CN108039461A - A kind of silicium cathode material of coated and preparation method thereof - Google Patents
A kind of silicium cathode material of coated and preparation method thereof Download PDFInfo
- Publication number
- CN108039461A CN108039461A CN201711170946.2A CN201711170946A CN108039461A CN 108039461 A CN108039461 A CN 108039461A CN 201711170946 A CN201711170946 A CN 201711170946A CN 108039461 A CN108039461 A CN 108039461A
- Authority
- CN
- China
- Prior art keywords
- silicon
- pmma
- solution
- silicon particles
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000010406 cathode material Substances 0.000 title abstract 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 34
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 34
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 34
- 239000010703 silicon Substances 0.000 claims abstract description 34
- 239000011787 zinc oxide Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000011856 silicon-based particle Substances 0.000 claims description 56
- 239000000243 solution Substances 0.000 claims description 44
- 239000010408 film Substances 0.000 claims description 37
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 239000007773 negative electrode material Substances 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 18
- 229910001416 lithium ion Inorganic materials 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- 239000007822 coupling agent Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 10
- 239000005543 nano-size silicon particle Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 239000012300 argon atmosphere Substances 0.000 claims description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000003431 cross linking reagent Substances 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000003995 emulsifying agent Substances 0.000 claims description 5
- 239000003999 initiator Substances 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000872 buffer Substances 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000004246 zinc acetate Substances 0.000 claims description 4
- RSCURYUCAQYJEJ-UHFFFAOYSA-L C([O-])([O-])=O.[Na+].C(CCCCCCCCCCC)C1=CC=CC=C1.[Na+] Chemical compound C([O-])([O-])=O.[Na+].C(CCCCCCCCCCC)C1=CC=CC=C1.[Na+] RSCURYUCAQYJEJ-UHFFFAOYSA-L 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 239000006172 buffering agent Substances 0.000 claims description 2
- 239000002612 dispersion medium Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- -1 shrapnel Substances 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052744 lithium Inorganic materials 0.000 abstract description 5
- 230000007423 decrease Effects 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229960001296 zinc oxide Drugs 0.000 abstract 2
- 238000010410 dusting Methods 0.000 abstract 1
- 239000002210 silicon-based material Substances 0.000 description 9
- 238000001291 vacuum drying Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 5
- 239000007784 solid electrolyte Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229940063656 aluminum chloride Drugs 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical group CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 1
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- ZAYITQDIKSBHDD-UHFFFAOYSA-N benzene methane Chemical compound C.C1=CC=CC=C1.C1=CC=CC=C1 ZAYITQDIKSBHDD-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及电化学技术领域,具体涉及锂离子电池领域,特别涉及一种作为锂电池负极材料的包裹型的硅材料制备方法。The invention relates to the field of electrochemical technology, in particular to the field of lithium ion batteries, in particular to a method for preparing a packaged silicon material used as a lithium battery negative electrode material.
背景技术Background technique
在当今追求节能,环保的潮流中,清洁的,可再生的能源的开发和利用显得尤为重要。其中,具有工作电压高、比容量大、能量密度高和循环寿命长等优点的锂离子电池受到了广泛的关注。目前,锂离子电池被应用在电动交通工具、静电储存和可携带电子通讯设备等领域。随着锂离子电池的性能不断提高,人们也相信锂离子电池将在未来人类生活中扮演不可或缺的角色。因此,对锂离子电池的性能有决定性作用的电极材料被大力研发。In today's pursuit of energy saving and environmental protection, the development and utilization of clean and renewable energy is particularly important. Among them, lithium-ion batteries, which have the advantages of high operating voltage, large specific capacity, high energy density, and long cycle life, have received extensive attention. At present, lithium-ion batteries are used in electric vehicles, electrostatic storage and portable electronic communication equipment and other fields. With the continuous improvement of the performance of lithium-ion batteries, it is also believed that lithium-ion batteries will play an indispensable role in human life in the future. Therefore, electrode materials that play a decisive role in the performance of lithium-ion batteries have been vigorously developed.
硅基材料具有目前世界上最大的理论比容量4200mAh/g,是商业石墨负极的10倍。另外,硅是地球上第二大元素,储量丰沛,对环境没有污染。因此,硅基材料被认为是最有发展潜力的锂离子电池负极材料。Silicon-based materials have the world's largest theoretical specific capacity of 4200mAh/g, which is 10 times that of commercial graphite anodes. In addition, silicon is the second largest element on the earth, with abundant reserves and no pollution to the environment. Therefore, silicon-based materials are considered to be the most promising anode materials for lithium-ion batteries.
但是,作为锂离子电池的负极材料,硅基材料有两个很严重的问题。在锂离子电池持续的充放电过程中,硅的体积会发生剧烈膨胀,导致结构破坏,造成硅粉化。此外,电解液会在硅表面还原形成一层固体电解质膜。硅体积的不稳定性也会导致固体电解质膜破损,在多次的充放电循环后,硅表面的膜变得越来越厚,这不仅使得电极的导电性减弱,也使得锂离子在负极材料中的传输效率降低。However, as an anode material for lithium-ion batteries, silicon-based materials have two serious problems. During the continuous charge and discharge process of lithium-ion batteries, the volume of silicon will expand violently, resulting in structural damage and silicon pulverization. In addition, the electrolyte is reduced to form a solid electrolyte film on the silicon surface. The instability of the silicon volume can also lead to the damage of the solid electrolyte membrane. After many charge-discharge cycles, the film on the surface of the silicon becomes thicker and thicker, which not only weakens the conductivity of the electrode, but also makes lithium ions in the negative electrode material The transfer efficiency in is reduced.
近年来,人们都着重研究和改善硅负极材料的性能。首先,人们从改变材料结构方面来改善硅基材料的性能。硅基材料的结构实现了从薄膜到纳米线或纳米颗粒的转变。在纳米线或者纳米颗粒中自然存在的空间缓和了锂离子嵌入造成的体积膨胀。除了硅基材料本身结构上的改变,硅基材料和其他材料的复合也很大程度上提高了负极材料的循环寿命。比如,碳和硅基材料可以形成核壳结构。碳壳和硅颗粒之间预留的空间起到了体积膨胀时的缓冲作用。碳壳也对其有一定的抑制作用。In recent years, people have focused on researching and improving the performance of silicon anode materials. First, people improve the performance of silicon-based materials by changing the material structure. The structure of silicon-based materials enables the transition from thin films to nanowires or nanoparticles. The naturally occurring spaces in nanowires or nanoparticles moderate the volume expansion caused by lithium ion intercalation. In addition to the change in the structure of the silicon-based material itself, the combination of the silicon-based material and other materials also greatly improves the cycle life of the negative electrode material. For example, carbon and silicon-based materials can form core-shell structures. The space reserved between the carbon shell and the silicon particles acts as a buffer against volume expansion. The carbon shell also has a certain inhibitory effect on it.
发明内容Contents of the invention
本发明所要解决的技术问题是锂离子电池的硅基负极材料容易发生粉化导致电池的循环性能不稳定。The technical problem to be solved by the present invention is that the silicon-based negative electrode material of the lithium-ion battery is prone to pulverization, which leads to unstable cycle performance of the battery.
本发明第一方面提供一种包裹型的硅负极材料的制备方法,包括如下步骤:The first aspect of the present invention provides a method for preparing a packaged silicon negative electrode material, comprising the following steps:
A.用偶联剂覆盖在硅颗粒表面得到偶联剂修饰过表面的硅颗粒;A. Cover the surface of the silicon particles with a coupling agent to obtain silicon particles with a surface modified by the coupling agent;
B.然后加入PMMA单体、乳化剂、缓冲剂、引发剂、交联剂和分散媒介进行反应,在硅颗粒表面形成PMMA膜,得到PMMA包裹的硅颗粒;B. then add PMMA monomer, emulsifier, buffering agent, initiator, crosslinking agent and dispersion medium to react, form PMMA film on silicon particle surface, obtain the silicon particle that PMMA wraps;
C.将PMMA包裹的硅颗粒浸润在含有锌源和铝源的反应溶液中,并搅拌,反应生成了一层氧化铝掺杂氧化锌薄膜覆盖在PMMA膜外表面;C. soak the silicon particles wrapped by PMMA in the reaction solution containing zinc source and aluminum source, and stir, and the reaction generates a layer of aluminum oxide-doped zinc oxide film covering the outer surface of PMMA film;
D.在氩气氛围中高温去除PMMA,最后得到了锂离子电池的硅负极材料,该硅负极材料以硅颗粒为核心,以氧化铝掺杂氧化锌膜为壳,在硅颗粒与外壳之间有一定的空间。D. PMMA is removed at high temperature in an argon atmosphere, and finally the silicon negative electrode material for lithium-ion batteries is obtained. The silicon negative electrode material has silicon particles as the core, aluminum oxide doped zinc oxide film as the shell, and is between the silicon particles and the shell. There is a certain amount of space.
本发明的技术方案中,步骤A的具体方法如下:In the technical scheme of the present invention, the concrete method of step A is as follows:
A-1.将硅纳米颗粒与适量乙醇混合,用磁力搅拌机搅拌,A-1. Mix the silicon nanoparticles with an appropriate amount of ethanol, stir with a magnetic stirrer,
A-2.将偶联剂、去离子水、乙醇混合,超声混匀,A-2. Mix the coupling agent, deionized water, and ethanol, and ultrasonically mix,
A-3.将步骤A-2的混合溶液慢慢滴入步骤A-1的硅纳米颗粒溶液中,并搅拌直到混合均匀,得到含有偶联剂修饰过表面的硅颗粒的溶液。A-3. Slowly drop the mixed solution in step A-2 into the silicon nanoparticle solution in step A-1, and stir until uniformly mixed to obtain a solution containing silicon particles whose surface has been modified by a coupling agent.
在上述步骤A的方法中,偶联剂为3-(异丁烯酰氧)丙基三甲氧基硅烷(MPS),硅纳米颗粒的粒径为100nm—5um。In the method of the above step A, the coupling agent is 3-(methacryloyloxy)propyltrimethoxysilane (MPS), and the particle size of the silicon nanoparticles is 100nm-5um.
本发明的技术方案中,所述的在硅颗粒外包裹的PMMA膜的厚度为100-500nm。In the technical solution of the present invention, the thickness of the PMMA film wrapped outside the silicon particles is 100-500nm.
本发明的技术方案中,步骤B的具体方法如下:In the technical scheme of the present invention, the concrete method of step B is as follows:
B-1.将偶联剂修饰过表面的硅颗粒溶液离心,然后酒精超声清洗再离心,重复几次,最后真空干燥,B-1. Centrifuge the silicon particle solution with the surface modified by the coupling agent, then ultrasonically clean with alcohol and then centrifuge, repeat several times, and finally dry in vacuum.
B-2.将真空干燥过后的硅颗粒和去离子水混合后放入反应容器中,搅拌均匀;B-2. Put the vacuum-dried silicon particles and deionized water into the reaction vessel after mixing, and stir evenly;
B-3.然后加入PMMA单体、乳化剂、缓冲剂、引发剂、交联剂,并在氮气氛围中,在50-90℃水浴环境下,磁力搅拌一段时间,最后得到含有表面覆盖着PMMA薄膜的硅颗粒的溶液。B-3. Then add PMMA monomer, emulsifier, buffer, initiator, cross-linking agent, and in a nitrogen atmosphere, in a water bath environment of 50-90 ° C, magnetically stir for a period of time, and finally get a mixture containing PMMA on the surface Thin films of silicon particles in solution.
在上述步骤B-3的方法中,加入甲基丙烯酸甲酯(MMA)、十二烷基苯碳酸钠、碳酸氢钠、过硫酸钾、三氨基三苯甲烷(BVA)进行反应。In the method of the above-mentioned step B-3, methyl methacrylate (MMA), sodium dodecylbenzene carbonate, sodium bicarbonate, potassium persulfate, and triaminotriphenylmethane (BVA) were added for reaction.
本发明的技术方案中,步骤C的具体方法如下:In the technical scheme of the present invention, the concrete method of step C is as follows:
C-1.将含有表面覆盖着PMMA薄膜的硅颗粒的溶液进行离心,然后去离子水超声清洗再离心,重复几次,最后真空干燥;C-1. The solution containing the silicon particles covered with PMMA film is centrifuged, then ultrasonically cleaned with deionized water and then centrifuged, repeated several times, and finally vacuum-dried;
C-2.将干燥后的硅颗粒放入去离子水中,在50-90℃水浴环境下,磁力搅拌,并调节溶液pH值为8-11;C-2. Put the dried silicon particles into deionized water, stir magnetically in a water bath environment at 50-90°C, and adjust the pH value of the solution to 8-11;
C-3.然后,将乙酸锌和氯化铝加入溶液中,并用氢氧化钠溶液调节溶液pH值为8-11,在50-90℃水浴环境下,磁力搅拌一段时间;然后将溶液离心,再用去离子水超声清洗再离心,重复几次,最后真空干燥;C-3. Then, add zinc acetate and aluminum chloride to the solution, and adjust the pH value of the solution to 8-11 with sodium hydroxide solution, and stir it magnetically for a period of time in a water bath environment at 50-90°C; then centrifuge the solution, Ultrasonic cleaning with deionized water and centrifugation, repeated several times, and finally vacuum drying;
C-4.将前述的C-3得到固体颗粒,在氩气的氛围中,300℃-400℃退火去除PMMA,最后得到用氧化铝掺杂氧化锌膜包裹硅颗粒的结构。C-4. The solid particles obtained in the above C-3 are annealed in an argon atmosphere at 300°C-400°C to remove PMMA, and finally a structure in which silicon particles are wrapped with aluminum oxide-doped zinc oxide film is obtained.
本发明的技术方案中,在步骤C-2和C-3中,调节溶液的pH值为8.5。In the technical solution of the present invention, in steps C-2 and C-3, the pH value of the solution is adjusted to 8.5.
本发明的技术方案中,硅颗粒的粒径100nm—5um的硅纳米颗粒。In the technical solution of the present invention, the silicon nanoparticles are silicon nanoparticles with a particle diameter of 100nm-5um.
本发明的第二方面提供了一种可用于锂离子电池的循环性能良好和比容量大的硅负极材料。一种包裹型的硅负极材料,该硅负极材料以硅颗粒为核心,以氧化铝掺杂氧化锌膜为壳,在硅颗粒与外壳之间有一定的空间。The second aspect of the present invention provides a silicon negative electrode material with good cycle performance and large specific capacity that can be used in lithium-ion batteries. A packaged silicon negative electrode material, the silicon negative electrode material uses silicon particles as the core, aluminum oxide doped zinc oxide film as the shell, and there is a certain space between the silicon particles and the shell.
本发明的技术方案中,所述的硅颗粒直径为100nm—5um。In the technical solution of the present invention, the diameter of the silicon particles is 100nm-5um.
本发明的技术方案中,所述的氧化铝掺杂氧化锌薄膜的厚度为100—500nm,氧化铝掺杂氧化锌薄膜的掺杂浓度为2—10%。In the technical solution of the present invention, the thickness of the aluminum oxide-doped zinc oxide film is 100-500 nm, and the doping concentration of the aluminum oxide-doped zinc oxide film is 2-10%.
本发明第三方面提供一种锂离子电池,其包括:电池正负极壳体,隔膜,电解液,弹片,钢片,正负极集流器,正负极材料,所述负极材料为前述的包裹型的硅负极材料。The third aspect of the present invention provides a lithium-ion battery, which includes: battery positive and negative electrode housings, diaphragms, electrolyte, shrapnel, steel sheets, positive and negative current collectors, positive and negative electrode materials, and the negative electrode materials are the aforementioned Wrapped silicon anode material.
本发明制备得到的锂离子电池的硅负极材料,该硅负极材料以硅颗粒为核心,以氧化铝掺杂氧化锌膜为壳,在硅颗粒与外壳之间有一定的空间。此空间为了适应硅颗粒在嵌锂后的体积膨胀,避免了粉化及导电性的衰退,固态电解质膜不稳定等问题。The silicon negative electrode material of the lithium ion battery prepared by the present invention has a silicon particle as a core, an aluminum oxide-doped zinc oxide film as a shell, and a certain space between the silicon particle and the shell. In order to adapt to the volume expansion of silicon particles after lithium intercalation, this space avoids problems such as pulverization, conductivity decline, and solid electrolyte membrane instability.
附图说明Description of drawings
附图是用来提供对本发明的进一步理解,并且成为说明书的一部分,与本发明的实施例共同解释本发明,并不对本发明构成限制。在附图中,The accompanying drawings are used to provide a further understanding of the present invention, and become a part of the description, explain the present invention together with the embodiments of the present invention, and do not limit the present invention. In the attached picture,
图1是本发明包裹型的硅负极材料制备流程图之一。图中,1为硅颗粒、2为PMMA、3为氧化锌掺杂氧化铝薄膜。Fig. 1 is one of the flow charts for preparing the wrapped silicon negative electrode material of the present invention. In the figure, 1 is a silicon particle, 2 is PMMA, and 3 is a zinc oxide-doped aluminum oxide film.
具体实施方式Detailed ways
以下结合附图描述本发明具体实施方式。The specific embodiments of the present invention will be described below in conjunction with the accompanying drawings.
参照图1所示,一种包裹型的硅负极材料,包括从内而外依次为硅颗粒1,PMMA 2,氧化锌掺杂氧化铝薄膜3。本发明所述的硅颗粒直径为100nm—5um,所述的氧化铝掺杂氧化锌薄膜的厚度为100—500nm,氧化铝掺杂氧化锌薄膜的掺杂浓度为2—10%。先用PMMA薄膜包裹硅颗粒,再将氧化锌掺杂氧化铝薄膜沉积在PMMA表面,最后在氩气氛围中,高温去除PMMA使得在硅颗粒和氧化锌掺杂氧化铝薄膜之间留有一定的空间。Referring to FIG. 1 , a packaged silicon negative electrode material includes silicon particles 1 , PMMA 2 , and zinc oxide-doped aluminum oxide film 3 from the inside to the outside. The silicon particle diameter of the invention is 100nm-5um, the thickness of the aluminum oxide-doped zinc oxide film is 100-500nm, and the doping concentration of the aluminum oxide-doped zinc oxide film is 2-10%. First wrap the silicon particles with a PMMA film, then deposit a zinc oxide-doped aluminum oxide film on the PMMA surface, and finally remove the PMMA at high temperature in an argon atmosphere to leave a certain gap between the silicon particles and the zinc oxide-doped aluminum oxide film. space.
本发明还提供了该负极材料的制备方法,具体步骤包括:The present invention also provides a preparation method of the negative electrode material, the specific steps comprising:
(1)将0.1-2g直径为100nm—5um的硅纳米颗粒与100-500mL乙醇混合,用磁力搅拌机搅拌1-30分钟。(1) Mix 0.1-2g of silicon nanoparticles with a diameter of 100nm-5um and 100-500mL of ethanol, and stir with a magnetic stirrer for 1-30 minutes.
(2)将0.001-0.5g偶联剂,1-10g去离子水,1-20g乙醇混合,继而超声1-30分钟。(2) Mix 0.001-0.5g coupling agent, 1-10g deionized water, and 1-20g ethanol, and then sonicate for 1-30 minutes.
(3)将步骤(2)得到的混合溶液慢慢滴入步骤1)得到的硅颗粒溶液,并在1-100℃温度下磁力搅拌1-24小时,最后得到用偶联剂修饰过表面的硅颗粒。(3) Slowly drop the mixed solution obtained in step (2) into the silicon particle solution obtained in step 1), and magnetically stir for 1-24 hours at a temperature of 1-100° C., and finally obtain the surface modified with a coupling agent. silicon particles.
(4)将步骤(3)得到的溶液进行离心,再用乙醇超声清洗,然后再离心。重复此步骤1-3次。(4) Centrifuge the solution obtained in step (3), then ultrasonically clean it with ethanol, and then centrifuge again. Repeat this step 1-3 times.
(5)将步骤(4)离心得到的表面修饰过的硅颗粒,放入真空干燥箱,在1-100℃的环境下,真空干燥1-24小时。(5) Put the surface-modified silicon particles obtained by centrifuging in step (4) into a vacuum drying oven, and vacuum-dry for 1-24 hours at an environment of 1-100° C.
(6)将步骤(5)中真空干燥过后的硅颗粒与1-500mL去离子水混合后放入一个三颈烧瓶,用磁力搅拌机搅拌1-30分钟。(6) Mix the vacuum-dried silicon particles in step (5) with 1-500 mL of deionized water, put them into a three-necked flask, and stir with a magnetic stirrer for 1-30 minutes.
(7)将0.1-10mL PMMA单体、0.1-1g乳化剂、0.1-1g缓冲剂、0.1-1g引发剂、0.1-1g交联剂倒入三颈烧瓶,并在氮气氛围中,在1-100℃温度下磁力搅拌1-24小时,最后得到表面覆盖着PMMA薄膜的硅颗粒。(7) Pour 0.1-10mL PMMA monomer, 0.1-1g emulsifier, 0.1-1g buffer, 0.1-1g initiator, 0.1-1g cross-linking agent into a three-necked flask, and in nitrogen atmosphere, in 1- Stir with magnetic force at 100°C for 1-24 hours, and finally obtain silicon particles covered with a PMMA film.
(8)将步骤(7)得到的溶液离心,再用去离子水超声清洗,然后再离心。重复此步骤1-3次。(8) Centrifuge the solution obtained in step (7), then ultrasonically clean it with deionized water, and then centrifuge again. Repeat this step 1-3 times.
(9)将步骤(8)得到的固体放入真空干燥箱,在1-100℃的环境下,真空干燥1-24小时。(9) Put the solid obtained in step (8) into a vacuum drying oven, and dry it under vacuum for 1-24 hours under the environment of 1-100°C.
(10)将步骤(9)中的干燥后的固体放入50-500mL去离子水中,在1-100℃水浴环境下,磁力搅拌1-5小时,并用氨水调节溶液的pH值为8-11,然后,将0.2-5g的乙酸锌和0.2-5g的氯化铝加入溶液中,并用氢氧化钠溶液调节溶液的pH值为8-11,保持磁力搅拌1-24小时。(10) Put the dried solid in step (9) into 50-500mL deionized water, stir magnetically for 1-5 hours in a water bath environment at 1-100°C, and adjust the pH value of the solution to 8-11 with ammonia water , and then, 0.2-5g of zinc acetate and 0.2-5g of aluminum chloride are added to the solution, and the pH of the solution is adjusted to 8-11 with sodium hydroxide solution, and magnetic stirring is maintained for 1-24 hours.
(11)步骤(10)得到的溶液离心,再用乙醇超声,然后再离心。重复此步骤1-3次。(11) The solution obtained in step (10) is centrifuged, then ultrasonicated with ethanol, and then centrifuged again. Repeat this step 1-3 times.
(12)将步骤(11)得到的固体放入真空干燥箱,在1-100℃的环境下,真空干燥1-24。(12) Put the solid obtained in step (11) into a vacuum drying oven, and dry it under vacuum for 1-24 hours under the environment of 1-100°C.
(13)将步骤(12)中得到的固体颗粒,在氩气的氛围中,350℃退火去除PMMA。最后得到用氧化铝掺杂氧化锌膜包裹硅颗粒的结构。(13) annealing the solid particles obtained in step (12) at 350° C. in an argon atmosphere to remove PMMA. Finally, a structure in which silicon particles are wrapped with aluminum oxide-doped zinc oxide films is obtained.
(14)将步骤(13)中得到的物质与粘接剂、导电剂混合溶于分散剂中制成浆料,活性物质的质量在整个浆料中所占比例为60-90%。(14) Mix and dissolve the material obtained in step (13) with a binder and a conductive agent in a dispersant to make a slurry, and the mass of the active material accounts for 60-90% of the entire slurry.
(15)用涂布机将步骤(14)制得的浆料在铜箔上涂膜,并真空干燥1-24小时,负极膜的厚度为10-1000um。(15) Coating the slurry prepared in step (14) on the copper foil with a coating machine, and drying in vacuum for 1-24 hours, the thickness of the negative electrode film is 10-1000um.
(16)用直径为13-18um的冲子将负极膜冲成极片,并将每个极片都称重。(16) Use a punch with a diameter of 13-18um to punch the negative electrode film into pole pieces, and weigh each pole piece.
(17)将电池按照正极壳、极片、隔膜、锂片、钢片、弹片和负极壳的顺序组装并压片。在组装过程中,加入1-10滴电解液。(17) Assemble and press the battery according to the sequence of positive electrode case, pole piece, separator, lithium sheet, steel sheet, shrapnel and negative electrode case. During assembly, add 1-10 drops of electrolyte.
本发明的方法改善了硅负极材料体积膨胀,固态电解质的不稳定问题,从而很好的提高了电池的充放电效率以及电池的循环性能。The method of the present invention improves the volume expansion of the silicon negative electrode material and the instability of the solid electrolyte, thereby well improving the charging and discharging efficiency of the battery and the cycle performance of the battery.
实施例Example
(1)将0.4g的硅纳米颗粒与200mL乙醇混合,用磁力搅拌机搅拌15分钟。(1) Mix 0.4 g of silicon nanoparticles with 200 mL of ethanol, and stir for 15 minutes with a magnetic stirrer.
(2)将0.35g偶联剂,7g去离子水,13g乙醇混合,继而超声10分钟。(2) Mix 0.35g of coupling agent, 7g of deionized water, and 13g of ethanol, and then sonicate for 10 minutes.
(3)将步骤(2)得到的混合溶液慢慢滴入步骤1)得到的硅颗粒溶液,并在80℃温度下磁力搅拌12小时。最后得到用偶联剂修饰过表面的硅颗粒。(3) Slowly drop the mixed solution obtained in step (2) into the silicon particle solution obtained in step 1), and magnetically stir at 80° C. for 12 hours. Finally, silicon particles whose surface has been modified with a coupling agent are obtained.
(4)将步骤(3)得到的溶液进行离心,再用乙醇超声清洗,然后再离心,重复此步骤3次。(4) Centrifuge the solution obtained in step (3), then ultrasonically clean it with ethanol, and then centrifuge again, repeating this step 3 times.
(5)将步骤(4)离心得到的表面修饰过的硅颗粒,放入真空干燥箱,在60℃的环境下,真空干燥12小时。(5) Put the surface-modified silicon particles obtained by centrifuging in step (4) into a vacuum drying oven, and vacuum-dry for 12 hours at 60° C.
(6)将步骤(5)中真空干燥过后的硅颗粒与150mL去离子水混合后放入一个三颈烧瓶,用磁力搅拌机搅拌5分钟。(6) Mix the vacuum-dried silicon particles in step (5) with 150 mL of deionized water, put them into a three-necked flask, and stir for 5 minutes with a magnetic stirrer.
(7)将0.019g十二烷基苯碳酸钠(SDBS)、0.24g碳酸氢钠(NaHCO3)、0.006g过硫酸钾(KPS)、6mL甲基丙烯酸甲酯(MMA)、0.12g三氨基三苯甲烷(BVA)倒入三颈烧瓶,并在氮气氛围中,在80℃温度下磁力搅拌4小时。最后得到表面覆盖着PMMA薄膜的硅颗粒。(7) Add 0.019g sodium dodecylbenzene carbonate (SDBS), 0.24g sodium bicarbonate (NaHCO3), 0.006g potassium persulfate (KPS), 6mL methyl methacrylate (MMA), 0.12g triaminotris Benzene methane (BVA) was poured into a three-necked flask and magnetically stirred at 80° C. for 4 hours in a nitrogen atmosphere. Finally, silicon particles covered with PMMA film are obtained.
(8)将步骤(7)得到的溶液离心,再用乙醇超声,然后再离心。重复此步骤3次。(8) Centrifuge the solution obtained in step (7), then use ethanol to sonicate, and then centrifuge again. Repeat this step 3 times.
(9)将步骤(8)得到的固体放入真空干燥箱,在60℃的环境下,真空干燥12小时。(9) Put the solid obtained in step (8) into a vacuum drying oven, and dry it under vacuum for 12 hours under the environment of 60°C.
(10)将步骤(9)中干燥后的固体放入100mL去离子水中,在80℃水浴环境下,磁力搅拌1.5小时,并用氨水调节溶液的pH值为8.5,然后,将1.2g的二水乙酸锌和0.05g的六水氯化铝加入溶液中,并用氢氧化钠溶液调节溶液的pH值为8.5,保持磁力搅拌18小时。(10) Put the dried solid in step (9) into 100 mL of deionized water, stir magnetically for 1.5 hours in an 80° C. Zinc acetate and 0.05 g of aluminum chloride hexahydrate were added to the solution, and the pH value of the solution was adjusted to 8.5 with sodium hydroxide solution, and magnetic stirring was maintained for 18 hours.
(11)步骤(10)得到的溶液离心,再用乙醇超声,然后再离心。重复此步骤3次。(11) The solution obtained in step (10) is centrifuged, then ultrasonicated with ethanol, and then centrifuged again. Repeat this step 3 times.
(12)将步骤(11)得到的固体放入真空干燥箱,在60℃的环境下,真空干燥12小时。(12) Put the solid obtained in step (11) into a vacuum drying oven, and dry it under vacuum for 12 hours under the environment of 60°C.
(13)将步骤(12)中得到的固体颗粒,在氩气的氛围中,350℃保持2个小时退火去除PMMA。最后得到用氧化铝掺杂氧化锌膜包裹硅颗粒的结构。(13) The solid particles obtained in step (12) were annealed at 350° C. for 2 hours in an argon atmosphere to remove PMMA. Finally, a structure in which silicon particles are wrapped with aluminum oxide-doped zinc oxide films is obtained.
(14)将步骤(13)中得到的物质与聚偏氟乙烯(PVDF)、炭黑混合溶于N-甲基吡咯烷酮(NMP)中制成浆料,活性物质、粘接剂和导电剂的质量比例为7:1:2,而NMP的质量是活性物质的10倍。(14) The material obtained in step (13) is mixed with polyvinylidene fluoride (PVDF), carbon black and dissolved in N-methylpyrrolidone (NMP) to make a slurry, active material, adhesive and conductive agent The mass ratio is 7:1:2, and the mass of NMP is 10 times that of the active substance.
(15)用涂布机将步骤(14)制得的浆料在铜箔上涂膜。并在120℃环境下真空干燥8小时,负极膜的平均厚度为100-160um。(15) Coating the slurry prepared in step (14) on the copper foil with a coater. And vacuum-dried at 120°C for 8 hours, the average thickness of the negative electrode film is 100-160um.
(16)用直径为13um的冲子将负极膜冲成极片,并将每个极片都称重。(16) Use a punch with a diameter of 13um to punch the negative electrode film into pole pieces, and weigh each pole piece.
(17)将电池按照正极壳、极片、隔膜、锂片、钢片、弹片和负极壳的顺序组装并压片,在组装过程中,加入5滴电解液。(17) Assemble and press the battery in the order of positive electrode case, pole piece, diaphragm, lithium sheet, steel sheet, shrapnel and negative electrode case. During the assembly process, add 5 drops of electrolyte.
本发明的方法改善了硅负极材料体积膨胀和固态电解质稳定性。The method of the invention improves the volume expansion of the silicon negative electrode material and the stability of the solid electrolyte.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实例的限制,上述实例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned examples. What are described in the above-mentioned examples and descriptions are only to illustrate the principles of the present invention. The present invention also has various changes without departing from the spirit and scope of the present invention. These changes and improvements all fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711170946.2A CN108039461A (en) | 2017-11-22 | 2017-11-22 | A kind of silicium cathode material of coated and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711170946.2A CN108039461A (en) | 2017-11-22 | 2017-11-22 | A kind of silicium cathode material of coated and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108039461A true CN108039461A (en) | 2018-05-15 |
Family
ID=62093432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711170946.2A Pending CN108039461A (en) | 2017-11-22 | 2017-11-22 | A kind of silicium cathode material of coated and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108039461A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109560263A (en) * | 2018-10-24 | 2019-04-02 | 东莞理工学院 | A kind of preparation method of oxide coated by zinc silicium cathode material |
CN112993223A (en) * | 2021-02-07 | 2021-06-18 | 西南科技大学 | Lithium ion battery cathode material with double-layer coating structure and preparation method thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535485A (en) * | 1982-03-12 | 1985-08-20 | Medical Biological Sciences, Inc. | Polymeric acrylic prothesis |
CN103466710A (en) * | 2013-09-04 | 2013-12-25 | 东南大学 | A kind of preparation method of three-dimensional foamy MoS2 |
CN103545497A (en) * | 2013-10-18 | 2014-01-29 | 中国第一汽车股份有限公司 | Lithium ion battery cathode material with two-shell layer structure and preparation method thereof |
CN104466127A (en) * | 2014-10-31 | 2015-03-25 | 山东玉皇新能源科技有限公司 | PMMA-coated hollow Sn-Ni alloy nanowire array and preparation method and application of PMMA-coated hollow Sn-Ni alloy nanowire array |
CN104779394A (en) * | 2015-04-17 | 2015-07-15 | 复旦大学 | Aqueous lithium (sodium) ion battery mixed negative material |
CN104900858A (en) * | 2015-06-15 | 2015-09-09 | 中南大学 | Preparation method for sodium-ion battery antimony/carbon anode composite material with yolk-shell structure |
CN104916826A (en) * | 2015-07-03 | 2015-09-16 | 东莞市迈科科技有限公司 | Silicon cathode material coated with graphene and preparation method thereof |
CN104979539A (en) * | 2015-05-14 | 2015-10-14 | 浙江大学 | Silicon-carbon composite nano-tube preparation method |
CN105226249A (en) * | 2015-09-11 | 2016-01-06 | 王晓亮 | A kind of 3 SiC 2/graphite alkene core-shell material and Synthesis and applications thereof with gap |
CN105514382A (en) * | 2015-12-29 | 2016-04-20 | 哈尔滨工业大学 | Preparing method and application of silicon-based negative electrode material with SiO2 coating layer |
CN106025243A (en) * | 2016-07-29 | 2016-10-12 | 成都新柯力化工科技有限公司 | Silicon negative electrode composite material for lithium-ion battery and preparation method thereof |
CN106684335A (en) * | 2017-02-06 | 2017-05-17 | 厦门大学 | Preparation method of micron silicon negative electrode for lithium ion batteries |
CN106941164A (en) * | 2017-04-11 | 2017-07-11 | 东南大学 | A kind of preparation method of lithium ion battery negative nucleocapsid clad structure material |
-
2017
- 2017-11-22 CN CN201711170946.2A patent/CN108039461A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4535485A (en) * | 1982-03-12 | 1985-08-20 | Medical Biological Sciences, Inc. | Polymeric acrylic prothesis |
CN103466710A (en) * | 2013-09-04 | 2013-12-25 | 东南大学 | A kind of preparation method of three-dimensional foamy MoS2 |
CN103545497A (en) * | 2013-10-18 | 2014-01-29 | 中国第一汽车股份有限公司 | Lithium ion battery cathode material with two-shell layer structure and preparation method thereof |
CN104466127A (en) * | 2014-10-31 | 2015-03-25 | 山东玉皇新能源科技有限公司 | PMMA-coated hollow Sn-Ni alloy nanowire array and preparation method and application of PMMA-coated hollow Sn-Ni alloy nanowire array |
CN104779394A (en) * | 2015-04-17 | 2015-07-15 | 复旦大学 | Aqueous lithium (sodium) ion battery mixed negative material |
CN104979539A (en) * | 2015-05-14 | 2015-10-14 | 浙江大学 | Silicon-carbon composite nano-tube preparation method |
CN104900858A (en) * | 2015-06-15 | 2015-09-09 | 中南大学 | Preparation method for sodium-ion battery antimony/carbon anode composite material with yolk-shell structure |
CN104916826A (en) * | 2015-07-03 | 2015-09-16 | 东莞市迈科科技有限公司 | Silicon cathode material coated with graphene and preparation method thereof |
CN105226249A (en) * | 2015-09-11 | 2016-01-06 | 王晓亮 | A kind of 3 SiC 2/graphite alkene core-shell material and Synthesis and applications thereof with gap |
CN105514382A (en) * | 2015-12-29 | 2016-04-20 | 哈尔滨工业大学 | Preparing method and application of silicon-based negative electrode material with SiO2 coating layer |
CN106025243A (en) * | 2016-07-29 | 2016-10-12 | 成都新柯力化工科技有限公司 | Silicon negative electrode composite material for lithium-ion battery and preparation method thereof |
CN106684335A (en) * | 2017-02-06 | 2017-05-17 | 厦门大学 | Preparation method of micron silicon negative electrode for lithium ion batteries |
CN106941164A (en) * | 2017-04-11 | 2017-07-11 | 东南大学 | A kind of preparation method of lithium ion battery negative nucleocapsid clad structure material |
Non-Patent Citations (2)
Title |
---|
ALICIA DE SAN LUIS 等: "Toward the minimization of fluorescence loss in hybrid cross-linked core-shell PS/QD/PMMA nanoparticles: Effect of the shell thickness", 《CHEMICAL ENGINEERING JOURNAL》 * |
孙海珠 等: "《纳米粒子与聚合物功能复合材料导论》", 31 March 2015, 东北师范大学出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109560263A (en) * | 2018-10-24 | 2019-04-02 | 东莞理工学院 | A kind of preparation method of oxide coated by zinc silicium cathode material |
CN109560263B (en) * | 2018-10-24 | 2021-06-18 | 赵金保 | Preparation method of zinc oxide coated silicon negative electrode material |
CN112993223A (en) * | 2021-02-07 | 2021-06-18 | 西南科技大学 | Lithium ion battery cathode material with double-layer coating structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102760883B (en) | Novel chitosan used for lithium ion cell and derivative water-based binder of chitosan | |
CN105742613B (en) | A kind of cathode pole piece and lithium ion battery | |
CN105304858B (en) | Lithium ion battery and its negative plate and preparation method | |
CN103396500B (en) | Modified natural polymer-conductive polymer aqueous compound binding agent and application thereof | |
CN105470576B (en) | A kind of high pressure lithium battery electric core and preparation method thereof, lithium ion battery | |
CN111384381A (en) | Silicon @ carbon/MXene ternary composite material for lithium ion battery and preparation method thereof | |
CN105552333B (en) | A kind of preparation method of graphene/silicon/conducting polymer composite negative pole material | |
CN108933215B (en) | Graphene/cellulose composite material-containing slurry for battery, and preparation method and application thereof | |
CN104835963B (en) | A kind of lithium-ion battery composite negative electrode material and preparation method thereof | |
CN113013382B (en) | Method for preparing solid-state battery electrode by dry method, solid-state battery electrode and solid-state battery | |
CN108807842B (en) | Silicon@carbon-graphene-based flexible composite material and preparation method thereof, and lithium battery | |
CN101604750A (en) | A kind of preparation method of negative electrode material of lithium ion battery | |
CN107331523A (en) | A kind of active carbon/carbon/graphene composite material and its preparation method and application | |
CN103762335B (en) | Lithium titanate electrode plate and lithium ion battery | |
CN114156602B (en) | Solid electrolyte membrane with multiple coatings, preparation method and application | |
CN113937295B (en) | Self-assembled MXene/chitosan composite membrane and preparation method and application thereof | |
CN103022474A (en) | Lithium-ion battery negative electrode material Fe2O3 and preparation method thereof | |
CN111540868A (en) | Preparation method and application of two-dimensional manganese dioxide modified polypropylene diaphragm | |
CN106450234A (en) | Spherical titania/graphene flexible composite material preparation method | |
CN105932284A (en) | Meso-porous carbon closely-coated composite material, and preparation method and application thereof | |
CN113193185B (en) | Silicon-carbon composite material, preparation method thereof and lithium ion battery | |
CN111525115A (en) | Etched nano-silicon double-layer carbon-coated lithium ion battery negative electrode material, negative electrode plate and preparation method of negative electrode plate | |
CN117374373A (en) | All-solid-state soft-package battery | |
CN104269560A (en) | High-energy zinc-manganese battery | |
CN108039461A (en) | A kind of silicium cathode material of coated and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180515 |