CN108070859A - Refractory metal surfaces lamellar composite Ir/W high-temperature oxidation resistant coatings and preparation method thereof - Google Patents
Refractory metal surfaces lamellar composite Ir/W high-temperature oxidation resistant coatings and preparation method thereof Download PDFInfo
- Publication number
- CN108070859A CN108070859A CN201711338468.1A CN201711338468A CN108070859A CN 108070859 A CN108070859 A CN 108070859A CN 201711338468 A CN201711338468 A CN 201711338468A CN 108070859 A CN108070859 A CN 108070859A
- Authority
- CN
- China
- Prior art keywords
- metal
- layer
- coating
- refractory metal
- layered composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 101
- 239000003870 refractory metal Substances 0.000 title claims abstract description 61
- 239000002131 composite material Substances 0.000 title claims abstract description 57
- 230000003647 oxidation Effects 0.000 title claims abstract description 40
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 144
- 239000002184 metal Substances 0.000 claims abstract description 144
- 239000011248 coating agent Substances 0.000 claims abstract description 98
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 34
- 230000003064 anti-oxidating effect Effects 0.000 claims abstract description 27
- 238000005488 sandblasting Methods 0.000 claims abstract description 25
- 238000005554 pickling Methods 0.000 claims abstract description 23
- 238000005238 degreasing Methods 0.000 claims abstract description 13
- 238000000227 grinding Methods 0.000 claims abstract description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 28
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 22
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 14
- 229910017604 nitric acid Inorganic materials 0.000 claims description 14
- 239000004576 sand Substances 0.000 claims description 14
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 12
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 229910000753 refractory alloy Inorganic materials 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- 238000007733 ion plating Methods 0.000 claims description 7
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 238000004070 electrodeposition Methods 0.000 claims description 5
- 238000007751 thermal spraying Methods 0.000 claims description 5
- 238000010288 cold spraying Methods 0.000 claims description 4
- 238000005422 blasting Methods 0.000 claims description 3
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 229910052845 zircon Inorganic materials 0.000 claims 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 12
- 230000004888 barrier function Effects 0.000 abstract description 9
- 229910052741 iridium Inorganic materials 0.000 abstract description 5
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 124
- 125000004122 cyclic group Chemical group 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910052593 corundum Inorganic materials 0.000 description 6
- 239000010431 corundum Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 235000008113 selfheal Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000010290 vacuum plasma spraying Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
本发明公开了一种难熔金属表面层状复合Ir/W高温抗氧化涂层,包括依次金属W层和金属Ir层,所述金属W层的厚度为3μm~15μm;所述金属Ir层的厚度为5μm~40μm。本发明公开了制备该层状复合Ir/W高温抗氧化涂层的制备方法,该方法为:一、对难熔金属基体的表面进行打磨、喷砂、脱脂和酸洗;二、在预处理后的难熔金属基体表面制备金属W层;三、在金属W层的表面制备金属Ir层,得到层状复合Ir/W高温抗氧化涂层。本发明在金属铱涂层和难熔金属基体之间引入金属W层作为粘结层和扩散阻挡层,解决了Ir涂层与难熔金属基体间结合力不足及高温下Ir涂层与难熔金属基体发生高温界面扩散反应致使涂层寿命缩短的问题。
The invention discloses a layered composite Ir/W high-temperature anti-oxidation coating on the surface of a refractory metal, which comprises a metal W layer and a metal Ir layer in sequence, the thickness of the metal W layer is 3 μm to 15 μm; the thickness of the metal Ir layer is The thickness is 5 μm to 40 μm. The invention discloses a method for preparing the layered composite Ir/W high-temperature anti-oxidation coating. The method includes: 1. grinding, sandblasting, degreasing and pickling the surface of the refractory metal substrate; 2. performing pretreatment preparing a metal W layer on the surface of the final refractory metal substrate; 3. preparing a metal Ir layer on the surface of the metal W layer to obtain a layered composite Ir/W high-temperature oxidation-resistant coating. The invention introduces a metal W layer between the metal iridium coating and the refractory metal substrate as a bonding layer and a diffusion barrier layer, which solves the problem of insufficient bonding force between the Ir coating and the refractory metal substrate and the relationship between the Ir coating and the refractory metal under high temperature. The high-temperature interfacial diffusion reaction of the metal substrate shortens the life of the coating.
Description
技术领域technical field
本发明属于高温防护技术领域,具体涉及一种难熔金属表面层状复合Ir/W高温抗氧化涂层及其制备方法。The invention belongs to the technical field of high-temperature protection, and in particular relates to a layered composite Ir/W high-temperature anti-oxidation coating on a refractory metal surface and a preparation method thereof.
背景技术Background technique
难熔合金具备优异的高温强度和韧性以及良好的加工性能,在宇航工业、航空工业以及原子能工业中得到了广泛的应用。然而,难熔合金在超高温氧化环境中应用时易发生严重氧化而失效,因此,提高难熔金属的高温抗氧化性能是保障其高温服役性能的关键。难熔金属最常用的高温防护涂层为硅化物涂层,然而,随着宇航工业的发展,新一代高比冲姿、轨控火箭发动机和高超声速飞行器用难熔金属热端部件的服役温度可达1700℃以上,且要承受高温高速气体的冲刷,传统的硅化物涂层已经难以满足服役需求。Refractory alloys have excellent high-temperature strength and toughness and good processing properties, and have been widely used in the aerospace industry, aviation industry and atomic energy industry. However, refractory alloys are prone to severe oxidation and failure when used in ultra-high temperature oxidation environments. Therefore, improving the high temperature oxidation resistance of refractory metals is the key to ensuring their high temperature service performance. The most commonly used high-temperature protective coating for refractory metals is silicide coating. However, with the development of the aerospace industry, the service temperature of the hot end parts of refractory metals used in the new generation of high-specific impulse, orbital rocket engines and hypersonic vehicles It can reach more than 1700°C, and it has to withstand the erosion of high-temperature and high-speed gas. The traditional silicide coating has been difficult to meet the service requirements.
金属铱(Ir)自身熔点高达2440℃,且其化学惰性好、氧渗透率低,高温下具有很强的阻氧能力。铱在1200℃以上温度无凝聚态氧化物产生,2200℃下氧的渗透率仅为10-14g/(cm2·s)。这使得其高温抗氧化温度可达2100℃,可以满足难熔金属在苛刻氧化环境中的服役需求。Metal iridium (Ir) itself has a melting point as high as 2440°C, and it has good chemical inertness, low oxygen permeability, and strong oxygen barrier ability at high temperatures. Iridium does not produce condensed oxides at temperatures above 1200°C, and the oxygen permeability at 2200°C is only 10 -14 g/(cm 2 ·s). This makes its high-temperature anti-oxidation temperature up to 2100°C, which can meet the service requirements of refractory metals in harsh oxidizing environments.
Ir涂层在高温下不能“自愈合”,为起到防护作用,涂层必须完整。金属Ir涂层的最高使用温度和有效寿命主要由形成挥发性氧化物损耗以及涂层与基体之间的高温互扩散决定。在Ir涂层表面沉积HfO2、ZrO2、Y2O3和Al2O3等氧化物陶瓷耐蚀层,或采用合金化制备Ir-Ta、Ir-Hf、Ir-Ta-Al、Ir-Pt和Ir-Al等改性Ir涂层,可降低挥发性氧化物损耗对涂层高温防护性能的影响。The Ir coating cannot "self-heal" at high temperatures, and the coating must be complete in order to play a protective role. The maximum service temperature and effective life of the metal Ir coating are mainly determined by the loss of volatile oxides and the high-temperature interdiffusion between the coating and the substrate. Deposit HfO 2 , ZrO 2 , Y 2 O 3 and Al 2 O 3 oxide ceramic corrosion resistant layers on the surface of Ir coating, or prepare Ir-Ta, Ir-Hf, Ir-Ta-Al, Ir- Modified Ir coatings such as Pt and Ir-Al can reduce the impact of volatile oxide loss on the high temperature protection performance of the coating.
然而,高温下金属Ir层与难熔金属发生高温扩散反应,这不仅缩短了金属Ir层的高温服役寿命,还恶化了涂层的高温防护性能,而且,界面扩散反应还会改变难熔金属基材表面的化学成分和显微组织结构,进而影响基体的力学性能。此外,由于Ir和难熔金属基体的熔点高,涂层在制备过程中,往往由于涂层与难熔金属基体之间互扩散不足,导致涂层与基体间结合力弱,进而使得涂层在制备过程以及冷热交替服役环境下易发生开裂和剥落。However, the high-temperature diffusion reaction between the metal Ir layer and the refractory metal at high temperature not only shortens the high-temperature service life of the metal Ir layer, but also deteriorates the high-temperature protection performance of the coating. Moreover, the interfacial diffusion reaction will also change the refractory metal substrate. The chemical composition and microstructure of the material surface affect the mechanical properties of the matrix. In addition, due to the high melting point of Ir and the refractory metal substrate, the coating often has insufficient interdiffusion between the coating and the refractory metal substrate during the preparation process, resulting in weak bonding between the coating and the substrate, which in turn makes the coating Cracking and peeling are prone to occur during the preparation process and under the alternating service environment of cold and hot.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种难熔金属表面层状复合Ir/W高温抗氧化涂层,该涂层通过在金属铱涂层和难熔金属基体之间引入金属W层作为粘结层和扩散阻挡层,显著提高了Ir涂层与难熔金属基体之间的界面结合强度,改善了涂层的抗热震性能,且高温条件下涂层与基体之间的互扩散程度显著降低,涂层的寿命明显提高。因而,该涂层在一定程度上解决了金属Ir层与难熔金属基体间结合力不足以及高温下金属铱涂层与难熔金属基体发生高温界面扩散反应致使涂层寿命缩短的问题。The technical problem to be solved by the present invention is to provide a layered composite Ir/W high-temperature anti-oxidation coating on the surface of refractory metal for the above-mentioned deficiencies in the prior art. The introduction of a metal W layer as a bonding layer and a diffusion barrier layer significantly improves the interface bonding strength between the Ir coating and the refractory metal substrate, improves the thermal shock resistance of the coating, and the coating and substrate under high temperature conditions The degree of interdiffusion between them is significantly reduced, and the life of the coating is significantly improved. Therefore, to a certain extent, the coating solves the problem of insufficient bonding between the metal Ir layer and the refractory metal substrate and the high-temperature interfacial diffusion reaction between the metal iridium coating and the refractory metal substrate at high temperature, which shortens the life of the coating.
本发明采用的技术方案是:一种难熔金属表面层状复合Ir/W高温抗氧化涂层,其特征在于,该层状复合Ir/W高温抗氧化涂层包括依次制备在难熔合金基体表面的金属W层和金属Ir层,所述金属W层兼具粘结层和扩散阻挡层的双重作用,其厚度为3μm~15μm;所述金属Ir层的厚度为5μm~40μm。The technical scheme adopted in the present invention is: a layered composite Ir/W high temperature anti-oxidation coating on the surface of refractory metal, characterized in that the layered composite Ir/W high temperature anti-oxidation coating includes sequentially prepared on the refractory alloy substrate The metal W layer and the metal Ir layer on the surface, the metal W layer has the dual functions of a bonding layer and a diffusion barrier layer, and its thickness is 3 μm to 15 μm; the thickness of the metal Ir layer is 5 μm to 40 μm.
上述的一种难熔金属表面层状复合Ir/W高温抗氧化涂层,其特征在于,所述金属W层的厚度为9μm~11μm,所述金属Ir层的厚度为11μm~30μm。The above-mentioned layered composite Ir/W high-temperature anti-oxidation coating on the surface of refractory metal is characterized in that the thickness of the metal W layer is 9 μm to 11 μm, and the thickness of the metal Ir layer is 11 μm to 30 μm.
上述的一种难熔金属表面层状复合Ir/W高温抗氧化涂层,其特征在于,所述金属W层的厚度为10μm,所述金属Ir层的厚度为20μm。The above-mentioned layered composite Ir/W high-temperature anti-oxidation coating on the surface of refractory metal is characterized in that the thickness of the metal W layer is 10 μm, and the thickness of the metal Ir layer is 20 μm.
另外,本发明还提供了一种制备上述的难熔金属表面层状复合Ir/W高温抗氧化涂层的方法,其特征在于,该方法包括以下步骤:In addition, the present invention also provides a method for preparing the layered composite Ir/W high-temperature oxidation-resistant coating on the surface of refractory metal, characterized in that the method comprises the following steps:
步骤一、依次对难熔金属基体的表面进行打磨、喷砂、脱脂处理和酸洗处理,得到预处理后的难熔金属基体;Step 1. Carrying out grinding, sand blasting, degreasing treatment and pickling treatment on the surface of the refractory metal substrate in sequence to obtain the pretreated refractory metal substrate;
步骤二、采用磁控溅射或电弧离子镀方法在步骤一中得到的预处理后的难熔金属基体的表面制备金属W层;Step 2, preparing a metal W layer on the surface of the pretreated refractory metal substrate obtained in step 1 by magnetron sputtering or arc ion plating;
步骤三、采用物理气相沉积法、化学气相沉积法、热喷涂法、冷喷涂法和电沉积法中的一种或两种以上在步骤二中难熔金属基体上的金属W层的表面制备金属Ir层,最终在难熔金属基体上得到层状复合Ir/W高温抗氧化涂层。Step 3, using one or more of physical vapor deposition, chemical vapor deposition, thermal spraying, cold spraying and electrodeposition to prepare metal on the surface of the metal W layer on the refractory metal substrate in step 2 Ir layer, and finally a layered composite Ir/W high-temperature anti-oxidation coating is obtained on the refractory metal substrate.
上述的方法,其特征在于,步骤一中所述的难熔金属为Nb合金、Mo合金或Ta合金;所述喷砂处理采用的砂粒为刚玉砂、玻璃珠或氧化锆砂,所述喷砂处理的压力为0.2MPa~0.8MPa,喷砂时间为2min~8min。The above-mentioned method is characterized in that the refractory metal described in step one is Nb alloy, Mo alloy or Ta alloy; the sand grains used in the sandblasting treatment are corundum sand, glass beads or zirconia sand, and the sandblasting The treatment pressure is 0.2MPa-0.8MPa, and the blasting time is 2min-8min.
上述的方法,其特征在于,步骤二中所述的酸洗过程采用的酸液由氢氟酸和浓硝酸按体积比(6~7):(3~4)混合而成,所述氢氟酸的质量浓度为40%~60%,所述浓硝酸的质量浓度为65%~68%,所述酸洗的时间为1min~5min。The above-mentioned method is characterized in that the acid solution used in the pickling process described in step 2 is formed by mixing hydrofluoric acid and concentrated nitric acid by volume ratio (6~7):(3~4), and the hydrofluoric acid The mass concentration of the acid is 40%-60%, the mass concentration of the concentrated nitric acid is 65%-68%, and the pickling time is 1min-5min.
上述的方法,其特征在于,步骤二中制备金属W层之前,对预处理后的难熔金属的表面进行溅射清洗。The above method is characterized in that before preparing the metal W layer in step 2, the surface of the pretreated refractory metal is cleaned by sputtering.
上述的方法,其特征在于,步骤三中所述金属Ir层的制备方法,采用现有的真空物理气相沉积、化学气相沉积、热喷涂、冷喷涂或电沉积涂层制备方法之一或其组合制备金属Ir层,使其厚度达到要求;所述真空物理气相沉积方法包括但不限于磁控溅射、电子束物理气相沉积、或电弧离子镀;所述化学气相沉积方法包括但不限于热丝化学气相沉积、等离子体辅助化学气相沉积或金属有机氧化物化学气相沉积;所述热喷涂方法包括电弧喷涂、超音速火焰喷涂、大气等离子喷涂真空等离子喷涂;所述电沉积方法包括但不限于纳米粉复合电镀或脉冲电镀;上述方法的组合方式包括:交替使用真空物理气相沉积、化学气相沉积、热喷涂、冷喷涂、电沉积方法中的两种或三种以上方法,依次制备厚度达到要求的抗高温氧化防护外层;或者使用真空物理气相沉积、化学气相沉积方法的同类方法中的两种或三种以上方法。The above-mentioned method is characterized in that, the preparation method of the metal Ir layer described in step 3 adopts one of the existing vacuum physical vapor deposition, chemical vapor deposition, thermal spraying, cold spraying or electrodeposition coating preparation methods or a combination thereof Prepare the metal Ir layer so that its thickness reaches the requirement; the vacuum physical vapor deposition method includes but not limited to magnetron sputtering, electron beam physical vapor deposition, or arc ion plating; the chemical vapor deposition method includes but not limited to hot wire Chemical vapor deposition, plasma-assisted chemical vapor deposition or metal organic oxide chemical vapor deposition; the thermal spraying method includes arc spraying, supersonic flame spraying, atmospheric plasma spraying vacuum plasma spraying; the electrodeposition method includes but not limited to nano Powder composite electroplating or pulse electroplating; the combination of the above methods includes: alternately using two or more methods of vacuum physical vapor deposition, chemical vapor deposition, thermal spraying, cold spraying, and electrodeposition methods, and sequentially prepare the required thickness. Anti-high temperature oxidation protective outer layer; or two or more methods of the same kind using vacuum physical vapor deposition and chemical vapor deposition methods.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明的层状复合Ir/W高温抗氧化涂层中金属W层的引入能够显著改善抗氧化金属Ir层与难熔金属基体间的结合力,通过优化金属W层的制备工艺参数,控制其显微组织结构和表面状态,能够在带有金属W层的难熔金属基体上制备出高质量的抗氧化金属Ir层,涂层不发生起皮和开裂;同时,该方法制备得到的层状复合Ir/W金属涂层具备良好的抗热冲击和抗热震性能,能够在冷热循环工况下为难熔金属基体提供高温防护。1. The introduction of the metal W layer in the layered composite Ir/W high-temperature oxidation-resistant coating of the present invention can significantly improve the bonding force between the oxidation-resistant metal Ir layer and the refractory metal substrate. By optimizing the preparation process parameters of the metal W layer, By controlling its microstructure and surface state, a high-quality anti-oxidation metal Ir layer can be prepared on a refractory metal substrate with a metal W layer, and the coating does not peel and crack; at the same time, the prepared by this method The layered composite Ir/W metal coating has good thermal shock resistance and thermal shock resistance, and can provide high temperature protection for refractory metal substrates under cold and hot cycle conditions.
2、本发明的层状复合Ir/W高温抗氧化涂层中金属W层的引入能够显著降低高温条件下金属Ir层与难熔金属基体之间的互扩散程度,相对于单层金属Ir层,涂层与基体之间互扩散对涂层高温防护性能和服役寿命以及难熔金属基体力学性能的影响显著降低。2. The introduction of the metal W layer in the layered composite Ir/W high-temperature anti-oxidation coating of the present invention can significantly reduce the degree of interdiffusion between the metal Ir layer and the refractory metal substrate under high temperature conditions. Compared with the single-layer metal Ir layer , the influence of interdiffusion between the coating and the substrate on the high temperature protection performance and service life of the coating and the mechanical properties of the refractory metal substrate is significantly reduced.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明实施例1步骤二制备的金属W层的表面形貌照片。Fig. 1 is a photograph of the surface morphology of the metal W layer prepared in Step 2 of Example 1 of the present invention.
图2为本发明实施例1步骤二制备的金属W层的截面显微组织照片。FIG. 2 is a photo of the cross-sectional microstructure of the metal W layer prepared in Step 2 of Example 1 of the present invention.
图3为本发明实施例1步骤二制备的金属W层的EDS线扫描分析结果。Fig. 3 is an EDS line scan analysis result of the metal W layer prepared in step 2 of Example 1 of the present invention.
图4为本发明实施例1制备的层状复合Ir/W高温抗氧化涂层的表面形貌照片。Fig. 4 is a photograph of the surface morphology of the layered composite Ir/W high-temperature oxidation-resistant coating prepared in Example 1 of the present invention.
图5为本发明实施例1制备的层状复合Ir/W高温抗氧化涂层的截面显微组织照片。Fig. 5 is a cross-sectional microstructure photograph of the layered composite Ir/W high-temperature anti-oxidation coating prepared in Example 1 of the present invention.
图6为本发明实施例1制备的层状复合Ir/W高温抗氧化涂层的EDS线扫描分析结果。Fig. 6 is the EDS line scan analysis result of the layered composite Ir/W high temperature anti-oxidation coating prepared in Example 1 of the present invention.
图7为本发明实施例1制备的层状复合Ir/W高温抗氧化涂层的XRD衍射图谱。Fig. 7 is the XRD diffraction pattern of the layered composite Ir/W high-temperature anti-oxidation coating prepared in Example 1 of the present invention.
图8为本发明实施例2制备的层状复合Ir/W高温抗氧化涂层的断面SEM照片。Fig. 8 is a cross-sectional SEM photo of the layered composite Ir/W high-temperature oxidation-resistant coating prepared in Example 2 of the present invention.
图9为在图8中P1位置处的EDS点分析结果。Fig. 9 is the analysis result of the EDS point at the position P1 in Fig. 8 .
图10为在图8中P2位置处的EDS点分析结果。Fig. 10 is the analysis result of the EDS point at the position P2 in Fig. 8 .
具体实施方式Detailed ways
实施例1Example 1
本实施例Mo1金属表面制备层状复合Ir/W高温抗氧化涂层,包括依次涂覆在难熔合金基体表面的金属W层和金属Ir层,所述金属W层兼具粘结层和扩散阻挡层的双重作用,其厚度为11μm;所述金属Ir层的厚度为11μm。In this example, a layered composite Ir/W high-temperature anti-oxidation coating is prepared on the metal surface of Mo1, including a metal W layer and a metal Ir layer coated on the surface of the refractory alloy substrate in sequence, and the metal W layer has both a bonding layer and a diffusion layer. The double role of the barrier layer, its thickness is 11 μm; the thickness of the metal Ir layer is 11 μm.
本实施例层状复合Ir/W高温抗氧化涂层的制备方法包括以下步骤:The preparation method of the layered composite Ir/W high-temperature oxidation-resistant coating of this embodiment comprises the following steps:
步骤一、对Mo1金属基体依次进行打磨处理、喷砂处理、脱脂处理和酸洗处理;所述喷砂处理采用的砂粒为刚玉砂;所述喷砂处理的压力为0.2MPa,喷砂时间为2min;优选地,将难熔金属浸入丙酮中进行脱脂处理;所述酸洗处理采用的酸液由氢氟酸和浓硝酸按体积比7:3混合而成,所述氢氟酸的质量浓度为50%,所述浓硝酸的质量浓度为67%,酸洗的时间为5min,Mo1金属基体表面呈银白色和“麻面”状态;酸洗之前对Mo1金属基体进行预氧化处理。Step 1. Carry out grinding treatment, sandblasting treatment, degreasing treatment and pickling treatment on the Mo1 metal substrate in sequence; the sand grains used in the sandblasting treatment are corundum sand; the pressure of the sandblasting treatment is 0.2MPa, and the sandblasting time is 2min; preferably, the refractory metal is immersed in acetone for degreasing treatment; the acid solution used in the pickling treatment is formed by mixing hydrofluoric acid and concentrated nitric acid in a volume ratio of 7:3, and the mass concentration of the hydrofluoric acid 50%, the mass concentration of the concentrated nitric acid is 67%, the time of pickling is 5min, the surface of the Mo1 metal substrate is silvery white and in the state of "pockmarked surface"; the Mo1 metal substrate is pre-oxidized before pickling.
步骤二、采用磁控溅射方法在步骤一中预处理后的难熔金属基体表面制备金属W层,制备金属W层之前,对Mo1金属基体进行溅射清洗,祛除表面污染物和氧吸附层,随后进行金属W层制备,详细的工艺参数如表1所示;Step 2. Prepare a metal W layer on the surface of the pretreated refractory metal substrate in step 1 by magnetron sputtering. Before preparing the metal W layer, sputter and clean the Mo1 metal substrate to remove surface pollutants and oxygen adsorption layers. , followed by metal W layer preparation, detailed process parameters are shown in Table 1;
步骤三、采用磁控溅射制备方法,在带有金属W层的难熔金属表面制备金属Ir层,最终在Mo1金属基体上得到层状复合Ir/W高温抗氧化涂层。Step 3, using a magnetron sputtering preparation method to prepare a metal Ir layer on the surface of the refractory metal with a metal W layer, and finally obtain a layered composite Ir/W high-temperature oxidation-resistant coating on the Mo1 metal substrate.
表1磁控溅射制备层状复合Ir/W高温抗氧化涂层的工艺参数Table 1 Process parameters of layered composite Ir/W high-temperature anti-oxidation coating prepared by magnetron sputtering
从图2中可以看出,本实施例在Mo1金属表面制备的层状Ir/W涂层非常连续,且金属Ir层与金属W层结合良好。从图3中可以看出,金属Ir层沿(111)晶面择优生长。1400℃循环氧化400次后,本实施例在Mo1金属表面制备的层状Ir/W涂层未出现明显剥落,展现出了良好的循环氧化性能,且涂层与基体间的互扩散不明显。It can be seen from FIG. 2 that the layered Ir/W coating prepared on the Mo1 metal surface in this embodiment is very continuous, and the metal Ir layer and the metal W layer are well combined. It can be seen from Figure 3 that the metal Ir layer grows preferentially along the (111) crystal plane. After 400 times of cyclic oxidation at 1400°C, the layered Ir/W coating prepared on the Mo1 metal surface in this example did not peel off significantly, showing good cyclic oxidation performance, and the interdiffusion between the coating and the substrate was not obvious.
图1为本实施例制备的金属W层的表面形貌照片,图2为本实施例制备的金属W层的截面显微组织照片,图3为本发明实施例制备的金属W层的EDS线扫描分析结果,从图1、图2和图3中可以看出,本实施例在Mo1金属表面制备的金属W层与基体界面无空洞,涂层连续,厚度均匀,表面微观形貌粗糙,这有利于增强金属Ir层与金属W层之间的结合力。Fig. 1 is a photo of the surface topography of the metal W layer prepared in the present embodiment, Fig. 2 is a photo of the cross-sectional microstructure of the metal W layer prepared in the present embodiment, and Fig. 3 is an EDS line of the metal W layer prepared in the embodiment of the present invention Scanning analysis results, as can be seen from Fig. 1, Fig. 2 and Fig. 3, the metal W layer prepared on the Mo1 metal surface in this embodiment has no voids at the interface with the substrate, the coating is continuous, the thickness is uniform, and the surface microscopic appearance is rough. It is beneficial to enhance the bonding force between the metal Ir layer and the metal W layer.
图4为本实施例制备的层状复合Ir/W高温抗氧化涂层的表面形貌照片,图5为本实施例制备的层状复合Ir/W高温抗氧化涂层的截面显微组织照片,图6为本实施例制备的层状复合Ir/W高温抗氧化涂层的EDS线扫描分析结果,从图4、图5和图6中可以看出,本实施例在Mo1金属表面制备的层状Ir/W涂层非常连续,且金属铱层与金属钨层结合良好。Fig. 4 is the photo of the surface topography of the layered composite Ir/W high-temperature oxidation-resistant coating prepared in the present embodiment, and Fig. 5 is the cross-sectional microstructure photo of the layered composite Ir/W high-temperature oxidation-resistant coating prepared in the present embodiment , Fig. 6 is the EDS line scanning analysis result of the layered composite Ir/W high temperature anti-oxidation coating prepared in this embodiment, as can be seen from Fig. 4, Fig. 5 and Fig. 6, the present embodiment is prepared on the Mo1 metal surface The layered Ir/W coating is very continuous, and the metal iridium layer is well combined with the metal tungsten layer.
图7为本实施例制备的层状复合Ir/W高温抗氧化涂层的XRD衍射图谱。由图可知,金属Ir层沿(111)晶面择优生长。1400℃循环氧化400次后,本实施例在Mo1金属表面制备的层状Ir/W涂层未出现明显剥落,展现出了良好的循环氧化性能,且涂层与基体间的互扩散不明显。Fig. 7 is the XRD diffraction pattern of the layered composite Ir/W high temperature anti-oxidation coating prepared in this example. It can be seen from the figure that the metal Ir layer grows preferentially along the (111) crystal plane. After 400 times of cyclic oxidation at 1400°C, the layered Ir/W coating prepared on the Mo1 metal surface in this example did not peel off significantly, showing good cyclic oxidation performance, and the interdiffusion between the coating and the substrate was not obvious.
实施例2Example 2
本实施例包括以下步骤:This embodiment includes the following steps:
本实施例Nb521铌合金表面制备层状复合Ir/W高温抗氧化涂层,包括依次涂覆在难熔合金基体表面的金属W层和金属Ir层,所述金属W层兼具粘结层和扩散阻挡层的双重作用,其厚度为3μm;所述金属Ir层的厚度为5μm。In this embodiment, a layered composite Ir/W high-temperature anti-oxidation coating is prepared on the surface of Nb521 niobium alloy, including a metal W layer and a metal Ir layer coated on the surface of the refractory alloy substrate in sequence, and the metal W layer has both a bonding layer and a metal Ir layer. The dual role of the diffusion barrier layer has a thickness of 3 μm; the metal Ir layer has a thickness of 5 μm.
本实施例层状复合Ir/W高温抗氧化涂层的制备方法包括以下步骤:The preparation method of the layered composite Ir/W high-temperature oxidation-resistant coating of this embodiment comprises the following steps:
步骤一、对Nb521铌合金基体依次进行打磨处理、喷砂处理、脱脂处理和酸洗处理;所述喷砂处理采用的砂粒为刚玉砂;所述喷砂处理的压力为0.4MPa,喷砂时间为3min;优选地,将难熔金属浸入丙酮中进行脱脂处理;所述酸洗处理采用的酸液由氢氟酸和浓硝酸按体积比7:3混合而成,所述氢氟酸的质量浓度为50%,所述浓硝酸的质量浓度为67%,酸洗的时间为2min,Nb521铌合金基体表面呈银白色和“麻面”状态。Step 1. Carry out grinding treatment, sand blasting treatment, degreasing treatment and pickling treatment on the Nb521 niobium alloy substrate in sequence; the sand particles used in the sand blasting treatment are corundum sand; the pressure of the sand blasting treatment is 0.4MPa, and the sandblasting time is For 3min; preferably, the refractory metal is immersed in acetone for degreasing treatment; the acid solution used in the pickling treatment is formed by mixing hydrofluoric acid and concentrated nitric acid in a volume ratio of 7:3, and the mass of the hydrofluoric acid The concentration is 50%, the mass concentration of the concentrated nitric acid is 67%, the pickling time is 2min, and the surface of the Nb521 niobium alloy substrate is in a silvery white and "pockmarked" state.
步骤二、采用磁控溅射方法在步骤一中预处理后的Nb521铌合金基体表面制备金属W层,制备金属W层之前,对Nb521铌合金基体进行溅射清洗,祛除表面污染物和氧吸附层,随后进行金属W层制备,金属W层的厚度为3μm,详细的工艺参数如表2所示;Step 2. Prepare a metal W layer on the surface of the pretreated Nb521 niobium alloy substrate in step 1 by magnetron sputtering. Before preparing the metal W layer, sputter and clean the Nb521 niobium alloy substrate to remove surface pollutants and oxygen adsorption. layer, followed by the preparation of the metal W layer, the thickness of the metal W layer is 3 μm, and the detailed process parameters are shown in Table 2;
步骤三、采用磁控溅射制备方法,在带有金属W层的难熔金属表面制备5μm厚的金属Ir层,最终在Nb521铌合金基体上得到层状复合Ir/W高温抗氧化涂层。Step 3: Using the magnetron sputtering preparation method, a metal Ir layer with a thickness of 5 μm is prepared on the surface of the refractory metal with a metal W layer, and finally a layered composite Ir/W high-temperature oxidation-resistant coating is obtained on the Nb521 niobium alloy substrate.
表2磁控溅射制备层状复合Ir/W高温抗氧化涂层的工艺参数Table 2 Process parameters for preparing layered composite Ir/W high-temperature anti-oxidation coatings by magnetron sputtering
图8为本实施例制备的层状复合Ir/W高温抗氧化涂层的断面SEM照片,图9为在图8中P1位置处的EDS点分析结果,图10为在图8中P2位置处的EDS点分析结果,从图8、图9、图10中可以看出,本实施例在Nb521铌合金表面制备的Ir/W层状复合涂层,Nb521基体/金属W层/金属Ir层之间的结合良好,涂层连续。1500℃循环氧化200次后,本实施例在Nb521铌合金表面制备的层状Ir/W涂层未出现明显剥落,展现出了良好的循环氧化性能,且涂层与基体间的互扩散不明显。Fig. 8 is the cross-sectional SEM photo of the layered composite Ir/W high temperature oxidation resistant coating prepared in this example, Fig. 9 is the EDS point analysis result at the P1 position in Fig. 8, and Fig. 10 is at the P2 position in Fig. 8 As can be seen from Fig. 8, Fig. 9 and Fig. 10, the Ir/W layered composite coating prepared on the surface of Nb521 niobium alloy in this embodiment, between Nb521 substrate/metal W layer/metal Ir layer The bonding between them is good and the coating is continuous. After 200 times of cyclic oxidation at 1500°C, the layered Ir/W coating prepared on the surface of Nb521 niobium alloy in this example did not peel off obviously, showing good cyclic oxidation performance, and the interdiffusion between the coating and the substrate was not obvious .
实施例3Example 3
本实施例Ta10W钽合金表面制备层状复合Ir/W高温抗氧化涂层,包括依次涂覆在难熔合金基体表面的金属W层和金属Ir层,所述金属W层兼具粘结层和扩散阻挡层的双重作用,其厚度为10μm;所述金属Ir层的厚度为20。In this embodiment, a layered composite Ir/W high-temperature oxidation-resistant coating is prepared on the surface of the Ta10W tantalum alloy, including a metal W layer and a metal Ir layer coated on the surface of the refractory alloy substrate in sequence, and the metal W layer has both a bonding layer and a metal Ir layer. The dual role of the diffusion barrier layer is 10 μm thick; the metal Ir layer is 20 μm thick.
本实施例层状复合Ir/W高温抗氧化涂层的制备方法包括以下步骤:The preparation method of the layered composite Ir/W high-temperature oxidation-resistant coating of this embodiment comprises the following steps:
步骤一、对Ta10W钽合金基体依次进行打磨处理、喷砂处理、脱脂处理和酸洗处理;所述喷砂处理采用的砂粒为刚玉砂;所述喷砂处理的压力为0.8MPa,喷砂时间为8min;优选地,将难熔金属浸入丙酮中进行脱脂处理;所述酸洗处理采用的酸液由氢氟酸和浓硝酸按体积比7:3混合而成,所述氢氟酸的质量浓度为50%,所述浓硝酸的质量浓度为67%,酸洗的时间为5min,Ta10W钽合金金属基体表面呈银白色和“麻面”状态。Step 1. Carry out grinding treatment, sandblasting treatment, degreasing treatment and pickling treatment on the Ta10W tantalum alloy substrate in sequence; the sand particles used in the sandblasting treatment are corundum sand; the pressure of the sandblasting treatment is 0.8MPa, and the sandblasting time is It is 8min; Preferably, the refractory metal is immersed in acetone for degreasing treatment; the acid solution used in the pickling treatment is formed by mixing hydrofluoric acid and concentrated nitric acid in a volume ratio of 7:3, and the mass of the hydrofluoric acid The concentration is 50%, the mass concentration of the concentrated nitric acid is 67%, and the pickling time is 5 minutes. The surface of the Ta10W tantalum alloy metal substrate is silvery white and "pockmarked".
步骤二、采用磁控溅射方法在步骤一中预处理后的难熔金属基体表面制备金属W层,制备金属W层之前,对Ta10W钽合金基体进行溅射清洗,祛除表面污染物和氧吸附层,随后进行金属W层制备,金属W层的厚度为10μm,详细的工艺参数如表1所示;Step 2. Prepare a metal W layer on the surface of the refractory metal substrate pretreated in step 1 by magnetron sputtering. Before preparing the metal W layer, sputter and clean the Ta10W tantalum alloy substrate to remove surface pollutants and oxygen adsorption. layer, followed by the preparation of the metal W layer, the thickness of the metal W layer is 10 μm, and the detailed process parameters are shown in Table 1;
步骤三、采用磁控溅射制备方法,在带有金属W层的难熔金属表面制备20μm的金属Ir层,最终在Mo1金属基体上得到层状复合Ir/W高温抗氧化涂层。Step 3, using the magnetron sputtering preparation method to prepare a 20 μm metal Ir layer on the surface of the refractory metal with a metal W layer, and finally obtain a layered composite Ir/W high-temperature oxidation-resistant coating on the Mo1 metal substrate.
表3磁控溅射制备层状复合Ir/W高温抗氧化涂层的工艺参数Table 3 Process parameters of layered composite Ir/W high-temperature anti-oxidation coating prepared by magnetron sputtering
本实施例在Ta10W钽合金表面制备的层状复合Ir/W涂层,基体/金属W层/金属Ir层之间结合良好,涂层连续。1800℃循环氧化400次后,本实施例在Ta10W钽合金表面制备的层状复合Ir/W涂层未出现明显剥落,展现出了良好的循环氧化性能,且涂层与基体间的互扩散不明显。In the layered composite Ir/W coating prepared on the surface of the Ta10W tantalum alloy in this example, the bonding between the substrate/metal W layer/metal Ir layer is good, and the coating is continuous. After 400 times of cyclic oxidation at 1800°C, the layered composite Ir/W coating prepared on the surface of Ta10W tantalum alloy in this example did not peel off obviously, showing good cyclic oxidation performance, and the interdiffusion between the coating and the substrate was not obvious.
实施例4Example 4
本实施例Ta12W钽合金表面制备层状复合Ir/W高温抗氧化涂层,包括依次涂覆在难熔合金基体表面的金属W层和金属Ir层,所述金属W层兼具粘结层和扩散阻挡层的双重作用,其厚度为15μm;所述金属Ir层的厚度为40μm。In this embodiment, a layered composite Ir/W high-temperature anti-oxidation coating is prepared on the surface of the Ta12W tantalum alloy, including a metal W layer and a metal Ir layer coated on the surface of the refractory alloy substrate in sequence, and the metal W layer has both a bonding layer and a metal Ir layer. The dual role of the diffusion barrier layer is 15 μm thick; the metal Ir layer is 40 μm thick.
本实施例层状复合Ir/W高温抗氧化涂层的制备方法包括以下步骤:The preparation method of the layered composite Ir/W high-temperature oxidation-resistant coating of this embodiment comprises the following steps:
步骤一、对Ta12W钽合金基体依次进行打磨处理、喷砂处理、脱脂处理和酸洗处理;所述喷砂处理采用的砂粒为刚玉砂;所述喷砂处理的压力为0.8MPa,喷砂时间为8min;优选地,将难熔金属浸入丙酮中进行脱脂处理;所述酸洗处理采用的酸液由氢氟酸和浓硝酸按体积比7:3混合而成,所述氢氟酸的质量浓度为50%,所述浓硝酸的质量浓度为67%,酸洗的时间为5min,Ta12W钽合金金属基体表面呈银白色和“麻面”状态。Step 1. Carry out grinding treatment, sandblasting treatment, degreasing treatment and pickling treatment on the Ta12W tantalum alloy substrate in sequence; the sand particles used in the sandblasting treatment are corundum sand; the pressure of the sandblasting treatment is 0.8MPa, and the sandblasting time is It is 8min; Preferably, the refractory metal is immersed in acetone for degreasing treatment; the acid solution used in the pickling treatment is formed by mixing hydrofluoric acid and concentrated nitric acid in a volume ratio of 7:3, and the mass of the hydrofluoric acid The concentration is 50%, the mass concentration of the concentrated nitric acid is 67%, and the pickling time is 5 minutes. The surface of the Ta12W tantalum alloy metal substrate is silvery white and "pockmarked".
步骤二、采用电弧离子镀方法在步骤一中预处理后的难熔金属基体表面制备金属W层,制备金属W层之前,对Ta12W钽合金基体进行溅射清洗,祛除表面污染物和氧吸附层,随后进行金属W层制备,金属W层的厚度为15μm,详细的工艺参数如表1所示;Step 2. Prepare a metal W layer on the surface of the pretreated refractory metal substrate in step 1 by arc ion plating. Before preparing the metal W layer, sputter and clean the Ta12W tantalum alloy substrate to remove surface pollutants and oxygen adsorption layers. , followed by the preparation of the metal W layer, the thickness of the metal W layer is 15 μm, and the detailed process parameters are shown in Table 1;
步骤三、采用电弧离子镀制备方法,在带有金属W层的难熔金属表面制备40μm厚的金属Ir层,最终在Ta12W钽合金基体上得到层状复合Ir/W高温抗氧化涂层。Step 3: Prepare a metal Ir layer with a thickness of 40 μm on the surface of the refractory metal with a metal W layer by using an arc ion plating preparation method, and finally obtain a layered composite Ir/W high-temperature oxidation-resistant coating on the Ta12W tantalum alloy substrate.
本实施例在Ta12W钽合金表面制备的层状复合Ir/W涂层,基体/金属W层/金属Ir层之间结合良好,涂层连续。1800℃循环氧化300次后,本实施例在Ta12W钽合金表面制备的层状复合Ir/W涂层未出现明显剥落,展现出了良好的循环氧化性能,且涂层与基体间的互扩散不明显。In the layered composite Ir/W coating prepared on the surface of the Ta12W tantalum alloy in this example, the bonding between the substrate/metal W layer/metal Ir layer is good, and the coating is continuous. After 300 times of cyclic oxidation at 1800°C, the layered composite Ir/W coating prepared on the surface of the Ta12W tantalum alloy in this example did not peel off obviously, showing good cyclic oxidation performance, and the interdiffusion between the coating and the substrate was not obvious.
实施例5Example 5
本实施例Ta12W钽合金表面制备层状复合Ir/W高温抗氧化涂层,包括依次涂覆在难熔合金基体表面的金属W层和金属Ir层,所述金属W层兼具粘结层和扩散阻挡层的双重作用,其厚度为9μm;所述金属Ir层的厚度为30μm。In this embodiment, a layered composite Ir/W high-temperature anti-oxidation coating is prepared on the surface of the Ta12W tantalum alloy, including a metal W layer and a metal Ir layer coated on the surface of the refractory alloy substrate in sequence, and the metal W layer has both a bonding layer and a metal Ir layer. The dual role of the diffusion barrier layer has a thickness of 9 μm; the metal Ir layer has a thickness of 30 μm.
本实施例层状复合Ir/W高温抗氧化涂层的制备方法包括以下步骤:The preparation method of the layered composite Ir/W high-temperature oxidation-resistant coating of this embodiment comprises the following steps:
步骤一、对Ta12W钽合金基体依次进行打磨处理、喷砂处理、脱脂处理和酸洗处理;所述喷砂处理采用的砂粒为刚玉砂;所述喷砂处理的压力为0.6MPa,喷砂时间为8min;优选地,将难熔金属浸入丙酮中进行脱脂处理;所述酸洗处理采用的酸液由氢氟酸和浓硝酸按体积比7:3混合而成,所述氢氟酸的质量浓度为50%,所述浓硝酸的质量浓度为67%,酸洗的时间为4min,Ta12W钽合金金属基体表面呈银白色和“麻面”状态。Step 1. Carry out grinding treatment, sandblasting treatment, degreasing treatment and pickling treatment on the Ta12W tantalum alloy substrate in sequence; the sand particles used in the sandblasting treatment are corundum sand; the pressure of the sandblasting treatment is 0.6MPa, and the sandblasting time is It is 8min; Preferably, the refractory metal is immersed in acetone for degreasing treatment; the acid solution used in the pickling treatment is formed by mixing hydrofluoric acid and concentrated nitric acid in a volume ratio of 7:3, and the mass of the hydrofluoric acid The concentration is 50%, the mass concentration of the concentrated nitric acid is 67%, and the pickling time is 4 minutes. The surface of the Ta12W tantalum alloy metal substrate is in a silvery white and "pockmarked" state.
步骤二、采用电弧离子镀方法在步骤一中预处理后的难熔金属基体表面制备金属W层,制备金属W层之前,对Ta12W钽合金基体进行溅射清洗,祛除表面污染物和氧吸附层,随后进行金属W层制备,金属W层的厚度为15μm,详细的工艺参数如表1所示;Step 2. Prepare a metal W layer on the surface of the pretreated refractory metal substrate in step 1 by arc ion plating. Before preparing the metal W layer, sputter and clean the Ta12W tantalum alloy substrate to remove surface pollutants and oxygen adsorption layers. , followed by the preparation of the metal W layer, the thickness of the metal W layer is 15 μm, and the detailed process parameters are shown in Table 1;
步骤三、采用电弧离子镀制备方法,在带有金属W层的难熔金属表面制备30μm厚的金属Ir层,最终在Ta12W钽合金基体上得到层状复合Ir/W高温抗氧化涂层。Step 3: Prepare a metal Ir layer with a thickness of 30 μm on the surface of the refractory metal with a metal W layer by using an arc ion plating preparation method, and finally obtain a layered composite Ir/W high-temperature oxidation-resistant coating on the Ta12W tantalum alloy substrate.
本实施例在Ta12W钽合金表面制备的层状复合Ir/W涂层,基体/金属W层/金属Ir层之间结合良好,涂层连续。1800℃循环氧化300次后,本实施例在Ta12W钽合金表面制备的层状复合Ir/W涂层未出现明显剥落,展现出了良好的循环氧化性能,且涂层与基体间的互扩散不明显。In the layered composite Ir/W coating prepared on the surface of the Ta12W tantalum alloy in this example, the bonding between the substrate/metal W layer/metal Ir layer is good, and the coating is continuous. After 300 times of cyclic oxidation at 1800°C, the layered composite Ir/W coating prepared on the surface of the Ta12W tantalum alloy in this example did not peel off obviously, showing good cyclic oxidation performance, and the interdiffusion between the coating and the substrate was not obvious.
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。The above are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent structural changes made to the above embodiments according to the technical essence of the present invention still belong to the technical aspects of the present invention. within the scope of protection of the scheme.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711338468.1A CN108070859A (en) | 2017-12-14 | 2017-12-14 | Refractory metal surfaces lamellar composite Ir/W high-temperature oxidation resistant coatings and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711338468.1A CN108070859A (en) | 2017-12-14 | 2017-12-14 | Refractory metal surfaces lamellar composite Ir/W high-temperature oxidation resistant coatings and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108070859A true CN108070859A (en) | 2018-05-25 |
Family
ID=62158547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711338468.1A Withdrawn CN108070859A (en) | 2017-12-14 | 2017-12-14 | Refractory metal surfaces lamellar composite Ir/W high-temperature oxidation resistant coatings and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108070859A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112030231A (en) * | 2020-08-28 | 2020-12-04 | 北京中材人工晶体研究院有限公司 | Composite material and preparation method and application thereof |
CN113529065A (en) * | 2020-04-16 | 2021-10-22 | 中国科学院金属研究所 | Method and device for preparing iridium metal coating based on cold spraying high-speed deposition additive manufacturing technology |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1904127A (en) * | 2006-08-04 | 2007-01-31 | 南京航空航天大学 | Tungsten/iridium composite coating layer for carbon material antioxidation and its preparation method |
US20100261034A1 (en) * | 2006-08-07 | 2010-10-14 | Cardarelli Francois | Composite metallic materials, uses thereof and process for making same |
CN102534290A (en) * | 2012-03-06 | 2012-07-04 | 陈照峰 | Platinum group metal alloy coating with controlled alloying elements and preparation method thereof |
CN102991021A (en) * | 2012-12-14 | 2013-03-27 | 南京航空航天大学 | Ultrahigh-temperature anti-oxidation composite coating and preparation method thereof |
CN103572210A (en) * | 2012-08-08 | 2014-02-12 | 苏州宏久航空防热材料科技有限公司 | High-temperature antioxidant iridium-based nano composite coating as well as preparation method thereof |
CN105324512A (en) * | 2013-07-12 | 2016-02-10 | 惠普发展公司,有限责任合伙企业 | Amorphous thin metal film |
CN106587629A (en) * | 2016-12-09 | 2017-04-26 | 西北有色金属研究院 | Boride modified glass ceramic based composite high-temperature oxidation resisting coating and preparation method thereof |
CN106756999A (en) * | 2016-12-09 | 2017-05-31 | 西北有色金属研究院 | A kind of method that laser remolten improves refractory metal surfaces silicide coating surface quality |
-
2017
- 2017-12-14 CN CN201711338468.1A patent/CN108070859A/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1904127A (en) * | 2006-08-04 | 2007-01-31 | 南京航空航天大学 | Tungsten/iridium composite coating layer for carbon material antioxidation and its preparation method |
US20100261034A1 (en) * | 2006-08-07 | 2010-10-14 | Cardarelli Francois | Composite metallic materials, uses thereof and process for making same |
CN102534290A (en) * | 2012-03-06 | 2012-07-04 | 陈照峰 | Platinum group metal alloy coating with controlled alloying elements and preparation method thereof |
CN103572210A (en) * | 2012-08-08 | 2014-02-12 | 苏州宏久航空防热材料科技有限公司 | High-temperature antioxidant iridium-based nano composite coating as well as preparation method thereof |
CN102991021A (en) * | 2012-12-14 | 2013-03-27 | 南京航空航天大学 | Ultrahigh-temperature anti-oxidation composite coating and preparation method thereof |
CN105324512A (en) * | 2013-07-12 | 2016-02-10 | 惠普发展公司,有限责任合伙企业 | Amorphous thin metal film |
CN106587629A (en) * | 2016-12-09 | 2017-04-26 | 西北有色金属研究院 | Boride modified glass ceramic based composite high-temperature oxidation resisting coating and preparation method thereof |
CN106756999A (en) * | 2016-12-09 | 2017-05-31 | 西北有色金属研究院 | A kind of method that laser remolten improves refractory metal surfaces silicide coating surface quality |
Non-Patent Citations (1)
Title |
---|
WANG XIN.ET.AL: "Preparation and Characterization of Ir Coating on Mo Network with a W Bond-Coat", 《 RARE METAL MATERIALS AND ENGINEERING》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113529065A (en) * | 2020-04-16 | 2021-10-22 | 中国科学院金属研究所 | Method and device for preparing iridium metal coating based on cold spraying high-speed deposition additive manufacturing technology |
CN112030231A (en) * | 2020-08-28 | 2020-12-04 | 北京中材人工晶体研究院有限公司 | Composite material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109321861B (en) | Corrosion-resistant and wear-resistant coating with lamellar and columnar composite structure and preparation method thereof | |
CN109666904B (en) | Low-stress high-wear-resistance anti-erosion coating, preparation method and application | |
CN109266997B (en) | A kind of metal workpiece double-layer coating suitable for high temperature environment and its making method | |
CN106893965B (en) | The bis- ceramic layer structure heat resistant coatings of YAG/8YSZ and plasma preparation method | |
CN107254652A (en) | A kind of multilayer thermal barrier coating and preparation method thereof | |
CN108048778B (en) | Layered composite silicide/glass ceramic high-temperature oxidation-resistant coating and preparation method thereof | |
CN106148874A (en) | Thermal barrier coating that a kind of anti-CMAS smelt deposits corrodes and preparation method thereof | |
CN105401116A (en) | A kind of preparation method of titanium alloy TiAl3-Al composite coating | |
CN101310969B (en) | A kind of Al/Al2O3/MCrAlY composite coating for Ti-Al alloy and its preparation method | |
CN107130212A (en) | A kind of thick tantalum coating of high hard wear-resisting heat shock resistance and preparation method thereof | |
CN105734500A (en) | High temperature oxidation-resistant thermal barrier coating layer with composite structure and preparation method thereof | |
CN107164731B (en) | A kind of preparation method of aluminum composite protective layer on magnesium alloy surface | |
CN108359927A (en) | A kind of NiCr/Al2O3The preparation method of composite coating | |
CN105386041B (en) | A kind of method that laser melting coating prepares modified compound Hf Ta metal coatings | |
CN108070859A (en) | Refractory metal surfaces lamellar composite Ir/W high-temperature oxidation resistant coatings and preparation method thereof | |
CN106148873B (en) | The preparation method of titanium alloy and Intermatallic Ti-Al compound oxide on surface base coating | |
CN111485205A (en) | A kind of NiMAlY/Al2O3 composite coating and its preparation method and application | |
CN113088883B (en) | A kind of superalloy composite cermet coating and preparation method thereof | |
CN104441821B (en) | High-temperature alloy composite nanocrystalline coating and preparation method thereof | |
CN103614698B (en) | A kind of High-temperature antioxidant niobium alloy compound coating and preparation method thereof | |
CN115821262A (en) | A high-temperature diffusion barrier of carbide on the surface of refractory metal and its preparation method | |
JP3081764B2 (en) | Carbon member having composite coating and method of manufacturing the same | |
CN115323375A (en) | Preparation method of tantalum-hafnium alloy coating on surface of steel strip | |
CN211079339U (en) | A thermal barrier coating with long life | |
CN114438432A (en) | A kind of preparation method of anti-oxidation adhesive layer and thermal barrier coating thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180525 |