底100上其他半导体结构,而且烘焙处理151时间过长也会造成工艺时间过长,影响生产效率。本实施例中,对所述前驱层141进行烘焙处理151的步骤中,所述烘焙处理151的时间在5分钟到15分钟范围内。If the time of the baking treatment 151 is too short, it is not conducive to the removal of the solvent in the precursor layer 141 and the preliminary curing of the precursor layer 141, and solvent residues will be formed in the precursor layer 141, which will affect the quality of the formed cap layer 140. , affecting the reaction between the subsequent cap layer 140 and the metal layer; if the baking process 151 takes too long, unnecessary process risks may be caused, the stress layer 130 may be damaged, and the substrate may also be affected Other semiconductor structures on the 100, and the baking process 151 for a long time will also cause the process time to be too long and affect the production efficiency. In this embodiment, in the step of performing the baking process 151 on the precursor layer 141, the time of the baking process 151 is in the range of 5 minutes to 15 minutes.

需要说明的是,所述烘培处理151的温度和时间相互配合,去除所述前驱层141内的溶剂,使所述前驱层141初步固化。在合理范围内,设置所述烘培处理151的温度和时间,从而使所述烘培处理151的效率和效果相互平衡。It should be noted that, the temperature and time of the baking process 151 are matched with each other to remove the solvent in the precursor layer 141 and preliminarily solidify the precursor layer 141 . Within a reasonable range, the temperature and time of the baking process 151 are set so as to balance the efficiency and effect of the baking process 151 with each other.

所述退火处理152用于使所述前驱层141固化形成所述帽层140,并使所述帽层140内原子排列的有序性增加,提高所形成帽层140的质量。The annealing treatment 152 is used to solidify the precursor layer 141 to form the cap layer 140 , and to increase the order of atomic arrangement in the cap layer 140 , thereby improving the quality of the formed cap layer 140 .

退火处理152的温度不宜过高也不宜过低。The temperature of the annealing treatment 152 should neither be too high nor too low.

如果退火温度如果过低,不利于所述前驱层141的固化,不利于所述帽层140内原子排列的有序性的增加,会影响所形成帽层140的质量,影响所述帽层140与后续所形成金属层的反应;如果退火温度如果过高,则可能会引起不必要的工艺风险,可能会对所述应力层130造成损伤,也可能会影响所述衬底100上其他半导体结构。本实施例中,对经烘焙处理151的前驱层141进行退火处理152的步骤中,所述退火处理152的温度在350℃到800℃范围内。If the annealing temperature is too low, it will be unfavorable for the curing of the precursor layer 141 and the increase in the order of the atomic arrangement in the cap layer 140 , which will affect the quality of the formed cap layer 140 and affect the cap layer 140 Reaction with the subsequently formed metal layer; if the annealing temperature is too high, unnecessary process risks may be caused, the stress layer 130 may be damaged, and other semiconductor structures on the substrate 100 may be affected. . In this embodiment, in the step of performing the annealing treatment 152 on the precursor layer 141 subjected to the baking treatment 151, the temperature of the annealing treatment 152 is in the range of 350°C to 800°C.

退火处理152的时间不宜过长也不宜过短。The time of the annealing treatment 152 should neither be too long nor too short.

如果退火处理152的时间过短,不利于所述前驱层141的固化,不利于所述帽层140内原子排列的有序性的增加,会影响所形成帽层140的质量,影响所述帽层140与后续所形成金属层的反应;如果退火处理152的时间过长,则可能会引起不必要的工艺风险,可能会对所述应力层130造成损伤,也可能会影响所述衬底100上其他半导体结构,而且退火处理152时间过长也会造成工艺时间过长,影响生产效率。本实施例中,对经烘焙处理151的前驱层141进行退火处理152的步骤中,所述退火处理152的时间在2分钟到8分钟范围内。If the time of the annealing treatment 152 is too short, it is not conducive to the curing of the precursor layer 141 , and it is not conducive to the increase of the order of the atomic arrangement in the cap layer 140 , which will affect the quality of the formed cap layer 140 and affect the cap layer 140 . The reaction between the layer 140 and the subsequently formed metal layer; if the time of the annealing treatment 152 is too long, unnecessary process risks may be caused, the stress layer 130 may be damaged, and the substrate 100 may be affected. other semiconductor structures, and the annealing treatment 152 for too long will also cause the process time to be too long and affect the production efficiency. In this embodiment, in the step of performing the annealing treatment 152 on the precursor layer 141 subjected to the baking treatment 151, the time of the annealing treatment 152 is in the range of 2 minutes to 8 minutes.

需要说明的是,所述退火处理152的温度和时间相互配合,去除所述前驱层141内的溶剂,使所述前驱层141固化形成帽层140。在合理范围内,设置所述退火处理152的温度和时间,从而使所述退火处理152的效率和效果相互平衡。It should be noted that, the temperature and time of the annealing treatment 152 are matched to each other, so that the solvent in the precursor layer 141 is removed, and the precursor layer 141 is cured to form the cap layer 140 . Within a reasonable range, the temperature and time of the annealing treatment 152 are set so as to balance the efficiency and effect of the annealing treatment 152 with each other.

需要说明的是,为了提高所形成帽层140的质量,减少所述帽层140中孔洞的形成,本实施例中,对所述前驱层141进行固化处理的步骤包括:在充满惰性气体的低压环境下进行固化处理,也就是说,所述烘焙处理151和所述退火处理152均在充满惰性气体的低压环境下进行。It should be noted that, in order to improve the quality of the formed cap layer 140 and reduce the formation of holes in the cap layer 140, in this embodiment, the step of curing the precursor layer 141 includes: in a low pressure filled with an inert gas The curing process is performed in an environment, that is, the baking process 151 and the annealing process 152 are both performed in a low-pressure environment filled with an inert gas.

具体的,所述烘焙处理151和所述退火处理152在N2、He、Ne或Ar中一种或多种气体中进行。烘焙处理151和退火处理152过程中,所述聚乙硅烷或环戊硅烷反应,形成所述帽层140。反应的副产物,如O2或H2等气体通过惰性气体吹扫排出。Specifically, the baking process 151 and the annealing process 152 are performed in one or more gases of N 2 , He, Ne or Ar. During the baking process 151 and the annealing process 152 , the polydisilane or cyclopentasilane reacts to form the cap layer 140 . By-products of the reaction, such as O2 or H2 , are removed by purging with an inert gas.

所述惰性气体的压强如果太高,不利于所形成帽层140中气体的析出,不利于减少所述帽层140内孔洞的形成;所述惰性气体的压强如果太低,则会造成能源浪费、增加工艺难度。本实施例中,所述惰性气体的压强范围在200Torr到500Torr范围内。If the pressure of the inert gas is too high, it is not conducive to the precipitation of the gas in the formed cap layer 140, and is not conducive to reducing the formation of holes in the cap layer 140; if the pressure of the inert gas is too low, it will cause energy waste. , Increase the difficulty of the process. In this embodiment, the pressure range of the inert gas is in the range of 200 Torr to 500 Torr.

需要说明的是,本实施例中,形成帽层140之后,所述形成方法还包括:形成覆盖所述帽层140的金属层。具体的,所述金属层包括镍。金属层和所述帽层140反应,形成金属硅化物用于减小所述应力层130的接触电阻。It should be noted that, in this embodiment, after the cap layer 140 is formed, the forming method further includes: forming a metal layer covering the cap layer 140 . Specifically, the metal layer includes nickel. The metal layer reacts with the cap layer 140 to form metal silicide for reducing the contact resistance of the stressor layer 130 .

由于所述帽层140是通过旋涂工艺所形成的,所以所述帽层140的形貌不会随着所述应力层130形貌的变化而变化,所述帽层140能够修复第二应力层132的形貌缺陷,从而使所述第二应力层132和所述第一应力层132上帽层140的表面平整度较高,从而能够有效的减少后续工艺中帽层140受损现象的出现,有利于后续金属硅化物的形成,有利于改善所形成半导体结构的性能。Since the cap layer 140 is formed by a spin coating process, the shape of the cap layer 140 will not change with the change of the shape of the stress layer 130 , and the cap layer 140 can repair the second stress Therefore, the surface flatness of the cap layer 140 on the second stress layer 132 and the cap layer 140 on the first stress layer 132 is relatively high, thereby effectively reducing the damage to the cap layer 140 in the subsequent process. It is beneficial to the formation of the subsequent metal silicide, and is beneficial to improve the performance of the formed semiconductor structure.

相应的,本发明还提供一种半导体结构。Correspondingly, the present invention also provides a semiconductor structure.

参考图9,示出了本发明半导体结构一实施例的剖面结构示意图。Referring to FIG. 9 , a schematic cross-sectional structure diagram of an embodiment of the semiconductor structure of the present invention is shown.

所述半导体结构包括:The semiconductor structure includes:

衬底100,所述衬底100内具有多个隔离结构101;位于相邻隔离结构101之间衬底100上的栅极结构112;位于栅极结构112两侧衬底100内的应力层130;位于所述应力层130上的帽层140,所述帽层140为通过旋涂工艺所形成的帽层。The substrate 100 has a plurality of isolation structures 101 in the substrate 100 ; gate structures 112 located on the substrate 100 between adjacent isolation structures 101 ; stress layers 130 located in the substrate 100 on both sides of the gate structure 112 ; The cap layer 140 located on the stress layer 130, the cap layer 140 is a cap layer formed by a spin coating process.

所述衬底100用于提供工艺操作平台。The substrate 100 is used to provide a process operating platform.

本实施例中,所述衬底100的材料为单晶硅。在本发明的其他实施例中,所述衬底的材料还可以选自多晶硅或者非晶硅;所述衬底也可以选自硅、锗、砷化镓或硅锗化合物;所述衬底还可以是其他半导体材料,或者,所述衬底还可以选自具有外延层或外延层上硅结构。In this embodiment, the material of the substrate 100 is single crystal silicon. In other embodiments of the present invention, the material of the substrate can also be selected from polysilicon or amorphous silicon; the substrate can also be selected from silicon, germanium, gallium arsenide or silicon-germanium compounds; the substrate also Other semiconductor materials may be used, or the substrate may also be selected from having an epitaxial layer or a silicon-on-epitaxial layer structure.

所述隔离结构101用于电隔离相邻有源区(Active Area,AA)。The isolation structure 101 is used to electrically isolate adjacent active areas (Active Area, AA).

所述隔离结构101的材料为氧化硅。本发明其他实施例中,所述隔离结构101的材料还可以为氟硅玻璃、氟掺杂的硅酸盐玻璃和正硅酸四乙酯等其他绝缘材料。The material of the isolation structure 101 is silicon oxide. In other embodiments of the present invention, the material of the isolation structure 101 may also be other insulating materials such as fluorosilicate glass, fluorine-doped silicate glass, and tetraethyl orthosilicate.

需要说明的是,本实施例中,所述半导体结构为平面晶体管,因此所述衬底100为平面衬底。在其他实施例中,所述半导体结构还可以为鳍式场效应管;相应的,所述衬底上具有分立的鳍部。所述隔离结构位于鳍部露出的衬底上。所述隔离结构顶部表面低于所述鳍部的顶部表面,且覆盖所述鳍部部分侧壁的表面。It should be noted that, in this embodiment, the semiconductor structure is a planar transistor, so the substrate 100 is a planar substrate. In other embodiments, the semiconductor structure may also be a fin field effect transistor; correspondingly, the substrate has discrete fins. The isolation structure is located on the substrate exposed by the fins. The top surface of the isolation structure is lower than the top surface of the fin and covers the surface of the side wall of the fin portion.

所述栅极结构112用于控制所述半导体结构中沟道的导通和截断。The gate structure 112 is used to control the turn-on and turn-off of the channel in the semiconductor structure.

本实施例中,所述栅极结构112为所述半导体结构的栅极结构。本发明其他实施例中,所述栅极结构还可以为“后栅工艺”中的伪栅结构,用于为所述半导体结构的栅极占据空间位置。In this embodiment, the gate structure 112 is the gate structure of the semiconductor structure. In other embodiments of the present invention, the gate structure may also be a dummy gate structure in a "gate last process" for occupying a space for the gate of the semiconductor structure.

需要说明的是,所述半导体结构还包括:位于所述隔离结构101上的伪栅结构111。本实施例中,所述栅极结构112和所述伪栅结构111的结构相同,包括栅极层以及位于所述栅极层侧壁的侧墙。It should be noted that, the semiconductor structure further includes: a dummy gate structure 111 located on the isolation structure 101 . In this embodiment, the gate structure 112 and the dummy gate structure 111 have the same structure, including a gate layer and spacers located on the sidewalls of the gate layer.

所述栅极层可以为单层结构或叠层结构。所述栅极层包括电极层;或者所述栅极层包括位于所述衬底上的栅介质层以及位于所述栅介质层上的电极层。其中,所述电极层的材料为多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳,所述栅介质层的材料为氧化硅或氮氧化硅。所述侧墙可以为单层结构或叠层结构。所述侧墙的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,本实施例中,所述栅极结构112和所述伪栅结构111均由多晶硅的电极层、氧化硅的栅介质层以及氮化硅的侧墙构成。The gate layer may have a single-layer structure or a stacked-layer structure. The gate layer includes an electrode layer; or the gate layer includes a gate dielectric layer on the substrate and an electrode layer on the gate dielectric layer. Wherein, the material of the electrode layer is polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride or amorphous carbon, and the material of the gate dielectric layer is silicon oxide or Silicon oxynitride. The sidewalls may be of a single-layer structure or a laminated structure. The material of the sidewall can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride or carbonitride. The structure 112 and the dummy gate structure 111 are both composed of an electrode layer of polysilicon, a gate dielectric layer of silicon oxide, and a spacer of silicon nitride.

本发明其他实施例中,所述半导体结构为鳍式场效应晶体管;相应的,所述栅极结构横跨所述鳍部且覆盖所述鳍部顶部和侧壁的部分表面。In other embodiments of the present invention, the semiconductor structure is a fin field effect transistor; correspondingly, the gate structure spans the fin and covers part of the top and sidewalls of the fin.

所述应力层130用于形成晶体管的源区或漏区。The stressor layer 130 is used to form the source region or the drain region of the transistor.

具体的,所述半导体结构为P型晶体管,所以所述应力层130的材料为锗硅材料。本实施例中,所述应力层130为“∑”形的应力层,从而所述应力层130具有指向沟道区域的凸出尖端,向所述沟道区域引入更大的应力。Specifically, the semiconductor structure is a P-type transistor, so the material of the stressor layer 130 is silicon germanium. In this embodiment, the stressor layer 130 is a "Σ"-shaped stressor layer, so that the stressor layer 130 has a protruding tip pointing to the channel region, which induces greater stress to the channel region.

所述应力层130包括位于相邻栅极结构112之间的第一应力层131以及位于栅极结构112和伪栅结构111之间的第二应力层132。由于第二应力层132位于栅极结构112和伪栅结构111,而所述伪栅结构111位于隔离结构101上,所以所述第二应力层132与所述隔离结构101相邻接。由于所述衬底100的材料与所述隔离结构101的材料不同,所以所述第二应力层132在与所述衬底100相邻接的表面上的生长速度与所述第二应力层132在与所述隔离结构101相邻接的表面上的生长速度不同。具体的,所述第二应力层132在与所述隔离结构101相邻接的表面上的生长速度较小,所以所述第二应力层132无法完全填充所述第二开口132,在靠近所述隔离结构101一侧出现缺陷,从而造成形貌不佳。The stressor layer 130 includes a first stressor layer 131 between adjacent gate structures 112 and a second stressor layer 132 between the gate structures 112 and the dummy gate structures 111 . Since the second stress layer 132 is located on the gate structure 112 and the dummy gate structure 111 , and the dummy gate structure 111 is located on the isolation structure 101 , the second stress layer 132 is adjacent to the isolation structure 101 . Since the material of the substrate 100 is different from the material of the isolation structure 101 , the growth rate of the second stress layer 132 on the surface adjacent to the substrate 100 is the same as that of the second stress layer 132 The growth rate is different on the surface adjacent to the isolation structure 101 . Specifically, the growth rate of the second stress layer 132 on the surface adjacent to the isolation structure 101 is relatively low, so the second stress layer 132 cannot completely fill the second opening 132, and the second stress layer 132 cannot completely fill the second opening 132. Defects occur on one side of the isolation structure 101, resulting in poor morphology.

需要说明的是,所述应力层130内具有掺杂离子,以形成源漏掺杂区。本实施例中,所述半导体结构为P型晶体管,所以所述应力层130内的掺杂离子为P型离子,例如B、Ga或In。It should be noted that the stressor layer 130 has doping ions to form source and drain doped regions. In this embodiment, the semiconductor structure is a P-type transistor, so the doping ions in the stressor layer 130 are P-type ions, such as B, Ga, or In.

所述帽层140用于后续与金属反应,形成金属硅化物以减小所述应力层130的接触电阻。此外,所述帽层140还用于修复所述应力层130的形貌缺陷,以提高所述半导体结构的性能。The cap layer 140 is used for subsequent reaction with metal to form metal silicide to reduce the contact resistance of the stressor layer 130 . In addition, the cap layer 140 is also used to repair the topographical defects of the stressor layer 130 to improve the performance of the semiconductor structure.

由于所述帽层为通过旋涂工艺所形成的帽层,而且旋涂工艺是利用离心力使胶液均匀的分布在高速旋转的基片上,所以所述帽层140的形貌不会随着所述应力层130形貌的变化而变化,而且栅极结构112之间的多个帽层140具有齐平的表面,所以所述帽层140能够较好实现对所述应力层130形貌的修复,从而有利于提高所述帽层140的表面形貌,有利于改善所述半导体结构的电学性能。Since the cap layer is a cap layer formed by a spin coating process, and the spin coating process uses centrifugal force to uniformly distribute the glue on the high-speed rotating substrate, the topography of the cap layer 140 will not follow any The topography of the stressor layer 130 varies depending on the topography of the stressor layer 130 , and the plurality of capping layers 140 between the gate structures 112 have flush surfaces, so the capping layers 140 can better repair the topography of the stressor layer 130 . , so as to improve the surface topography of the cap layer 140 and improve the electrical properties of the semiconductor structure.

此外,由于所述帽层140还用于后续与金属反应形成金属硅化物以减小应力层130的接触电阻,所以所述帽层140的材料包括硅。In addition, since the cap layer 140 is also used for the subsequent reaction with metal to form metal silicide to reduce the contact resistance of the stressor layer 130 , the material of the cap layer 140 includes silicon.

需要说明的是,本发明其他实施例中,所述半导体结构还包括:覆盖所述帽层140的金属层。具体的,所述金属层的材料包括镍。It should be noted that, in other embodiments of the present invention, the semiconductor structure further includes: a metal layer covering the cap layer 140 . Specifically, the material of the metal layer includes nickel.

综上,本发明技术方案,在形成应力层后,在所述应力层上形成帽层,形成所述帽层的工艺包括旋涂工艺。由于形成所述帽层的工艺包括旋涂工艺,所以所形成帽层的形貌不会随着所述应力层形貌的变化而变化,而且栅极结构之间的多个帽层具有齐平的表面,所以所形成的帽层能够较好实现对所述应力层形貌的修复,从而有利于提高所形成帽层的表面形貌,有利于改善所形成半导体结构的电学性能。而且本发明可选方案中,形成聚硅烷材料的所述帽层之后,形成覆盖所述帽层的金属层,以形成金属硅化物减小接触电阻。形成修复层的技术方案相比,本发明技术方案直接通过帽层实现对所述应力层形貌的修复,简化了工艺步骤,有利于降低工艺难度,提高良率。To sum up, according to the technical solution of the present invention, after the stress layer is formed, a cap layer is formed on the stress layer, and the process of forming the cap layer includes a spin coating process. Since the process of forming the capping layer includes a spin coating process, the topography of the formed capping layer will not change with the change of the topography of the stressing layer, and the plurality of capping layers between the gate structures have a flush level Therefore, the formed cap layer can better repair the morphology of the stress layer, thereby improving the surface morphology of the formed cap layer and improving the electrical properties of the formed semiconductor structure. Furthermore, in an optional solution of the present invention, after the cap layer of the polysilane material is formed, a metal layer covering the cap layer is formed to form a metal silicide to reduce contact resistance. Compared with the technical solution of forming the repair layer, the technical solution of the present invention directly realizes the repair of the stress layer morphology through the cap layer, which simplifies the process steps, is beneficial to reduce the process difficulty and improve the yield.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (19)

1.一种半导体结构的形成方法,其特征在于,包括:1. A method for forming a semiconductor structure, comprising: 提供衬底,所述衬底内具有多个隔离结构;providing a substrate having a plurality of isolation structures therein; 形成位于相邻隔离结构之间衬底上的栅极结构;forming gate structures on the substrate between adjacent isolation structures; 在所述栅极结构两侧的衬底内形成应力层;forming a stress layer in the substrate on both sides of the gate structure; 在所述应力层上形成帽层,形成帽层的工艺包括旋涂工艺;forming a cap layer on the stress layer, and the process of forming the cap layer includes a spin coating process; 形成覆盖所述帽层的金属层。A metal layer is formed overlying the capping layer. 2.如权利要求1所述的形成方法,其特征在于,在所述应力层上形成帽层的步骤包括:2. The forming method of claim 1, wherein the step of forming a cap layer on the stress layer comprises: 通过旋涂工艺在所述应力层上形成前驱层;forming a precursor layer on the stress layer by a spin coating process; 对所述前驱层进行固化处理,形成所述帽层。The precursor layer is cured to form the cap layer. 3.如权利要求2所述的形成方法,其特征在于,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述前驱层为聚硅烷层。3 . The method of claim 2 , wherein in the step of forming a precursor layer on the stressor layer by a spin coating process, the precursor layer is a polysilane layer. 4 . 4.如权利要求2或3所述的形成方法,其特征在于,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述前驱层的材料包括聚乙硅烷和环戊硅烷中的一种或两种。4. The formation method according to claim 2 or 3, wherein in the step of forming a precursor layer on the stress layer by a spin coating process, the material of the precursor layer comprises polydisilane and cyclopentasilane of one or both. 5.如权利要求2所述的形成方法,其特征在于,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述前驱层还包括溶剂,所述溶剂为碳氢化合物,所述碳氢化合物中碳的原子数大于4。5. The formation method according to claim 2, wherein in the step of forming a precursor layer on the stress layer by a spin coating process, the precursor layer further comprises a solvent, and the solvent is a hydrocarbon, so The number of carbon atoms in the hydrocarbon compound is greater than 4. 6.如权利要求5所述的形成方法,其特征在于,通过旋涂工艺在所述应力层上形成前驱层的步骤中,所述碳氢化合物为C5H126 . The method of claim 5 , wherein in the step of forming a precursor layer on the stressor layer by a spin coating process, the hydrocarbon is C 5 H 12 . 7 . 7.如权利要求2所述的形成方法,其特征在于,形成所述前驱层之后,固化处理之前,所述形成方法还包括:通过回刻的方式去除部分厚度的所述前驱层。7 . The forming method according to claim 2 , wherein, after forming the precursor layer and before the curing treatment, the forming method further comprises: removing a part of the thickness of the precursor layer by etching back. 8 . 8.如权利要求7所述的形成方法,其特征在于,回刻所述前驱层的步骤包括:通过干法刻蚀的方式回刻所述前驱层。8. The method of claim 7, wherein the step of etching back the precursor layer comprises: etching back the precursor layer by dry etching. 9.如权利要求2所述的形成方法,其特征在于,对所述前驱层进行固化处理的步骤包括:9. The method of claim 2, wherein the step of curing the precursor layer comprises: 对所述前驱层进行烘焙处理;Baking the precursor layer; 对经烘焙处理的前驱层进行退火处理,以形成所述帽层。The baked precursor layer is annealed to form the cap layer. 10.如权利要求9所述的形成方法,其特征在于,对所述前驱层进行烘焙处理的步骤中,所述烘焙处理的温度在150℃到350℃范围内,所述烘焙处理的时间在5分钟到15分钟范围内。10. The forming method according to claim 9, wherein in the step of baking the precursor layer, the temperature of the baking treatment is in the range of 150°C to 350°C, and the time of the baking treatment is in the range of 150°C to 350°C. 5 minutes to 15 minutes range. 11.如权利要求9所述的形成方法,其特征在于,对经烘焙处理的前驱层进行退火处理的步骤中,所述退火处理的温度在350℃到800℃范围内,所述退火处理的时间在2分钟到8分钟范围内。11. The method of claim 9, wherein in the step of annealing the baked precursor layer, the temperature of the annealing is in the range of 350°C to 800°C, and the temperature of the annealing is in the range of 350°C to 800°C. The time is in the range of 2 minutes to 8 minutes. 12.如权利要求2所述的形成方法,其特征在于,通过旋涂工艺在所述应力层上形成前驱层的步骤和对所述前驱层进行固化处理的步骤中的一个或两个步骤包括:在惰性气体气氛下进行所述旋涂工艺或所述固化处理,所述惰性气体的压强在200Torr到500Torr范围内。12. The method of claim 2, wherein one or both of the steps of forming a precursor layer on the stressor layer by a spin coating process and curing the precursor layer include: : The spin coating process or the curing treatment is performed in an inert gas atmosphere, and the pressure of the inert gas is in the range of 200 Torr to 500 Torr. 13.如权利要求1所述的形成方法,其特征在于,形成应力层的步骤包括:13. The method of claim 1, wherein the step of forming the stress layer comprises: 在所述栅极结构两侧的衬底内形成开口;forming openings in the substrate on both sides of the gate structure; 向所述开口内填充应力材料,形成所述应力层。A stress material is filled into the opening to form the stress layer. 14.如权利要求1或13所述的形成方法,其特征在于,形成应力层的步骤包括:形成“∑”形的应力层。14. The method of claim 1 or 13, wherein the step of forming the stress layer comprises: forming a "Σ"-shaped stress layer. 15.如权利要求1或13所述的形成方法,其特征在于,形成应力层的步骤包括:所述应力层的材料为锗硅材料。15 . The forming method according to claim 1 or 13 , wherein the step of forming the stress layer comprises: the material of the stress layer is silicon germanium material. 16 . 16.如权利要求13所述的形成方法,其特征在于,向所述开口内填充应力材料的步骤包括:通过外延生长的方式向所述开口内填充应力材料。16. The method of claim 13, wherein the step of filling the opening with a stress material comprises: filling the opening with a stress material by means of epitaxial growth. 17.如权利要求1所述的形成方法,其特征在于,形成所述金属层的步骤中,所述金属层的材料为镍。17. The method of claim 1, wherein in the step of forming the metal layer, the material of the metal layer is nickel. 18.一种半导体结构,所述半导体结构由权利要求1~17中任意一项所述的形成方法形成,其特征在于,包括:18. A semiconductor structure formed by the forming method of any one of claims 1 to 17, characterized by comprising: 衬底,所述衬底内具有多个隔离结构;a substrate having a plurality of isolation structures in the substrate; 位于相邻隔离结构之间衬底上的栅极结构;a gate structure on the substrate between adjacent isolation structures; 位于栅极结构两侧衬底内的应力层;stress layers in the substrate on both sides of the gate structure; 位于所述应力层上的帽层,所述帽层为通过旋涂工艺所形成的帽层。A cap layer on the stress layer, the cap layer is a cap layer formed by a spin coating process. 19.如权利要求18所述的半导体结构,其特征在于,所述帽层的材料包括硅。19. The semiconductor structure of claim 18, wherein the material of the cap layer comprises silicon.
CN201611002333.3A 2016-11-11 2016-11-11 Semiconductor structure and method of forming the same Active CN108074814B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611002333.3A CN108074814B (en) 2016-11-11 2016-11-11 Semiconductor structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611002333.3A CN108074814B (en) 2016-11-11 2016-11-11 Semiconductor structure and method of forming the same

Publications (2)

Publication Number Publication Date
CN108074814A CN108074814A (en) 2018-05-25
CN108074814B true CN108074814B (en) 2020-06-09

Family

ID=62162413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611002333.3A Active CN108074814B (en) 2016-11-11 2016-11-11 Semiconductor structure and method of forming the same

Country Status (1)

Country Link
CN (1) CN108074814B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051340A (en) * 2013-03-13 2014-09-17 中芯国际集成电路制造(上海)有限公司 A manufacturing method of a transistor using stress approach technology

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355262B2 (en) * 2006-03-17 2008-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Diffusion topography engineering for high performance CMOS fabrication
JP2008171999A (en) * 2007-01-11 2008-07-24 Toshiba Corp Semiconductor device and manufacturing method thereof
KR101776926B1 (en) * 2010-09-07 2017-09-08 삼성전자주식회사 Semiconductor device and method for manufacturing the same
KR101852342B1 (en) * 2011-03-23 2018-04-27 삼성전자주식회사 Semiconducor devices and methods for fabricatin the same
US9601594B2 (en) * 2011-11-14 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with enhanced strain
US9543387B2 (en) * 2014-03-10 2017-01-10 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051340A (en) * 2013-03-13 2014-09-17 中芯国际集成电路制造(上海)有限公司 A manufacturing method of a transistor using stress approach technology

Also Published As

Publication number Publication date
CN108074814A (en) 2018-05-25

Similar Documents

Publication Publication Date Title
US9362286B2 (en) Fin field effect transistor and method for forming the same
CN106653751B (en) Semiconductor device and method of manufacturing the same
CN107958873B (en) Fin-type field effect transistor and method of forming the same
CN102779753B (en) Manufacture method of semiconductor device
CN109427653B (en) Semiconductor structure and forming method thereof
CN107919327A (en) Semiconductor structure and forming method thereof
CN104517901B (en) The forming method of CMOS transistor
CN104241389A (en) Thin film transistor, active matrix organic light emitting diode assembly and manufacturing method
CN109148578B (en) Semiconductor structure and method of forming the same
CN1881586A (en) Semiconductor device and fabrication process thereof
KR102290724B1 (en) Method of manufacturing semiconductor devices and semiconductor devices
CN109003899B (en) Semiconductor structure and method for forming the same, and method for forming a fin field effect transistor
CN108074814B (en) Semiconductor structure and method of forming the same
CN104022152B (en) Double grid p-channel MOSFET with compressive strain thin film strain source and preparation method
US12112974B2 (en) Integrated circuit isolation feature and method of forming the same
CN109309056B (en) Semiconductor structure and method of forming the same
CN106298669A (en) The forming method of semiconductor device
CN113745118A (en) A kind of silicon carbide power device and preparation method thereof
CN110875390B (en) Semiconductor structure and forming method thereof
CN109427675B (en) Semiconductor structure and method of forming the same
CN107785267B (en) Method for forming semiconductor structure
CN112151382A (en) Semiconductor structure and forming method thereof
CN111276442A (en) Semiconductor structure and method of forming the same
KR100487925B1 (en) Method for manufacturing semiconductor device
CN110571154B (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers is a method of manufacturing (C)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant