[go: up one dir, main page]

CN108028406A - Solid ion conductive polymeric material - Google Patents

Solid ion conductive polymeric material Download PDF

Info

Publication number
CN108028406A
CN108028406A CN201680040454.9A CN201680040454A CN108028406A CN 108028406 A CN108028406 A CN 108028406A CN 201680040454 A CN201680040454 A CN 201680040454A CN 108028406 A CN108028406 A CN 108028406A
Authority
CN
China
Prior art keywords
ion
diffusing
cation
polymer
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680040454.9A
Other languages
Chinese (zh)
Other versions
CN108028406B (en
Inventor
M·A·齐莫尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ionic Materials Inc
Original Assignee
Ionic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ionic Materials Inc filed Critical Ionic Materials Inc
Publication of CN108028406A publication Critical patent/CN108028406A/en
Application granted granted Critical
Publication of CN108028406B publication Critical patent/CN108028406B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. in situ polymerisation or in situ crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种固体离子传导性聚合物材料,其具有:大于30%的结晶度;玻璃态;以及至少一种阳离子扩散离子和至少一种阴离子扩散离子,其中各扩散离子在所述玻璃态下是可迁移的。

The present invention relates to a solid ion-conducting polymer material having: greater than 30% crystallinity; a glassy state; and at least one cation diffusing ion and at least one anion diffusing ion, wherein each diffusing ion is in the glassy state The following is transferable.

Description

固体离子传导性聚合物材料Solid Ion Conducting Polymer Materials

关于联邦政府资助研究或开发的声明(不适用)Statement Regarding Federal Funding for Research or Development (Not Applicable)

技术领域technical field

本发明总体上涉及聚合物化学,特别地涉及固体聚合物电解质及其合成方法。The present invention relates generally to polymer chemistry, and in particular to solid polymer electrolytes and methods for their synthesis.

背景技术Background technique

电池的历史是缓慢进步和逐渐改进的历史。历史上,电池性能、成本和安全性一直是相互矛盾的目标,需要进行权衡,从而限制了最终应用(如电网级存储(grid-levelstorage)和移动电源(mobile power))的可行性。对转换电池的需求已经达到了国家利益的水平,推动了人们做出巨大努力以提供具有更高能量密度和更低成本的安全的电化学能量存储。The history of batteries is one of slow progress and incremental improvements. Historically, battery performance, cost, and safety have been conflicting goals requiring trade-offs, limiting the viability of end applications such as grid-level storage and mobile power. The demand for conversion batteries has reached the level of national interest, driving great efforts to provide safe electrochemical energy storage with higher energy density and lower cost.

Alessandro Volta发明了变成被称为“伏打电堆”的第一个真正的电池。其由多对的锌盘和铜盘组成,所述锌盘和铜盘彼此一个叠一个地堆叠在一起,由浸在作为电解质的盐水中的一层布或纸板隔开。这一发现虽然并不切实可行,但却引起了对电化学电池和电解质作用的理解。Alessandro Volta invented what became the first true battery known as the "voltaic pile". It consists of pairs of zinc and copper disks stacked one on top of the other, separated by a layer of cloth or cardboard soaked in brine as electrolyte. The discovery, while impractical, has led to an understanding of the role of electrochemical cells and electrolytes.

自Volta以来,发明人已经作出了液体电解质的改进,其中所述液体电解质基于填充有盐、碱或酸在水或有机溶剂中的浓溶液的多孔隔膜。这些液体电解质通常具有腐蚀性和/或可燃性,并且在许多情况下,与电极材料在热力学上不稳定,导致性能限制和安全隐患。这些挑战使得固态电解质在电池开发中极具吸引力。固体电解质可以提供显著的益处,例如不渗漏电解质、更具柔性的几何形状、能量密度更高的电极以及改进的安全性。Since Volta, inventors have made improvements in liquid electrolytes based on porous membranes filled with concentrated solutions of salts, bases or acids in water or organic solvents. These liquid electrolytes are often corrosive and/or flammable and, in many cases, thermodynamically unstable with electrode materials, leading to performance limitations and safety concerns. These challenges make solid-state electrolytes extremely attractive for battery development. Solid electrolytes can offer significant benefits such as impermeable electrolytes, more flexible geometries, higher energy density electrodes, and improved safety.

陶瓷和玻璃是第一批被发现并开发具有离子电导率的固体材料。接下来还有其它材料,但是所有这些材料都具有足够高的离子电导率仅在非常高的温度下才可获得的特征。例如,日本丰田已经宣布采用新“结晶态超离子晶体”的开发工作,其是一种玻璃态陶瓷Li10GeP2S12。但是,这种材料只有在高于140℃才具有高的电导率,而陶瓷则具有可制备性和脆性的常见问题。陶瓷的制备挑战对于将材料加入电池电极来说会是特别令人望而却步的。Ceramics and glasses were the first solid materials discovered and developed to possess ionic conductivity. There are other materials to follow, but all of these have the characteristic that sufficiently high ionic conductivities are only achievable at very high temperatures. For example, Toyota of Japan has announced development work using a new "crystalline superionic crystal", which is a glassy ceramic Li 10 GeP 2 S 12 . However, this material has high electrical conductivity only above 140 °C, while ceramics suffer from common problems of manufacturability and brittleness. The fabrication challenges of ceramics can be particularly daunting for incorporating materials into battery electrodes.

对聚合物电解质的最初关注由Peter V.Wright教授在1975年的下述发现引起,其发现了聚环氧乙烷(PEO)的络合物可以传导金属离子。不久之后,Michel Armand教授认识到PEO锂盐络合物在电池应用中的潜在用途。PEO和锂盐的组合已经发展了多年。这种材料的实例是P(EO)n LiBETI络合物。在过去的三十年中,已经有许多尝试来改善聚环氧乙烷(PEO)-(CH2CH2O)n-的电导率。在这些基于PEO的材料中,阳离子迁移率受聚合物链段运动支配。PEO的这种链段运动实际上是类似液体的机理,但是链缠结和部分结晶可以给电解质一些固体的本体性质(bulk property)。然而,链段运动对于PEO成为离子传导性的是必不可少的。The initial interest in polymer electrolytes arose from the discovery in 1975 by Professor Peter V. Wright that complexes of polyethylene oxide (PEO) could conduct metal ions. Not long after, Prof. Michel Armand recognized the potential use of PEO lithium salt complexes in battery applications. The combination of PEO and lithium salts has been developed over the years. An example of such a material is the P(EO) nLiBETI complex. In the past three decades, there have been many attempts to improve the conductivity of polyethylene oxide (PEO) - ( CH2CH2O ) n- . In these PEO-based materials, cation mobility is dominated by polymer segment motion. This segmental motion of PEO is actually a liquid-like mechanism, but chain entanglement and partial crystallization can give the electrolyte some of the bulk properties of a solid. However, segmental motion is essential for PEO to become ionically conductive.

增塑聚合物-盐络合物通过将液体增塑剂以使固体聚合物和液体电解质之间存在折衷的方式添加到PEO中而制备。由于链段运动增加,室温电导率(ambient conductivity)的数值得到大幅度提高,但这是以膜的机械完整性劣化为代价的而且存在聚合物电解质对金属电极的腐蚀反应性增加。Plasticized polymer-salt complexes are prepared by adding a liquid plasticizer to PEO in such a way that there is a compromise between solid polymer and liquid electrolyte. Due to the increased segmental motion, the value of ambient conductivity is greatly improved, but this is at the expense of the degradation of the mechanical integrity of the membrane and the presence of increased corrosion reactivity of the polymer electrolyte to the metal electrode.

凝胶电解质通过将大量液体溶剂/液体增塑剂掺入能够形成具有聚合物主体结构的凝胶的聚合物基质中来获得。液体溶剂保留在聚合物的基质中,并通过原本不导电的固体聚合物形成液体导电路径。凝胶电解质可以提供高的室温电导率,但是存在与增塑聚合物电解质所提及的类似的缺点。Gel electrolytes are obtained by incorporating a large amount of liquid solvent/liquid plasticizer into a polymer matrix capable of forming a gel with a polymer host structure. The liquid solvent remains in the polymer matrix and forms a liquid conductive path through the otherwise non-conductive solid polymer. Gel electrolytes can offer high room-temperature conductivity, but suffer from similar drawbacks to those mentioned for plasticized polymer electrolytes.

橡胶状电解质实际上是“盐掺聚合物(polymer-in-salt)”体系;与“聚合物掺盐(salt-in-polymer)”不同,“盐掺聚合物”体系中大量盐与少量聚合物(即聚环氧乙烷(PEO)、聚环氧丙烷(PPO)等)混合。这些材料的玻璃化转变温度可以较低以在室温下保持橡胶状态或粘弹性状态,其转而通过增强链段运动提供高电导率。然而,络合的/溶解的盐可能具有结晶趋势,因此妨碍了其在实际电化学装置中的使用。The rubbery electrolyte is actually a "polymer-in-salt" system; unlike "salt-in-polymer", the "salt-in-polymer" system has a large amount of salt combined with a small amount of polymer substances (ie polyethylene oxide (PEO), polypropylene oxide (PPO), etc.) mixed. The glass transition temperature of these materials can be lower to maintain a rubbery or viscoelastic state at room temperature, which in turn provides high electrical conductivity through enhanced segmental motion. However, complexed/dissolved salts may have a tendency to crystallize, thus hampering their use in practical electrochemical devices.

复合聚合物电解质简单地通过将一小部分微/纳米尺寸无机(陶瓷)/有机填料颗粒分散到常规聚合物主体中来制备。聚合物充当第一相,而填充材料被分散在第二相中。作为分散的结果,可以提高离子电导率、机械稳定性和界面活性。离子电导率归因于在填料的存在下聚合物结晶度水平的降低以及相应的链段运动增加。Composite polymer electrolytes are prepared simply by dispersing a fraction of micro/nano-sized inorganic (ceramic)/organic filler particles into a conventional polymer host. The polymer acts as the first phase, while the filler material is dispersed in the second phase. As a result of the dispersion, ionic conductivity, mechanical stability and interfacial activity can be improved. The ionic conductivity is attributed to the reduced level of polymer crystallinity and the corresponding increase in segmental motion in the presence of fillers.

聚电解质包含与聚合物骨架共价键合的带电基团,这使得带相反电荷的离子非常易迁移。带电基团通过链段运动而是柔性的,其中所述链段运动是阳离子扩散率所需的。Polyelectrolytes contain charged groups covalently bonded to the polymer backbone, which makes the migration of oppositely charged ions very easy. Charged groups are made flexible by segmental motion required for cation diffusivity.

其它聚合物电解质包括Rod-Coil Block聚酰亚胺(NASA研究)和各种聚合物/液体共混物(离子液体/PVDF-HFP)。遗憾的是,室温下的低电导率把所有这些已知的聚合物电解质排除在实际应用之外,因为它们需要链段运动来实现离子电导率。由于典型的聚合物电解质离子电导率依赖于高于材料的玻璃化转变温度(Tg)的链段运动,因此制备可用的固体聚合物电解质的所有尝试都曾集中在抑制结晶相和/或降低玻璃态转变为能够进行链段运动的状态(即粘弹性状态或橡胶状态)的温度。Other polymer electrolytes include Rod-Coil Block polyimide (NASA research) and various polymer/liquid blends (ionic liquid/PVDF-HFP). Unfortunately, the low conductivity at room temperature excludes all these known polymer electrolytes from practical applications because they require segmental motion to achieve ionic conductivity. Since typical polymer electrolyte ionic conductivity relies on segmental motion above the glass transition temperature (T g ) of the material, all attempts to produce usable solid polymer electrolytes have focused on suppressing the crystalline phase and/or reducing The temperature at which the glass transitions to a state capable of segmental motion (ie, a viscoelastic or rubbery state).

在存在结晶相和非晶相的聚合物-盐络合物中,离子传输发生在非晶相中。Vogel-Tamman-Fulcher(VTF)方程描述了离子通过聚合物扩散的行为。VTF方程基于以下假设,即离子通过短聚合物链段的半随机运动来传输。这种链段运动的起始是随着温度升高到高于玻璃化转变温度Tg而出现的,并且随着温度在粘弹性状态中升高而变得更快。认为链段运动通过破坏聚合物上的离子相对的(relative)多个配位位点的溶剂化并提供离子可能扩散进入的空间或自由体积来促进离子运动。聚合物链段运动对于离子传输是必需的事实通常要求此种络合物集中在具有低玻璃化转变温度的非晶材料上。In polymer-salt complexes where crystalline and amorphous phases exist, ion transport occurs in the amorphous phase. The Vogel-Tamman-Fulcher (VTF) equation describes the behavior of ions diffusing through polymers. The VTF equation is based on the assumption that ions are transported by semi-random motion of short polymer chain segments. The onset of this segmental motion occurs with increasing temperature above the glass transition temperature, Tg , and becomes faster as temperature increases in the viscoelastic regime. Segmental motion is believed to facilitate ion motion by disrupting the solvation of ion-relative multiple coordination sites on the polymer and providing space or free volume into which ions may diffuse. The fact that polymer segment motion is necessary for ion transport generally requires that such complexes be concentrated on amorphous materials with low glass transition temperatures.

发明内容Contents of the invention

根据一个方面,提供了一种固体离子传导性(ionically conductive)聚合物材料,其具有大于30%的结晶度;熔化温度;玻璃态;以及至少一种阳离子扩散离子和至少一种阴离子扩散离子(both at least one cationic and anionic diffusing ion),其中各扩散离子在所述玻璃态下是可迁移的。该材料可以进一步包含多个(a plurality of)电荷转移络合物,和According to one aspect, there is provided a solid ionically conductive polymer material having a crystallinity greater than 30%; a melting temperature; a glassy state; and at least one cation-diffusing ion and at least one anion-diffusing ion ( both at least one cationic and anionic diffusing ion), wherein each diffusing ion is mobile in the glassy state. The material may further comprise a plurality of charge transfer complexes, and

多个(a plurality of)单体,其中各电荷转移络合物位于单体上。A plurality of (a plurality of) monomers, wherein each charge transfer complex is located on the monomer.

该材料可以还具有在室温下小于1.0×105Ω·cm2的面积比电阻(area specificresistance)。The material may also have an area specific resistance of less than 1.0×10 5 Ω·cm 2 at room temperature.

在一个方面中,提供了一种固体半结晶离子传导性聚合物材料,其具有:多个单体;多个电荷转移络合物,其中各电荷转移络合物位于单体上;并且其中所述材料的面积比电阻在室温下小于1.0×105Ω·cm2。该材料可具有大于30%的结晶度;在低于材料熔化温度的温度下存在的玻璃态;以及阳离子扩散离子和阴离子扩散离子,由此各扩散离子在所述玻璃态下是可迁移的。In one aspect, there is provided a solid semicrystalline ionically conductive polymer material having: a plurality of monomers; a plurality of charge transfer complexes, wherein each charge transfer complex is located on the monomer; and wherein the The area specific resistance of the above material is less than 1.0×10 5 Ω·cm 2 at room temperature. The material may have a crystallinity of greater than 30%; a glassy state existing at a temperature below the melting temperature of the material; and cation-diffusing ions and anion-diffusing ions, whereby each diffusing ion is mobile in the glassy state.

根据固体离子传导性聚合物材料的其它方面,该材料的其它方面可以包括以下特征中的一个或多个:According to other aspects of the solid ion-conducting polymer material, other aspects of the material may include one or more of the following features:

电荷转移络合物通过聚合物和电子受体的反应形成;Charge transfer complexes are formed by the reaction of polymers and electron acceptors;

该材料具有玻璃态,并且包含至少一种阳离子扩散离子和至少一种阴离子扩散离子,其中各扩散离子在所述玻璃态下是可迁移的;The material has a glassy state and comprises at least one cation diffusing ion and at least one anion diffusing ion, wherein each diffusing ion is mobile in said glassy state;

该材料包含至少三种扩散离子;The material contains at least three diffuse ions;

该材料包含多于一种阴离子扩散离子;The material contains more than one anion diffusing ion;

该材料的熔化温度大于250℃;The melting temperature of the material is greater than 250°C;

该材料的离子电导率(ionic conductivity)在室温下大于1.0x10-5S/cm;The ionic conductivity of the material is greater than 1.0x10 -5 S/cm at room temperature;

该材料包含单一阳离子扩散离子,其中所述阳离子扩散离子在室温下的扩散率大于1.0x10-12m2/s;The material comprises a single cation-diffusing ion, wherein the diffusivity of the cation-diffusing ion is greater than 1.0×10 −12 m 2 /s at room temperature;

该材料包含单一阴离子扩散离子,其中所述阴离子扩散离子在室温下的扩散率大于1.0x10-12m2/s;The material comprises a single anion-diffusing ion, wherein the anion-diffusing ion has a diffusivity at room temperature greater than 1.0×10 −12 m 2 /s;

该材料,其中至少一种阳离子扩散离子包括碱金属、碱土金属、过渡金属或后过渡金属(post transition metal);The material, wherein at least one of the cation-diffusing ions comprises an alkali metal, alkaline earth metal, transition metal, or post transition metal;

该材料包含至少一个阴离子扩散离子/单体;The material comprises at least one anion diffusing ion/monomer;

该材料包含至少一个阳离子扩散离子/单体;The material comprises at least one cation-diffusing ion/monomer;

该材料包含至少1摩尔阳离子扩散离子/升材料;The material contains at least 1 mole of cation diffusing ions per liter of material;

该材料的电荷转移络合物通过聚合物、电子受体和离子化合物的反应形成,其中各阳离子扩散离子和阴离子扩散离子是所述离子化合物的反应产物;A charge transfer complex of the material is formed by the reaction of a polymer, an electron acceptor, and an ionic compound, wherein each of the cation-diffusing ions and the anion-diffusing ions is a reaction product of the ionic compound;

该材料由至少一种离子化合物形成,其中该离子化合物包含各阳离子扩散离子和阴离子扩散离子;the material is formed from at least one ionic compound, wherein the ionic compound comprises respective cation-diffusing ions and anion-diffusing ions;

该材料是热塑性的;the material is thermoplastic;

该材料的阳离子扩散离子包括锂;The cation-diffusing ions of the material include lithium;

该材料的至少一种阳离子扩散离子和至少一种阴离子扩散离子具有扩散率,其中阳离子扩散率大于阴离子扩散率;at least one cation-diffusing ion and at least one anion-diffusing ion of the material have a diffusivity, wherein the cation diffusivity is greater than the anion diffusivity;

该材料的阳离子迁移数大于0.5且小于1.0;The material has a cation transfer number greater than 0.5 and less than 1.0;

该材料的阳离子扩散离子浓度大于3摩尔阳离子/升材料;The material has a cation-diffusing ion concentration greater than 3 moles of cations per liter of material;

该材料的阳离子扩散离子包括锂;The cation-diffusing ions of the material include lithium;

该材料的扩散阳离子是单价的;The diffuse cations of the material are monovalent;

扩散阳离子的价数大于1;The valence of the diffuse cation is greater than 1;

该材料包含多于1个扩散阴离子/单体;The material contains more than 1 diffusing anion/monomer;

该材料的扩散阴离子是氢氧根离子;The diffusing anions of the material are hydroxide ions;

该材料的扩散阴离子是单价的;The diffuse anions of the material are monovalent;

该材料的扩散阴离子和扩散阳离子是单价的;The diffuse anions and diffuse cations of the material are monovalent;

该材料的至少一种阳离子扩散离子和至少一种阴离子扩散离子具有扩散率,其中阴离子扩散率大于阳离子扩散率;at least one cation-diffusing ion and at least one anion-diffusing ion of the material have a diffusivity, wherein the anion diffusivity is greater than the cation diffusivity;

该材料的阳离子迁移数等于或小于0.5且大于零;The material has a cation transport number equal to or less than 0.5 and greater than zero;

该材料的至少一种阳离子扩散离子的扩散率大于1.0x10-12m2/s;The material has a diffusivity of at least one cation-diffusing ion greater than 1.0x10 -12 m 2 /s;

该材料的至少一种阴离子扩散离子的扩散率大于1.0x10-12m2/s;The material has a diffusivity of at least one anion diffusing ion greater than 1.0x10 -12 m 2 /s;

该材料的至少一种阴离子扩散离子和至少一种阳离子扩散离子的扩散率大于1.0x10-12m2/s;The material has a diffusivity of at least one anion-diffusing ion and at least one cation-diffusing ion greater than 1.0 x 10 −12 m 2 /s;

该材料的各单体包含位于所述单体的骨架中的芳香族环结构或杂环结构;Each monomer of the material comprises an aromatic ring structure or a heterocyclic structure in the skeleton of the monomer;

该材料进一步包含掺入所述环结构中或位于与所述环结构相邻的骨架上的杂原子;The material further comprises a heteroatom incorporated into said ring structure or located on the backbone adjacent to said ring structure;

该材料包含的杂原子选自硫、氧或氮;The material comprises heteroatoms selected from sulfur, oxygen or nitrogen;

该材料的杂原子位于所述单体的与所述环结构相邻的骨架上;The heteroatom of the material is located on the backbone of the monomer adjacent to the ring structure;

该材料的杂原子是硫。The heteroatom of this material is sulfur.

该材料是π共轭的;The material is π-conjugated;

该材料的至少一个阴离子扩散离子/单体,并且其中至少一个单体包含锂离子;at least one anion of the material diffuses ions/monomers, and wherein at least one monomer comprises lithium ions;

该材料包含多个单体,其中所述单体的分子量大于100克/摩尔;The material comprises a plurality of monomers, wherein the monomers have a molecular weight greater than 100 g/mole;

该材料是亲水的;the material is hydrophilic;

该材料的离子电导率是各向同性的;The ionic conductivity of the material is isotropic;

该材料在室温下的离子电导率大于1x10-4S/cm;The material has an ionic conductivity greater than 1x10 -4 S/cm at room temperature;

该材料在80℃的离子电导率大于1x10-3S/cm;The ionic conductivity of the material at 80°C is greater than 1x10 -3 S/cm;

该材料在-40℃的离子电导率大于1x10-5S/cm;The ionic conductivity of the material at -40°C is greater than 1x10 -5 S/cm;

该材料的阳离子扩散离子包括锂,并且其中在室温下锂离子的扩散率大于1.0x10-13m2/s;The cation-diffusing ions of the material comprise lithium, and wherein the diffusivity of the lithium ions is greater than 1.0 x 10 −13 m 2 /s at room temperature;

该材料是不易燃的;the material is non-flammable;

当与第二材料混合时,该材料是不起反应的,其中所述第二材料选自电化学活性材料、导电材料、流变改性材料和稳定材料;The material is non-reactive when mixed with the second material, wherein the second material is selected from the group consisting of electrochemically active materials, electrically conductive materials, rheology modifying materials and stabilizing materials;

该材料呈薄膜状;The material is in the form of a film;

该材料的杨氏模量等于或大于3.0MPa;The Young's modulus of the material is equal to or greater than 3.0MPa;

该材料在掺杂电子受体后变为离子传导性的;The material becomes ionically conductive when doped with electron acceptors;

该材料在离子化合物的存在下在掺杂电子受体后变为离子传导性的,该离子化合物包含阳离子扩散离子和阴离子扩散离子,或者可通过所述电子受体的氧化作用转化成阳离子扩散离子和阴离子扩散离子;The material becomes ionically conductive after doping electron acceptors in the presence of ionic compounds comprising cation-diffusing ions and anion-diffusing ions, or can be converted to cation-diffusing ions by oxidation of said electron acceptors and anion diffusing ions;

该材料由基础聚合物、电子受体和离子化合物的反应产物形成;The material is formed from the reaction product of a base polymer, an electron acceptor, and an ionic compound;

该材料的基础聚合物是共轭聚合物;The base polymer of the material is a conjugated polymer;

该材料的基础聚合物是PPS或液晶聚合物;The base polymer of the material is PPS or liquid crystal polymer;

该材料的离子化合物反应物是氧化物、氯化物、氢氧化物或盐;The ionic compound reactant of the material is an oxide, chloride, hydroxide or salt;

该材料的电荷转移络合物通过电子受体和聚合物的反应形成;和A charge transfer complex of the material is formed by the reaction of the electron acceptor and the polymer; and

该材料的反应物电子受体是醌或氧。The reactant electron acceptor for this material is quinone or oxygen.

在一个方面中,提供了固体离子传导性大分子和包含该大分子的材料,其包含:In one aspect, solid ion-conducting macromolecules and materials comprising the macromolecules are provided, comprising:

多个单体,其中各单体包含芳香族环结构或杂环结构;A plurality of monomers, wherein each monomer comprises an aromatic ring structure or a heterocyclic structure;

掺入所述环结构中或者位置与所述环结构相邻的杂原子;a heteroatom incorporated into or positioned adjacent to said ring structure;

阳离子扩散离子和阴离子扩散离子,其中所述阳离子扩散离子和所述阴离子扩散离子都被掺入所述大分子的结构中;cation-diffusing ions and anion-diffusing ions, wherein both the cation-diffusing ions and the anion-diffusing ions are incorporated into the structure of the macromolecule;

其中所述阳离子扩散离子和所述阴离子扩散离子均可以沿着所述大分子扩散;wherein both the cation-diffusing ions and the anion-diffusing ions can diffuse along the macromolecules;

其中当阳离子扩散离子或阴离子扩散离子沿着所述大分子扩散时,聚合物材料中不存在链段运动。Wherein there is no segmental motion in the polymer material as cation-diffusing ions or anion-diffusing ions diffuse along said macromolecule.

此外,该方面可以包括以下特征中的一个或多个:Additionally, this aspect can include one or more of the following features:

该材料的离子电导率大于1x10-4S/cm;The ionic conductivity of the material is greater than 1x10 -4 S/cm;

各单体的分子量大于100克/摩尔;The molecular weight of each monomer is greater than 100 g/mol;

该材料的至少一种阳离子扩散离子包括碱金属、碱土金属、过渡金属或后过渡金属。The at least one cation-diffusing ion of the material includes an alkali metal, alkaline earth metal, transition metal, or post-transition metal.

一个方面是一种制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的基础聚合物、电子受体和离子化合物混合以产生第一混合物;加热所述第一混合物以产生所述固体离子传导性聚合物材料。One aspect is a method of making a solid ion-conducting polymer material, comprising the steps of: mixing a base polymer comprising a plurality of monomers, an electron acceptor, and an ionic compound to produce a first mixture; heating the first mixture to produce the solid ion-conducting polymer material.

另一方面是一种制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的聚合物和包含离子的化合物混合以产生第一混合物;用电子受体掺杂所述第一混合物以产生第二混合物;以及加热所述第二混合物。Another aspect is a method of preparing a solid ion-conducting polymer material, comprising the steps of: mixing a polymer comprising a plurality of monomers and an ion-containing compound to produce a first mixture; doping the resulting polymer with an electron acceptor said first mixture to produce a second mixture; and heating said second mixture.

另一方面是一种制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的聚合物和电子受体混合以产生第一混合物;加热所述第一混合物以产生包含电荷转移络合物的中间材料;将所述中间材料与包含离子的化合物混合以产生所述固体离子传导性聚合物材料。Another aspect is a method of preparing a solid ion-conducting polymer material, comprising the steps of: mixing a polymer comprising a plurality of monomers and an electron acceptor to produce a first mixture; heating the first mixture to produce an intermediate material comprising a charge transfer complex; mixing the intermediate material with an ion-containing compound to produce the solid ion-conducting polymer material.

制备固体离子传导性聚合物材料的方法的其它方面可以包括以下特征中的一种或多种:Other aspects of the method of making a solid ion-conducting polymer material can include one or more of the following features:

退火步骤,其中在所述退火步骤中基础聚合物的结晶度增大;an annealing step, wherein the crystallinity of the base polymer is increased during said annealing step;

该基础聚合物包含多个单体,并且其中单体与电子受体的摩尔比等于或大于1:1;The base polymer comprises a plurality of monomers, and wherein the molar ratio of monomers to electron acceptors is equal to or greater than 1:1;

该基础聚合物具有玻璃化转变温度,并且其中所述基础聚合物的玻璃化转变温度大于80℃;The base polymer has a glass transition temperature, and wherein the glass transition temperature of the base polymer is greater than 80°C;

在混合步骤中该基础聚合物与离子化合物的重量比小于5:1;The weight ratio of the base polymer to the ionic compound during the mixing step is less than 5:1;

在加热步骤中对混合物施加正压;applying a positive pressure to the mixture during the heating step;

在加热步骤中混合物发生颜色变化;The mixture undergoes a color change during the heating step;

在加热步骤中形成电荷转移络合物;Formation of a charge transfer complex during the heating step;

将固体离子传导性聚合物材料与第二材料混合的另外的混合步骤;an additional mixing step of mixing the solid ion-conducting polymer material with the second material;

挤出步骤,其中将所述固体离子传导性聚合物材料挤出;和an extrusion step, wherein the solid ion-conducting polymer material is extruded; and

离子传导步骤,其中所述固体离子传导性聚合物材料传输至少一种离子。The ion conducting step, wherein the solid ion-conducting polymer material transports at least one ion.

另外的方面包括:包含前述方面的材料和电化学活性材料的电化学活性材料复合材料;Additional aspects include: an electrochemically active material composite comprising the material of the preceding aspects and an electrochemically active material;

包含前述方面的材料的电极;An electrode comprising a material of the preceding aspect;

包含前述方面的材料的电池;A battery comprising a material of the preceding aspect;

包含前述方面的材料的燃料电池;A fuel cell comprising a material of the preceding aspect;

包含前述方面的材料的电解质;An electrolyte comprising a material of the preceding aspect;

包含前述方面的材料的用于传导离子的装置;A device for conducting ions comprising a material of the preceding aspect;

包括前述方面的材料的用于传导离子的方法;和A method for conducting ions comprising a material of the preceding aspect; and

包括前述方面的材料的用于分离离子的方法;A method for separating ions comprising a material of the preceding aspect;

在另一个方面中,提供了一种新的离子传导机理,其能够在聚合物的结晶相和非晶玻璃态两者中进行离子传导,这能够得到在室温下具有液体的电导率的固体聚合物材料;In another aspect, a novel ion conduction mechanism is provided that enables ion conduction in both the crystalline phase and the amorphous glassy state of the polymer, which enables solid polymers with the conductivity of liquids at room temperature Material;

能够产生包含该聚合物和电化学活性化合物以提高容量和循环寿命的复合阳极和阴极;Ability to produce composite anodes and cathodes comprising the polymer and an electrochemically active compound to enhance capacity and cycle life;

能够使用来源丰富和低成本的活性材料;且Enables the use of plentiful and low-cost active materials; and

能够实施使用低成本、高体积挤出和其它塑料加工技术的新电池制备方法。New battery fabrication methods using low-cost, high-volume extrusion and other plastic processing techniques can be implemented.

本领域技术人员将通过参考以下说明书、权利要求书和附图进一步理解和领会这些和其它方面、特征、优点和目的。These and other aspects, features, advantages and objects will be further understood and appreciated by those skilled in the art by reference to the following specification, claims and drawings.

附图说明Description of drawings

在附图中:In the attached picture:

图1是使用包含固体离子传导性聚合物材料的LCO阴极的锂离子电池的循环测试的曲线图;Figure 1 is a graph of cycling tests of lithium-ion batteries using LCO cathodes comprising solid ion-conducting polymer materials;

图2是实施例6的放电曲线图;Fig. 2 is the discharge curve figure of embodiment 6;

图3A、3B和3C是实施例9中描述的X射线衍射图;3A, 3B and 3C are X-ray diffraction patterns described in Example 9;

图4是实施例10中描述的DSC曲线;Fig. 4 is the DSC curve described in embodiment 10;

图5是比较例13中描述的测量电导率相对温度的图;Figure 5 is a graph of measured conductivity versus temperature as described in Comparative Example 13;

图6是比较例13中描述的测量电导率相对温度的曲线图;Figure 6 is a graph of measured conductivity versus temperature as described in Comparative Example 13;

图7是实施例14中描述的材料的样品的测量电导率的图;Figure 7 is a graph of the measured conductivity of samples of the material described in Example 14;

图8是实施例16中描述的材料的样品的测量扩散率相对温度的图;Figure 8 is a graph of measured diffusivity versus temperature for samples of the material described in Example 16;

图9是实施例17中描述的比较材料的NMR扩散率曲线图;Figure 9 is a graph of NMR diffusivity curves for comparative materials described in Example 17;

图10是实施例18中描述的基础聚合物反应物的NMR谱。FIG. 10 is an NMR spectrum of the base polymer reactant described in Example 18. FIG.

图11是实施例18中描述的材料的NMR谱。FIG. 11 is an NMR spectrum of the material described in Example 18. FIG.

图12是实施例18中描述的材料的NMR谱。FIG. 12 is an NMR spectrum of the material described in Example 18. FIG.

图13是实施例18中描述的电子受体的NMR谱。FIG. 13 is an NMR spectrum of the electron acceptor described in Example 18. FIG.

图14A是实施例18中描述的材料的NMR谱。FIG. 14A is an NMR spectrum of the material described in Example 18. FIG.

图14B是实施例18中描述的材料的NMR谱。FIG. 14B is an NMR spectrum of the material described in Example 18. FIG.

图15是实施例19中描述的材料的NMR谱。Figure 15 is an NMR spectrum of the material described in Example 19.

图16是使用如实施例19中描述的材料的电池的图示。FIG. 16 is an illustration of a battery using materials as described in Example 19. FIG.

图17是实施例20中描述的三个电池的放电曲线。FIG. 17 is the discharge curves of the three cells described in Example 20. FIG.

图18是实施例21中描述的电池的放电曲线。FIG. 18 is a discharge curve of the battery described in Example 21. FIG.

图19是实施例22中描述的电池的放电曲线。FIG. 19 is a discharge curve of the battery described in Example 22. FIG.

具体实施方式Detailed ways

本专利申请要求2015年5月8日提交的美国临时专利申请No.62/158,841的优先权,其全部公开内容通过援引加入的方式纳入本文。This patent application claims priority to U.S. Provisional Patent Application No. 62/158,841, filed May 8, 2015, the entire disclosure of which is incorporated herein by reference.

提供以下对术语的解释以更好地详细描述将在本节中阐述的方面、实施方案和对象。除非另外解释或限定,否则本文使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常理解相同的含义。为了便于阅读本公开的各种实施方案,提供了对特定术语的以下解释:The following explanations of terms are provided to better detail the aspects, embodiments and objects that will be set forth in this section. Unless otherwise explained or defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. To facilitate reading of the various embodiments of the present disclosure, the following explanations of certain terms are provided:

去极化剂是电化学活性物质的同义词,即在电化学反应和电化学活性物质的电荷转移步骤中改变其氧化态、或者参与化学键的形成或断裂的物质。当电极具有多于一种电活性物质时,它们可以被称为共去极化剂(codepolarizer)。Depolarizer is a synonym for electrochemically active species, that is, a substance that changes its oxidation state, or participates in the formation or breaking of chemical bonds, during electrochemical reactions and charge transfer steps of electrochemically active species. When electrodes have more than one electroactive species, they can be referred to as codepolarizers.

热塑性是塑料材料或聚合物在特定温度(常常在其熔化温度附近或为其熔化温度)以上变得易弯曲或可模压并在冷却时凝固的特征。Thermoplasticity is the characteristic of a plastic material or polymer that becomes pliable or moldable above a certain temperature (often at or near its melting temperature) and solidifies when cooled.

固体电解质包括无溶剂聚合物和陶瓷化合物(结晶的和玻璃状的)。Solid electrolytes include solvent-free polymers and ceramic compounds (crystalline and glassy).

“固体”的特征是能够无限长的一段时间保持其形状,并与液相材料区别开来且不同。固体的原子结构可以是结晶的或非晶的。固体可以与复合结构中的组分混合或为复合结构中的组分。然而,为了本申请及其权利要求的目的,除非另外说明,否则固体材料要求该材料为通过固体而非通过任何溶剂、凝胶或液相离子传导性的。为了本申请及其权利要求的目的,将依赖于液体获得离子电导率的凝胶(或湿)聚合物和其它材料定义为不是固体电解质,因为它们依赖于液相获得其离子电导率。A "solid" is characterized by its ability to retain its shape for an indefinite period of time and is distinct and distinct from liquid phase materials. The atomic structure of a solid can be crystalline or amorphous. Solids may be mixed with or be components of the composite structure. However, for the purposes of this application and its claims, unless otherwise stated, a solid material requires that the material be ionically conductive through the solid and not through any solvent, gel or liquid phase. For the purposes of this application and its claims, gel (or wet) polymers and other materials that rely on liquids for their ionic conductivity are defined as not being solid electrolytes because they rely on a liquid phase for their ionic conductivity.

聚合物通常是有机的并且由碳基大分子构成,其中所述碳基大分子中的每一种都具有一种或多种重复单元或单体。聚合物重量轻、可延展、通常不导电,且在相对较低的温度下熔化。聚合物可以通过注塑成型工艺、吹塑成型工艺和其它成型工艺、挤出、压制、冲压、三维印刷、机械加工和其它塑料工艺制成产品。聚合物通常在低于玻璃化转变温度Tg的温度下具有玻璃态。这种玻璃化温度是链柔性的函数;并且当系统中有足够的振动(热)能量时,这种玻璃化温度会出现以产生足够的自由体积,以使聚合物大分子的链段序列可以作为单位一起移动。然而,在聚合物的玻璃态下,没有聚合物的链段运动。Polymers are generally organic and composed of carbon-based macromolecules, each of which has one or more repeating units or monomers. Polymers are lightweight, malleable, generally nonconductive, and melt at relatively low temperatures. Polymers can be made into products by injection molding, blow molding and other shaping processes, extrusion, pressing, stamping, 3D printing, machining and other plastic processes. Polymers generally have a glassy state at temperatures below the glass transition temperature Tg. This glass transition temperature is a function of chain flexibility; and occurs when there is sufficient vibrational (thermal) energy in the system to create sufficient free volume so that the chain segment sequence of the polymer macromolecule can Move together as a unit. However, in the glassy state of the polymer, there is no segmental motion of the polymer.

聚合物不同于被定义为无机非金属材料的陶瓷;其通常是由与氧、氮或碳共价键合的金属构成的、脆性的、坚固的且不导电的化合物。Polymers differ from ceramics, which are defined as inorganic non-metallic materials; they are generally brittle, strong and non-conductive compounds composed of metals covalently bonded to oxygen, nitrogen or carbon.

在一些聚合物中发生的玻璃化转变是在冷却聚合物材料时过冷液态与玻璃态之间的中点温度。玻璃化转变的热力学测量是通过测量聚合物的物理性质(例如,体积、焓或熵以及其它衍生性质)与温度的函数来完成的。玻璃化转变温度在这样的曲线上作为选定性质(焓的体积)的破坏观察到或由在转变温度下的斜率变化(热容量或热膨胀系数)观察到。在将聚合物从高于Tg冷却至低于Tg时,聚合物分子的迁移速度减慢直至聚合物达到其玻璃态。The glass transition that occurs in some polymers is the midpoint temperature between the supercooled liquid state and the glass state when the polymer material is cooled. Thermodynamic measurements of glass transitions are accomplished by measuring physical properties of the polymer (eg, volume, enthalpy or entropy, and other derived properties) as a function of temperature. The glass transition temperature is observed on such a curve as a breakdown of a selected property (volume of enthalpy) or as a change in slope (heat capacity or coefficient of thermal expansion) at the transition temperature. As the polymer is cooled from above Tg to below Tg, the rate of migration of the polymer molecules slows until the polymer reaches its glassy state.

由于聚合物可包含非晶相和结晶相两者,所以聚合物结晶度是该结晶相的量相对于聚合物的量,并以百分比表示。结晶度百分比可以经由聚合物的X射线衍射通过分析非晶相和结晶相的相对面积来计算。Since polymers may contain both amorphous and crystalline phases, polymer crystallinity is the amount of this crystalline phase relative to the amount of polymer and is expressed as a percentage. The percent crystallinity can be calculated by analyzing the relative areas of the amorphous and crystalline phases via X-ray diffraction of the polymer.

聚合物薄膜通常被描述为聚合物的薄部分,但应理解为等于或小于300微米厚。A polymer film is generally described as a thin section of polymer, but is understood to be equal to or less than 300 microns thick.

重要的是,注意离子电导率与电导率(electrical conductivity)不同。离子电导率取决于离子扩散率,这两个性质通过Nerst Einstein方程而相关。离子电导率和离子扩散率都是离子迁移率的量度。如果离子在材料中的扩散率为正值(大于零),或者其有助于正电导率,则所述离子在所述材料中是可迁移的。除非另有说明,所有这些离子迁移率测量均在室温(约21℃)下进行。由于离子迁移率受温度影响,因而其可能难以在低温下检测。设备检测限度可能是确定小迁移率量中的一个因素。迁移性可以理解为离子扩散率为至少1x10-14m2/s,优选至少1x10-13m2/s,这两者均使得离子在材料中是可迁移的。It is important to note that ionic conductivity is not the same as electrical conductivity. Ionic conductivity depends on ion diffusivity, and these two properties are related by the Nerst Einstein equation. Both ionic conductivity and ionic diffusivity are measures of ion mobility. Ions are mobile in a material if their diffusivity in the material is positive (greater than zero), or if they contribute to positive conductivity. All these ion mobility measurements were performed at room temperature (approximately 21° C.) unless otherwise stated. Since ion mobility is temperature dependent, it can be difficult to detect at low temperatures. The device detection limit may be a factor in determining the amount of small mobility. Mobility is understood to mean an ion diffusivity of at least 1x10 -14 m 2 /s, preferably at least 1x10 -13 m 2 /s, both of which render the ions mobile in the material.

固体聚合物离子传导性材料是包含聚合物并传导离子的固体,如下文进一步描述。A solid polymeric ion-conducting material is a solid that comprises a polymer and conducts ions, as described further below.

本发明的一个方面包括由至少三种不同组分合成固体离子传导性聚合物材料的方法:聚合物、掺杂剂和离子化合物。为材料的特定应用而选择合成的组分和方法。聚合物、掺杂剂和离子化合物的选择也可以基于材料的所需性能而变化。例如,所需的合成的组分和方法可以通过优化所需的物理特性(例如离子电导率)来确定。One aspect of the invention includes a method of synthesizing a solid ion-conducting polymer material from at least three different components: a polymer, a dopant, and an ionic compound. Components and methods of synthesis are selected for specific applications of materials. The choice of polymers, dopants, and ionic compounds can also vary based on the desired properties of the material. For example, desired synthetic components and methods can be determined by optimizing desired physical properties such as ionic conductivity.

合成:synthesis:

合成方法也可以根据具体组分和最终材料的所需形式(例如薄膜、颗粒等)而变化。然而,该方法包括以下基本步骤:首先混合组分中的至少两种,在任选存在的第二混合步骤中加入第三组分,以及加热组分/反应物以在加热步骤中合成固体离子传导性聚合物材料。在本发明的一个方面中,所得混合物可以任选地形成为所需尺寸的薄膜。如果第一步骤生成的混合物中不存在掺杂剂,则可以随后将其加入到混合物中,同时加热和任选存在的施加压力(正压或真空)。所有三种组分都可以存在并将其混合加热,以一步完成固体离子传导性聚合物材料的合成。但是,这个加热步骤可以在与任何混合分开的步骤中完成,或者可以在混合进行时完成。加热步骤可以与混合物的形式(例如薄膜、颗粒等)无关地进行。在合成方法的一个方面中,将所有三种组分混合,然后挤出成薄膜。将该薄膜进行加热以完成合成。Synthetic methods can also vary depending on the specific components and desired form of the final material (eg, films, particles, etc.). However, the method comprises the basic steps of first mixing at least two of the components, adding a third component in an optional second mixing step, and heating the components/reactants to synthesize solid ions in the heating step conductive polymer material. In one aspect of the invention, the resulting mixture can optionally be formed into a film of desired dimensions. If no dopant is present in the mixture resulting from the first step, it can then be added to the mixture with heat and optionally the application of pressure (positive pressure or vacuum). All three components can be present and mixed and heated for one-step synthesis of solid ion-conducting polymer materials. However, this heating step can be done in a separate step from any mixing, or it can be done while mixing is taking place. The heating step can be carried out regardless of the form of the mixture (eg film, granule, etc.). In one aspect of the method of synthesis, all three components are mixed and then extruded into a film. The film is heated to complete the synthesis.

当合成固体离子传导性聚合物材料时,由于反应物颜色是相对浅的颜色,而固体离子传导性聚合物材料是相对深的颜色或黑色,所以发生可以目视观察到的颜色变化。据信,当正在形成电荷转移络合物时,发生这种颜色变化;并且这种颜色变化可以根据合成方法逐渐或快速发生。When synthesizing a solid ion-conducting polymer material, a visually observable color change occurs because the reactant color is a relatively light color and the solid ion-conducting polymer material is a relatively dark color or black. This color change is believed to occur when the charge transfer complex is being formed; and may occur gradually or rapidly depending on the method of synthesis.

合成方法的一个方面是将基础聚合物、离子化合物和掺杂剂混合在一起,并在第二步中加热混合物。由于掺杂剂可以处于气相中,因而加热步骤可以在掺杂剂的存在下实施。混合步骤可以在挤出机、搅拌机、研磨机或塑料加工的典型其它设备中实施。加热步骤可以持续数小时(例如二十四(24)小时),并且颜色变化是合成完全或部分完成的可靠指示。合成后的额外加热似乎不会对材料产生负面影响。One aspect of the synthesis method involves mixing the base polymer, ionic compound and dopant together and heating the mixture in a second step. Since the dopant can be in the gas phase, the heating step can be performed in the presence of the dopant. The mixing step can be carried out in extruders, mixers, mills or other equipment typical of plastics processing. The heating step can last for several hours (eg, twenty-four (24) hours), and the color change is a reliable indicator of complete or partial completion of the synthesis. Additional heating after synthesis does not appear to negatively affect the material.

在合成方法的一个方面中,可以首先混合基础聚合物和离子化合物。然后将掺杂剂与聚合物-离子化合物混合物混合并加热。可以在第二混合步骤期间或在混合步骤之后对混合物加热。In one aspect of the method of synthesis, the base polymer and the ionic compound can first be mixed. The dopant is then mixed with the polymer-ionic compound mixture and heated. The mixture may be heated during the second mixing step or after the mixing step.

在合成方法的另一个方面中,首先将基础聚合物和掺杂剂混合,然后加热。这个加热步骤可以在混合之后或者在此期间施加,并且产生颜色变化,从而指示电荷转移络合物的形成以及掺杂剂和基础聚合物之间的反应。然后将离子化合物混合到反应的聚合物掺杂剂材料中以完成固体离子传导性聚合物材料的形成。In another aspect of the method of synthesis, the base polymer and dopant are first mixed and then heated. This heating step can be applied after or during mixing and produces a color change indicating the formation of a charge transfer complex and the reaction between the dopant and the base polymer. The ionic compound is then mixed into the reacted polymer dopant material to complete the formation of the solid ion-conducting polymer material.

添加掺杂剂的典型方法是本领域技术人员已知的,并且可以包括含有聚合物和离子化合物的薄膜的气相掺杂(vapor doping)以及本领域技术人员已知的其它掺杂方法。在掺杂时,固体聚合物材料变为离子传导性的;据信掺杂起到激活固体聚合物材料的离子组分的作用,因此所述离子组分为扩散离子。Typical methods of adding dopants are known to those skilled in the art and may include vapor doping of thin films containing polymers and ionic compounds, as well as other doping methods known to those skilled in the art. Upon doping, the solid polymer material becomes ionically conductive; it is believed that the doping acts to activate the ionic components of the solid polymer material so that they are diffusive ions.

可以将其它非反应性组分在最初混合步骤、第二混合步骤或加热后的混合步骤期间加入到上述混合物中。这样的其它组分包括但不限于:去极化剂或电化学活性材料如阳极或阴极活性材料,导电材料如碳,流变剂如粘合剂或挤出助剂(例如乙烯丙烯二烯单体“EPDM”),催化剂和可用于实现混合物的所需物理性质的其它组分。Other non-reactive components may be added to the above mixture during the initial mixing step, the second mixing step, or the post-heating mixing step. Such other components include, but are not limited to: depolarizers or electrochemically active materials such as anode or cathode active materials, conductive materials such as carbon, rheological agents such as binders or extrusion aids (e.g. ethylene propylene diene mono body "EPDM"), catalysts and other components that may be used to achieve the desired physical properties of the mixture.

在固体离子传导性聚合物材料的合成中可用作反应物的聚合物是可以被电子受体氧化的电子给体或聚合物。结晶度指数大于30%和大于50%的半结晶聚合物是合适的反应物聚合物。完全结晶的聚合物材料如液晶聚合物(“LCP”)也可用作反应物聚合物。LCP是完全结晶的,因此其结晶度指数被定义为100%。无掺杂的共轭聚合物和诸如聚苯硫醚(“PPS”)等聚合物也是合适的聚合物反应物。Polymers useful as reactants in the synthesis of solid ion-conducting polymer materials are electron donors or polymers that can be oxidized by electron acceptors. Semi-crystalline polymers having a crystallinity index greater than 30% and greater than 50% are suitable reactant polymers. Fully crystalline polymeric materials such as liquid crystal polymers ("LCPs") can also be used as reactant polymers. LCP is completely crystalline, so its crystallinity index is defined as 100%. Undoped conjugated polymers and polymers such as polyphenylene sulfide ("PPS") are also suitable polymer reactants.

聚合物通常不导电。例如,原生PPS具有10-20S cm-1的电导率。非导电聚合物是合适的反应物聚合物。Polymers generally do not conduct electricity. For example, native PPS has a conductivity of 10-20 S cm -1 . Non-conductive polymers are suitable reactant polymers.

在一个方面中,可用作反应物的聚合物可以具有在每个重复单体基团的骨架中的芳香族或杂环组分,并且掺入所述杂环中或者沿所述骨架位于与芳香环相邻的位置的杂原子。杂原子可以直接位于骨架上或与直接位于骨架上的碳原子键合。在杂原子位于骨架上或与位于骨架上的碳原子键合这两种情况下,骨架原子位于与芳香环相邻的骨架上。用于本发明的这一方面中的聚合物的非限制性实例可以选自PPS、聚对苯醚(“PPO”)、LCP、聚醚醚酮(“PEEK”)、聚邻苯二甲酰胺(“PPA”)、聚吡咯、聚苯胺和聚砜。还可以使用包括列出的聚合物的单体的共聚物和这些聚合物的混合物。例如,对羟基苯甲酸的共聚物可以是合适的液晶聚合物基础聚合物。表1详细描述了可用于本发明中的反应物聚合物的非限制性实例以及单体结构和一些物理性质信息,这些信息应被认为是非限制性的,因为聚合物可以采取可影响其物理性质的多种形式。In one aspect, polymers useful as reactants may have an aromatic or heterocyclic component in the backbone of each repeating monomeric group, and be incorporated into the heterocycle or positioned along the backbone with A heteroatom at a position adjacent to an aromatic ring. Heteroatoms may be located directly on the backbone or bonded to carbon atoms located directly on the backbone. In both cases where the heteroatom is on the backbone or is bonded to a backbone carbon atom, the backbone atom is on the backbone adjacent to the aromatic ring. Non-limiting examples of polymers useful in this aspect of the invention may be selected from PPS, poly-p-phenylene ether ("PPO"), LCP, polyether ether ketone ("PEEK"), polyphthalamide ("PPA"), polypyrrole, polyaniline and polysulfone. Copolymers of monomers comprising the listed polymers and mixtures of these polymers may also be used. For example, copolymers of p-hydroxybenzoic acid may be suitable liquid crystal polymer base polymers. Table 1 details non-limiting examples of reactant polymers that can be used in the present invention along with monomer structure and some physical property information, which should be considered non-limiting because the polymers can take forms that can affect their physical properties. of various forms.

表1Table 1

在固体离子传导性聚合物材料的合成中可用作反应物的掺杂剂是电子受体或氧化剂。据信,掺杂剂起到释放离子以获得离子传输和迁移率的作用,并且据信起到生成类似于电荷转移络合物的位点或聚合物内允许离子电导率的位点的作用。可用的掺杂剂的非限制性实例是:醌,例如还被称为“DDQ”的2,3-二氰基-5,6-二氯二氰醌(C8Cl2N2O2)和还被称为氯醌的四氯-1,4-苯醌(C6Cl4O2);还被称为TCNE的四氰基乙烯(C6N4);三氧化硫(“SO3”);臭氧(三氧或O3);氧气(O2,包括空气);过渡金属氧化物(包括二氧化锰(“MnO2”));或任何合适的电子受体等;及它们的组合。在合成加热步骤的温度下温度稳定的那些掺杂剂是可用的,并且温度稳定的醌和其它掺杂剂以及强氧化剂醌是最可用的。表2提供了掺杂剂的非限制性列表以及它们的化学图表。Dopants useful as reactants in the synthesis of solid ion-conducting polymer materials are electron acceptors or oxidizing agents. The dopant is believed to function to release ions for ion transport and mobility, and is believed to function to create sites similar to charge transfer complexes or sites within the polymer that allow ionic conductivity. Non-limiting examples of useful dopants are: quinones such as 2,3-dicyano-5,6-dichlorodicyanoquinone (C 8 Cl 2 N 2 O 2 ) also known as “DDQ” and tetrachloro-1,4-benzoquinone (C 6 Cl 4 O 2 ), also known as chloranil; tetracyanoethylene (C 6 N 4 ), also known as TCNE; sulfur trioxide (“SO 3 ”); ozone (trioxide or O 3 ); oxygen (O 2 , including air); transition metal oxides (including manganese dioxide (“MnO 2 ”)); or any suitable electron acceptor, etc.; and their combination. Those dopants that are temperature stable at the temperature of the synthesis heating step are useful, and temperature stable quinones and other dopants and strong oxidant quinones are most useful. Table 2 provides a non-limiting list of dopants along with their chemical diagrams.

表2Table 2

在固体离子传导性聚合物材料的合成中可用作反应物的离子化合物是在固体离子传导性聚合物材料的合成期间释放所需离子的化合物。离子化合物不同于掺杂剂之处在于,需要离子化合物和掺杂剂两者。非限制性实例包括Li2O、LiOH、ZnO、TiO2、Al3O2、NaOH、KOH、LiNO3、Na2O、MgO、CaCl2、MgCl2、AlCl3、LiTFSI(双三氟甲烷磺酰亚胺锂)、LiFSI(双(氟磺酰基)酰亚胺锂)、双(草酸根合)硼酸理(LiB(C2O4)2“LiBOB”)和其它锂盐及它们的组合。这些化合物的水合形式(例如一水合物(monhydride))可用于简化化合物的处理。无机氧化物、氯化物和氢氧化物是合适的离子化合物,因为它们在合成期间解离产生至少一种阴离子扩散离子和阳离子扩散离子。任何解离产生至少一种阴离子扩散离子和阳离子扩散离子的这种离子化合物同样是合适的。多种离子化合物也可以是可用的,导致多种阴离子扩散离子和阳离子扩散离子可以是优选的。合成中包含的具体离子化合物取决于材料所需的用途。例如,在需要具有锂阳离子的应用中,可转化为锂离子和氢氧根离子的氢氧化锂或氧化锂将是合适的。任何在合成期间释放锂阴极和扩散阴离子的含锂化合物也将是合适的。这样的锂离子化合物的非限制性实例包括在有机溶剂中用作锂盐的那些。类似地,在需要铝或其它特定阳离子的那些体系中,铝或其它特定的离子化合物在合成期间反应以释放特定的所需离子和扩散阴离子。如将进一步证明的,以可产生所需的阳离子扩散物质和阴离子扩散物质的形式包括碱金属、碱土金属、过渡金属和后过渡金属的离子化合物适合作为合成反应物离子化合物。Ionic compounds useful as reactants in the synthesis of solid ion-conducting polymer materials are compounds that release desired ions during the synthesis of solid ion-conducting polymer materials. Ionic compounds differ from dopants in that both ionic compounds and dopants are required. Non-limiting examples include Li2O , LiOH , ZnO, TiO2 , Al3O2 , NaOH , KOH, LiNO3 , Na2O, MgO, CaCl2 , MgCl2 , AlCl3, LiTFSI (bistrifluoromethanesulfonate Lithium imide), LiFSI (lithium bis(fluorosulfonyl)imide), bis(oxalato)boronic acid (LiB(C 2 O 4 ) 2 “LiBOB”) and other lithium salts and combinations thereof. Hydrated forms of these compounds (eg, monhydrates) are useful to simplify handling of the compounds. Inorganic oxides, chlorides and hydroxides are suitable ionic compounds because they dissociate during synthesis to produce at least one of anion-diffusing ions and cation-diffusing ions. Any such ionic compound that dissociates to produce at least one anion-diffusing ion and a cation-diffusing ion is likewise suitable. A variety of ionic compounds may also be available, resulting in a variety of anion-diffusing ions and cation-diffusing ions may be preferred. The specific ionic compound included in the synthesis depends on the desired use of the material. For example, in applications where lithium cations are desired, lithium hydroxide or lithium oxide, which can be converted to lithium ions and hydroxide ions, would be suitable. Any lithium-containing compound that releases a lithium cathode and diffuses anions during synthesis would also be suitable. Non-limiting examples of such lithium ion compounds include those used as lithium salts in organic solvents. Similarly, in those systems where aluminum or other specific cations are desired, the aluminum or other specific ionic compounds react during synthesis to release the specific desired ions and diffusive anions. As will be further demonstrated, ionic compounds including alkali metals, alkaline earth metals, transition metals, and late transition metals in a form that yields the desired cation-diffusing species and anion-diffusing species are suitable as synthetic reactant ionic compounds.

材料的纯度是潜在重要的,以防止任何不期望的副反应,并使合成反应的有效性最大化以产生高电导率材料。具有一般高纯度的掺杂剂、基础聚合物和离子化合物的实质上纯的反应物是优选的,并且更优选纯度大于98%,最优选甚至更高纯度,例如LiOH:99.6%,DDQ:>98%,氯醌:>99%。The purity of the material is potentially important to prevent any undesired side reactions and to maximize the effectiveness of the synthesis reactions to produce high conductivity materials. Substantially pure reactants with generally high purity of dopant, base polymer and ionic compound are preferred, and more preferably greater than 98% pure, most preferably even higher, e.g. LiOH: 99.6%, DDQ: > 98%, Chloranil: >99%.

为了进一步描述固体离子传导性聚合物材料的用途和上述合成本发明的固体离子传导性聚合物材料的方法的通用性,描述了几类可用于多重电化学应用并通过其应用而区分开的固体离子传导性聚合物材料:To further describe the utility of solid ion-conducting polymer materials and the generality of the methods described above for the synthesis of solid ion-conducting polymer materials of the present invention, several classes of solids are described that can be used in multiple electrochemical applications and differentiated by their applications. Ion-conducting polymer materials:

锂离子电池Lithium Ion Battery

在这个方面中,反应或基础聚合物的特征在于半结晶或完全结晶,且具有的结晶度值为30%~100%、优选50%~100%。基础聚合物的玻璃化转变温度高于80℃,优选高于120℃,更优选高于150℃,最优选高于200℃。基础聚合物的熔化温度高于250℃,优选高于280℃,更优选高于320℃。本发明的基础聚合物的单体单元的分子量在100~200gm/mol范围内并且可以大于200gm/mol。可以用于基础聚合物的典型材料包括液晶聚合物和还被称为PPS的聚苯硫醚,或结晶度指数大于30%、优选大于50%的半结晶聚合物。In this aspect, the reaction or base polymer is characterized as semi-crystalline or fully crystalline and has a crystallinity value of from 30% to 100%, preferably from 50% to 100%. The glass transition temperature of the base polymer is above 80°C, preferably above 120°C, more preferably above 150°C, most preferably above 200°C. The melting temperature of the base polymer is above 250°C, preferably above 280°C, more preferably above 320°C. The molecular weight of the monomer units of the base polymer of the present invention is in the range of 100 to 200 gm/mol and may be greater than 200 gm/mol. Typical materials that can be used for the base polymer include liquid crystal polymers and polyphenylene sulfide, also known as PPS, or semi-crystalline polymers with a crystallinity index greater than 30%, preferably greater than 50%.

在这个方面中,掺杂剂是电子受体,例如DDQ、TCNE、氯醌和三氧化硫(SO3)。可以将电子受体与所有其它成分“预先混合”并且在没有后处理的情况下挤出,或者可以使用掺杂工序例如气相掺杂以在将其它成分混合(例如在挤出机中)并形成薄膜之后将电子受体添加到组合物中。In this aspect, the dopant is an electron acceptor such as DDQ, TCNE, chloranil , and sulfur trioxide (SO3). The electron acceptor can be "pre-mixed" with all other ingredients and extruded without post-processing, or a doping process such as gas phase doping can be used to mix the other ingredients (e.g. in an extruder) and form The electron acceptor is added to the composition after the film.

用于本发明的这个方面中的包括离子源或“离子化合物”的典型化合物包括但不限于Li2O、LiOH、ZnO、TiO2、Al3O2、LiTFSI和其它锂离子化合物及它们的组合。离子化合物含有合适的稳定形式的离子,其经修饰以在固体离子传导性聚合物材料的合成期间释放离子。Typical compounds comprising ion sources or "ionic compounds" for use in this aspect of the invention include, but are not limited to, Li2O , LiOH, ZnO, TiO2 , Al3O2 , LiTFSI , and other lithium ion compounds and combinations thereof . The ionic compound contains a suitable stable form of the ion, which is modified to release the ion during the synthesis of the solid ion-conducting polymer material.

实施例1Example 1

将PPS和氯醌粉末以4.2:1的摩尔比(基础聚合物单体与掺杂剂之比大于1:1)混合。然后将混合物在氩气或空气中、高温(高达350℃)、大气压下加热24小时。观察到颜色变化,从而确认在聚合物-掺杂剂反应混合物中产生了电荷转移络合物。然后将反应混合物重新研磨至1~40微米的小平均粒度。然后将LiTFSI与反应混合物混合以产生合成的固体离子传导性聚合物材料。PPS and chloranil powder were mixed in a molar ratio of 4.2:1 (the ratio of base polymer monomer to dopant was greater than 1:1). The mixture was then heated under argon or air at elevated temperature (up to 350°C) at atmospheric pressure for 24 hours. A color change was observed, confirming the generation of a charge transfer complex in the polymer-dopant reaction mixture. The reaction mixture is then reground to a small average particle size of 1-40 microns. LiTFSI was then mixed with the reaction mixture to produce a synthesized solid ion-conducting polymer material.

实施例2Example 2

制备含有来自实施例1的合成材料的钴酸锂(LiCoO2)(“LCO”)阴极。阴极使用70重量%LCO的高负载量,其中所述LCO与固体离子传导性聚合物材料和导电碳混合。使用锂金属阳极、多孔聚丙烯隔膜以及由LiPF6盐和碳酸酯基溶剂组成的标准Li离子液体电解质制备电池。将电池在干手套箱中装配并循环测试。A lithium cobaltate (LiCoO 2 ) (“LCO”) cathode containing the synthesized material from Example 1 was prepared. The cathode used a high loading of 70 wt% LCO mixed with solid ion-conducting polymer material and conductive carbon. Cells were fabricated using a lithium metal anode, a porous polypropylene separator, and a standard Li-ionic liquid electrolyte composed of LiPF6 salt and carbonate - based solvent. The cells were assembled and cycle tested in a dry glove box.

在这些电池中使用的LCO的以克数计的重量的容量显示在图1中。可以看出,当充电至4.3V时,容量稳定,并且与在充电期间从阴极移除的0.5当量Li的目标一致。该电池还被循环至4.5V的更高充电电压,其利用来自阴极的更高百分比的锂;并得到>140mAh/g的高容量。在4.5V充电测试中观察到的容量随循环次数的轻微下降与在该高电压下液体电解质的分解(即不稳定)一致。总体而言,含有本发明材料的LCO阴极的性能有利地与浆料涂覆的LCO阴极相当。The capacity in grams of weight of the LCO used in these batteries is shown in FIG. 1 . It can be seen that when charged to 4.3 V, the capacity is stable and consistent with the target of 0.5 equivalent Li removed from the cathode during charging. The cell was also cycled to a higher charge voltage of 4.5V, which utilizes a higher percentage of lithium from the cathode; and resulted in a high capacity of >140mAh/g. The slight drop in capacity with cycle number observed in the 4.5 V charge test is consistent with the decomposition (ie, instability) of the liquid electrolyte at this high voltage. Overall, the performance of LCO cathodes containing the materials of the present invention is advantageously comparable to that of slurry-coated LCO cathodes.

碱性电池alkaline battery

具有氢氧根离子迁移率的固体离子传导性聚合物材料的基础聚合物优选是结晶或半结晶聚合物,其结晶度值通常高于30%并且至多为并包括100%,优选为50%~100%。本发明这个方面的基础聚合物的玻璃化转变温度高于80℃,优选高于120℃,更优选高于150℃,最优选高于200℃。基础聚合物的熔化温度高于250℃,优选高于280℃,更优选高于300℃。The base polymer of the solid ion-conducting polymer material with hydroxide ion mobility is preferably a crystalline or semi-crystalline polymer having a crystallinity value generally above 30% and up to and including 100%, preferably 50% to 100%. The base polymer of this aspect of the invention has a glass transition temperature above 80°C, preferably above 120°C, more preferably above 150°C, most preferably above 200°C. The melting temperature of the base polymer is above 250°C, preferably above 280°C, more preferably above 300°C.

具有氢氧根离子迁移率的固体离子传导性聚合物材料的掺杂剂是电子受体或氧化剂。用于本发明这一方面中的典型掺杂剂是DDQ、氯醌、TCNE、SO3、氧气(包括空气)、MnO2和其它金属氧化物等。Dopants for solid ion-conducting polymer materials with hydroxide ion mobility are electron acceptors or oxidants. Typical dopants for use in this aspect of the invention are DDQ, chloranil , TCNE, SO3, oxygen (including air), MnO2 and other metal oxides and the like.

包含具有氢氧根离子迁移率的固体离子传导性聚合物材料的离子源的化合物包括盐、氢氧化物、氧化物或者含有氢氧根离子或可转化成此类材料的其它材料,包括但不限于LiOH、NaOH、KOH、Li2O、LiNO3等。Compounds comprising a source of ions comprising a solid ion-conducting polymer material having hydroxide ion mobility include salts, hydroxides, oxides, or other materials containing hydroxide ions or convertible to such materials, including but not Limited to LiOH, NaOH, KOH, Li2O , LiNO3 , etc.

实施例3Example 3

将PPS聚合物分别以67重量%~33重量%的比例与离子化合物LiOH一水合物混合,并使用喷射研磨混合。通过气相掺杂将DDQ掺杂剂以1摩尔DDQ/4.2摩尔PPS单体的量加入到所得混合物中。将混合物在中等压力(500~1000PSI)下于190~200℃热处理30分钟。The PPS polymer was mixed with the ionic compound LiOH monohydrate at a ratio of 67% to 33% by weight, respectively, and mixed using jet milling. A DDQ dopant was added to the resulting mixture by vapor phase doping in an amount of 1 mole DDQ/4.2 moles PPS monomer. The mixture was heat treated at 190-200° C. for 30 minutes under moderate pressure (500-1000 PSI).

复合MnO2阴极Composite MnO2 cathode

在涉及制备固体离子传导性聚合物材料-MnO2复合阴极的本发明的这个方面中,基础聚合物可以是结晶度指数大于30%的半结晶或全结晶聚合物,并且可以选自共轭聚合物或可以容易地用选定的掺杂剂氧化的聚合物。用于本发明这一方面中的基础聚合物的非限制性实例包括PPS、PPO、PEEK、PPA等。In this aspect of the invention involving the preparation of a solid ion-conducting polymer material- MnO2 composite cathode, the base polymer may be a semi-crystalline or fully crystalline polymer with a crystallinity index greater than 30%, and may be selected from conjugated polymeric compounds or polymers that can be readily oxidized with selected dopants. Non-limiting examples of base polymers useful in this aspect of the invention include PPS, PPO, PEEK, PPA, and the like.

在这个方面中,掺杂剂是电子受体或氧化剂。掺杂剂的非限制性实例是DDQ、氯醌、四氰基乙烯(也被称为TCNE)、SO3、臭氧、氧气、空气、过渡金属氧化物(包括MnO2)或任何合适的电子受体等。In this aspect, the dopant is an electron acceptor or an oxidizing agent. Non-limiting examples of dopants are DDQ, chloranil, tetracyanoethylene (also known as TCNE ), SO3, ozone, oxygen, air, transition metal oxides (including MnO2 ), or any suitable electron acceptor body etc.

在这个方面中,包含离子源的化合物是盐、氢氧化物、氧化物或者含有氢氧根离子或可转化成此类材料的其它材料,包括但不限于LiOH、NaOH、KOH、Li2O、LiNO3等。In this aspect, the compound comprising the ion source is a salt, hydroxide, oxide, or other material containing hydroxide ions or which can be converted to such a material, including but not limited to LiOH, NaOH, KOH, Li2O , LiNO 3 etc.

实施例4Example 4

将PPS聚合物和LiOH一水合物分别以67%~33%(重量)的比例一起加入,并且使用喷射研磨进行混合。将另外的碱性电池阴极组分另外混合:MnO2、Bi2O3和导电碳。MnO2含量为50~80重量%,Bi2O3为0~30重量%,炭黑含量为3~25重量%,聚合物/LiOH含量为10~30重量%。The PPS polymer and LiOH monohydrate were added together at a ratio of 67% to 33% by weight, respectively, and mixed using a jet mill. Additional alkaline battery cathode components were additionally mixed: MnO 2 , Bi 2 O 3 and conductive carbon. The content of MnO 2 is 50-80% by weight, the content of Bi 2 O 3 is 0-30% by weight, the content of carbon black is 3-25% by weight, and the content of polymer/LiOH is 10-30% by weight.

加热混合物以合成包含固体离子传导性聚合物材料的碱性电池阴极,其可用于常规的锌-二氧化锰碱性电池中。The mixture is heated to synthesize an alkaline battery cathode comprising a solid ion-conducting polymer material, which can be used in a conventional zinc-manganese dioxide alkaline battery.

实施例5Example 5

通过使用实施例4的阴极和市售的无纺布隔膜(NKK)、Zn箔阳极和作为电解质的6MLiOH溶液,制备锌-二氧化锰碱性电池。A zinc-manganese dioxide alkaline battery was prepared by using the cathode of Example 4 and a commercially available non-woven separator (NKK), a Zn foil anode and 6M LiOH solution as electrolyte.

使用Bio-Logic VSP 15测试系统,将电池在0.5mA/cm2的恒电流条件下放电。发现MnO2的比容量为303mAh/g或接近理论1e-放电。Using a Bio-Logic VSP 15 test system, the battery was discharged under a constant current condition of 0.5 mA/cm 2 . The specific capacity of MnO2 was found to be 303mAh/g or close to the theoretical 1e-discharge.

金属空气电池metal air battery

在这个方面中,固体离子传导性聚合物材料用于金属空气电池中,并且包含基础聚合物、含有离子源的化合物和掺杂剂。聚合物可以选自PPS、LCP、聚吡咯、聚苯胺和聚砜以及其它基础聚合物。In this aspect, a solid ion-conducting polymer material is used in a metal-air battery and comprises a base polymer, a compound containing an ion source, and a dopant. The polymer may be selected from PPS, LCP, polypyrrole, polyaniline and polysulfone, among other base polymers.

掺杂剂可以是电子受体或含有能够引发与聚合物的氧化反应的功能性电子受体基团的化合物。典型的掺杂剂是DDQ、氯醌、TCNE、SO3、臭氧和过渡金属氧化物,包括MnO2。包含离子源的材料可以是盐、氢氧化物、氧化物或者含有氢氧根离子或可以转化为此种材料的其它材料的形式,包括但不限于LiOH、NaOH、KOH、Li2O、LiNO3等。The dopant may be an electron acceptor or a compound containing a functional electron acceptor group capable of initiating an oxidation reaction with the polymer. Typical dopants are DDQ, chloranil , TCNE, SO3, ozone and transition metal oxides including MnO2 . The material comprising the ion source may be in the form of a salt, hydroxide, oxide, or other material containing hydroxide ions or which can be converted to such a material, including but not limited to LiOH, NaOH, KOH, Li2O , LiNO3 Wait.

实施例6Example 6

使用实施例3中合成的材料,以通过将固体离子传导性聚合物材料与各种碳混合来制备空气电极,其中所述碳具体地为:来自Ashbury的TIMCAL SUPER C45导电炭黑(C45)、Timcal SFG6(合成石墨)、A5303炭黑,和来自Ashbury的天然脉状石墨(natural veingraphite)Nano 99(N99)。碳含量在15~25重量%之间变化。The material synthesized in Example 3 was used to prepare an air electrode by mixing a solid ion-conducting polymer material with various carbons, specifically: TIMCAL SUPER C45 conductive carbon black (C45) from Ashbury, Timcal SFG6 (synthetic graphite), A5303 carbon black, and natural vein graphite Nano 99 (N99) from Ashbury. The carbon content varies between 15 and 25% by weight.

将阴极冲孔以适合2032纽扣电池。使用锌箔作为阳极。用40%的KOH水溶液浸渍无纺布隔膜。在面向阴极的纽扣顶部钻两个孔。通过使用MTI纽扣电池测试仪,将电池在0.5mA恒电流、室温下放电。Punch the cathode to fit a 2032 coin cell. Zinc foil was used as the anode. The nonwoven separator was impregnated with 40% KOH aqueous solution. Drill two holes in the top of the button facing the cathode. The battery was discharged at a constant current of 0.5mA at room temperature by using an MTI coin cell tester.

表3汇总了阴极参数和测试结果。放电曲线如图2所示。具有使用本发明材料的本实施例的空气阴极的电池表现出Zn-空气电池的典型放电行为,而没有任何传统催化剂(过渡金属基的)添加到混合物中。除了从空气阴极向阳极传导氢氧根离子之外,该材料还起到催化由在阴极表面存在的氧气形成氢氧根离子的作用。如该实施例所示,本发明的材料具有催化功能。Table 3 summarizes the cathode parameters and test results. The discharge curve is shown in Figure 2. The cell with the air cathode of this example using the inventive material exhibited the typical discharge behavior of a Zn-air cell without any traditional catalyst (transition metal based) added to the mixture. In addition to conducting hydroxide ions from the air cathode to the anode, the material also acts to catalyze the formation of hydroxide ions from the oxygen present at the cathode surface. As shown in this example, the materials of the present invention are catalytically functional.

表3.table 3.

其它离子化合物other ionic compounds

可以通过本发明的材料传导许多阴离子和阳离子。可以选择合成中使用的离子化合物,从而使得合成材料中包含所需的扩散离子。Many anions and cations can be conducted through the materials of the invention. The ionic compounds used in the synthesis can be chosen such that the desired diffusing ions are included in the synthesized material.

实施例7Example 7

材料样品通过将LCP聚合物[SRT900?]离子化合物以各种比例混合制成。使用DDQ作为掺杂剂。聚合物单体与掺杂剂的摩尔比为4.2:1。结果列于表4中。将混合物在中等压力(500~1000psi)下于190~200℃热处理30分钟。The material sample is made by adding LCP polymer [SRT900? ] Ionic compounds are made by mixing them in various proportions. DDQ was used as a dopant. The molar ratio of polymer monomer to dopant was 4.2:1. The results are listed in Table 4. The mixture was heat treated at 190-200° C. for 30 minutes under moderate pressure (500-1000 psi).

将样品夹在不锈钢电极之间并放置在测试夹具中。通过使用Bio-LogicVSP测试系统,记录800KHz~100Hz范围内的AC阻抗以确定电解质电导率。The sample is sandwiched between stainless steel electrodes and placed in the test fixture. By using the Bio-Logic VSP test system, record the AC impedance in the range of 800KHz ~ 100Hz to determine the electrolyte conductivity.

结果显示在下表3中。观察到的高离子电导率表明固体聚合物材料可以传导多种离子,包括锂离子Li+、钾离子K+、钠离子Na+、钙离子Ca2+、镁离子Mg2+、铝离子Al3+、氢氧根OH-和氯离子Cl-The results are shown in Table 3 below. The observed high ionic conductivity indicates that the solid polymer material can conduct a variety of ions, including lithium ions Li + , potassium ions K + , sodium ions Na + , calcium ions Ca 2+ , magnesium ions Mg 2+ , aluminum ions Al 3 + , hydroxide OH - and chloride ion Cl - .

表4Table 4

可以使用任何可以被掺杂剂解离的离子化合物,只要离解的离子是使用该材料的可适用的电化学应用中所想要的即可。来源于离子化合物的阴离子和阳离子由此由该材料而离子传导。离子化合物包括氧化物、氯化物、氢氧化物和其它盐。在这个实施例中,金属(或其它阳离子)氧化物产生金属阳离子(或其它阳离子)和氢氧根离子。Any ionic compound that can be dissociated by the dopant can be used as long as the dissociated ions are desired in the applicable electrochemical application in which the material is used. Anions and cations derived from ionic compounds are thereby ionically conducted by the material. Ionic compounds include oxides, chlorides, hydroxides and other salts. In this embodiment, the metal (or other cation) oxide produces metal cations (or other cations) and hydroxide ions.

传导锂阳离子之外的多种离子的能力为本发明的材料提供了新的应用。基于钠的和基于钾的能量储存系统被认为是锂离子的替代品,这主要由低成本和相对丰富的原材料驱动。钙、镁和铝电导率是多价嵌入(intercalation)体系所必需的,从而潜在地能够增加能量密度,而超出锂离子电池的性能。还有可能利用这种材料来制备具有金属阳极的电源,其比锂更稳定、更安全并且成本更低。The ability to conduct multiple ions other than lithium cations provides new applications for the materials of the present invention. Sodium-based and potassium-based energy storage systems are considered as Li-ion alternatives, which are mainly driven by low-cost and relatively abundant raw materials. Calcium, magnesium and aluminum conductivity are required for multivalent intercalation systems, potentially enabling increased energy density beyond the performance of Li-ion batteries. It is also possible to use this material to make power sources with metal anodes, which are more stable, safer and less expensive than lithium.

实施例8:Embodiment 8:

另外的固体离子传导性聚合物材料以及其反应物和相关的离子电导率(EIS方法)列于表5中,其中所述聚合物材料通过使用实施例1的合成方法制备。Additional solid ion-conducting polymer materials prepared by using the synthesis method of Example 1 are listed in Table 5 along with their reactants and associated ionic conductivities (EIS method).

表5table 5

另外的固体离子传导性聚合物材料以及其反应物和相关的离子电导率(EIS方法)列于表6中,其中所述聚合物材料通过使用实施例3的合成方法制备。Additional solid ion-conducting polymer materials prepared by using the synthesis method of Example 3 are listed in Table 6 along with their reactants and associated ionic conductivities (EIS method).

表6Table 6

表6中列出的LCP来源于Solvay,商品名为Xydar,是具有不同熔化温度的LCP品种。The LCPs listed in Table 6 are from Solvay, and the trade name is Xydar, which are LCP varieties with different melting temperatures.

固体离子传导性聚合物材料的物理性质:Physical properties of solid ion-conducting polymer materials:

固体离子传导性聚合物材料的物理性质可以基于所使用的反应物而变化。具体的离子迁移率以及阴离子扩散离子和阳离子扩散离子来源于材料合成;然而,相对于反应物聚合物,其它物理性质似乎没有显著改变。The physical properties of solid ion-conducting polymer materials can vary based on the reactants used. The specific ion mobilities as well as anion-diffusing ions and cation-diffusing ions are derived from material synthesis; however, other physical properties do not appear to change significantly relative to the reactant polymers.

实施例9Example 9

结晶度Crystallinity

使用来自实施例3的反应物PPS、DDQ和LiOH来比较反应物聚合物和合成的固体离子传导性聚合物材料的相对物理性质。The reactants PPS, DDQ and LiOH from Example 3 were used to compare the relative physical properties of the reactant polymer and the synthesized solid ion-conducting polymer material.

在第一步中,将PPS反应物和LiOH一水合物混合并通过X射线衍射(“XRD”)分析。在图3A中,该非晶聚合物混合物的XRD显示了对应于LiOH一水合物的在30~34度之间的峰。否则,XRD显示该聚合物是非晶的并且没有任何显著的结晶度。In the first step, the PPS reactant and LiOH monohydrate were mixed and analyzed by X-ray diffraction ("XRD"). In Figure 3A, the XRD of the amorphous polymer mixture shows a peak between 30-34 degrees corresponding to LiOH monohydrate. Otherwise, XRD showed that the polymer was amorphous without any significant crystallinity.

将混合物挤出并拉成薄膜。在此步骤中通过挤出机对PPS聚合物进行加热将(加热并保持在低于熔点的适当温度,然后缓慢冷却)非晶PPS材料退火,同时将材料挤出成薄膜,从而产生或增加结晶度。在图3B中,显示出明显的结晶聚合物峰,其也可用于将PPS材料的结晶度定量为约60%。LiOH一水合物的峰保留。The mixture is extruded and drawn into a film. In this step, heating the PPS polymer through the extruder anneals (heats and holds at a suitable temperature below the melting point, then slowly cools) the amorphous PPS material while extruding the material into a film, thereby creating or increasing crystallization Spend. In Figure 3B, a distinct crystalline polymer peak is shown, which can also be used to quantify the crystallinity of the PPS material to be about 60%. The peak for LiOH monohydrate remains.

然后用DDQ掺杂剂对薄膜混合物进行气相掺杂以产生本发明的固体离子传导性聚合物材料,并且相应的XRD示于图3C中。在掺杂期间观察到颜色变化,因为材料在掺杂后变黑。这种颜色变化表明:正在形成离子电荷转移络合物,聚合物和掺杂剂反应物已经在离子化合物的存在下反应,并且该材料已经被激活变为离子传导性的。聚合物峰保留,表明材料的结晶度保持在约60%并因此不变。然而,LiOH一水合物峰已经消失,并且不被其它任何峰所取代。得出的结论是,离子化合物已经被解离成其组分阳离子和阴离子,且这些离子现在是材料结构的一部分。The thin film mixture was then gas-phase doped with DDQ dopant to produce the solid ion-conducting polymer material of the present invention, and the corresponding XRD is shown in Figure 3C. A color change is observed during doping, as the material turns black after doping. This color change indicates that an ionic charge transfer complex is being formed, that the polymer and dopant reactants have reacted in the presence of the ionic compound, and that the material has been activated to become ionically conductive. The polymer peak remained, indicating that the crystallinity of the material remained at about 60% and thus was unchanged. However, the LiOH monohydrate peak has disappeared and is not replaced by any other peak. It was concluded that the ionic compound had been dissociated into its component cations and anions and that these ions were now part of the material structure.

玻璃化转变和熔点温度Glass Transition and Melting Point Temperature

实施例10Example 10

尽管存在许多用于确定块状或薄膜聚合物样品的熔化温度和Tg的技术,但是差示扫描量热法(“DSC”,在ASTM D7426(2013)中描述的)提供了用于确定聚合物材料的比热容变化的快速测试方法。玻璃化转变温度表现为比热容的阶跃变化。Although many techniques exist for determining the melting temperature and Tg of bulk or thin-film polymer samples, Differential Scanning Calorimetry ("DSC", described in ASTM D7426 (2013)) provides a method for determining the melting temperature and Tg of polymer samples. A rapid test method for the change in specific heat capacity of materials. The glass transition temperature appears as a step change in the specific heat capacity.

参考图4,其显示了来自实施例1的合成材料的DSC曲线图。材料[PPS-氯醌-LiTFSI]的熔点通过DSC获得,并确定其与反应物聚合物PPS没有不同:Tm为约300℃。基础聚合物玻璃化转变温度Tg为80~100℃,然而在DSC曲线中没有出现Tg拐点;据信在合成时,固体离子传导性聚合物材料失去其在PPS基础聚合物中明显的粘弹性状态,并且玻璃态延伸到低于材料熔化温度的温度范围以下。据信,图中在130℃的倾斜是离子化合物的后生现象(artifact)。Referring to FIG. 4 , a DSC graph of the synthesized material from Example 1 is shown. The melting point of the material [PPS-chloranil-LiTFSI] was obtained by DSC and confirmed to be no different from the reactant polymer PPS: Tm was about 300°C. The glass transition temperature Tg of the base polymer is 80-100°C, however no Tg inflection point appears in the DSC curve; it is believed that upon synthesis, the solid ion-conducting polymer material loses its apparent viscoelastic state in the PPS base polymer , and the glassy state extends below the temperature range below the melting temperature of the material. It is believed that the dip in the graph at 130°C is an artifact of the ionic compound.

离子电导率Ionic conductivity

测量本发明的固体离子传导性聚合物材料的离子电导率并相对于常规电解质进行比较。发现本发明的材料在玻璃态时在环境条件下是离子传导的,而反应物聚合物是离子绝缘的(insulative)。由于材料处于玻璃态,不能存在任何相关的链段运动,因此锂阳离子和阴离子的扩散必须通过其中不需要链段运动的不同离子传导机理来实现。The ionic conductivity of the solid ion-conducting polymer materials of the present invention was measured and compared against conventional electrolytes. The material of the present invention was found to be ionically conductive at ambient conditions in the glassy state, whereas the reactant polymer was ionically insulating. Since the material is in the glassy state, there cannot be any associated segmental motion, so the diffusion of lithium cations and anions must be achieved through a different ion conduction mechanism in which no segmental motion is required.

具体地说,将实施例1中所述的本发明的固体离子传导性聚合物材料的薄膜以0.0003英寸(7.6微米)以上的厚度挤出。通过使用本领域普通技术人员已知的AC电化学阻抗谱(EIS)的标准测试,测量薄膜的离子表面电导率。将固体离子传导性聚合物材料薄膜的样品夹在不锈钢阻塞电极(blocking electrode)之间并放置在测试夹具中。通过使用Bio-Logic VSP测试系统,记录在800KHz~100Hz范围内的AC阻抗以确定材料离子电导率。通过使用Bio-Logic,将材料薄膜放置在合适的夹具中来测量面内和贯通面(through plane)的离子电导率。测得贯通面电导率为3.1x10-4S/cm,面内电导率为3.5x10-4S/cm。这些测量结果相似得足以将材料认为是离子电导率各向同性的。Specifically, thin films of the inventive solid ion-conducting polymer material described in Example 1 were extruded at a thickness of 0.0003 inches (7.6 microns) or greater. The ionic surface conductivity of the films was measured by a standard test using AC electrochemical impedance spectroscopy (EIS) known to those of ordinary skill in the art. A sample of a thin film of solid ion-conducting polymer material was sandwiched between stainless steel blocking electrodes and placed in the test fixture. By using the Bio-Logic VSP test system, the AC impedance was recorded in the range of 800KHz-100Hz to determine the ionic conductivity of the material. In-plane and through-plane ionic conductivities were measured by placing thin films of material in suitable fixtures using Bio-Logic. The measured through-surface conductivity is 3.1x10 -4 S/cm, and the in-plane conductivity is 3.5x10 -4 S/cm. These measurements were similar enough to consider the material to be isotropic in ion conductivity.

使用来自实施例1的材料制备厚度约150微米的薄膜。电子电导率通过恒电位实验直接测量。将薄膜置于不锈钢阻塞电极之间,并在电极间保持0.25V的电压。在180纳安的电流下测量电流,从而在室温下产生2.3x106Ω·cm2的电子电导率。该电子电导率(面积比电阻)低,在室温下低于1.0x105Ω·cm2,这对于电解质是足够的。Films with a thickness of approximately 150 microns were prepared using the material from Example 1. Electronic conductivity is directly measured by potentiostatic experiments. The membrane was placed between stainless steel blocking electrodes and a voltage of 0.25 V was maintained between the electrodes. The current was measured at a current of 180 nanoamperes, resulting in an electronic conductivity of 2.3× 10 6 Ω·cm 2 at room temperature. The electron conductivity (area specific resistance) is low, below 1.0× 10 5 Ω·cm 2 at room temperature, which is sufficient for an electrolyte.

对来自实施例1的材料进行热重量分析以确定该材料的含水量。在将材料储存在干燥气氛手套箱中后,进行热重量分析,显示材料含有<5ppm的水。用作固体离子传导性聚合物材料的反应物的某些盐(例如作为离子化合物的LiOH)吸收大气水分,因此可使材料具有亲水性。Thermogravimetric analysis was performed on the material from Example 1 to determine the moisture content of the material. After storage of the material in a dry atmosphere glove box, thermogravimetric analysis was performed, showing that the material contained <5 ppm of water. Certain salts used as reactants for solid ion-conducting polymer materials, such as LiOH as an ionic compound, absorb atmospheric moisture and thus can render the material hydrophilic.

实施例12Example 12

测试实施例3的合成材料的模量。由该特定固体聚合物材料制成的电解质的杨氏模量范围是3.3~4.0GPa。然而,本申请所列材料的杨氏模量范围要大得多,其范围为3.0MPa到4GPa。合成材料保持热塑性,可以使用塑料加工技术进行重整(reform)。将实施例3的材料加热至超过其熔点,然后冷却。然后将材料重整为薄膜。因此,材料显示出具有高模量和热塑性。The modulus of the synthetic material of Example 3 was tested. The Young's modulus of the electrolyte made of this particular solid polymer material ranges from 3.3 to 4.0 GPa. However, the range of Young's moduli for the materials listed in this application is much wider, ranging from 3.0 MPa to 4 GPa. Synthetic materials remain thermoplastic and can be reformed using plastics processing techniques. The material of Example 3 was heated above its melting point and then cooled. The material is then reformed into a thin film. Therefore, the material appears to have high modulus and thermoplasticity.

比较例13Comparative Example 13

实施例1中报道的离子电导率测量的结果在图5和图6中示出。将本发明的固体离子传导性聚合物材料薄膜的电导率(Δ)与三氟甲磺酸酯PEO的电导率(□)以及由Li盐溶质和碳酸亚乙酯-碳酸亚丙酯“EC:PC”组合溶剂构成的液体电解质(使用Celgard隔膜)的电导率(O)相比较。The results of the ionic conductivity measurements reported in Example 1 are shown in FIGS. 5 and 6 . The electrical conductivity (Δ) of the solid ion-conductive polymer material film of the present invention is compared with the electrical conductivity (□) of triflate PEO, and is determined by the Li salt solute and ethylene carbonate-propylene carbonate "EC: The conductivity (O) of a liquid electrolyte (using a Celgard separator) composed of a PC" combined solvent was compared.

参见图5,其显示了固体聚合物离子传导性材料的测量电导率与温度的函数。还显示了具有Celgard隔膜的液体电解质EC:PC+LiPF6盐的测量离子电导率和PEO-LiTFSI电解质的测量离子电导率。固体离子传导性聚合物材料在室温下的电导率比PEO-LiTFSI电解质高约2.5个数量级,并且与在类似条件下测量的常规液体电解质/隔膜体系的电导率相当。如由温度激活的Vogel-Tamman-Fulcher行为所述,固体离子传导性聚合物材料的电导率的温度依赖性在高于其玻璃化转变温度时未显示出急剧增加,这与链迁移率有关。因此,作为聚合物电解质材料中的离子传导机理的链段运动不会发生,因为材料在处于其玻璃态时显示出明显的离子电导率。此外,这表明本发明的聚合物材料具有与液体电解质相似的离子电导率水平。See Figure 5, which shows the measured conductivity of a solid polymeric ion-conducting material as a function of temperature. Also shown are the measured ionic conductivity of the liquid electrolyte EC:PC+LiPF 6 salt and the measured ionic conductivity of the PEO-LiTFSI electrolyte with a Celgard separator. The conductivity of the solid ion-conducting polymer material at room temperature is about 2.5 orders of magnitude higher than that of the PEO-LiTFSI electrolyte and comparable to that of conventional liquid electrolyte/separator systems measured under similar conditions. The temperature dependence of the conductivity of solid ion-conducting polymer materials does not show a sharp increase above its glass transition temperature, as described by the temperature-activated Vogel-Tamman-Fulcher behavior, which is related to chain mobility. Therefore, segmental motion, which is the mechanism of ion conduction in polymer electrolyte materials, does not occur because the material exhibits significant ionic conductivity when in its glassy state. Furthermore, this indicates that the polymeric material of the present invention has a similar level of ionic conductivity to liquid electrolytes.

在图6中,将固体离子传导性聚合物材料的离子电导率与常规液体电解质、比较例的锂磷氧氮“LIPON”和相关DOE目标的电导率和温度进行比较。参见图5B,固体离子传导性聚合物材料的离子电导率在室温(约21℃)下大于1x10-04S/cm,在约-30℃下大于1x10-04S/cm(并且大于1x10-05S/cm),在约80℃时大于1x10-03S/cm。In FIG. 6 , the ionic conductivity of the solid ion-conducting polymer material is compared with that of a conventional liquid electrolyte, a comparative example lithium phosphorus oxynitride "LIPON" and related DOE targets. Referring to Figure 5B, the ionic conductivity of the solid ion-conducting polymer material is greater than 1x10-04 S/cm at room temperature (about 21°C), greater than 1x10-04 S/cm (and greater than 1x10-05 S/cm), greater than 1x10 -03 S/cm at about 80°C.

实施例14Example 14

可以将离子电导率通过调整材料配方来优化。图7显示了通过调节聚合物材料配方(例如改变基础聚合物、掺杂剂或离子化合物)得到的离子电导率的改善和优化。Ionic conductivity can be optimized by tuning the material formulation. Figure 7 shows the improvement and optimization of the ionic conductivity obtained by tuning the polymeric material formulation (eg changing the base polymer, dopant or ionic compound).

扩散率Diffusion rate

除了离子电导率之外,扩散率是任何电解质和离子传导性材料的重要固有品质。In addition to ionic conductivity, diffusivity is an important inherent quality of any electrolyte and ion-conducting material.

实施例15Example 15

对实施例3中产生的材料进行扩散率测量。Diffusion rate measurements were performed on the material produced in Example 3.

使用基本NMR技术以明确地将Li+识别为固体离子传导性聚合物材料中的自由流动离子。NMR是元素特异性的(例如H、Li、C、F、P和Co),并且对局部结构的小变化灵敏的。Basic NMR techniques were used to unambiguously identify Li+ as a free-flowing ion in solid ion-conducting polymer materials. NMR is element specific (eg H, Li, C, F, P and Co) and sensitive to small changes in local structure.

具体而言,锂和氢氧根离子的扩散率通过脉冲梯度自旋回波(“PGSE”)锂NMR法进行评估。使用Varian-S Direct Drive 300(7.1T)光谱仪进行PGSE-NMR测量。使用魔角旋转技术来平均化化学位移各向异性和偶极相互作用。脉冲梯度自旋受激回波脉冲序列用于自扩散(扩散率)测量。通过分别使用1H和7Li核测量各个材料样品中阳离子和阴离子的自扩散系数。NMR测定的自扩散系数是类似于布朗运动的随机热致平移运动的量度,其中没有外部定向驱动力。然而,自扩散通过Nerst Einstein方程与离子迁移率和离子电导率密切相关,因此是表征电池电解质时重要的测量参数。当同时具有离子电导率和扩散数据时,可以确定限制电解质的性能的离子对或更高的聚集效应的存在。这些测试得出的结论是,固体聚合物离子传导性材料在室温下具有5.7x10-11m2/s的Li+扩散率,从而使其高于90℃的PEO/LiTFSI并且比Li10GeP2S12(在高温下测量的)高至少一个数量级。因此,固体离子传导性聚合物材料可以用作具有传导多种离子并且在室温下为电池和其它应用提供足够高的离子电导率的独特能力的新固体电解质,其中所述多种离子可以扩散、可迁移。Specifically, the diffusivity of lithium and hydroxide ions was evaluated by pulsed gradient spin echo ("PGSE") lithium NMR method. PGSE-NMR measurements were performed using a Varian-S Direct Drive 300 (7.1T) spectrometer. Use magic angle rotation technique to average chemical shift anisotropy and dipole interactions. A pulsed gradient spin stimulated echo pulse sequence was used for self-diffusion (diffusion rate) measurements. The self-diffusion coefficients of cations and anions in the respective material samples were measured by using 1 H and 7 Li nuclei, respectively. The NMR-determined self-diffusion coefficient is a measure of random thermally induced translational motion similar to Brownian motion, in which there is no external directional driving force. However, self-diffusion is closely related to ion mobility and ion conductivity through the Nerst Einstein equation and is therefore an important measurement parameter when characterizing battery electrolytes. When both ionic conductivity and diffusion data are available, the presence of ion pairing or higher aggregation effects that limit the performance of the electrolyte can be determined. These tests concluded that the solid polymer ion-conducting material has a Li + diffusivity of 5.7x10-11 m 2 /s at room temperature, making it higher than PEO/LiTFSI at 90°C and better than Li 10 GeP 2 S 12 (measured at high temperature) is at least an order of magnitude higher. Therefore, solid ion-conducting polymer materials can be used as new solid electrolytes with the unique ability to conduct a wide variety of ions that can diffuse, Can be migrated.

室温下OH-离子的扩散率为4.1x10-11m2/s。因此,固体离子传导性聚合物材料具有对于固体OH-导体而言的非常高的扩散速率。相应的阳离子迁移数(在下面方程(1)中定义的)为0.58,其也是显著较高的且不同于现有技术的固体电解质。The diffusivity of OH - ions at room temperature is 4.1x10 -11 m 2 /s. Therefore, solid ion-conducting polymer materials have very high diffusion rates for solid OH - conductors. The corresponding cation transport number (defined in equation (1) below) is 0.58, which is also significantly higher and different from prior art solid electrolytes.

实施例16Example 16

对实施例1中产生的材料[PPS-DDQ-LiTFSI]进行扩散率测量。使用实施例15中阐述的技术测量自扩散。室温下材料的阳离子扩散率D(7Li)为0.23x10-9m2/s,室温下的阴离子扩散率D(1H)为0.45x10-9m2/s。Diffusivity measurements were performed on the material produced in Example 1 [PPS-DDQ-LiTFSI]. Self-diffusion was measured using the technique set forth in Example 15. The cation diffusivity D( 7 Li) of the material at room temperature is 0.23x10 -9 m 2 /s, and the anion diffusivity D( 1 H) at room temperature is 0.45x10 -9 m 2 /s.

为了确定会降低材料电导率的离子缔合程度,通过使用测量的扩散测量结果经由Nernst-Einstein方程计算材料的电导率,确定相关的计算电导率远大于测量电导率。差异平均为至少一个数量级(或10倍)。因此,认为通过改善离子解离可以提高电导率,并且计算电导率可以被认为在电导率范围内。To determine the degree of ion association that would reduce the conductivity of the material, the conductivity of the material was calculated by using the measured diffusion measurements via the Nernst-Einstein equation, and it was determined that the associated calculated conductivity was much greater than the measured conductivity. The difference is on average at least an order of magnitude (or 10-fold). Therefore, it is believed that the conductivity can be enhanced by improving ion dissociation, and the calculated conductivity can be considered to be within the conductivity range.

可以通过方程(1)由扩散系数数据估算阳离子迁移数目:The number of cation transfers can be estimated from the diffusion coefficient data by equation (1):

t+~D+/(D++D-) (1)t+~D+/(D++D-) (1)

其中D+和D-分别指Li阳离子和TFSI阴离子的扩散率。由以上数据,相比于相应的PEO电解质中的t+为约0.2(液态碳酸盐电解质也具有约0.2的t+值),固体离子传导性聚合物材料中获得约0.7的t+值。高阳离子迁移数这一性质对电池性能有重要的影响。理想情况下,优选的是t+值为1.0,这意味着Li离子承载全部电流。阴离子迁移率导致可能会限制电池性能的电极极化效应。在两种离子均可迁移的材料中,尽管很少获得,但高度寻求的是t+值为0.5以上。并不认为0.7的计算迁移数已在任何液体或PEO基电解质中观察到。虽然离子缔合可能影响计算,但电化学结果证实迁移数范围为0.65~0.75。where D+ and D- refer to the diffusivity of Li cations and TFSI anions, respectively. From the above data, a t+ value of about 0.7 is obtained in the solid ion-conducting polymer material compared to about 0.2 in the corresponding PEO electrolyte (liquid carbonate electrolyte also has a t+ value of about 0.2). The property of high cation transfer number has an important impact on battery performance. Ideally, a t+ value of 1.0 is preferred, which means the Li ions carry the full current. Anion mobility leads to electrode polarization effects that can limit battery performance. In materials where both ions are mobile, t+ values above 0.5 are highly sought, although rarely available. A calculated transfer number of 0.7 is not believed to have been observed in any liquid or PEO based electrolyte. Although ionic associations may affect the calculations, electrochemical results confirm that the shift number ranges from 0.65 to 0.75.

据信由于锂阳离子扩散较高,t+取决于阴离子扩散。由于阳离子扩散大于相应的阴离子扩散,所以阳离子迁移数总是高于0.5;并且由于阴离子是迁移的,阳离子迁移数也必须小于1.0。据信作为离子化合物的锂盐的调查将产生大于0.5且小于1.0的这个范围的阳离子迁移数。作为比较例,已经报道了一些陶瓷具有高扩散数,但是这样的陶瓷仅传输单一离子,因此当D-为零时,阳离子迁移数减少到1.0。It is believed that t+ is dependent on anion diffusion due to the higher lithium cation diffusion. Since the cation diffusion is greater than the corresponding anion diffusion, the cation transport number is always above 0.5; and since the anions are mobile, the cation transport number must also be less than 1.0. It is believed that investigation of lithium salts as ionic compounds will yield a range of cation transport numbers greater than 0.5 and less than 1.0. As a comparative example, some ceramics have been reported to have a high diffusion number, but such ceramics only transport a single ion, so when D− is zero, the cation transport number decreases to 1.0.

虽然迁移数是由NMR得出的扩散率测量结果计算出来的,但计算迁移的替代方法可以通过直接方法如Bruce和Vincent方法来实现。使用Bruce和Vincent方法以计算固体离子传导性聚合物材料的迁移数,并且发现其与NMR得出的测量结果有良好的相关性。While migration numbers are calculated from NMR-derived diffusivity measurements, alternative methods of calculating migration can be achieved by direct methods such as the method of Bruce and Vincent. The method of Bruce and Vincent was used to calculate the transport number for solid ion-conducting polymer materials and was found to correlate well with NMR-derived measurements.

参见图8,其显示了在较大的温度范围内对固体离子传导性聚合物材料进行扩散测量的结果,并与含有LiTFSI作为离子源的PEO相比较。最重要的结论是:(i)在可以测量两种化合物的温度下,固体聚合物离子传导性材料中的Li扩散比PEO LiTFSI聚合物电解质中高几乎两个数量级;(ii)固体聚合物离子传导性材料中的扩散系数在下降至至少-45℃下是可测量的,该温度为在任何固体材料中测量的锂扩散的非常低的温度;具体地,锂离子扩散率大于1x10-13m2/s。固体离子传导性聚合物材料在低温下的这种优异的离子传导性能超过了典型的液体电池电解质的性能。还值得注意的是,NMR谱温度依赖性表明离子运动与聚合物无关,因为其不依赖于聚合物链段运动,而是在其玻璃态下实现显著的离子扩散。因此,证实了存在具有大于30%的结晶度、玻璃态以及至少一种阳离子扩散离子和至少一种阴离子扩散离子的固体离子传导性聚合物材料,其中至少一种扩散离子(在这个方面中,两种扩散离子)在玻璃态下是可迁移的。See Figure 8, which shows the results of diffusion measurements on a solid ion-conducting polymer material over a broad temperature range, compared to PEO containing LiTFSI as an ion source. The most important conclusions are: (i) Li diffusion in solid polymer ion-conducting materials is almost two orders of magnitude higher than in PEO LiTFSI polymer electrolytes at temperatures where both compounds can be measured; (ii) solid polymer ion-conducting Diffusion coefficients in solid materials are measurable down to at least -45°C, a very low temperature for lithium diffusion measured in any solid material; specifically, lithium ion diffusivities greater than 1x10 -13 m 2 /s. This excellent ion-conducting performance at low temperatures of solid ion-conducting polymer materials exceeds that of typical liquid battery electrolytes. It is also worth noting that the temperature dependence of the NMR spectrum indicates that the ion motion is independent of the polymer, as it does not depend on the motion of the polymer segment, but rather achieves significant ion diffusion in its glassy state. Thus, the existence of solid ion-conducting polymer materials having greater than 30% crystallinity, a glassy state, and at least one cation diffusing ion and at least one anion diffusing ion, wherein at least one diffusing ion (in this aspect, two diffusing ions) are mobile in the glassy state.

比较例17Comparative Example 17

LiPON的阳离子扩散率取自“Structural Characterization and Li dynamicsin new Li3PS4ceramic ion conductor by solid-state and pulsed-field gradientNMR”,Mallory Govet,Steve Greenbaum,Chengdu Liang和Gayari Saju,Chemistry ofMetals(2014)。使用类似于实施例15和16中所提出的实验方法,并且在图9中示出扩散率曲线。确定LiPON的100℃阳离子扩散率D(7Li)为0.54x10-12m2/s。该扩散率比环境温度(21℃)下本发明材料的扩散率小约80倍。The cation diffusivity of LiPON was taken from "Structural Characterization and Li dynamics in new Li 3 PS 4 ceramic ion conductor by solid-state and pulsed-field gradient NMR", Mallory Govet, Steve Greenbaum, Chengdu Liang and Gayari Saju, Chemistry of Metals (2014). An experimental method similar to that presented in Examples 15 and 16 was used and the diffusivity curves are shown in FIG. 9 . The 100°C cation diffusivity D( 7 Li) of LiPON was determined to be 0.54x10 -12 m 2 /s. This diffusivity is about 80 times smaller than that of the inventive material at ambient temperature (21°C).

材料的化学结构chemical structure of the material

进行实验以确定关于固体离子传导性聚合物材料的化学结构的信息。Experiments were performed to determine information about the chemical structure of the solid ion-conducting polymer material.

实施例18Example 18

在本实施例中,研究了实施例3中合成的材料及其反应物组分PPS、DDQ以及LiOH一水合物。In this example, the material synthesized in Example 3 and its reactant components PPS, DDQ and LiOH monohydrate were investigated.

首先分析反应物或基础聚合物PPS:参见图10,相对于四甲基硅烷(“TMS”)光谱标准,PPS的质子(1H)NMR谱被以6.8ppm为中心的单峰表征。如由聚合物结构所预期的那样,这是芳香族氢的清楚指示。PPS聚合物的质子固态MAS NMR谱在300MHz仪器上获取。星号表示自旋边带,插图显示扩大的解析。The reactant or base polymer PPS was first analyzed: Referring to Figure 10, the proton ( 1H ) NMR spectrum of PPS is characterized by a single peak centered at 6.8 ppm relative to a tetramethylsilane ("TMS") spectral standard. This is a clear indication of aromatic hydrogens, as expected from the polymer structure. Proton solid-state MAS NMR spectra of PPS polymers were acquired on a 300 MHz instrument. Asterisks indicate spin sidebands and insets show expanded resolution.

参见图11,固体离子传导性聚合物材料的1H NMR谱(顶部),其中光谱解卷积成OH型质子(中间)和芳香族质子(底部)。光谱证实了芳香族氢和氢氧根。材料的质子固态MASNMR谱在500MHz仪器上获取。星号表示自旋边带,插图显示扩大的解析。光谱解卷积成OH-和基础聚合物质子在插图中显示为额外的实验光谱。由于NMR光谱是定量的(只要注意不要使信号饱和),谱峰的直接积分可给出特定相中核的比例。这种积分的结果表明,该材料在每个重复芳香族基团中具有多于一个可迁移的OH离子,并且每个聚合物重复单元(单体)含有约两个LiOH分子,这是非常高的离子浓度。窄OH信号显示OH离子的高迁移率。See FIG. 11 , 1 H NMR spectrum (top) of a solid ion-conducting polymer material, where the spectrum is deconvoluted into OH-type protons (middle) and aromatic protons (bottom). Spectra confirmed aromatic hydrogens and hydroxides. Proton solid-state MASNMR spectra of the material were acquired on a 500 MHz instrument. Asterisks indicate spin sidebands and insets show expanded resolution. Spectra deconvoluted into OH- and base polymer protons are shown in the inset as additional experimental spectra. Since NMR spectra are quantitative (as long as care is taken not to saturate the signal), direct integration of the spectral peaks gives the proportion of nuclei in a particular phase. The results of this integration show that the material has more than one mobile OH ion per repeating aromatic group and contains about two LiOH molecules per polymer repeating unit (monomer), which is very high ion concentration. The narrow OH signal shows the high mobility of OH ions.

额外的结构信息通过碳13固态MAS NMR可获得,所述碳13固态MAS NMR由~1%天然丰度的13C实现。利用交叉极化(CP),由此附近的质子与13C核同时共振,从而将核磁化转移到“稀有”自旋上以提高检测灵敏度。在图12中,PPS聚合物谱在两种直接极化下描绘:其中所有碳参与信号的(底部),和其中只有那些直接键合到氢上的碳参与的CP(顶部)。因此,差谱(中间)对应于与硫键合的碳。Additional structural information is available by carbon 13 solid-state MAS NMR enabled by -1% natural abundance of13C . Using cross-polarization (CP), whereby nearby protons resonate simultaneously with the13C nucleus, transfers the nuclear magnetization to "rare" spins to increase detection sensitivity. In Figure 12, the PPS polymer spectrum is depicted under two direct polarizations: CP where all carbons participate in the signal (bottom), and CP where only those carbons directly bonded to hydrogen participate (top). Thus, the difference spectrum (middle) corresponds to carbon bonded to sulfur.

参见图13,其显示了通过直接极化在500MHz仪器上获得的电子受体化合物的13C谱MAS NMR谱,其中具有所提出的电子受体DDQ的谱指认。由于该分子中不存在氢,因此在直接检测下获得了光谱。由于非常长的自旋晶格弛豫时间(可能超过1分钟),信噪比相当低。对于各个峰的指认在图3中示出。与预期的四个峰(对应于四个化学不等效的碳)不同,出现六个不同的峰表明可能存在异构体。See Figure 13, which shows the 13 C spectrum MAS NMR spectrum of the electron acceptor compound obtained by direct polarization on a 500 MHz instrument with the proposed spectral assignment of electron acceptor DDQ. Due to the absence of hydrogen in this molecule, the spectrum was obtained under direct detection. The signal-to-noise ratio is rather low due to the very long spin-lattice relaxation time (possibly exceeding 1 min). The assignments for the individual peaks are shown in FIG. 3 . Instead of the expected four peaks (corresponding to four chemically non-equivalent carbons), the presence of six distinct peaks indicates the possible presence of isomers.

通过直接极化在500MHz仪器上获取的固体离子传导性聚合物材料的13C固态MASNMR谱显示在图14A中,其表明主峰(由芳香族碳主导)从PPS位移到离子传导性材料。插图中间的CP谱表明PPS聚合物与LiOH的OH基团强烈地相互作用。在图14B中比较了该材料和DDQ电子受体的扩大比例光谱,表明在材料中存在使反应物的原始光谱特征模糊的化学反应。The 13 C solid-state MASNMR spectrum of the solid ion-conducting polymer material acquired by direct polarization on a 500 MHz instrument is shown in Figure 14A, which shows that the main peak (dominated by aromatic carbon) shifts from PPS to the ion-conducting material. The CP spectrum in the middle of the inset indicates that the PPS polymer strongly interacts with the OH groups of LiOH. The scaled-up spectra of this material and the DDQ electron acceptor are compared in Figure 14B, indicating that there is a chemical reaction in the material that obscures the original spectral signature of the reactants.

该NMR分析清楚地表明,三种不同的反应物已反应形成本发明的固体离子传导性聚合物材料。已经形成新材料,其不仅是其组成部分的混合物。这三种组分之间存在反应,固体聚合物离子传导性材料是反应产物。特别地,基础聚合物和合成材料之间的13C NMR峰存在位移。此外,与OH缔合的氢的1H共振和13C共振的同时辐射的效果表明,离子已经被结合到结构中,因此所有三种不同的组分已经反应并且是新合成材料的一部分。The NMR analysis clearly shows that three different reactants have reacted to form the solid ion-conducting polymer material of the present invention. New materials have been formed that are not merely mixtures of their constituent parts. There is a reaction between these three components, and the solid polymer ion-conducting material is the product of the reaction. In particular, there is a shift in the13C NMR peaks between the base polymer and the synthetic material. Furthermore, the effect of simultaneous radiation of the 1 H resonance and 13 C resonance of hydrogen associated with OH indicated that the ions had been incorporated into the structure so that all three different components had reacted and were part of the newly synthesized material.

实施例19Example 19

实施例3的材料中的阳离子(例如锂离子)浓度的定量可以通过将材料插入到内部同轴管中并使其由位移试剂络合物(例如多磷酸锂镝(Dy,lithium Dysprosiumpolyphosphate))的外部参比溶液包围而实现。参见图15,锂阳离子共振中的位移由可对样品中的锂进行定量的顺磁性Dy引起。在测量的样品中,发现锂阳离子浓度为约3摩尔/升材料([Li]~3摩尔/升)。这种大浓度的阳离子使得固体离子传导性材料在室温和宽温度范围内具有非常高的离子电导率。Quantification of the concentration of cations (e.g., lithium ions) in the material of Example 3 can be achieved by inserting the material into an internal coaxial tube and displacing it with a displacement reagent complex (e.g., lithium Dysprosium polyphosphate (Dy, lithium Dysprosiumpolyphosphate)). Surrounded by an external reference solution. Referring to Figure 15, the shift in the lithium cation resonance is caused by the paramagnetic Dy that quantifies the lithium in the sample. In the measured samples, the concentration of lithium cations was found to be about 3 mol /liter of material ([Li]˜3 mol/liter). This large concentration of cations enables solid ion-conducting materials to have very high ionic conductivity at room temperature and over a wide temperature range.

材料稳定性material stability

液体电解质和其它聚合物电解质可能遭受锂稳定性问题。它们与锂的相互作用导致锂和电解质之间的反应,这对电池寿命是不利的。当与其它电池组分(例如包括嵌入材料的电化学活性材料、导电添加剂、流变剂和其它添加剂)一起使用时,电解质还需要是相容的且不起反应的。另外,在高于4.0伏的高电压下,典型的电解质可以简单地分解,这又导致电池寿命变差。由此,锂“稳定性”是聚合物电解质的要求。具体而言,聚合物电解质是不起反应的,并且在高于4.0V、4.5V和5.0V的电压下传输锂金属时不分解。Liquid electrolytes and other polymer electrolytes can suffer from lithium stability issues. Their interaction with lithium leads to a reaction between lithium and the electrolyte, which is detrimental to battery life. The electrolyte also needs to be compatible and non-reactive when used with other battery components such as electrochemically active materials including intercalation materials, conductive additives, rheological agents, and other additives. Additionally, at high voltages above 4.0 volts, typical electrolytes can simply decompose, which in turn leads to poor battery life. Thus, lithium "stability" is a requirement for polymer electrolytes. Specifically, the polymer electrolyte is nonreactive and does not decompose when transporting Li metal at voltages above 4.0 V, 4.5 V, and 5.0 V.

参见图16,其显示了薄膜电池结构10。阳极包括具有相关联的集电器(未示出)的锂金属10或锂离子电池的典型阳极嵌入材料。如果选择嵌入材料,则将固体离子传导性聚合物材料与其混合。阴极30包括阴极集电器(未示出)和电化学活性材料或嵌入材料。再次将固体离子传导性聚合物材料与导电材料一起混合。固体离子传导性聚合物材料的薄膜用作隔膜/电解质40并被插入在阳极和阴极之间。Referring to Figure 16, a thin film battery structure 10 is shown. The anode comprises a lithium metal 10 or typical anode intercalation material for a lithium ion battery with an associated current collector (not shown). If an intercalation material is chosen, a solid ion-conducting polymer material is mixed with it. Cathode 30 includes a cathode current collector (not shown) and an electrochemically active material or intercalation material. Again the solid ionically conductive polymer material is mixed with the conductive material. A thin film of solid ion-conducting polymer material is used as the separator/electrolyte 40 and is interposed between the anode and cathode.

实施例20Example 20

固体离子传导性聚合物材料表现出与各种当前锂离子化学物质的相容性。参见图17,其示出了如图16所示构造并根据相关的阴极电化学活性材料标记的电池的性能。具体而言,电池由LiFePO4、LiMn2O4和LiCoO2阴极以及锂金属阳极构成。用与阴极中的电化学活性材料混合的本发明材料构成的电池(其中所述本发明材料用作将锂离子导入/导出阳极和阴极的电解质)显示出适当的放电性能。Solid ion-conducting polymer materials exhibit compatibility with various current Li-ion chemistries. See Figure 17, which shows the performance of a cell constructed as shown in Figure 16 and labeled according to the associated cathode electrochemically active material. Specifically, the battery consists of LiFePO 4 , LiMn 2 O 4 and LiCoO 2 cathodes and a lithium metal anode. A battery composed of the inventive material mixed with an electrochemically active material in the cathode, where the inventive material is used as an electrolyte for introducing/exporting lithium ions into/from the anode and cathode, exhibits suitable discharge performance.

通过在所有电池结构中或在此种结构(阳极、阴极、隔膜和电解质)之一中使用固体聚合物材料作为电解质,可以在不使用任何液体电解质的情况下实现新的性能水平。可以将材料在电极的至少一个中与电化学活性材料或嵌入材料混合。电池的电化学反应中所需的离子通过电解质传导。材料可以是适合用于电池中的颗粒、浆液、薄膜或其它形式。作为薄膜,可将材料插入电极之间或电极与集电器之间,将其放置封装集电器或电极,或将其放置在需要离子电导率的任何地方。如图16所示,电池的所有三个主要组件都可以使用固体聚合物材料制成。在图16所示的方面中,薄膜状电极和插入的隔膜或电解质可以是独立的结构,也可以通过热熔接或将热塑性薄膜整合在一起的其它方式而彼此附接。By using solid polymer materials as electrolytes in all battery structures or in one of such structures (anode, cathode, separator, and electrolyte), new levels of performance can be achieved without the use of any liquid electrolyte. The material may be mixed with an electrochemically active material or an intercalation material in at least one of the electrodes. The ions required in the electrochemical reactions of the battery are conducted through the electrolyte. The material may be in the form of particles, slurries, films or other forms suitable for use in batteries. As a thin film, the material can be inserted between electrodes or between an electrode and a current collector, placed to encapsulate current collectors or electrodes, or placed wherever ionic conductivity is desired. As shown in Figure 16, all three major components of the battery can be made using solid polymer materials. In the aspect shown in Figure 16, the film-like electrodes and intervening separator or electrolyte can be separate structures, or can be attached to each other by heat welding or otherwise integrating thermoplastic films.

实施例21Example 21

用由实施例1的材料封装的LCO制备阴极。将阴极与锂金属阳极配对,并且将材料的薄膜插入在阳极和阴极之间,如图16的结构中所描绘的。然后通过多个循环对组合电池进行充电和放电。图18显示了所得的多个循环的放电曲线。A cathode was prepared from LCO encapsulated with the material of Example 1. A cathode was paired with a lithium metal anode, and a thin film of material was inserted between the anode and cathode, as depicted in the structure of FIG. 16 . The assembled battery is then charged and discharged through multiple cycles. Figure 18 shows the resulting discharge curves for multiple cycles.

充电-放电曲线示出几乎没有极化,效率为至少99%。这个结果证明了聚合物作为阴极内的离子传输介质的功能性以及其作为固态电池中的电解质的能力。同样重要的是当在四(4.0)伏特至4.3伏特以及至5.0伏特的电压下操作时电解质的电压稳定性,与锂金属的稳定性,以及以超过100mAh/g(特别是至少133.5mAh/g锂)率传输锂的稳定性。The charge-discharge curves showed little polarization with an efficiency of at least 99%. This result demonstrates the functionality of the polymer as an ion-transport medium within the cathode and its ability to serve as an electrolyte in solid-state batteries. Also important is the voltage stability of the electrolyte when operating at voltages from four (4.0) volts to 4.3 volts and to 5.0 volts, and the stability of lithium metal, and the Lithium) rate transport lithium stability.

实施例22Example 22

将LiS电池构造为包括在图16中描述的构造中制备的锂金属阳极和硫阴极。实施例1的材料用于制备电池中。传统上,锂-硫体系已经努力克服硫化反应化学中间体在这种电池典型的液体电解质中溶解所引起的低循环寿命问题。A LiS cell was constructed to include a lithium metal anode and a sulfur cathode prepared in the configuration depicted in FIG. 16 . The material of Example 1 was used in the preparation of batteries. Traditionally, lithium-sulfur systems have struggled to overcome the low cycle life caused by the dissolution of chemical intermediates in the sulfidation reaction in the liquid electrolytes typical of such batteries.

固体聚合物材料通过将反应中间体捕获在固体体系中来限制反应中间体的溶解,从而起到了实现Li-S体系的作用。固体聚合物材料可以传输锂离子,同时阻止多硫离子(polysulfide ion)到达阳极。固体聚合物材料限制了硫颗粒的溶解和硫离子的传输,从而使更多的硫参与反应并提高了阴极的容量。相对于包含仅含有硫和碳的标准阴极的电池,这种改进的容量示于图19中。同样重要的是要注意该数据是在室温下得到的。固体聚合物材料不能实现液体电解质和一些常见聚合物电解质的典型的“无差别扩散”,而是仅能够使合成期间掺入到材料中的离子扩散。因此,硫化物不能扩散,而是很类似于除扩散阴离子和扩散阳离子以外的任何其它离子为非离子传导性的。因此,该材料可以充当离子隔膜,因为其可以被设计为仅使所选择的离子能够进行离子迁移。The solid polymer material plays a role in realizing the Li-S system by trapping the reaction intermediates in the solid system to limit the dissolution of the reaction intermediates. The solid polymer material can transport lithium ions while preventing polysulfide ions from reaching the anode. The solid polymer material restricts the dissolution of sulfur particles and the transport of sulfide ions, thereby allowing more sulfur to participate in the reaction and increasing the capacity of the cathode. This improved capacity is shown in Figure 19 relative to a cell containing a standard cathode containing only sulfur and carbon. It is also important to note that this data was obtained at room temperature. Solid polymer materials cannot achieve the typical "indifferential diffusion" of liquid electrolytes and some common polymer electrolytes, but only enable the diffusion of ions incorporated into the material during synthesis. Thus, sulfides cannot diffuse, but are rather ionically non-conductive much like any other ion except diffusing anions and diffusing cations. Thus, the material can act as an ion barrier because it can be designed to enable ion migration only for selected ions.

固体聚合物电解质solid polymer electrolyte

如所描述的,固体离子传导性聚合物材料用作固体电解质。作为固体电解质,其不需要隔膜,但是固体电解质需要许多相同的隔膜特性。As described, a solid ion-conducting polymer material is used as the solid electrolyte. As a solid electrolyte, it does not require a separator, but solid electrolytes require many of the same separator properties.

隔膜是放置在电池的阳极和阴极之间的离子渗透膜。隔膜的主要功能是保持两个电极分开以防止电短路,同时还能够传输在电化学电池中通过电流期间闭合电路所需的离子电荷载体。所有电池都需要这种分离和离子传输操作。The separator is an ion-permeable membrane placed between the anode and cathode of the battery. The main function of the separator is to keep the two electrodes apart to prevent electrical shorts, while also being able to transport the ionic charge carriers needed to close the circuit during the passage of electrical current in the electrochemical cell. All batteries require this separation and ion transport to operate.

当电池反复完全充电和放电时,固体电解质在强反应性环境下也必须对电极材料化学稳定。电池正常使用和不正常使用时,隔膜不应降解。特别重要的是在充电和放电期间遇到的电压范围内的电压稳定性。When the battery is repeatedly fully charged and discharged, the solid electrolyte must also be chemically stable to the electrode material in the highly reactive environment. The separator should not be degraded during normal and abnormal use of the battery. Of particular importance is voltage stability over the range of voltages encountered during charging and discharging.

固体电解质必须很薄以促进电池的能量密度和功率密度。但是,固体电解质必须作为隔膜工作,且不能太薄以至于不利于机械强度和安全性。厚度应该是一致的,以支持多个充电循环。标准宽度通常为约25.4μm-(1.0mil)且小于30μm。固体电解质的厚度可以通过纸浆和造纸工业技术协会的T411om-83方法测量。并且,其已被以5~150微米的厚度挤出。Solid electrolytes must be thin to facilitate the energy density and power density of the battery. However, the solid electrolyte must work as a separator and not be so thin that it compromises mechanical strength and safety. Thickness should be consistent to support multiple charge cycles. Standard widths are typically about 25.4 μm-(1.0 mil) and less than 30 μm. The thickness of the solid electrolyte can be measured by the T411om-83 method of the Pulp and Paper Industry Technical Association. And, it has been extruded at a thickness of 5-150 microns.

聚合物隔膜通常将电解质的电阻增加四至五倍,并且来自均匀渗透率的偏差产生不均匀的电流密度分布,这导致树枝状物的形成。这两个问题都可以通过使用产生离子电导率的均一性并具有各向同性离子电导率的固体电解质来消除。The polymer separator typically increases the electrical resistance of the electrolyte by a factor of four to five, and deviations from uniform permeability create an inhomogeneous current density distribution, which leads to the formation of dendrites. Both of these problems can be eliminated by using solid electrolytes that create uniformity in ionic conductivity and have isotropic ionic conductivity.

固体电解质必须坚固得足以承受电池组装期间任何绕组操作的张力、或者电池的弯曲或其它使用不当。机械强度通常以机器(卷绕)方向和横向上的抗拉强度来定义,以抗撕裂性和刺穿强度来定义。这些参数是以杨氏模量来定义的,其中所述杨氏模量是应力与应变的比值。由固体聚合物材料制成的电解质的杨氏模量范围为3.0MPa~4.0GPa,并且如果需要,其可以通过使用添加剂如玻璃纤维或碳纤维来设计得更高。The solid electrolyte must be strong enough to withstand the strain of any winding manipulation during battery assembly, or bending or other mishandling of the battery. Mechanical strength is usually defined in terms of tensile strength in the machine (winding) and transverse directions, and tear resistance and puncture strength. These parameters are defined in terms of Young's modulus, which is the ratio of stress to strain. The Young's modulus of electrolytes made of solid polymer materials ranges from 3.0 MPa to 4.0 GPa, and it can be engineered higher by using additives such as glass fibers or carbon fibers if necessary.

固体电解质必须在很宽的温度范围内保持稳定而不卷曲或起皱,放置得完全平坦。虽然本发明的固体电解质的离子传输性质随着温度而变化,但是即使在暴露于极热的情况下,结构完整性也保持稳定,这将在下面更充分地描述。A solid electrolyte must remain stable over a wide temperature range without curling or wrinkling, and lay perfectly flat. While the ion transport properties of the solid electrolytes of the present invention vary with temperature, the structural integrity remains stable even when exposed to extreme heat, as will be described more fully below.

因此,由于满足上述列出的各项要求,该固体离子传导性聚合物材料满足隔膜和固体聚合物电解质的要求。具体地,固体聚合物电解质具有以下特性:大于3.0MPa的杨氏模量,小于50微米的厚度,各向同性的离子电导率,在低至-45℃的温度下的多种离子的扩散率,在高电压下与锂金属、电化学活性材料和导电添加剂的稳定性(不反应的),热塑性和可模压性。Therefore, the solid ion-conducting polymer material satisfies the requirements of a separator and a solid polymer electrolyte by satisfying the requirements listed above. Specifically, the solid polymer electrolyte has the following properties: Young's modulus greater than 3.0 MPa, thickness less than 50 micrometers, isotropic ionic conductivity, diffusivity of various ions at temperatures as low as -45 °C , stability (non-reactive), thermoplasticity and moldability at high voltages with lithium metal, electrochemically active materials and conductive additives.

实施例23Example 23

根据UL94-V0可燃性测试的参数测试固体聚合物材料的可燃性。发现固体聚合物材料实际上是不易燃的,其在两秒内自熄灭。根据UL94-V0标准,为了被认为是不易燃的,材料需要在不到十秒的时间内自熄灭。The flammability of solid polymer materials is tested according to the parameters of the UL94-V0 flammability test. The solid polymer material was found to be virtually non-flammable, self-extinguishing within two seconds. According to the UL94-V0 standard, in order to be considered non-flammable, a material needs to self-extinguish in less than ten seconds.

本申请和本详细说明书在此包含以下申请的整个说明书,包括权利要求书、摘要和附图:2015年5月8日递交的美国临时专利申请Ser.No.62/158,841;2014年12月3日提交的美国专利申请Ser.No.14/559,430;2013年12月3日递交的美国临时专利申请Ser.No.61/911,049;2013年4月11日提交的Ser.No.13/861,170;和2012年4月11日提交的美国临时专利申请Ser.No.61/622,705。This application and this detailed specification hereby incorporate the entire specification, including claims, abstract and drawings, of the following applications: U.S. Provisional Patent Application Ser. No. 62/158,841, filed May 8, 2015; U.S. Patent Application Ser. No. 14/559,430 filed on December 3, 2013; U.S. Provisional Patent Application Ser. No. 61/911,049 filed on December 3, 2013; Ser. No. 13/861,170 filed on April 11, 2013; and U.S. Provisional Patent Application Ser. No. 61/622,705, filed April 11, 2012.

尽管已经根据本发明的某些优选实施方案详细描述了本发明,但是本领域技术人员在不脱离本发明精神的情况下可以实现其中的许多修改和变化。因此,申请人的目的仅受限于所附权利要求的范围,而不通过描述在此所示的实施方案的细节和手段受限。Although the invention has been described in detail according to certain preferred embodiments thereof, many modifications and changes therein can be made by those skilled in the art without departing from the spirit of the invention. Accordingly, it is the applicant's intention to be limited only by the scope of the appended claims and not by the details and instrumentalities of the described embodiments shown herein.

应该理解的是,在不脱离本发明的构思的情况下,可以对上述结构进行变化和修改,并且应当理解的是,这些构思意欲被所附权利要求所涵盖,除非这些权利要求中另有明文规定。It is to be understood that changes and modifications may be made to the structures described above without departing from the concepts of the present invention, and it is to be understood that these concepts are intended to be covered by the appended claims unless expressly stated otherwise in those claims Regulation.

Claims (92)

1.固体离子传导性聚合物材料,其具有:1. A solid ion-conducting polymer material having: 大于30%的结晶度;熔化温度;Greater than 30% crystallinity; melting temperature; 玻璃态;以及glassy state; and 至少一种阳离子扩散离子和至少一种阴离子扩散离子,其中至少一种扩散离子在所述玻璃态下是可迁移的。at least one cation diffusing ion and at least one anion diffusing ion, wherein at least one diffusing ion is mobile in said glass state. 2.如权利要求1所述的材料,其进一步包含多个电荷转移络合物。2. The material of claim 1, further comprising a plurality of charge transfer complexes. 3.如权利要求2所述的材料,其中所述材料包含多个单体,且其中各电荷转移络合物位于单体上。3. The material of claim 2, wherein the material comprises a plurality of monomers, and wherein each charge transfer complex is located on a monomer. 4.如权利要求1或3所述的材料,其中所述材料的面积比电阻在室温下小于1.0×105Ω.cm24. The material according to claim 1 or 3, wherein the material has an area specific resistance of less than 1.0×10 5 Ω·cm 2 at room temperature. 5.固体半结晶离子传导性聚合物材料,其具有:5. A solid semicrystalline ion-conducting polymer material having: 多个单体;multiple monomers; 多个电荷转移络合物,其中各电荷转移络合物位于单体上;a plurality of charge transfer complexes, wherein each charge transfer complex is located on a monomer; 其中所述材料的面积比电阻在室温下小于1.0×105Ω.cm2Wherein the area specific resistance of the material is less than 1.0×10 5 Ω.cm 2 at room temperature. 6.如权利要求5所述的材料,其中所述材料的结晶度大于30%。6. The material of claim 5, wherein the crystallinity of the material is greater than 30%. 7.如权利要求1或5所述的材料,其中所述玻璃态在低于所述材料的熔化温度的温度下存在。7. A material as claimed in claim 1 or 5, wherein the glassy state exists at a temperature below the melting temperature of the material. 8.如权利要求5所述的材料,其中所述材料还包含阳离子扩散离子和阴离子扩散离子,各扩散离子在玻璃态下是可迁移的,并且其中所述材料的结晶度大于30%。8. The material of claim 5, wherein the material further comprises cation diffusing ions and anion diffusing ions, each diffusing ion being mobile in the glassy state, and wherein the material has a degree of crystallinity greater than 30%. 9.如权利要求2或5所述的材料,其中所述电荷转移络合物通过聚合物和电子受体的反应形成。9. The material of claim 2 or 5, wherein the charge transfer complex is formed by the reaction of a polymer and an electron acceptor. 10.如权利要求5所述的材料,其中所述材料具有玻璃态,并且具有至少一种阳离子扩散离子和至少一种阴离子扩散离子,其中各扩散离子在所述玻璃态下是可迁移的。10. The material of claim 5, wherein the material has a glassy state and has at least one cation diffusing ion and at least one anion diffusing ion, wherein each diffusing ion is mobile in the glassy state. 11.如权利要求1或10所述的材料,其具有至少三种扩散离子。11. A material as claimed in claim 1 or 10 having at least three kinds of diffuse ions. 12.如权利要求1或10所述的材料,其具有多于一种阴离子扩散离子。12. A material as claimed in claim 1 or 10 having more than one anion diffusing ion. 13.如权利要求1或5所述的材料,其中所述材料的熔化温度大于250℃。13. The material of claim 1 or 5, wherein the melting temperature of the material is greater than 250°C. 14.如权利要求1或5所述的材料,其中所述材料的离子电导率在室温下大于1.0x 10- 5S/cm。14. The material of claim 1 or 5, wherein the ionic conductivity of the material is greater than 1.0 x 10-5 S / cm at room temperature. 15.如权利要求1或10所述的材料,其中所述材料包含单一阳离子扩散离子,其中所述阳离子扩散离子在室温下的扩散率大于1.0x 10-12m2/s。15. The material of claim 1 or 10, wherein the material comprises a single cation-diffusing ion, wherein the diffusivity of the cation-diffusing ion is greater than 1.0×10 −12 m 2 /s at room temperature. 16.如权利要求1或10所述的材料,其中所述材料包含单一阴离子扩散离子,其中所述阴离子扩散离子在室温下的扩散率大于1.0x 10-12m2/s。16. The material of claim 1 or 10, wherein the material comprises a single anion diffusing ion, wherein the diffusivity of the anion diffusing ion is greater than 1.0 x 10~ 12 m2 /s at room temperature. 17.如权利要求1或10所述的材料,其中至少一种阳离子扩散离子包括碱金属、碱土金属、过渡金属或后过渡金属。17. The material of claim 1 or 10, wherein at least one cation-diffusing ion comprises an alkali metal, alkaline earth metal, transition metal, or late transition metal. 18.如权利要求3或10所述的材料,其中每个单体上存在至少一个阴离子扩散离子。18. A material as claimed in claim 3 or 10, wherein at least one anion diffusing ion is present on each monomer. 19.如权利要求3或10所述的材料,其中每个单体上存在至少一个阳离子扩散离子。19. A material as claimed in claim 3 or 10, wherein at least one cation diffusing ion is present on each monomer. 20.如权利要求1或10所述的材料,其中每升材料中存在至少1摩尔阳离子扩散离子。20. A material as claimed in claim 1 or 10, wherein at least 1 mole of cation diffusing ions is present per liter of material. 21.如权利要求2或5所述的材料,其中,所述电荷转移络合物通过聚合物、电子受体和离子化合物的反应形成,其中各阳离子扩散离子和阴离子扩散离子是所述离子化合物的反应产物。21. The material of claim 2 or 5, wherein the charge transfer complex is formed by the reaction of a polymer, an electron acceptor, and an ionic compound, wherein each cation diffusing ion and anion diffusing ion is the ionic compound reaction product. 22.如权利要求1或10所述的材料,其中,所述材料由至少一种离子化合物形成,其中所述离子化合物包含各阳离子扩散离子和阴离子扩散离子。22. The material of claim 1 or 10, wherein the material is formed from at least one ionic compound, wherein the ionic compound comprises respective cation-diffusing ions and anion-diffusing ions. 23.如权利要求1或5所述的材料,其中所述材料是热塑性的。23. The material of claim 1 or 5, wherein the material is thermoplastic. 24.如权利要求1或10所述的材料,其中所述阳离子扩散离子包括锂。24. The material of claim 1 or 10, wherein the cation diffusing ions comprise lithium. 25.如权利要求1或10所述的材料,其中,至少一种阳离子扩散离子和至少一种阴离子扩散离子各自具有扩散率,其中阳离子扩散率大于阴离子扩散率。25. The material of claim 1 or 10, wherein at least one cation-diffusing ion and at least one anion-diffusing ion each have a diffusivity, wherein the cation diffusivity is greater than the anion diffusivity. 26.如权利要求1或10所述的材料,其中所述材料的阳离子迁移数大于0.5且小于1.0。26. The material of claim 1 or 10, wherein the material has a cation transport number greater than 0.5 and less than 1.0. 27.如权利要求24所述的材料,其中所述锂的浓度大于3摩尔锂/升材料。27. The material of claim 24, wherein the concentration of lithium is greater than 3 moles of lithium per liter of material. 28.如权利要求25或26所述的材料,其中所述阳离子扩散离子包括锂。28. A material as claimed in claim 25 or 26, wherein the cation diffusing ions comprise lithium. 29.如权利要求1或10所述的材料,其中所述扩散阳离子是单价的。29. The material of claim 1 or 10, wherein the diffusing cations are monovalent. 30.如权利要求1或10所述的材料,其中所述扩散阳离子的价数大于1。30. The material of claim 1 or 10, wherein the diffusive cations have a valence greater than one. 31.如权利要求3或10所述的材料,其中所述材料包含多于1个扩散阴离子/单体。31. The material of claim 3 or 10, wherein the material comprises more than 1 diffusing anion/monomer. 32.如权利要求1或10所述的材料,其中所述扩散阴离子是氢氧根离子。32. The material of claim 1 or 10, wherein the diffusive anions are hydroxide ions. 33.如权利要求1或10所述的材料,其中所述扩散阴离子是单价的。33. The material of claim 1 or 10, wherein the diffusive anions are monovalent. 34.如权利要求1或10所述的材料,其中所述扩散阴离子和所述扩散阳离子均是单价的。34. The material of claim 1 or 10, wherein the diffusing anions and the diffusing cations are both monovalent. 35.如权利要求1或10所述的材料,其中,至少一种阳离子扩散离子和至少一种阴离子扩散离子各自具有扩散率,其中阴离子扩散率大于阳离子扩散率。35. The material of claim 1 or 10, wherein at least one cation-diffusing ion and at least one anion-diffusing ion each have a diffusivity, wherein the anion diffusivity is greater than the cation diffusivity. 36.如权利要求1或10所述的材料,其中所述材料的阳离子迁移数等于或小于0.5且大于零。36. The material of claim 1 or 10, wherein the material has a cation transport number equal to or less than 0.5 and greater than zero. 37.如权利要求1或10所述的材料,其中所述至少一种阳离子扩散离子中的一种的扩散率大于1.0x 10-12m2/s。37. The material of claim 1 or 10, wherein the diffusivity of one of the at least one cation-diffusing ions is greater than 1.0 x 10-12 m2 /s. 38.如权利要求1或10所述的材料,其中所述至少一种阴离子扩散离子中的一种的扩散率大于1.0x 10-12m2/s。38. The material of claim 1 or 10, wherein the diffusivity of one of the at least one anion-diffusing ions is greater than 1.0 x 10-12 m2 /s. 39.如权利要求1或10所述的材料,其中所述至少一种阴离子扩散离子和所述至少一种阳离子扩散离子中的一种的扩散率大于1.0x 10-12m2/s。39. The material of claim 1 or 10, wherein the diffusivity of one of the at least one anion-diffusing ion and the at least one cation-diffusing ion is greater than 1.0 x 10-12 m2 /s. 40.如权利要求3或5所述的材料,其中各单体包含位于所述单体的骨架中的芳香族环结构或杂环结构。40. The material of claim 3 or 5, wherein each monomer comprises an aromatic ring structure or a heterocyclic structure within the backbone of the monomer. 41.如权利要求40所述的材料,其中所述材料进一步包含掺入所述环结构中或位于与所述环结构相邻的骨架上的杂原子。41. The material of claim 40, wherein the material further comprises a heteroatom incorporated into the ring structure or located on the backbone adjacent to the ring structure. 42.如权利要求41所述的材料,其中所述杂原子选自硫、氧或氮。42. The material of claim 41, wherein the heteroatom is selected from sulfur, oxygen or nitrogen. 43.如权利要求42所述的材料,其中所述杂原子位于所述单体的与所述环结构相邻的骨架上。43. The material of claim 42, wherein the heteroatom is located on the backbone of the monomer adjacent to the ring structure. 44.如权利要求43所述的材料,其中所述杂原子是硫。44. The material of claim 43, wherein the heteroatom is sulfur. 45.如权利要求1或5所述的材料,其中所述材料是π共轭的。45. The material of claim 1 or 5, wherein the material is pi-conjugated. 46.如权利要求40所述的材料,其中每个单体上存在至少一个阴离子扩散离子,并且其中至少一个单体包含锂离子。46. The material of claim 40, wherein at least one anion diffusing ion is present on each monomer, and wherein at least one monomer comprises lithium ions. 47.如权利要求1或5所述的材料,其中所述聚合物包含多个单体,其中所述单体的分子量大于100克/摩尔。47. The material of claim 1 or 5, wherein the polymer comprises a plurality of monomers, wherein the monomers have a molecular weight greater than 100 g/mole. 48.如权利要求1或5所述的材料,其中所述材料是亲水的。48. The material of claim 1 or 5, wherein the material is hydrophilic. 49.如权利要求1或5所述的材料,其中所述材料的离子电导率是各向同性的。49. The material of claim 1 or 5, wherein the ionic conductivity of the material is isotropic. 50.如权利要求1或5所述的材料,其在室温下的离子电导率大于1x10-4S/cm。50. The material of claim 1 or 5, which has an ionic conductivity greater than 1 x 10-4 S/cm at room temperature. 51.如权利要求1或5所述的材料,其在80℃的离子电导率大于1x 10-3S/cm。51. The material of claim 1 or 5, which has an ionic conductivity at 80°C of greater than 1 x 10-3 S/cm. 52.如权利要求1或5所述的材料,其在-40℃的离子电导率大于1x 10-5S/cm。52. The material of claim 1 or 5, which has an ionic conductivity greater than 1 x 10-5 S/cm at -40°C. 53.如权利要求1或10所述的材料,其中,所述阳离子扩散离子包括锂,并且其中在室温下锂离子的扩散率大于1.0x 10-13m2/s。53. The material of claim 1 or 10, wherein the cation-diffusing ions comprise lithium, and wherein the diffusion rate of lithium ions is greater than 1.0 x 10-13 m2 /s at room temperature. 54.如权利要求1或5所述的材料,其中所述材料是不易燃的。54. The material of claim 1 or 5, wherein the material is non-flammable. 55.如权利要求1或5所述的材料,其中,当与第二材料混合时,所述材料是不起反应的,其中所述第二材料选自电化学活性材料、导电材料、流变改性材料和稳定材料。55. The material of claim 1 or 5, wherein said material is non-reactive when mixed with a second material selected from the group consisting of electrochemically active materials, conductive materials, rheological Modified and stabilized materials. 56.如权利要求1或5所述的材料,其中所述材料呈薄膜状。56. The material of claim 1 or 5, wherein the material is in the form of a film. 57.如权利要求1或5所述的材料,其中所述材料的杨氏模量等于或大于3.0MPa。57. The material of claim 1 or 5, wherein the material has a Young's modulus equal to or greater than 3.0 MPa. 58.固体离子传导性大分子,其包含:58. A solid ion-conducting macromolecule comprising: 多个单体,其中各单体包含芳香族环结构或杂环结构;A plurality of monomers, wherein each monomer comprises an aromatic ring structure or a heterocyclic structure; 掺入所述环结构中或者位置与所述环结构相邻的杂原子;a heteroatom incorporated into or positioned adjacent to said ring structure; 阳离子扩散离子和阴离子扩散离子,其中所述阳离子扩散离子和所述阴离子扩散离子都被掺入所述大分子的结构中;cation-diffusing ions and anion-diffusing ions, wherein both the cation-diffusing ions and the anion-diffusing ions are incorporated into the structure of the macromolecule; 其中所述阳离子扩散离子和所述阴离子扩散离子均可以沿着所述大分子扩散;wherein both the cation-diffusing ions and the anion-diffusing ions can diffuse along the macromolecules; 其中,当所述阳离子扩散离子或阴离子扩散离子沿着所述大分子扩散时,聚合物材料中不存在链段运动。Wherein, when the cation-diffusing ions or anion-diffusing ions diffuse along the macromolecule, there is no segmental movement in the polymer material. 59.包含权利要求58所述的大分子的材料。59. A material comprising the macromolecule of claim 58. 60.如权利要求59所述的材料,其中所述材料的离子电导率大于1x 10-4S/cm。60. The material of claim 59, wherein the ionic conductivity of the material is greater than 1 x 10-4 S/cm. 61.如权利要求59所述的材料,其中各单体的分子量大于100克/摩尔。61. The material of claim 59, wherein each monomer has a molecular weight greater than 100 g/mole. 62.如权利要求59所述的材料,其中至少一种阳离子扩散离子包括碱金属、碱土金属、过渡金属或后过渡金属。62. The material of claim 59, wherein at least one cation-diffusing ion comprises an alkali metal, alkaline earth metal, transition metal, or post-transition metal. 63.如权利要求1或5所述的材料,其中所述材料在掺杂电子受体后变为离子传导性的。63. The material of claim 1 or 5, wherein the material becomes ionically conductive upon doping with electron acceptors. 64.如权利要求1或10所述的材料,其中,所述材料在离子化合物的存在下在掺杂电子受体后变为离子传导性的,所述离子化合物包含阳离子扩散离子和阴离子扩散离子,或者可通过所述电子受体的氧化作用转化成阳离子扩散离子和阴离子扩散离子。64. The material of claim 1 or 10, wherein the material becomes ionically conductive upon doping electron acceptors in the presence of an ionic compound comprising cation-diffusing ions and anion-diffusing ions , or can be converted into cation-diffusing ions and anion-diffusing ions by oxidation of the electron acceptor. 65.如权利要求1或5所述的材料,其中所述材料由基础聚合物、电子受体和离子化合物的反应产物形成。65. The material of claim 1 or 5, wherein the material is formed from the reaction product of a base polymer, an electron acceptor, and an ionic compound. 66.如权利要求65所述的材料,其中所述基础聚合物是共轭聚合物。66. The material of claim 65, wherein the base polymer is a conjugated polymer. 67.如权利要求65所述的材料,其中所述基础聚合物是PPS或液晶聚合物。67. The material of claim 65, wherein the base polymer is PPS or a liquid crystal polymer. 68.如权利要求65所述的材料,其中所述离子化合物是氧化物、氯化物、氢氧化物或盐。68. The material of claim 65, wherein the ionic compound is an oxide, chloride, hydroxide or salt. 69.如权利要求2或5所述的材料,其中所述电荷转移络合物通过电子受体和聚合物的反应形成。69. The material of claim 2 or 5, wherein the charge transfer complex is formed by the reaction of an electron acceptor and a polymer. 70.如权利要求65所述的材料,其中所述电子受体是醌或氧。70. The material of claim 65, wherein the electron acceptor is quinone or oxygen. 71.制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的基础聚合物、电子受体和离子化合物混合以产生第一混合物;加热所述第一混合物以产生所述固体离子传导性聚合物材料。71. A method of preparing a solid ion-conducting polymer material, comprising the steps of: mixing a base polymer comprising a plurality of monomers, an electron acceptor, and an ionic compound to produce a first mixture; heating the first mixture to produce The solid ion-conducting polymer material. 72.制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的聚合物和包含离子的化合物混合以产生第一混合物;用电子受体掺杂所述第一混合物以产生第二混合物;以及加热所述第二混合物。72. A method of preparing a solid ion-conducting polymer material comprising the steps of: mixing a polymer comprising a plurality of monomers and an ion-containing compound to produce a first mixture; doping the first mixture with an electron acceptor to produce a second mixture; and heating the second mixture. 73.制备固体离子传导性聚合物材料的方法,其包括以下步骤:将包含多个单体的聚合物和电子受体混合以产生第一混合物;加热所述第一混合物以产生包含电荷转移络合物的中间材料;将所述中间材料与包含离子的化合物混合以产生所述固体离子传导性聚合物材料。73. A method of preparing a solid ion-conducting polymer material, comprising the steps of: mixing a polymer comprising a plurality of monomers and an electron acceptor to produce a first mixture; heating the first mixture to produce a charge-transfer complex comprising an intermediate material of a compound; mixing the intermediate material with an ion-containing compound to produce the solid ion-conducting polymer material. 74.如权利要求71~73中任一项所述的方法,其还包括退火步骤,其中在所述退火步骤中所述基础聚合物的结晶度增大。74. The method of any one of claims 71-73, further comprising an annealing step, wherein the crystallinity of the base polymer increases during the annealing step. 75.如权利要求71~73中任一项所述的方法,其中所述基础聚合物包含多个单体,并且其中单体与电子受体的摩尔比等于或大于1:1。75. The method of any one of claims 71-73, wherein the base polymer comprises a plurality of monomers, and wherein the molar ratio of monomers to electron acceptors is equal to or greater than 1:1. 76.如权利要求71~73中任一项所述的方法,其中所述基础聚合物具有玻璃化转变温度,并且其中所述基础聚合物的玻璃化转变温度大于80℃。76. The method of any one of claims 71-73, wherein the base polymer has a glass transition temperature, and wherein the glass transition temperature of the base polymer is greater than 80°C. 77.如权利要求71~73中任一项所述的方法,其中在混合步骤中所述基础聚合物与所述离子化合物的重量比小于5:1。77. The method of any one of claims 71-73, wherein the weight ratio of the base polymer to the ionic compound during the mixing step is less than 5:1. 78.如权利要求71~73中任一项所述的方法,其中在加热步骤中对所述混合物施加正压。78. The method of any one of claims 71-73, wherein a positive pressure is applied to the mixture during the heating step. 79.如权利要求71~73中任一项所述的方法,其中在加热步骤中所述混合物发生颜色变化。79. The method of any one of claims 71-73, wherein the mixture undergoes a color change during the heating step. 80.如权利要求71~73中任一项所述的方法,其中在加热步骤中形成电荷转移络合物。80. The method of any one of claims 71-73, wherein a charge transfer complex is formed during the heating step. 81.如权利要求71~73中任一项所述的方法,其还包括将所述固体离子传导性聚合物材料与第二材料混合的另外的混合步骤。81. The method of any one of claims 71-73, further comprising the additional mixing step of mixing the solid ion-conducting polymer material with a second material. 82.如权利要求71~73中任一项所述的方法,其还包括挤出步骤,其中将所述固体离子传导性聚合物材料挤出。82. The method of any one of claims 71-73, further comprising the step of extruding, wherein the solid ion-conducting polymer material is extruded. 83.如权利要求71~73中任一项所述的方法,其还包括离子传导步骤,其中所述固体离子传导性聚合物材料传输至少一种离子。83. The method of any one of claims 71-73, further comprising an ion conducting step, wherein the solid ion conducting polymer material transports at least one ion. 84.通过权利要求71~73中任一项所述的方法产生的材料。84. A material produced by the method of any one of claims 71-73. 85.电化学活性材料复合材料,其包含权利要求1、5、59或85所述的材料和电化学活性材料。85. An electrochemically active material composite comprising the material of claim 1 , 5, 59 or 85 and an electrochemically active material. 86.电极,其包含权利要求1、5、59或85所述的材料。86. An electrode comprising the material of claim 1 , 5, 59, or 85. 87.电池,其包含权利要求1、5、59或85所述的材料。87. A battery comprising the material of claim 1, 5, 59, or 85. 88.燃料电池,其包含权利要求1、5、59或85所述的材料。88. A fuel cell comprising the material of claim 1, 5, 59, or 85. 89.电解质,其包含权利要求1、5、59或85所述的材料。89. An electrolyte comprising the material of claim 1, 5, 59, or 85. 90.用于传导离子的装置,其包含权利要求1、5、59或85所述的材料。90. A device for conducting ions comprising the material of claim 1 , 5, 59 or 85. 91.用于传导离子的方法,其包括权利要求1、5、59或85所述的材料。91. A method for conducting ions comprising the material of claim 1 , 5, 59 or 85. 92.用于分离离子的方法,其包括权利要求1、5、59或85所述的材料。92. A method for separating ions comprising the material of claim 1, 5, 59 or 85.
CN201680040454.9A 2015-05-08 2016-05-06 Solid ionically conductive polymer material Active CN108028406B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562158841P 2015-05-08 2015-05-08
US62/158,841 2015-05-08
PCT/US2016/031124 WO2016182884A1 (en) 2015-05-08 2016-05-06 Solid ionically conducting polymer material

Publications (2)

Publication Number Publication Date
CN108028406A true CN108028406A (en) 2018-05-11
CN108028406B CN108028406B (en) 2022-01-18

Family

ID=57249353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680040454.9A Active CN108028406B (en) 2015-05-08 2016-05-06 Solid ionically conductive polymer material

Country Status (6)

Country Link
EP (1) EP3295503A4 (en)
JP (2) JP7510240B2 (en)
KR (1) KR102594870B1 (en)
CN (1) CN108028406B (en)
SG (1) SG10201811815VA (en)
WO (1) WO2016182884A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018304A (en) * 2019-05-29 2020-12-01 河北金力新能源科技股份有限公司 Coating diaphragm for lithium-sulfur battery, preparation method and lithium-sulfur battery
CN114342146A (en) * 2019-07-01 2022-04-12 A123系统有限责任公司 Systems and methods for composite solid-state battery cells with ionically conductive polymer electrolytes
CN114976212A (en) * 2021-02-26 2022-08-30 南京博驰新能源股份有限公司 Solid electrolyte and application thereof
WO2022193543A1 (en) * 2021-03-18 2022-09-22 南京博驰新能源股份有限公司 Solid electrolyte and preparation method therefor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US12074274B2 (en) 2012-04-11 2024-08-27 Ionic Materials, Inc. Solid state bipolar battery
US11251455B2 (en) 2012-04-11 2022-02-15 Ionic Materials, Inc. Solid ionically conducting polymer material
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US9819053B1 (en) 2012-04-11 2017-11-14 Ionic Materials, Inc. Solid electrolyte high energy battery
JP6944379B2 (en) 2015-06-04 2021-10-06 イオニツク・マテリアルズ・インコーポレーテツド Solid bipolar battery
EP3574542A4 (en) * 2017-01-26 2020-09-02 Ionic Materials, Inc. ALKALINE BATTERY CATHODE WITH SOLID POLYMER ELECTROLYTE
US10985373B2 (en) * 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
JP6769926B2 (en) * 2017-05-25 2020-10-14 日本電信電話株式会社 Lithium air secondary battery
KR102663579B1 (en) * 2018-07-25 2024-05-03 주식회사 엘지에너지솔루션 Doping method of polymer for solid electrolyte
WO2020112969A1 (en) * 2018-11-30 2020-06-04 Ionic Materials, Inc. Batteries and electrodes with coated active materials
DE102019206131B4 (en) * 2019-04-29 2023-05-17 Vitesco Technologies Germany Gmbh Electrode and battery cell having an electrode
DE102019206133A1 (en) * 2019-04-29 2020-10-29 Vitesco Technologies Germany Gmbh Solid electrolyte layer and battery cell having a solid electrolyte layer
KR20220027174A (en) * 2019-07-01 2022-03-07 아이오닉 머터리얼스, 인코퍼레이션 Composite Solid State Battery Cells
WO2024048746A1 (en) * 2022-09-02 2024-03-07 東亞合成株式会社 Solid electrolyte, method for producing same, and power storage device
WO2024095313A1 (en) * 2022-10-31 2024-05-10 株式会社コアコンセプト・テクノロジー Method for measuring degree of deterioration of powder for shaping, method and device for manufacturing regenerated powder for shaping, and method and device for manufacturing 3d-shaped object
WO2025084254A1 (en) * 2023-10-16 2025-04-24 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery and nonaqueous electrolyte

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804594A (en) * 1987-10-13 1989-02-14 Allied-Signal Inc. Predoped conductive polymers as battery electrode materials
WO2015084940A1 (en) * 2013-12-03 2015-06-11 Zimmerman Michael A Solid, ionically conducting polymer material, and applications
WO2015153729A1 (en) * 2014-04-01 2015-10-08 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645675B1 (en) * 1999-09-02 2003-11-11 Lithium Power Technologies, Inc. Solid polymer electrolytes
JP2006032135A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Method for producing solid polymer electrolyte membrane, solid polymer electrolyte membrane, and fuel cell comprising the same
GB0428444D0 (en) * 2004-12-29 2005-02-02 Cambridge Display Tech Ltd Conductive polymer compositions in opto-electrical devices
CN102634008A (en) * 2006-08-11 2012-08-15 东丽株式会社 Polymeric electrolyte material, polymeric electrolyte article, membrane electrode complex and solid polymeric fuel cell
US9136034B2 (en) * 2009-08-25 2015-09-15 Kolon Industries, Inc. Polymer electrolyte membrane for a fuel cell, and method for preparing same
JP6228009B2 (en) * 2010-09-13 2017-11-08 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of California Ionic gel electrolytes, energy storage devices, and methods for their production
JP2014029796A (en) * 2012-07-31 2014-02-13 Kansai Electric Power Co Inc:The Lithium ion conductive crystallized solid electrolyte, and method for manufacturing the same
EP2969917B1 (en) * 2012-09-12 2022-11-02 Drexel University Polymerized ionic liquid block copolymers as battery membranes
JP2014229579A (en) * 2013-05-27 2014-12-08 株式会社オハラ Lithium ion conductive inorganic solid composite
US9059481B2 (en) * 2013-08-30 2015-06-16 Nanotek Instruments, Inc. Non-flammable quasi-solid electrolyte and non-lithium alkali metal or alkali-ion secondary batteries containing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804594A (en) * 1987-10-13 1989-02-14 Allied-Signal Inc. Predoped conductive polymers as battery electrode materials
WO2015084940A1 (en) * 2013-12-03 2015-06-11 Zimmerman Michael A Solid, ionically conducting polymer material, and applications
WO2015153729A1 (en) * 2014-04-01 2015-10-08 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHIAM-WEN LIEW 等: "Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
ZBIGNIEW FLORJANCZYK 等: "Polymer-in-Salt Electrolytes Based on Acrylonitrile/Butyl Acrylate Copolymers and Lithium Salts", 《J. PHYS. CHEM. B》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018304A (en) * 2019-05-29 2020-12-01 河北金力新能源科技股份有限公司 Coating diaphragm for lithium-sulfur battery, preparation method and lithium-sulfur battery
CN114342146A (en) * 2019-07-01 2022-04-12 A123系统有限责任公司 Systems and methods for composite solid-state battery cells with ionically conductive polymer electrolytes
CN114976212A (en) * 2021-02-26 2022-08-30 南京博驰新能源股份有限公司 Solid electrolyte and application thereof
WO2022179064A1 (en) * 2021-02-26 2022-09-01 南京博驰新能源股份有限公司 Solid electrolyte and application thereof
WO2022193543A1 (en) * 2021-03-18 2022-09-22 南京博驰新能源股份有限公司 Solid electrolyte and preparation method therefor

Also Published As

Publication number Publication date
WO2016182884A1 (en) 2016-11-17
KR20180039581A (en) 2018-04-18
EP3295503A4 (en) 2019-01-09
EP3295503A1 (en) 2018-03-21
CN108028406B (en) 2022-01-18
SG10201811815VA (en) 2019-02-27
KR102594870B1 (en) 2023-10-26
JP2021141074A (en) 2021-09-16
JP2018522083A (en) 2018-08-09
JP7510240B2 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
CN108028406B (en) Solid ionically conductive polymer material
US11319411B2 (en) Solid ionically conducting polymer material
US11251455B2 (en) Solid ionically conducting polymer material
CN108140805B (en) Solid state bipolar battery
Garcia-Calvo et al. Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries
Arya et al. Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review
JP2022037050A (en) Solid ion conductive polymer material
CN112154564A (en) Battery electrode with solid polymer electrolyte and water-soluble binder
KR102640010B1 (en) Lithium metal battery with solid polymer electrolyte
EP3304634B1 (en) Battery having aluminum anode and solid polymer electrolyte
Beshahwured et al. Flexible hybrid solid electrolyte incorporating ligament-shaped Li6. 25Al0. 25La3Zr2O12 filler for all-solid-state lithium-metal batteries
US7901830B1 (en) Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same
Yang et al. Identifying ultrathin dielectric nanosheets induced interface polarization for high-performance solid-state lithium metal batteries
Kelchtermans et al. Polymeric backbone eutectogel electrolytes for high-energy lithium-ion batteries
Dharmaraj et al. Solid composite electrolyte formed via CeO2 nanoparticles and supramolecular network material for lithium-ion batteries
Liu et al. PVDF-based composite solid polymer electrolyte incorporated with cubic-ZrO2-x for long-cycle lithium metal batteries
Al-Salih Design, Development and Structure of Liquid and Solid Electrolytes for Lithium Batteries
York et al. Solid Batteries Chemistries Beyond Lithium
Narla BOROHYDRIDE-BASED SOLID ELECTROLYTES AND POLYMER COMPOSITE SEPARATORS FOR LITHIUM-ION BATTERIES
Lee Fabrication and Characterizations of LAGP/PEO Composite Electrolytes for All Solid-State Lithium-Ion Batteries
Naranjo-Balseca et al. High Performance Nasicon Ceramic Electrolytes Produced by Tape-Casting and Hot-Pressing: Towards Sustainable All-Solid-State Sodium Batteries Operating at Room Temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant