CN108051847B - Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate - Google Patents
Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate Download PDFInfo
- Publication number
- CN108051847B CN108051847B CN201711269585.7A CN201711269585A CN108051847B CN 108051847 B CN108051847 B CN 108051847B CN 201711269585 A CN201711269585 A CN 201711269585A CN 108051847 B CN108051847 B CN 108051847B
- Authority
- CN
- China
- Prior art keywords
- neutron
- dose rate
- 5kev
- neutron dose
- 10kev
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Abstract
本发明公开了利用溴化镧探测器测量中子剂量率的方法和中子剂量率仪,其中,测量中子剂量率的方法利用中子在溴化镧探测器中产生的中子特征γ能峰的净计数率与所述中子在该点造成的中子剂量率之间存在确定性的函数关系,通过测量γ能谱,并利用所述确定性的函数关系,计算并获得中子剂量率。因此,利用本发明实施例的测量中子剂量率的方法能够更加方便、快速、准确地获得中子剂量率。
The invention discloses a method for measuring the neutron dose rate by using a lanthanum bromide detector and a neutron dose rate meter, wherein the method for measuring the neutron dose rate utilizes the neutron characteristic gamma energy generated by the neutron in the lanthanum bromide detector There is a deterministic functional relationship between the net count rate of the peak and the neutron dose rate caused by the neutron at that point, and the neutron dose is calculated and obtained by measuring the gamma energy spectrum and using the deterministic functional relationship Rate. Therefore, using the method for measuring neutron dose rate in the embodiment of the present invention can obtain neutron dose rate more conveniently, quickly and accurately.
Description
技术领域technical field
本发明属于辐射探测、环境监测设备技术领域,具体而言,本发明涉及利用溴化镧探测器测量中子剂量率的方法和中子剂量率仪。The invention belongs to the technical field of radiation detection and environmental monitoring equipment. Specifically, the invention relates to a method for measuring neutron dose rate using a lanthanum bromide detector and a neutron dose rate meter.
背景技术Background technique
中子剂量率仪是一种用于测量和评价中子辐射产生的周围剂量当量率的辐射监测设备。目前,常见的辐射防护用中子剂量率仪,其基本组成包括慢化体、中子能量补偿材料、热中子灵敏计数器及电子学线路。其结构特点是将热中子灵敏计数器用球形或圆柱形慢化体裹在中心处;慢化体内,离中心探测器某一距离上设置一带有慢中子透过孔的中子吸收筛,或用含硼材料的吸收层,入射中子射入慢化体后被慢化(或热中子扩散),在通过吸收筛(或吸收层)时一部分慢(热)中子被吸收,一定比例的中子穿过,穿过吸收筛的部分中子继续被慢化或扩散,最后到达中心探测器的部分中子被探测记录下来。A neutron dose rate meter is a radiation monitoring device used to measure and evaluate the surrounding dose equivalent rate produced by neutron radiation. At present, the basic components of common neutron dose rate meters for radiation protection include moderators, neutron energy compensation materials, thermal neutron sensitive counters and electronic circuits. Its structural feature is that the thermal neutron sensitive counter is wrapped in the center with a spherical or cylindrical moderator; in the moderator body, a neutron absorption sieve with slow neutron penetration holes is set at a certain distance from the central detector. Or use the absorption layer of boron-containing material, the incident neutrons are moderated (or thermal neutron diffusion) after entering the moderator, and part of the slow (thermal) neutrons are absorbed when passing through the absorption sieve (or absorption layer). A proportion of neutrons pass through, and some neutrons that pass through the absorbing sieve continue to be slowed down or diffused, and finally some neutrons that reach the central detector are detected and recorded.
现有的中子剂量率仪,根据结构设计的不同,可大致分为三类:一是单计数器型,这类剂量率仪采用单个球形或柱形聚乙烯作为慢化体,球心放置单个正比计数器(如BF3、3He)或6Li玻璃闪烁体,球体中间夹杂一些经过特殊设计的硼塑料或镉材料等中子能量补偿材料。二是多计数器型,这类剂量率仪的慢化体为单球或多球设计,探头采用多个正比计数器(如3He),分别放置在慢化体的球心或者球面,球体中间夹杂中子能量补偿材料。三是谱仪型,这类剂量率仪将热中子探测器分别包裹在不同直径的慢化球壳内,利用不同大小慢化球的慢化能力不同,得到不同能量的中子响应,通过对测量得到的慢化中子能谱进行解谱,解出中子辐射场的实际能谱,进而计算得到辐射场的中子剂量率。Existing neutron dose rate meters can be roughly divided into three categories according to different structural designs: one is the single-counter type. This type of dose rate meter uses a single spherical or cylindrical polyethylene as the moderator, and a single counter is placed in the center of the sphere. Proportional counters (such as BF 3 , 3 He) or 6 Li glass scintillators, with some specially designed neutron energy compensation materials such as boroplastic or cadmium materials in the middle of the sphere. The second is the multi-counter type. The moderator of this type of dose rate meter is a single-sphere or multi-sphere design. The probe uses multiple proportional counters (such as 3 He), which are respectively placed on the center or spherical surface of the moderator. Neutron energy compensating materials. The third is the spectrometer type. This type of dose rate meter wraps thermal neutron detectors in moderator spherical shells with different diameters, and uses the different moderating capabilities of moderator spheres of different sizes to obtain neutron responses of different energies. The measured moderated neutron energy spectrum is solved to obtain the actual energy spectrum of the neutron radiation field, and then the neutron dose rate of the radiation field is calculated.
溴化镧探测器是一种新型的无机闪烁体探测器,具有优秀的时间分辨率(数百皮秒)、高能量分辨率(<3%,对于662keVγ射线)和高探测效率,被广泛应用于γ能谱测量。作为无机闪烁体型探测器,溴化镧探测器主要由溴化镧晶体组成,组成元素主要包括La和Br,从天然同位素丰度考虑,主要是139La,79Br和81Br,三种核素均为稳定核素。但当中子入射到溴化镧晶体材料时,中子会与靶物质核素发生核反应,主要反应类型包括弹性散射、非弹性散射和辐射俘获。其中,如果中子动能足以激发靶核,发生非弹性散射A(n,n′γ)A′,那么入射中子会将初始动能的一部分传递给原子核,使靶核激发到激发态,靶核退激时放出γ射线,例如79Br(n,n′γ)79mBr,79mBr退激会放出能量为217keV的γ射线;如果发生辐射俘获反应A(n,γ)B,那么靶核俘获中子,产生新的靶核,新核通常处于不稳定的激发状态,激发能取决于中子的结合能与动能,受激核会通过发射一个或数个γ量子而跃迁回基态,且会发射后续的放射性衰变,例如139La(n,γ)140La,140La以β-的形式衰变为140Ce;79Br(n,γ)80Br,80Br以β-和轨道电子俘获的方式衰变为80Kr;81Br(n,γ)82Br,82Br以β-的方式衰变为82Kr。核反应所产生的不同能量的γ射线,可被溴化镧探测器探测并分辨。Lanthanum bromide detector is a new type of inorganic scintillator detector, which has excellent time resolution (hundreds of picoseconds), high energy resolution (<3%, for 662keV gamma rays) and high detection efficiency, and is widely used Measured by gamma spectroscopy. As an inorganic scintillator detector, the lanthanum bromide detector is mainly composed of lanthanum bromide crystals, and the constituent elements mainly include La and Br. Considering the natural isotope abundance, it is mainly 139 La, 79 Br and 81 Br, three nuclides All are stable nuclides. However, when neutrons are incident on the lanthanum bromide crystal material, the neutrons will undergo a nuclear reaction with the target nuclide. The main reaction types include elastic scattering, inelastic scattering and radiation capture. Among them, if the neutron kinetic energy is enough to excite the target nucleus, inelastic scattering A(n,n′γ)A′ occurs, then the incident neutron will transfer part of the initial kinetic energy to the nucleus, so that the target nucleus is excited to an excited state, and the target nucleus Gamma rays are emitted during de-excitation, such as 79 Br(n, n′γ) 79m Br, 79m Br de-excitation will emit γ-rays with an energy of 217keV; if the radiation capture reaction A(n, γ)B occurs, the target nucleus captures Neutrons generate new target nuclei. The new nuclei are usually in an unstable excited state. The excitation energy depends on the binding energy and kinetic energy of the neutrons. The excited nuclei will transition back to the ground state by emitting one or several γ quanta, and will Emit subsequent radioactive decay, such as 139 La(n,γ) 140 La, 140 La decays to 140 Ce in the form of β-; 79 Br(n,γ) 80 Br, 80 Br in the form of β- and orbital electron capture Decays to 80 Kr; 81 Br(n,γ) 82 Br, 82 Br decays to 82 Kr in a β - way. Gamma rays of different energies produced by nuclear reactions can be detected and resolved by lanthanum bromide detectors.
近年来,随着研究的深入,国外研究者通过实验研究发现,利用上述核反应产生γ射线的物理机制,采用飞行时间法,可实现溴化镧探测器对中子的探测,例如,对于700keV的中子,2in×2in溴化镧探测器的探测效率可达5%。单从探测器本身而言,该探测效率是优于其他类型的中子探测器的。但上述探测方法是基于飞行时间法,并不适用于辐射防护领域。因为飞行时间法是基于不同能量(飞行速度)的中子飞越某一确定距离所需时间不同,将对中子能量的测量转换为对该中子飞越选定距离所需时间的测量,通过测量时间分布,从而确定中子能量分布。该方法需要极为精确地记录中子在飞行距离上的起点时刻和终点时刻,这在辐射防护领域显然是无法实现的。In recent years, with the deepening of research, foreign researchers have found through experimental research that using the physical mechanism of the above-mentioned nuclear reaction to generate γ-rays and using the time-of-flight method, the detection of neutrons by lanthanum bromide detectors can be realized. For example, for 700keV For neutrons, the detection efficiency of 2in×2in lanthanum bromide detector can reach 5%. From the perspective of the detector itself, the detection efficiency is better than other types of neutron detectors. However, the above-mentioned detection method is based on the time-of-flight method and is not suitable for the field of radiation protection. Because the time-of-flight method is based on the fact that neutrons with different energies (flight speeds) fly over a certain distance, the time required to fly over a certain distance is different, and the measurement of neutron energy is converted into the measurement of the time required for the neutron to fly over a selected distance. time distribution to determine the neutron energy distribution. This method needs to record the start time and end time of the neutron flight distance very accurately, which is obviously impossible to achieve in the field of radiation protection.
因此,本发明提出一种基于溴化镧探测器的中子剂量率仪,用于辐射防护领域的中子剂量率测量。Therefore, the present invention proposes a neutron dose rate meter based on a lanthanum bromide detector, which is used for neutron dose rate measurement in the field of radiation protection.
发明内容Contents of the invention
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出测量中子剂量率的方法和中子剂量率仪,采用本发明提出的测量中子剂量率的方法,该方法利用溴化镧探测器可以与入射中子发生反应,产生不同能量的特征γ能峰,并利用溴化镧探测器进行探测与分辨,进而可以利用中子剂量率与特征γ能峰的净计数率之间确定性的函数关系得到中子剂量率。The present invention aims to solve one of the technical problems in the related art at least to a certain extent. For this reason, an object of the present invention is to propose the method for measuring neutron dose rate and neutron dose rate instrument, adopt the method for measuring neutron dose rate proposed by the present invention, this method utilizes lanthanum bromide detector to be able to communicate with incident neutron The reaction occurs to produce characteristic gamma energy peaks of different energies, which are detected and resolved by lanthanum bromide detectors, and then the deterministic functional relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peaks can be used to obtain neutron dose rate.
发明人发现,采用飞行时间法可以实现溴化镧探测器对中子的探测,但是通过精确记录中子在选定飞行距离上的起点时刻和终点时刻来确定中子能量分布在辐射防护领域是无法实现的,飞行时间法并不适用于辐射防护领域。发明人意外发现,中子与溴化镧晶体材料发生反应产生的不同能量的特征γ能峰的净计数率的变化与中子剂量率的变化趋势是一致的,利用中子剂量率与特征γ能峰的净计数率之间确定性的函数关系,可以通过测量一个或几个中子特征γ能峰的净计数率组合与解谱计算,实现辐射场中子剂量率的测量。The inventors have found that the detection of neutrons by lanthanum bromide detectors can be realized by using the time-of-flight method, but determining the energy distribution of neutrons by accurately recording the starting time and ending time of neutrons on a selected flight distance is not feasible in the field of radiation protection. Unrealizable, the time-of-flight method is not applicable in the field of radiation protection. The inventor unexpectedly found that the change of the net count rate of the characteristic gamma energy peak of different energies produced by the reaction of neutrons and lanthanum bromide crystal materials is consistent with the change trend of the neutron dose rate, and the neutron dose rate and the characteristic gamma The deterministic functional relationship between the net count rates of the energy peaks can be measured by combining the net count rates of one or several neutron characteristic gamma energy peaks and calculating the spectrum to realize the measurement of the neutron dose rate in the radiation field.
为此,根据本发明的第一个方面,本发明提出了一种测量中子剂量率的方法,根据本发明的具体实施例,所述方法利用中子在溴化镧探测器中产生的中子特征γ能峰的净计数率与所述中子在该点造成的中子剂量率之间存在确定性的函数关系,通过测量γ能谱,并利用所述确定性的函数关系,计算并获得中子剂量率。To this end, according to a first aspect of the present invention, the present invention proposes a method for measuring neutron dose rate, according to a specific embodiment of the present invention, the method utilizes neutrons generated in a lanthanum bromide detector There is a deterministic functional relationship between the net count rate of the sub-feature gamma energy peak and the neutron dose rate caused by the neutron at this point, by measuring the gamma energy spectrum, and using the deterministic functional relationship, calculate and Obtain neutron dose rate.
根据本发明提出的测量中子剂量率的方法,实际上是基于发明人发现了,中子在溴化镧探测器中产生的中子特征γ能峰的净计数率与所述中子在该点造成的中子剂量率之间存在确定性的函数关系。进而可以采用基于溴化镧探测器的中子剂量率仪测量一个或几个入射中子产生的特征γ能峰组合,并利用中子剂量率与中子特征γ能峰的净计数率之间确定性的函数关系得到中子剂量率。The method for measuring the neutron dose rate proposed by the present invention is actually based on the fact that the inventors have found that the net count rate of the neutron characteristic gamma energy peak produced by neutrons in the lanthanum bromide detector is related to the neutrons in the lanthanum bromide detector. There is a deterministic functional relationship between the neutron dose rate caused by the point. Furthermore, a neutron dose rate meter based on a lanthanum bromide detector can be used to measure the combination of characteristic gamma energy peaks produced by one or several incident neutrons, and the relationship between the neutron dose rate and the net count rate of neutron characteristic gamma energy peaks can be used. A deterministic functional relationship yields the neutron dose rate.
在本发明的一些实施例中,所述测量中子剂量率的方法包括:In some embodiments of the present invention, the method for measuring neutron dose rate includes:
采用溴化镧探测器对中子进行探测,以便获得特征γ能峰;Use lanthanum bromide detectors to detect neutrons in order to obtain the characteristic gamma energy peak;
基于所述特征γ能峰,计算获得中子剂量率,其中,所述中子剂量率与所述特征γ能峰的净计数率呈确定性的函数关系,函数关系可表示为:Based on the characteristic gamma energy peak, the neutron dose rate is calculated and obtained, wherein the neutron dose rate and the net count rate of the characteristic gamma energy peak are in a deterministic functional relationship, and the functional relationship can be expressed as:
Di=f(Ni)D i =f(N i )
其中,Di为中子剂量率,单位为μSv/h;Ni为入射中子与溴化镧晶体材料发生核反应产生的特征γ能峰的净计数率,单位为cps。Among them, D i is the neutron dose rate, the unit is μSv/h; N i is the net count rate of the characteristic γ energy peak generated by the nuclear reaction between the incident neutron and the lanthanum bromide crystal material, the unit is cps.
在本发明的一些实施例中,所述确定性的函数关系中,所述净计数率的范围为:Ni>0。In some embodiments of the present invention, in the deterministic functional relationship, the range of the net count rate is: N i >0.
在本发明的一些实施例中,所述确定性的函数关系中,所述中子剂量率的测量范围为:Di>0。In some embodiments of the present invention, in the deterministic functional relationship, the measurement range of the neutron dose rate is: D i >0.
在本发明的一些实施例中,所述中子由锎源产生。由此,可以产生不同能量的中子,并与溴化镧晶体发生反应,进而产生不同能量的特征γ能峰,进而能够利用中子剂量率与峰位的净计数率之间的函数关系得到中子剂量率。In some embodiments of the invention, the neutrons are generated by a californium source. As a result, neutrons of different energies can be generated and react with lanthanum bromide crystals to generate characteristic γ energy peaks of different energies, and then the functional relationship between the neutron dose rate and the net count rate of the peak position can be used to obtain neutron dose rate.
在本发明的一些实施例中,所述特征γ能峰包括选自下列至少之一:22.34±5keV、54.64±5keV、83.05±5keV、101.1±5keV、119.2±5keV、166.5±5keV、207.1±5keV、217.5±5keV、243.3±5keV、276.7±5keV、294.9±5keV、307.2±5keV、335±5keV、344±5keV、387.9±5keV、536.9±10keV、606.9±10keV、650.5±5keV、725.1±10keV、766.8±10keV842.7±10keV、872.4±10keV、962.8±10keV、1002±10keV、1043±10keV、1084±10keV、1115±10keV、1268±10keV。由此,可以进一步提高测量中子剂量率的精准度。In some embodiments of the present invention, the characteristic gamma energy peak includes at least one selected from the following: 22.34±5keV, 54.64±5keV, 83.05±5keV, 101.1±5keV, 119.2±5keV, 166.5±5keV, 207.1±5keV , 217.5±5keV, 243.3±5keV, 276.7±5keV, 294.9±5keV, 307.2±5keV, 335±5keV, 344±5keV, 387.9±5keV, 536.9±10keV, 606.9±10keV, 650.5±5keV, 725.1±10keV, 766.8 ±10keV842.7±10keV, 872.4±10keV, 962.8±10keV, 1002±10keV, 1043±10keV, 1084±10keV, 1115±10keV, 1268±10keV. Therefore, the accuracy of measuring the neutron dose rate can be further improved.
在本发明的一些实施例中,所述确定性的函数关系为对数函数关系,所述对数函数关系表示为:In some embodiments of the present invention, the deterministic functional relationship is a logarithmic functional relationship, and the logarithmic functional relationship is expressed as:
Di=alnNi+bD i =alnNi+b
其中,Di为中子剂量率,单位为μSv/h;Ni为入射中子与溴化镧晶体材料发生反应产生的特征γ能峰的净计数率,单位为cps;a,b为常数,且a>0。Among them, D i is the neutron dose rate, the unit is μSv/h; N i is the net count rate of the characteristic gamma energy peak produced by the reaction of incident neutrons with the lanthanum bromide crystal material, the unit is cps; a, b are constants , and a>0.
在本发明的一些实施例中,所述确定性的函数关系为线性拟合函数,所述线性拟合函数表示为:In some embodiments of the present invention, the deterministic functional relationship is a linear fitting function, and the linear fitting function is expressed as:
Di=kNi+cD i =kN i +c
其中,Di为中子剂量率,单位为μSv/h;Ni为入射中子与溴化镧晶体材料发生反应产生的特征γ能峰的净计数率,单位为cps;k,c为常数,且k>0。Among them, D i is the neutron dose rate, the unit is μSv/h; N i is the net count rate of the characteristic gamma energy peak produced by the reaction of incident neutrons with the lanthanum bromide crystal material, the unit is cps; k, c are constants , and k>0.
根据本发明的另一个方面,本发明还提出了一种中子剂量率仪,所述中子剂量率仪具有溴化镧探测器,所述溴化镧探测器适于与入射中子发生反应产生特征γ能峰,并探测得到特征γ全能峰的能谱。According to another aspect of the present invention, the present invention also proposes a neutron dose rate meter having a lanthanum bromide detector adapted to react with incident neutrons The characteristic gamma energy peak is generated, and the energy spectrum of the characteristic gamma full energy peak is detected.
根据本发明提出的中子剂量率仪,通过将溴化镧探测器用于中子剂量率仪,可以使入射中子与溴化镧晶体材料发生反应,产生不同能量的特征γ能峰,并利用溴化镧探测器对产生的特征γ能峰进行探测。由此,采用本发明提出的中子剂量率仪,可以通过测量一个或几个中子特征γ能峰组合,并利用中子剂量率与特征γ能峰的净计数率之间确定性的函数关系,实现辐射场中子剂量率的测量。According to the neutron dose rate meter proposed by the present invention, by using the lanthanum bromide detector in the neutron dose rate meter, the incident neutrons can react with the lanthanum bromide crystal material to produce characteristic gamma energy peaks of different energies, and utilize The lanthanum bromide detector detects the characteristic gamma energy peak generated. Thus, adopting the neutron dose rate meter proposed by the present invention can measure the combination of one or several neutron characteristic gamma energy peaks, and utilize the deterministic function between the neutron dose rate and the net count rate of the characteristic gamma energy peaks relationship, to achieve the measurement of radiation field neutron dose rate.
附图说明Description of drawings
图1是利用本发明一个实施例的中子剂量率仪测量得到的本底谱和测量252Cf源得到的测量谱图。Fig. 1 is a background spectrum measured by a neutron dose rate meter according to an embodiment of the present invention and a measurement spectrum obtained by measuring a 252 Cf source.
图2是利用本发明一个实施例的中子剂量率仪在不同中子剂量率的辐射场中测量得到的测量谱图。Fig. 2 is a measurement spectrum obtained by using a neutron dose rate meter according to an embodiment of the present invention measured in a radiation field with different neutron dose rates.
图3是根据本发明一个实施例的中子剂量率与特征γ能峰的净计数率之间的关系图。Fig. 3 is a graph showing the relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peak according to an embodiment of the present invention.
图4是根据本发明一个实施例的中子剂量率与特征γ能峰的净计数率之间的关系图。Fig. 4 is a graph showing the relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peak according to one embodiment of the present invention.
图5是根据本发明一个实施例的中子剂量率与特征γ能峰的净计数率之间的关系图。FIG. 5 is a graph showing the relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peak according to one embodiment of the present invention.
图6是根据本发明一个实施例的中子剂量率与特征γ能峰的净计数率之间的关系图。Fig. 6 is a graph showing the relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peak according to one embodiment of the present invention.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.
根据本发明的一个方面,本发明提出了一种测量中子剂量率的方法,根据本发明的具体实施例,所述方法利用中子在溴化镧探测器中产生的中子特征γ能峰的净计数率与所述中子在该点造成的中子剂量率之间存在确定性的函数关系,通过测量γ能谱,并利用所述确定性的函数关系,计算并获得中子剂量率。According to one aspect of the present invention, the present invention proposes a method for measuring the neutron dose rate. According to a specific embodiment of the present invention, the method utilizes the neutron characteristic gamma energy peak generated by the neutron in the lanthanum bromide detector There is a deterministic functional relationship between the net count rate of the neutron and the neutron dose rate caused by the neutron at this point, by measuring the gamma energy spectrum, and using the deterministic functional relationship, the neutron dose rate is calculated and obtained .
根据本发明提出的测量中子剂量率的方法,实际上是基于发明人发现了,中子在溴化镧探测器中产生的中子特征γ能峰的净计数率与所述中子在该点造成的中子剂量率之间存在确定性的函数关系。进而可以采用基于溴化镧探测器的中子剂量率仪测量一个或几个入射中子产生的特征γ能峰组合,并利用中子剂量率与中子特征γ能峰的净计数率之间确定性的函数关系得到中子剂量率。The method for measuring the neutron dose rate proposed by the present invention is actually based on the fact that the inventors have found that the net count rate of the neutron characteristic gamma energy peak produced by neutrons in the lanthanum bromide detector is related to the neutrons in the lanthanum bromide detector. There is a deterministic functional relationship between the neutron dose rate caused by the point. Furthermore, a neutron dose rate meter based on a lanthanum bromide detector can be used to measure the combination of characteristic gamma energy peaks produced by one or several incident neutrons, and the relationship between the neutron dose rate and the net count rate of neutron characteristic gamma energy peaks can be used. A deterministic functional relationship yields the neutron dose rate.
根据本发明的具体实施,上述实施例的测量中子剂量率的方法包括:采用溴化镧探测器对中子进行探测,以便获得特征γ能峰;基于所述特征γ能峰,计算获得中子剂量率,其中,所述中子剂量率与所述特征γ能峰的净计数率呈确定性的函数关系,函数关系可表示为:According to the specific implementation of the present invention, the method for measuring the neutron dose rate in the above embodiment includes: using a lanthanum bromide detector to detect neutrons so as to obtain the characteristic gamma energy peak; based on the characteristic gamma energy peak, calculate and obtain the neutron Sub-dose rate, wherein, the neutron dose rate and the net count rate of the characteristic gamma energy peak are in a deterministic functional relationship, and the functional relationship can be expressed as:
Di=f(Ni)D i =f(N i )
其中,Di为中子剂量率,单位为μSv/h;Ni为入射中子与溴化镧晶体材料发生核反应产生的特征γ能峰的净计数率,单位为cps。Among them, D i is the neutron dose rate, the unit is μSv/h; N i is the net count rate of the characteristic γ energy peak generated by the nuclear reaction between the incident neutron and the lanthanum bromide crystal material, the unit is cps.
根据本发明上述实施例的测量中子剂量率的方法,可以采用中子剂量率仪测量入射中子产生的一个或几个特征γ能峰并利用中子剂量率与特征γ能峰的净计数率之间确定性的函数关系得到被测点位的中子剂量率。According to the method for measuring neutron dose rate in the above-mentioned embodiments of the present invention, a neutron dose rate meter can be used to measure one or several characteristic gamma energy peaks produced by incident neutrons and use the net count of neutron dose rate and characteristic gamma energy peaks The deterministic functional relationship between the neutron dose rates at the measured point is obtained.
根据本发明的具体实施例,上述确定性函数关系中的Ni>0,Di>0。由此,该方法适用范围更广泛。According to a specific embodiment of the present invention, N i >0 and D i >0 in the above deterministic functional relationship. Therefore, the method has a wider scope of application.
根据本发明的具体实施例,被测中子由锎源(252Cf)产生。由此,可以利用锎源(252Cf)可产生不同能量的中子,并与溴化镧晶体发生反应,进而产生不同能量的特征γ能峰,进而能够利用中子剂量率与峰位的净计数率之间的函数关系得到中子剂量率。According to a specific embodiment of the present invention, the measured neutrons are generated by a californium source ( 252 Cf). Therefore, the californium source ( 252 Cf ) can be used to generate neutrons with different energies and react with lanthanum bromide crystals to produce characteristic gamma energy peaks with different energies, and then the net difference between neutron dose rate and peak position can be used The functional relationship between the count rates yields the neutron dose rate.
根据本发明的具体实施例,特征γ能峰可以包括但不限定于选自下列之一:22.34±5keV、54.64±5keV、83.05±5keV、101.1±5keV、119.2±5keV、166.5±5keV、207.1±5keV、217.5±5keV、243.3±5keV、262±5keV、276.7±5keV、294.9±5keV、307.2±5keV、335±5keV、344±5keV、387.9±5keV、536.9±10keV、606.9±10keV、650.5±5keV、725.1±10keV、766.8±10keV 842.7±10keV、872.4±10keV、962.8±10keV、1002±10keV、1043±10keV、1084±10keV、1115±10keV、1268±10keV。According to a specific embodiment of the present invention, the characteristic gamma energy peak may include but not limited to one selected from the following: 22.34±5keV, 54.64±5keV, 83.05±5keV, 101.1±5keV, 119.2±5keV, 166.5±5keV, 207.1± 5keV, 217.5±5keV, 243.3±5keV, 262±5keV, 276.7±5keV, 294.9±5keV, 307.2±5keV, 335±5keV, 344±5keV, 387.9±5keV, 536.9±10keV, 606.9±10keV, 650.5±5keV, 725.1±10keV, 766.8±10keV, 842.7±10keV, 872.4±10keV, 962.8±10keV, 1002±10keV, 1043±10keV, 1084±10keV, 1115±10keV, 1268±10keV.
根据本发明的具体实施例,所述确定性的函数关系为对数函数关系,所述对数函数关系表示为:According to a specific embodiment of the present invention, the deterministic functional relationship is a logarithmic functional relationship, and the logarithmic functional relationship is expressed as:
Di=alnNi+bD i =alnNi+b
其中,Di为中子剂量率,单位为μSv/h;Ni为入射中子与溴化镧晶体材料发生反应产生的特征γ能峰的净计数率,单位为cps;a,b为常数,且a>0。由此通过上述函数关系式,根据溴化镧探测器对中子进行探测,获得特征γ能峰的净计数率Ni,进而有效计算出中子剂量率Di。因此,本发明上述实施例的测量中子剂量率的方法可以更加方便快速地测定中子剂量率。Among them, D i is the neutron dose rate, the unit is μSv/h; N i is the net count rate of the characteristic gamma energy peak produced by the reaction of incident neutrons with the lanthanum bromide crystal material, the unit is cps; a, b are constants , and a>0. Therefore, through the above functional relational formula, the net count rate N i of the characteristic gamma energy peak is obtained according to the detection of neutrons by the lanthanum bromide detector, and then the neutron dose rate D i is effectively calculated. Therefore, the method for measuring neutron dose rate in the above embodiments of the present invention can measure neutron dose rate more conveniently and quickly.
根据本发明的具体实施例,所述确定性函数关系,可表示为线性拟合函数。函数的具体形式可表示为:According to a specific embodiment of the present invention, the deterministic functional relationship may be expressed as a linear fitting function. The specific form of the function can be expressed as:
Di=kNi+cD i =kN i +c
其中,Di为中子剂量率,μSv/h;Ni为入射中子与溴化镧晶体材料发生反应产生的特征γ能峰的净计数率,单位为cps;k,c为常数,且k>0。由此通过上述函数关系式,根据溴化镧探测器对中子进行探测,获得特征γ能峰的净计数率Ni,进而有效计算出中子剂量率Di。因此,本发明上述实施例的测量中子剂量率的方法可以更加方便快速地测定中子剂量率。Among them, D i is the neutron dose rate, μSv/h; N i is the net count rate of the characteristic gamma energy peak produced by the reaction of incident neutrons and lanthanum bromide crystal materials, the unit is cps; k, c are constants, and k>0. Therefore, through the above functional relational formula, the net count rate N i of the characteristic gamma energy peak is obtained according to the detection of neutrons by the lanthanum bromide detector, and then the neutron dose rate D i is effectively calculated. Therefore, the method for measuring neutron dose rate in the above embodiments of the present invention can measure neutron dose rate more conveniently and quickly.
根据本发明的一个方面,本发明提出了一种中子剂量率仪,中子剂量率仪具有溴化镧探测器,溴化镧探测器适于与入射中子发生反应产生特征γ能峰,并探测得到特征γ全能峰的能谱。According to one aspect of the present invention, the present invention proposes a neutron dose rate meter, the neutron dose rate meter has a lanthanum bromide detector, and the lanthanum bromide detector is suitable for reacting with incident neutrons to generate a characteristic gamma energy peak, And detect the energy spectrum of the characteristic γ all-energy peak.
根据本发明上述实施例的中子剂量率仪,通过将溴化镧探测器用于中子剂量率仪,可以使入射中子与溴化镧晶体材料发生反应,产生不同能量的特征γ能峰,并利用溴化镧探测器对产生的特征γ能峰进行探测。由此,采用本发明上述实施例的中子剂量率仪,可以通过测量一个或几个中子特征γ能峰的组合,并利用中子剂量率与特征γ能峰的净计数率之间确定性的函数关系,实现辐射场中子剂量率的测量。According to the neutron dose rate meter of the above-mentioned embodiment of the present invention, by using the lanthanum bromide detector in the neutron dose rate meter, incident neutrons can react with the lanthanum bromide crystal material to produce characteristic gamma energy peaks of different energies, The characteristic gamma energy peak generated is detected by a lanthanum bromide detector. Thus, using the neutron dose rate meter of the above-mentioned embodiment of the present invention, the combination of one or several neutron characteristic gamma energy peaks can be measured, and the difference between the neutron dose rate and the net count rate of the characteristic gamma energy peak can be determined The functional relationship of nature can realize the measurement of neutron dose rate in radiation field.
根据本发明的具体实施例,中子剂量率仪的工作原理为:入射中子与溴化镧晶体材料发生反应,产生不同能量的特征γ能峰,特征γ能峰的净计数率与辐射场的中子剂量率之间存在确定性的函数关系,为:According to a specific embodiment of the present invention, the working principle of the neutron dose rate meter is: incident neutrons react with the lanthanum bromide crystal material to produce characteristic gamma energy peaks of different energies, and the net count rate of the characteristic gamma energy peaks is related to the radiation field There is a deterministic functional relationship between neutron dose rates, which is:
Di=f(Ni)D i =f(N i )
其中,Di为中子剂量率,单位为μSv/h;Ni为入射中子与溴化镧晶体材料发生核反应产生的特征γ能峰的净计数率,单位为cps。不同能量的特征γ能峰的净计数率的变化与中子剂量率的变化趋势是一致的,通过测量任何一个或几个中子特征γ能峰的净计数率组合与相应的解谱计算,均可得到被测辐射场的中子剂量率。Among them, D i is the neutron dose rate, the unit is μSv/h; N i is the net count rate of the characteristic γ energy peak generated by the nuclear reaction between the incident neutron and the lanthanum bromide crystal material, the unit is cps. The change of the net count rate of the characteristic gamma energy peaks of different energies is consistent with the change trend of the neutron dose rate. By measuring the net count rate combination of any one or several neutron characteristic gamma energy peaks and corresponding solution spectrum calculation, The neutron dose rate of the measured radiation field can be obtained.
实施例1Example 1
采用中子剂量率仪测量中子剂量率。其中,中子剂量率仪具有溴化镧探测器,溴化镧探测器采用3in×3in溴化镧探测器(LaBr3:Ce)。待测中子源选取锎源(Cf-252源)。The neutron dose rate is measured by a neutron dose rate meter. Among them, the neutron dose rate meter has a lanthanum bromide detector, and the lanthanum bromide detector adopts a 3in×3in lanthanum bromide detector (LaBr 3 :Ce). The californium source (Cf-252 source) was selected as the neutron source to be tested.
252Cf源与溴化镧晶体发生反应产生的特征γ能峰包括但不限定于表1列出的能量值;表2为中子与溴化镧晶体发生反应产生的特征γ能峰的能量、特征γ能峰的净计数率与中子剂量率,特征γ能峰包括但不限定于表2所列的5个能量。The characteristic gamma energy peaks generated by the reaction between 252 Cf source and lanthanum bromide crystal include but not limited to the energy values listed in Table 1; The net count rate and neutron dose rate of the characteristic gamma energy peak, the characteristic gamma energy peak includes but not limited to the five energies listed in Table 2.
采用中子剂量率仪测量得到的本底谱和测量252Cf源得到的测量谱如图1所示;图2为测量不同中子剂量率时中子剂量率仪探测得到的伽马能谱,中子剂量率包括但不限定于图2所列的7种剂量率水平;图3为中子剂量率与特征γ能峰净计数率之间的关系,中子剂量率包括但不限定于图3所述7种剂量率水平,特征γ能峰包括但不限定于图3所列5种能量。图4为按照各个能峰净计数率的最大值进行归一化处理后,中子剂量率与特征γ能峰净计数率之间的关系,中子剂量率包括但不限定于图4所述7种剂量率水平,特征γ能峰包括但不限定于图4所列4种能量。图5为特征γ峰取119.2keV峰时,中子剂量率与特征γ能峰净计数率之间的关系,该函数关系呈对数函数关系,中子剂量率包括但不限定于图5所述7种剂量率水平,特征γ能峰包括但不限定于图5所列能量。图6为特征γ峰取119.2keV峰时,中子剂量率与特征γ能峰净计数率之间的关系,该函数关系呈线性拟合函数关系,中子剂量率包括但不限定于图6所述7种剂量率水平,特征γ能峰包括但不限定于图6所列能量。The background spectrum measured by the neutron dose rate meter and the measured spectrum obtained by measuring the 252 Cf source are shown in Fig. 1; Fig. 2 is the gamma energy spectrum detected by the neutron dose rate meter when measuring different neutron dose rates, The neutron dose rate includes but is not limited to the seven dose rate levels listed in Figure 2; Figure 3 shows the relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peak, and the neutron dose rate includes but is not limited to 3 The 7 dose rate levels mentioned above, the characteristic γ energy peaks include but not limited to the 5 energies listed in Figure 3. Figure 4 shows the relationship between the neutron dose rate and the characteristic gamma energy peak net count rate after normalization processing according to the maximum value of the net count rate of each energy peak. The neutron dose rate includes but is not limited to that described in Figure 4 There are 7 dose rate levels, and the characteristic gamma energy peaks include but are not limited to the 4 energies listed in Figure 4. Figure 5 shows the relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peak when the characteristic gamma peak is at 119.2keV. For the above seven dose rate levels, the characteristic gamma energy peaks include but are not limited to the energies listed in Figure 5. Figure 6 shows the relationship between the neutron dose rate and the net count rate of the characteristic gamma energy peak when the characteristic gamma peak is at 119.2keV. The characteristic gamma energy peaks of the seven dose rate levels include but are not limited to the energies listed in Figure 6 .
表1252Cf源与溴化镧晶体发生反应产生的特征γ能峰Table 1 The characteristic γ-energy peaks produced by the reaction between 252 Cf source and lanthanum bromide crystal
表2中子特征γ能峰的能量、特征γ能峰的净计数率与中子剂量率Table 2 Energy of neutron characteristic gamma energy peak, net count rate of characteristic gamma energy peak and neutron dose rate
根据图3和图4的实测结果可以看出,中子与溴化镧晶体发生反应产生的特征γ能峰的净计数率与中子剂量率之间的确定性函数关系可表示为对数函数。函数的具体形式可表示为:According to the measured results in Figures 3 and 4, it can be seen that the deterministic functional relationship between the net count rate of the characteristic gamma energy peak generated by the reaction of neutrons and lanthanum bromide crystals and the neutron dose rate can be expressed as a logarithmic function . The specific form of the function can be expressed as:
Di=alnNi+bD i =alnNi+b
其中,Di为中子剂量率,单位为μSv/h;Ni为入射中子与溴化镧晶体材料发生反应产生的特征γ能峰的净计数率,单位为cps;a,b为常数,且a>0。例如,图5为特征γ峰取119.2keV峰时,中子剂量率与特征γ能峰净计数率呈对数函数关系。不同能量的特征γ能峰的净计数率的变化与中子剂量率的变化趋势是一致的,即通过测量任何一个或几个中子特征γ能峰的净计数率组合,均可得到被测辐射场的中子剂量率。Among them, D i is the neutron dose rate, the unit is μSv/h; N i is the net count rate of the characteristic gamma energy peak produced by the reaction of incident neutrons with the lanthanum bromide crystal material, the unit is cps; a, b are constants , and a>0. For example, Figure 5 shows that when the characteristic gamma peak is at 119.2keV, the neutron dose rate and the net count rate of the characteristic gamma energy peak have a logarithmic function relationship. The change of the net count rate of the characteristic gamma energy peaks of different energies is consistent with the change trend of the neutron dose rate, that is, by measuring the net count rate combination of any one or several neutron characteristic gamma energy peaks, the measured The neutron dose rate of the radiation field.
根据图3和图4的实测结果可以看出,中子与溴化镧晶体发生反应产生的特征γ能峰的净计数率与中子剂量率之间的确定性函数关系可表示为线性拟合函数。函数的具体形式可表示为:According to the measured results in Figures 3 and 4, it can be seen that the deterministic functional relationship between the net count rate of the characteristic gamma energy peak generated by the reaction of neutrons and lanthanum bromide crystals and the neutron dose rate can be expressed as a linear fitting function. The specific form of the function can be expressed as:
Di=kNi+cD i =kN i +c
其中,Di为中子剂量率,μSv/h;Ni为入射中子与溴化镧晶体材料发生反应产生的特征γ能峰的净计数率,单位为cps;k,c为常数,且k>0。例如,图6为特征γ峰取119.2keV峰时,中子剂量率与特征γ能峰净计数率呈线性拟合函数关系。不同能量的特征γ能峰的净计数率的变化与中子剂量率的变化趋势是一致的,即通过测量任何一个或几个中子特征γ能峰的净计数率组合,均可得到被测辐射场的中子剂量率。Among them, D i is the neutron dose rate, μSv/h; N i is the net count rate of the characteristic gamma energy peak produced by the reaction of incident neutrons and lanthanum bromide crystal materials, the unit is cps; k, c are constants, and k>0. For example, Figure 6 shows that when the characteristic gamma peak is at 119.2keV, the neutron dose rate and the net count rate of the characteristic gamma energy peak have a linear fitting function relationship. The change of the net count rate of the characteristic gamma energy peaks of different energies is consistent with the change trend of the neutron dose rate, that is, by measuring the net count rate combination of any one or several neutron characteristic gamma energy peaks, the measured The neutron dose rate of the radiation field.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions with reference to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711269585.7A CN108051847B (en) | 2017-12-05 | 2017-12-05 | Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate |
PCT/CN2018/116973 WO2019109812A1 (en) | 2017-12-05 | 2018-11-22 | Method for measuring neutron dose rate by means of lanthanum bromide detector, and neutron dose rate meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711269585.7A CN108051847B (en) | 2017-12-05 | 2017-12-05 | Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108051847A CN108051847A (en) | 2018-05-18 |
CN108051847B true CN108051847B (en) | 2019-10-29 |
Family
ID=62122036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711269585.7A Active CN108051847B (en) | 2017-12-05 | 2017-12-05 | Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108051847B (en) |
WO (1) | WO2019109812A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108051847B (en) * | 2017-12-05 | 2019-10-29 | 清华大学 | Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate |
CN109669207B (en) * | 2019-02-01 | 2020-12-01 | 清华大学 | Method of Measuring Neutron Spectrum of Neutron Radiation Field Using Lanthanum Bromide Detector |
CN115074836A (en) * | 2022-07-08 | 2022-09-20 | 吉林大学 | A kind of method of lanthanum bromide crystal neutron doping |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008091135A1 (en) * | 2007-01-25 | 2008-07-31 | Elpani Co., Ltd. | Conductive polymer composition for radiographic imaging |
CN101796430A (en) * | 2008-06-24 | 2010-08-04 | 富士电机系统株式会社 | neutron dosimeter |
CN201662623U (en) * | 2010-01-22 | 2010-12-01 | 上海新漫传感技术研究发展有限公司 | Portable neutron-gammarayspectrometer |
CN102162857A (en) * | 2011-01-11 | 2011-08-24 | 长沙开元仪器股份有限公司 | Method and system for detecting neutron yield |
CN102819034A (en) * | 2012-09-13 | 2012-12-12 | 成都理工大学 | Energy disperse spectroscopy |
CN104597472A (en) * | 2013-10-30 | 2015-05-06 | 中国辐射防护研究院 | Method for measuring the wound radionuclide contamination depth, radionuclide variety and activity |
CN204740350U (en) * | 2015-01-26 | 2015-11-04 | 清华大学 | Multi-sphere neutron spectrometer and analyzer for multi-sphere neutron spectrometer |
CN105891871A (en) * | 2016-04-18 | 2016-08-24 | 中国人民解放军63973部队 | Lanthanum bromide energy spectrum measuring device |
CN107422359A (en) * | 2017-05-16 | 2017-12-01 | 中国工程物理研究院材料研究所 | A kind of measuring method of the neutron gamma dosage based on liquid scintillation bulk detector |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7999220B2 (en) * | 2008-05-30 | 2011-08-16 | Precision Energy Services, Inc. | Borehole measurements using a fast and high energy resolution gamma ray detector assembly |
US8399849B1 (en) * | 2009-08-08 | 2013-03-19 | Redpine Signals, Inc | Fast neutron detector |
CN106975162B (en) * | 2016-01-15 | 2024-02-20 | 南京中硼联康医疗科技有限公司 | Neutron capture therapy system |
CN106199678B (en) * | 2016-08-08 | 2019-02-01 | 南京航空航天大学 | A kind of measuring device and its measurement method for fast neutron flux |
CN106873019B (en) * | 2017-01-06 | 2019-04-05 | 中国科学院高能物理研究所 | A kind of radiation dose measurement method |
CN106990429B (en) * | 2017-05-19 | 2023-09-19 | 四川轻化工大学 | A gamma and neutron double-ray energy spectrum measurement device and measurement method |
CN108051847B (en) * | 2017-12-05 | 2019-10-29 | 清华大学 | Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate |
-
2017
- 2017-12-05 CN CN201711269585.7A patent/CN108051847B/en active Active
-
2018
- 2018-11-22 WO PCT/CN2018/116973 patent/WO2019109812A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008091135A1 (en) * | 2007-01-25 | 2008-07-31 | Elpani Co., Ltd. | Conductive polymer composition for radiographic imaging |
CN101796430A (en) * | 2008-06-24 | 2010-08-04 | 富士电机系统株式会社 | neutron dosimeter |
CN201662623U (en) * | 2010-01-22 | 2010-12-01 | 上海新漫传感技术研究发展有限公司 | Portable neutron-gammarayspectrometer |
CN102162857A (en) * | 2011-01-11 | 2011-08-24 | 长沙开元仪器股份有限公司 | Method and system for detecting neutron yield |
CN102819034A (en) * | 2012-09-13 | 2012-12-12 | 成都理工大学 | Energy disperse spectroscopy |
CN104597472A (en) * | 2013-10-30 | 2015-05-06 | 中国辐射防护研究院 | Method for measuring the wound radionuclide contamination depth, radionuclide variety and activity |
CN204740350U (en) * | 2015-01-26 | 2015-11-04 | 清华大学 | Multi-sphere neutron spectrometer and analyzer for multi-sphere neutron spectrometer |
CN105891871A (en) * | 2016-04-18 | 2016-08-24 | 中国人民解放军63973部队 | Lanthanum bromide energy spectrum measuring device |
CN107422359A (en) * | 2017-05-16 | 2017-12-01 | 中国工程物理研究院材料研究所 | A kind of measuring method of the neutron gamma dosage based on liquid scintillation bulk detector |
Non-Patent Citations (2)
Title |
---|
室内环境中子能谱及剂量率的多球谱仪测量;曾志;《清华大学学报(自然科学版)》;20151231;1332-1335 * |
溴化镧探测器在中子活化多元素分析仪性能改进中的应用;张伟;《现代矿业》;20131231;160-162 * |
Also Published As
Publication number | Publication date |
---|---|
CN108051847A (en) | 2018-05-18 |
WO2019109812A1 (en) | 2019-06-13 |
WO2019109812A9 (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2501040C2 (en) | Apparatus and method for detecting neutrons using neutron-absorbing calorimetric gamma detectors | |
CN108121005B (en) | Utilize the method and neutron dose rate instrument of bromination cerium detector measurement neutron dose rate | |
CN102928867B (en) | Compensation type neutron dose instrument | |
US9939538B2 (en) | Accurate light-weight broad-energy neutron remmeter and use thereof | |
CN108051847B (en) | Utilize the method and neutron dose rate instrument of lanthanum bromide detector measurement neutron dose rate | |
CN106873024A (en) | A kind of highly sensitive environmental neutron energy spectrum analysis system for small sized pieces heap | |
Fedorov et al. | Sensitivity of GAGG based scintillation neutron detector with SiPM readout | |
Madden et al. | An imaging neutron/gamma-ray spectrometer | |
Pozzi et al. | Comparative neutron detection efficiency in He-3 proportional counters and liquid scintillators | |
JP5028690B2 (en) | Off-angle neutron integral flux measurement and calculation apparatus and method | |
Khabaz et al. | Development of a Bonner sphere spectrometer with emphasis on decreasing the contribution of scattering by using a new designed shadow cone | |
JP6038575B2 (en) | Nuclear fuel burnup evaluation apparatus, method and program | |
CN203037861U (en) | Compensatory neutron dosimeter | |
Slaughter et al. | Performance of large neutron detectors containing Lithium-Gadolinium-Borate scintillator | |
Ryzhikov et al. | Advanced multilayer composite heavy-oxide scintillator detectors for high-efficiency fast neutron detection | |
RU2663683C1 (en) | Method for registration of neutrons and device for its implementation | |
Liang et al. | Characterization of thermal neutron distribution of an Am–Be neutron source setup by CdZnTe detector | |
Goddard et al. | Novel low-cost neutron and gamma radiation detector | |
Khabaz | Study of a new multi-sphere spectrometer based on water moderator with a high efficiency 6 LiI (Eu) detector | |
Wang et al. | A study of beryllium moderator thickness for a fission chamber with fast neutron measurements | |
Mitchell et al. | Neutron counting and gamma spectroscopy with PVT detectors. | |
Heimbach | NIST calibration of a neutron spectrometer ROSPEC | |
Hankins | Monitoring intermediate energy neutrons | |
Ryzhikov et al. | The highly efficient gamma-neutron detector for control of fissionable radioactive materials | |
RU214394U1 (en) | NEUTRON DETECTION DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |