CN108031287A - A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides - Google Patents
A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides Download PDFInfo
- Publication number
- CN108031287A CN108031287A CN201711363074.1A CN201711363074A CN108031287A CN 108031287 A CN108031287 A CN 108031287A CN 201711363074 A CN201711363074 A CN 201711363074A CN 108031287 A CN108031287 A CN 108031287A
- Authority
- CN
- China
- Prior art keywords
- nitrogen oxides
- catalyst
- plasma
- electrode
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 159
- 239000003054 catalyst Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000002708 enhancing effect Effects 0.000 title 1
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 35
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical compound C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052709 silver Inorganic materials 0.000 claims abstract description 8
- 238000005470 impregnation Methods 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 16
- 239000010453 quartz Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 12
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000007603 infrared drying Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims 1
- 238000010531 catalytic reduction reaction Methods 0.000 abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 4
- 238000006555 catalytic reaction Methods 0.000 abstract description 3
- 239000012495 reaction gas Substances 0.000 abstract description 2
- 230000002195 synergetic effect Effects 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 230000009471 action Effects 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000011284 combination treatment Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010003497 Asphyxia Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- -1 ethylene, propylene Chemical group 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000000622 irritating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/818—Employing electrical discharges or the generation of a plasma
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Catalysts (AREA)
Abstract
本分案申请涉及一种等离子体增强Ag/Al2O3催化剂脱除氮氧化物的方法,通过等体积共浸渍法煅烧制得Ag/Al2O3催化剂,将其填充于等离子体放电装置的放电区域内,将含有C2H2和氮氧化物的反应气体通入等离子体放电装置,反应温度为180‑300℃,采用5kHz‑20kHz高压电源进行放电,实现对氮氧化物的转化。本发明提供的方法可以有效解决烃类选择性催化还原反应低温下单纯依靠Ag/Al2O3催化对氮氧化物脱除效率低的问题,采用等离子体和2%Ag/Al2O3催化剂协同作用使还原氮氧化物的效率可提升50%,C2H2的转化率可达100%。且该方法简单、易操作,本发明装置简单、适用范围广泛。This divisional application relates to a method for plasma-enhanced Ag/Al 2 O 3 catalyst removal of nitrogen oxides. The Ag/Al 2 O 3 catalyst is calcined by an equal-volume co-impregnation method, and filled in a plasma discharge device In the discharge area, the reaction gas containing C 2 H 2 and nitrogen oxides is passed into the plasma discharge device, the reaction temperature is 180-300°C, and a 5kHz-20kHz high-voltage power supply is used for discharge to realize the conversion of nitrogen oxides. The method provided by the invention can effectively solve the problem of low removal efficiency of nitrogen oxides by simply relying on Ag/Al 2 O 3 catalysis in the selective catalytic reduction of hydrocarbons at low temperature, and adopts plasma and 2% Ag/Al 2 O 3 catalyst The synergistic effect can increase the efficiency of reducing nitrogen oxides by 50%, and the conversion rate of C2H2 can reach 100%. Moreover, the method is simple and easy to operate, and the device of the invention is simple and has a wide application range.
Description
本申请为申请号为2017107631037、申请日为2017年8月30日、发明名称 为“一种等离子体增强Ag/Al2O3催化剂脱除氮氧化物的方法”的分案申请。This application is a divisional application with the application number 2017107631037, the application date is August 30, 2017, and the title of the invention is "a method for plasma-enhanced Ag/Al 2 O 3 catalyst removal of nitrogen oxides".
技术领域technical field
本发明属于大气污染控制领域,包含对于C2H2的转化以及选择性催化还原 氮氧化物的方法,涉及在C2H2体系下等离子体结合催化剂增强在低温区对于氮 氧化物的转化方法。The invention belongs to the field of air pollution control , including the conversion of C2H2 and a method for selectively catalytically reducing nitrogen oxides, and relates to a method for converting nitrogen oxides in a low-temperature region under a C2H2 system with a plasma combined with a catalyst .
背景技术Background technique
氮氧化物(NOx)是形成酸雨及光化学烟雾等破坏自然环境的主要污染物, 同时氮氧化物具有刺激性气味人体吸入会造成缺氧、恶心,氮氧化物具有一定的 致癌性。通常所指的氮氧化物主要包括NO、NO2、N2O及N3O4。自然界中的氮 氧化物来源主要以火山喷发、雷电及微生物的氧化分解,而人为氮氧化物主要通 过以固定源形式的燃煤火力发电厂、供暖高温锅炉排放。另外也通过燃油机动车 尾气排放等移动源的方式来产生。Nitrogen oxides (NO x ) are the main pollutants that form acid rain and photochemical smog that damage the natural environment. At the same time, nitrogen oxides have a pungent odor that can cause hypoxia and nausea when inhaled by the human body. Nitrogen oxides are carcinogenic to a certain extent. Nitrogen oxides commonly referred to mainly include NO, NO 2 , N 2 O and N 3 O 4 . The sources of nitrogen oxides in nature are mainly volcanic eruptions, lightning and microbial oxidation and decomposition, while man-made nitrogen oxides are mainly emitted from coal-fired thermal power plants and heating high-temperature boilers in the form of stationary sources. In addition, it is also produced by means of mobile sources such as fuel vehicle exhaust emissions.
氮氧化物是目前我国雾霾天气的主要原因,汽车作为居民日常生活中的主要 交通工具,为我们带来方便的同时,其尾气排放污染问题的解决方式也迫在眉睫。 我国已经成为全球汽车制造中心和全球最大的汽车消费市场。据国际汽车制造商 协会(OICA)最新统计,自2005年起我国汽车产量及销量已由571、576万辆 上涨到2015年的2450、2460万辆,增长率分别达到15.68%、15.62%。汽车尾 气中因含有大量的硫化物以及氮氧化物,因此控制汽车尾气中污染物的排放是解 决大气污染的根本性问题。目前工业上较成熟的机动车尾气脱硝方法主要以氨选 择性催化还原和三效催化剂为主。自二十世纪八十年代起,世界上第一个以氨为 还原剂的尾气脱硝装置在日本Kudamatsu电厂运行,此后以氨选择性催化还原反 应用于尾气脱硝的方法在全世界盛行开来。NH3-SCR应用于重载汽车尾气的脱除,由于氨的运营成本较高具有腐蚀性,通常采用尿素分解制得氨,但定期更换 与维护仍是是额外的机动车运营成本,并且未充分反应的氨排放至大气会造成二 次污染,对人体的耳鼻喉等均有强烈刺激性作用,长时间吸入甚至造成窒息,因 此其广泛应用尚存在一定的技术问题。三效催化剂(Three Way Catalyst)是以铂、 铑、钯为主体负载的贵金属催化剂。三效催化剂的运营需要严格的空燃比(约14.6)才能有效工作,并且其抗水抗硫性能相对较差。目前为满足机动车动力需 要而采用的富氧型发动机体系下其催化活性受到极大的挑战。同时由于贵金属所 造成的成本昂贵,因此不能广泛使用。Nitrogen oxides are the main cause of smog in our country at present. As the main means of transportation in the daily life of residents, automobiles bring us convenience, and at the same time, the solution to the problem of exhaust pollution is imminent. my country has become the global automobile manufacturing center and the world's largest automobile consumer market. According to the latest statistics from the International Association of Automobile Manufacturers (OICA), since 2005 my country's automobile production and sales have increased from 5.71 million and 5.76 million to 24.50 and 24.6 million in 2015, with growth rates of 15.68% and 15.62% respectively. Because automobile exhaust contains a large amount of sulfide and nitrogen oxides, controlling the emission of pollutants in automobile exhaust is the fundamental problem to solve air pollution. At present, the relatively mature denitrification methods of motor vehicle exhaust in industry are mainly based on ammonia selective catalytic reduction and three-way catalyst. Since the 1980s, the world's first tail gas denitrification device using ammonia as a reducing agent has been operating in Kudamatsu Power Plant in Japan. Since then, the method of using ammonia selective catalytic reduction reaction for tail gas denitrification has become popular all over the world. NH 3 -SCR is applied to the removal of heavy-duty vehicle exhaust. Due to the high operating cost of ammonia and its corrosiveness, urea is usually used to decompose ammonia to produce ammonia. However, regular replacement and maintenance are still additional operating costs for motor vehicles, and there is no The discharge of fully reacted ammonia to the atmosphere will cause secondary pollution, have a strong irritating effect on the ear, nose and throat of the human body, and even cause suffocation if inhaled for a long time. Therefore, there are still certain technical problems in its wide application. Three-way catalyst (Three Way Catalyst) is a noble metal catalyst supported mainly by platinum, rhodium and palladium. The operation of the three-way catalyst requires a strict air-fuel ratio (about 14.6) to work effectively, and its resistance to water and sulfur is relatively poor. The catalytic activity of the oxygen-enriched engine system currently used to meet the power requirements of motor vehicles is greatly challenged. At the same time, due to the high cost caused by precious metals, they cannot be widely used.
等离子体是不同于固体、液体和气体的物质第四态。大气压低温等离子体具 有较高的电子温度(104-105K)而实际温度却可低至室温且在大气压下即可产生, 因此自上世纪八十年代采用大气压非平衡等离子体方法处理大气污染物在全世 界流行开来。等离子体处理具有装置简单、便捷易操作、处理效率高、且作用范 围广等优势一直作为全世界研究的热点,但单纯等离子体作用于尾气脱硝具有选 择性较低、副产物较多且能耗较高等缺点。目前以甲烷、乙炔、乙烯、丙烯等烃 类作为主要的还原剂结合金属氧化物催化剂、贵金属催化剂以及分子筛类催化剂 应用于汽车尾气的脱除氮氧化物在350℃以上有较好的脱硝效果,但当反应温度 低至300℃以下整体催化脱硝活性较低。而通常大气压非平衡等离子体的加入由 于其较高的电子温度有希望将高温反应向低温方向进行,因此将等离子体结合催 化剂应用于提高冷启动及带速期间机动车尾气脱硝是有意义的。Plasma is the fourth state of matter distinct from solids, liquids and gases. Atmospheric pressure low-temperature plasma has a relatively high electron temperature (10 4 -10 5 K), but the actual temperature can be as low as room temperature and can be generated under atmospheric pressure. Therefore, since the 1980s, atmospheric pressure non-equilibrium plasma has been used to treat the atmosphere Pollutants are prevalent around the world. Plasma treatment has the advantages of simple device, convenient and easy operation, high treatment efficiency, and wide range of action. Higher disadvantages. At present, methane, acetylene, ethylene, propylene and other hydrocarbons are used as the main reducing agent in combination with metal oxide catalysts, noble metal catalysts and molecular sieve catalysts to remove nitrogen oxides from automobile exhaust. However, when the reaction temperature is lower than 300 °C, the overall catalytic denitrification activity is low. Usually, the addition of atmospheric pressure non-equilibrium plasma is expected to move high-temperature reactions to low temperatures due to its higher electron temperature. Therefore, it is meaningful to apply plasma-combined catalysts to improve the denitrification of motor vehicle exhaust during cold start and belt speed.
发明内容Contents of the invention
为弥补现有技术的不足,本发明目的在于提供一种采用等离子体和Ag/Al2O3催化剂协同提高C2H2选择性催化还原氮氧化物体系提高其低温活性的方法。在 含有C2H2和氮氧化物体系中,低温(小于300℃)下单纯依靠Ag/Al2O3催化剂 对氮氧化物脱除效率不高,而采用等离子体协助用于还原氮氧化物的效率最高可 提升约50%,可以有效的处理在低温区的氮氧化物。In order to make up for the deficiencies of the prior art, the purpose of the present invention is to provide a method for synergistically improving the low-temperature activity of the C2H2 selective catalytic reduction nitrogen oxide system by using plasma and Ag/ Al2O3 catalyst. In a system containing C 2 H 2 and nitrogen oxides, at low temperature (less than 300°C), the removal efficiency of nitrogen oxides is not high by simply relying on Ag/Al 2 O 3 catalysts, and plasma assistance is used to reduce nitrogen oxides The highest efficiency can be increased by about 50%, which can effectively treat nitrogen oxides in low temperature areas.
本发明采用如下技术方案:The present invention adopts following technical scheme:
通过等体积共浸渍法煅烧制得Ag/Al2O3催化剂,将其填充于等离子体放电 装置的放电区域内,将含有C2H2和氮氧化物的混合气体通入等离子体放电装置, 反应温度为180-300℃,采用5kHz-20kHz高压电源进行放电,实现对氮氧化物 的转化。The Ag/Al 2 O 3 catalyst was calcined by equal volume co-impregnation method, filled in the discharge area of the plasma discharge device, and the mixed gas containing C 2 H 2 and nitrogen oxides was passed into the plasma discharge device, The reaction temperature is 180-300°C, and a 5kHz-20kHz high-voltage power supply is used for discharge to realize the conversion of nitrogen oxides.
优选的,所述的Ag/Al2O3催化剂制备方法如下:研磨活性Al2O3小球,选 择20-160um颗粒状Al2O3,浸渍于硝酸银水溶液中室温静置12h,然后将其放 入红外干燥箱中先在80℃处理4h,再于120℃处理4h,最后将其置于马弗炉中 空气下550℃煅烧2h制得2wt%的Ag/Al2O3催化剂。Preferably, the preparation method of the Ag/Al 2 O 3 catalyst is as follows: grind active Al 2 O 3 pellets, select 20-160um granular Al 2 O 3 , immerse in an aqueous solution of silver nitrate and let it stand at room temperature for 12 hours, and then It was placed in an infrared drying oven and treated at 80°C for 4 hours, then at 120°C for 4 hours, and finally placed in a muffle furnace for calcination at 550°C under air for 2 hours to obtain a 2wt% Ag/Al 2 O 3 catalyst.
本发明另一个目的请求保护应用于上述方法的等离子体放电装置,所述的放 电装置包括石英反应器、介质阻挡放电与催化剂结合处理室、固定环、高压电极、 接地电极以及电极保护管。Another object of the present invention claims the plasma discharge device applied to the above method, the discharge device includes a quartz reactor, a dielectric barrier discharge and catalyst combination treatment chamber, a fixed ring, a high voltage electrode, a ground electrode and an electrode protection tube.
采用不锈钢长直管做高压电极,采用密孔白钢网包裹在石英反应器外围做接 地电极,高压电极与地电极均采用同轴式线筒结构,高压电极直接插入电极保护 管中并用固定环固定使高压电极处于石英反应器中心位置,接地电极紧紧包裹在 石英反应器外壁并采用钨丝紧紧缠绕将其固定。The high-voltage electrode is made of stainless steel long straight tube, and the ground electrode is wrapped around the quartz reactor with dense-porous white steel mesh. Both the high-voltage electrode and the ground electrode adopt a coaxial wire barrel structure. The high-voltage electrode is located in the center of the quartz reactor, and the ground electrode is tightly wrapped around the outer wall of the quartz reactor and fixed with tungsten wire.
优选的,所述的固定环为四氟环。Preferably, the fixed ring is a tetrafluoro ring.
优选的,所述的接地电极为不锈钢网。Preferably, the ground electrode is a stainless steel mesh.
优选的,所述的石英反应器为壁厚4mm的石英管。Preferably, the quartz reactor is a quartz tube with a wall thickness of 4mm.
进气口与出气口均采用四氟材质制作的接头,与石英反应器紧密衔接。含 有C2H2及氮氧化物的工作气体通过进气口流入石英反应器,反应温度为180℃ -300℃,待系统稳定后进行放电。等离子体在同轴式线筒放电区域内产生, Ag/Al2O3催化剂放置在等离子体作用区域内(高压电极与接地电极放电区域内), 使等离子体增强C2H2的活化并用于在Ag/Al2O3催化剂上转化氮氧化物。Both the air inlet and outlet are made of PTFE joints, which are closely connected with the quartz reactor. The working gas containing C 2 H 2 and nitrogen oxides flows into the quartz reactor through the air inlet, the reaction temperature is 180°C -300°C, and the discharge is performed after the system is stable. The plasma is generated in the discharge area of the coaxial wire barrel, and the Ag/Al 2 O 3 catalyst is placed in the plasma action area (in the discharge area of the high-voltage electrode and the ground electrode), so that the plasma enhances the activation of C 2 H 2 and is used for Conversion of nitrogen oxides over Ag/Al 2 O 3 catalysts.
将Ag/Al2O3催化剂填充于介质阻挡放电与催化剂结合处理室,催化剂两端 采用石英棉封堵固定,含有C2H2的氮氧化物气体通入介质阻挡放电与催化剂结 合处理室内部,反应温度为150-300℃。The Ag/Al 2 O 3 catalyst is filled in the dielectric barrier discharge and catalyst combination treatment chamber, and the two ends of the catalyst are sealed and fixed with quartz wool, and the nitrogen oxide gas containing C 2 H 2 is passed into the dielectric barrier discharge and catalyst combination treatment chamber. , the reaction temperature is 150-300°C.
本发明第三个目的请求保护上述方法在机动车尾气处理上的应用,将 Ag/Al2O3催化剂负载于蜂窝陶瓷上,将蜂窝陶瓷置于机动车尾气排气端,介质阻 挡放电等离子体发生可采用阵列式线筒放电在蜂孔内部产生。在机动车尾气排气 端还设有温度传感器。由于在不同温度下实现对氮氧化物的最佳转化的放电功率 不同,低温需要相对较高的放电功率而高温需要较低的放电功率即可将氮氧化物 有效转化,因此可设定不同温度下所需要的等离子体放电功率,同时当温度高于 300℃以后关闭高压电源,依靠单纯Ag/Al2O3催化剂的作用就可实现对氮氧化物 较为有效的转化。实现了对未充分燃烧的烃类转化,同时也提高了冷启动阶段对 氮氧化物的转化,节约能量。The third object of the present invention is to protect the application of the above method in the treatment of motor vehicle exhaust gas. The Ag/Al 2 O 3 catalyst is loaded on the honeycomb ceramics, and the honeycomb ceramics are placed at the exhaust end of the motor vehicle exhaust gas, and the dielectric barrier discharge plasma The generation can be generated inside the honeycomb by using the array wire barrel discharge. A temperature sensor is also arranged at the exhaust end of the motor vehicle exhaust. Since the discharge power to achieve the best conversion of nitrogen oxides is different at different temperatures, low temperature requires a relatively high discharge power and high temperature requires a relatively low discharge power to effectively convert nitrogen oxides, so different temperatures can be set At the same time, when the temperature is higher than 300°C, the high-voltage power supply is turned off, and the effective conversion of nitrogen oxides can be achieved by relying on the action of a simple Ag/Al 2 O 3 catalyst. The conversion of incompletely burned hydrocarbons is realized, and the conversion of nitrogen oxides in the cold start stage is also improved, saving energy.
有益效果:本发明提供的方法可以有效解决低温下单纯依靠Ag/Al2O3催化 对含烃类选择性催化还原氮氧化物脱除效率低的问题,采用2%Ag/Al2O3催化剂 和等离子体协同作用使还原氮氧化物的效率可提升50%,C2H2的转化率可达 100%。且该方法简单、易操作,本发明装置简单、适用范围广泛。Beneficial effects: the method provided by the invention can effectively solve the problem of low removal efficiency of nitrogen oxides in the selective catalytic reduction of hydrocarbons by simply relying on Ag/Al 2 O 3 catalysis at low temperature, and adopts 2% Ag/Al 2 O 3 catalyst Synergistically working with plasma, the efficiency of nitrogen oxide reduction can be increased by 50%, and the conversion rate of C 2 H 2 can reach 100%. Moreover, the method is simple and easy to operate, and the device of the invention is simple and has a wide application range.
附图说明Description of drawings
图1为本发明装置结构示意图。其中1、石英反应器,2、介质阻挡放电与 催化剂结合处理室,3、固定环,4、高压电极,5、接地电极,6、电极保护管, 7、进气口,8、出气口。Fig. 1 is a schematic diagram of the structure of the device of the present invention. 1. Quartz reactor, 2. Dielectric barrier discharge and catalyst combination treatment chamber, 3. Fixed ring, 4. High voltage electrode, 5. Ground electrode, 6. Electrode protection tube, 7. Air inlet, 8. Gas outlet.
具体实施方式Detailed ways
下面通过附图和具体实施例详述本发明,但不限制本发明的保护范围。如无 特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂 等均可从化学公司购买。The present invention is described in detail below by means of drawings and specific examples, but the protection scope of the present invention is not limited. Unless otherwise specified, the experimental methods used in the present invention are conventional methods, and used experimental equipment, materials, reagents, etc. can be purchased from chemical companies.
实施例1Example 1
将直径为1.5mm的长直高压电极放入内径为2.5mm石英电极保护管中并 采用固定环将其固定于石英管中心位置,采用壁厚4mm内径8mm石英管做介 质管,在石英管外围采用钨丝紧紧缠绕不锈钢网用做接地电极。高压电极与接地 电极均采用同轴式线筒结构。Put a long straight high-voltage electrode with a diameter of 1.5mm into a quartz electrode protection tube with an inner diameter of 2.5mm and fix it at the center of the quartz tube with a fixing ring. Use a quartz tube with a wall thickness of 4mm and an inner diameter of 8mm as the dielectric tube. A tungsten wire tightly wound stainless steel mesh is used as a grounding electrode. The high-voltage electrode and the grounding electrode both adopt the coaxial wire barrel structure.
制备催化剂Ag/Al2O3:根据Ag与Al2O3质量比,称取2wt%/Ag/Al2O3所需 的硝酸银及20-160um的氧化铝小颗粒共5g,取5ml去离子水完全溶解硝酸银 制得硝酸银水溶液,将20-160um的氧化铝小颗粒浸渍于硝酸银水溶液中室温静 置12h,然后将其放入红外干燥箱中先在80℃下处理4h,再于120℃处理4h, 最后将其置于马弗炉中空气下550℃煅烧2h,制得2wt%/Ag/Al2O3催化剂。Preparation of catalyst Ag/Al 2 O 3 : According to the mass ratio of Ag to Al 2 O 3 , weigh 5g of silver nitrate and 20-160um aluminum oxide particles required for 2wt%/Ag/Al 2 O 3 , take 5ml to remove Completely dissolve silver nitrate in ionized water to prepare silver nitrate aqueous solution. Immerse 20-160um aluminum oxide particles in the silver nitrate aqueous solution and let it stand for 12 hours at room temperature. Treat at 120° C. for 4 hours, and finally place it in a muffle furnace for calcination at 550° C. under air for 2 hours to prepare a 2wt%/Ag/Al 2 O 3 catalyst.
脱出氮氧化物:反应开始前先将2%Ag/Al2O3催化剂在N2气氛下加热到 550℃活化处理,进而再在N2中达到150℃进行实验。将1500ppmC2H2,500 ppmNO,10vt%O2,N2做平衡气,空速为15000h-1的原料气接入反应器中进行 反应,开启高压电源,当放电电压由峰峰值14kV时,氮氧化物转化率为54%, C2H2的转化率为100%转化。而单纯使用Ag/Al2O3催化剂作用时氮氧化物转化率 仅为5%。Removal of nitrogen oxides: Before the reaction starts, the 2% Ag/Al 2 O 3 catalyst is heated to 550°C in N 2 atmosphere for activation treatment, and then the experiment is carried out in N 2 up to 150°C. Put 1500ppm C 2 H 2 , 500 ppm NO, 10vt% O 2 , N 2 as the balance gas, feed the raw material gas with a space velocity of 15000h -1 into the reactor for reaction, turn on the high-voltage power supply, when the discharge voltage changes from peak to peak to 14kV, The conversion of nitrogen oxides was 54%, and the conversion of C 2 H 2 was 100% conversion. However, when Ag/Al 2 O 3 catalyst is only used, the nitrogen oxide conversion rate is only 5%.
实施例2Example 2
采用实施例1的装置,反应开始前先将2wt%Ag/Al2O3催化剂在N2气氛下 加热到550℃活化处理,进而再在N2中达到250℃进行实验。将1500ppmC2H2, 500ppmNO,10%O2,N2做平衡气,空速为15000h-1的原料气接入反应器中进 行反应,开启高压电源,由于等离子体作用过程中有放热现象,当放电电压由峰 峰值12kV时,使用程序升温控制仪使整个系统稳定于250℃,此时氮氧化物转 化率为78%,一氧化氮的转化率为81%。同样控制反应温度为250℃,随着放 电电压由12kV逐渐增加到16kV,氮氧化物的转化是由78%降到28%。同时C2H2的转化率始终为100%转化。Using the device in Example 1, the 2wt% Ag/Al 2 O 3 catalyst was heated to 550°C under N 2 atmosphere for activation before the reaction started, and then the experiment was carried out in N 2 up to 250°C. Put 1500ppm C 2 H 2 , 500ppm NO, 10% O 2 , N 2 as the balance gas, feed the raw material gas with a space velocity of 15000h -1 into the reactor for reaction, turn on the high voltage power supply, due to the exothermic phenomenon during the plasma action , when the discharge voltage is from peak to peak value of 12kV, the whole system is stabilized at 250°C by using the programmable temperature controller, at this time the conversion rate of nitrogen oxides is 78%, and the conversion rate of nitrogen monoxide is 81%. Similarly, the reaction temperature is controlled at 250°C. As the discharge voltage gradually increases from 12kV to 16kV, the conversion of nitrogen oxides decreases from 78% to 28%. At the same time the conversion of C2H2 is always 100% conversion.
实施例3Example 3
采用实施例1的装置,反应开始前先将2wt%Ag/Al2O3催化剂在N2气氛下 加热到550℃活化处理,进而再在N2中达到300℃进行实验。将1500ppmC2H2, 500ppmNO,10%O2,N2做平衡气,空速为15000h-1的原料气接入反应气中进 行反应,当放电电压由峰峰值12kV时,氮氧化物转化率为68%,一氧化氮的转 化率为73%。随着放电电压由12kV到16kV的变化,氮氧化物的转化降到26%, 而此时单纯Ag/Al2O3作用时氮氧化物转化率即可达到76%。因此此温度及以上 温度则单纯催化剂作用就可对氮氧化物进行转化而脱除。Using the device of Example 1, the 2wt% Ag/Al 2 O 3 catalyst was heated to 550°C in N 2 atmosphere for activation before the reaction started, and then the experiment was carried out in N 2 up to 300°C. 1500ppm C 2 H 2 , 500ppm NO, 10% O 2 , N 2 are used as balance gas, and the raw material gas with a space velocity of 15000h -1 is connected to the reaction gas for reaction. When the discharge voltage is from the peak value to 12kV, the conversion rate of nitrogen oxides The conversion rate of nitric oxide was 68%, and the conversion rate of nitric oxide was 73%. As the discharge voltage changes from 12kV to 16kV, the conversion of nitrogen oxides drops to 26%, while the conversion of nitrogen oxides can reach 76% under the action of pure Ag/Al 2 O 3 . Therefore, at this temperature and above, nitrogen oxides can be converted and removed simply by catalyst action.
综上,当温度超过300℃时,通过浸渍法得到的2%Ag/Al2O3催化剂便有良 好的脱除氮氧化物的效果,而当温度低于300℃时单纯催化剂作用不能较好的脱 除氮氧化物,因此在此时开启本发明装置的高压电源,使等离子体与催化剂共同 作用于氮氧化物的还原。In summary, when the temperature exceeds 300°C, the 2%Ag/Al 2 O 3 catalyst obtained by the impregnation method has a good effect of removing nitrogen oxides, but when the temperature is lower than 300°C, the pure catalyst does not work well. Therefore, at this time, the high-voltage power supply of the device of the present invention is turned on, so that the plasma and the catalyst work together to reduce nitrogen oxides.
在机动车冷启动及带速(180-300℃)温度区间,采用介质阻挡放电等离子 体与催化剂共同作用比单纯催化剂作用脱除氮氧化物的效率得到了极大地提高。 而在300℃后的温度区间内,在C2H2体系下单纯催化就可将氮氧化物较好的脱 除。In the temperature range of cold start and belt speed (180-300°C) of motor vehicles, the efficiency of removing nitrogen oxides by using dielectric barrier discharge plasma and catalyst to act together is greatly improved compared with pure catalyst action. In the temperature range after 300°C, nitrogen oxides can be better removed by simple catalysis under the C 2 H 2 system.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发 明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围 之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, and any person familiar with the technical field within the technical scope disclosed in the present invention, according to the technical solution of the present invention Any equivalent replacement or change of the inventive concepts thereof shall fall within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711363074.1A CN108031287A (en) | 2017-08-30 | 2017-08-30 | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711363074.1A CN108031287A (en) | 2017-08-30 | 2017-08-30 | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides |
CN201710763103.7A CN107486017A (en) | 2017-08-30 | 2017-08-30 | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710763103.7A Division CN107486017A (en) | 2017-08-30 | 2017-08-30 | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108031287A true CN108031287A (en) | 2018-05-15 |
Family
ID=60645753
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710763103.7A Pending CN107486017A (en) | 2017-08-30 | 2017-08-30 | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides |
CN201711363074.1A Pending CN108031287A (en) | 2017-08-30 | 2017-08-30 | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710763103.7A Pending CN107486017A (en) | 2017-08-30 | 2017-08-30 | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN107486017A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109187410A (en) * | 2018-08-30 | 2019-01-11 | 大连民族大学 | A kind of one-part form plasma-catalytic original position diffusing reflection infrared detecting device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109283151B (en) * | 2018-09-11 | 2021-04-20 | 浙江工商大学 | A device and method for realizing dielectric barrier discharge in an in-situ cell of an in-situ infrared analysis device |
CN109759149B (en) * | 2019-02-25 | 2021-11-23 | 江苏大学 | Device for quickly reducing deactivated catalyst |
CN111135824A (en) * | 2019-11-27 | 2020-05-12 | 北京化工大学 | A kind of preparation method of Ag-based nano-catalyst |
CN111068714B (en) * | 2019-12-16 | 2021-05-04 | 北京化工大学 | A kind of preparation method of supported silver-based multi-component nano-catalyst |
CN113070012B (en) * | 2021-03-16 | 2023-02-10 | 浙江理工大学 | A reaction device and method for generating methanol from carbon dioxide and hydrogen |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1436096A (en) * | 2000-04-11 | 2003-08-13 | 阿山特斯有限公司 | Plasma assisted catalytic treatment of gases |
CN1613544A (en) * | 2004-09-30 | 2005-05-11 | 大连理工大学 | Selecting, catalytic and reducing nitrogen oxide by plasma reinforced methane |
CN1647858A (en) * | 2004-12-01 | 2005-08-03 | 天津大学 | Method for Reducing Supported Metal Catalysts Using Low Temperature Plasma |
CN1648425A (en) * | 2004-12-02 | 2005-08-03 | 南京大学 | Integral Low Temperature Plasma Catalytic Reactor for Exhaust Gas Purification |
CN102949930A (en) * | 2012-11-01 | 2013-03-06 | 昆明理工大学 | Method for NO oxidation and nitrogen oxide removal at room temperature through synergism of plasma and catalyst |
CN103769163A (en) * | 2014-01-09 | 2014-05-07 | 大连大学 | Method for preparing load type double-metal catalyst by reducing atmospheric cold plasmas |
CN104761431A (en) * | 2015-04-22 | 2015-07-08 | 黑龙江科技大学 | Method for preparing methanol by converting coal mine gas under synergistic action of plasma and catalyst |
CN105208761A (en) * | 2015-09-11 | 2015-12-30 | 大连民族大学 | Uniform barometric pressure micro-plasma discharge device with flow equalizing system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1676200A (en) * | 2005-01-21 | 2005-10-05 | 清华大学 | A method and system for reducing nitrogen oxides |
GB2535274B (en) * | 2014-11-19 | 2019-06-12 | Johnson Matthey Plc | An exhaust system combining a molecular-sieve-containing SCR catalyst and a molecular-sieve-containing NOx adsorber catalyst |
CN106677863B (en) * | 2017-02-14 | 2022-05-17 | 北京工业大学 | System and method for non-thermal plasma enhanced urea-SCR removal of NOx |
-
2017
- 2017-08-30 CN CN201710763103.7A patent/CN107486017A/en active Pending
- 2017-08-30 CN CN201711363074.1A patent/CN108031287A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1436096A (en) * | 2000-04-11 | 2003-08-13 | 阿山特斯有限公司 | Plasma assisted catalytic treatment of gases |
CN1613544A (en) * | 2004-09-30 | 2005-05-11 | 大连理工大学 | Selecting, catalytic and reducing nitrogen oxide by plasma reinforced methane |
CN1647858A (en) * | 2004-12-01 | 2005-08-03 | 天津大学 | Method for Reducing Supported Metal Catalysts Using Low Temperature Plasma |
CN1648425A (en) * | 2004-12-02 | 2005-08-03 | 南京大学 | Integral Low Temperature Plasma Catalytic Reactor for Exhaust Gas Purification |
CN102949930A (en) * | 2012-11-01 | 2013-03-06 | 昆明理工大学 | Method for NO oxidation and nitrogen oxide removal at room temperature through synergism of plasma and catalyst |
CN103769163A (en) * | 2014-01-09 | 2014-05-07 | 大连大学 | Method for preparing load type double-metal catalyst by reducing atmospheric cold plasmas |
CN104761431A (en) * | 2015-04-22 | 2015-07-08 | 黑龙江科技大学 | Method for preparing methanol by converting coal mine gas under synergistic action of plasma and catalyst |
CN105208761A (en) * | 2015-09-11 | 2015-12-30 | 大连民族大学 | Uniform barometric pressure micro-plasma discharge device with flow equalizing system |
Non-Patent Citations (3)
Title |
---|
孙琪等: "介质 阻挡放电引 发氮氧化物等离子体化学反应", 《物理化学学报》 * |
孙琪等: "温度对等离子体与催化剂结合脱除 NOx 的影响", 《环境化学》 * |
李兴虎: "《柴油车排气后处理技术》", 31 July 2016, 国防工业出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109187410A (en) * | 2018-08-30 | 2019-01-11 | 大连民族大学 | A kind of one-part form plasma-catalytic original position diffusing reflection infrared detecting device |
Also Published As
Publication number | Publication date |
---|---|
CN107486017A (en) | 2017-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108031287A (en) | A kind of plasma enhancing Ag/Al2O3The method of catalyst removal nitrogen oxides | |
CN105170150B (en) | For the Engineering of Supported Metal Oxide Catalysts of assisted microwave synthesis denitration, preparation method and its application method | |
CN102357364B (en) | Preparation for the absorbent charcoal based catalyst of flue gas selective reduction desulfurization | |
CN104474890B (en) | A kind of method of Engineering of Supported Metal Oxide Catalysts catalysis Direct Resolution NO denitration | |
WO2015149499A1 (en) | Low-temperature and highly efficient denitration catalyst and preparation method therefor | |
CN113786842B (en) | Catalyst for synthesizing ammonia from NO oxide, preparation method and application thereof | |
CN102407113A (en) | Microwave catalyst and application method thereof | |
CN102580525A (en) | Method for using activated carbon load copper oxide composite catalyst to absorb nitrogenous oxide | |
CN108097334A (en) | A kind of dielectric barrier discharge plasma makes the Ag/Al of inactivation2O3Catalyst original position regeneration method | |
CN111530463B (en) | Honeycomb ceramic supported double oxide rice husk ash carrier denitration catalyst, preparation method and application | |
CN101972603A (en) | Method for removing nitrogen oxides from waste gas | |
CN108722464B (en) | Pd three-way low-temperature catalyst with nitrogen-doped titanium dioxide as carrier and preparation method and application thereof | |
CN105536777A (en) | Catalytic combustion active ingredient highly-dispersed catalyst and preparation method thereof | |
CN102489152B (en) | A kind of microwave catalyzed direct decomposition NO reaction denitrification method | |
CN102407073B (en) | Denitration method for two-section microwave catalytic reaction bed | |
US7468171B2 (en) | Process using microwave energy and a catalyst to decompose nitrogen oxides | |
CN105170174A (en) | Nitriding carbon-based catalyst used for low temperature SCR denitration and preparation method thereof | |
CN107281915A (en) | SNCR and SCR the combination denitrating system and method for denitration of a kind of aluminium oxide calcining flue gas | |
Luo et al. | Soot oxidation over V/ZSM-5 catalysts in a dielectric barrier discharge (DBD) reactor: Performance enhancement by transition metal (Mn, Co and Fe) doping | |
CN116351427A (en) | A kind of denitrification catalyst for synthetic flue gas denitrification and its preparation method and application | |
CN105396614A (en) | Catalyst for removing nitric oxide by selective catalytic reduction by ammonia, and preparation method and application of catalyst | |
CN102908896B (en) | Method for catalytically oxidizing NO by dielectric barrier discharge plasma modified catalyst | |
CN104474889B (en) | A kind of method of catalytic denitration | |
CN105597810B (en) | The preparation method of low temperature SCR denitration catalyst in a kind of high activity | |
CN107020138A (en) | A kind of Supported Pd-Catalyst and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180515 |