[go: up one dir, main page]

CN108020960B - 制造液晶电光组件的方法 - Google Patents

制造液晶电光组件的方法 Download PDF

Info

Publication number
CN108020960B
CN108020960B CN201610970339.3A CN201610970339A CN108020960B CN 108020960 B CN108020960 B CN 108020960B CN 201610970339 A CN201610970339 A CN 201610970339A CN 108020960 B CN108020960 B CN 108020960B
Authority
CN
China
Prior art keywords
liquid crystal
gradient field
hollow space
optical
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610970339.3A
Other languages
English (en)
Other versions
CN108020960A (zh
Inventor
黄素真
苏贤宾
何柏彦
张孟筑
林颍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610970339.3A priority Critical patent/CN108020960B/zh
Publication of CN108020960A publication Critical patent/CN108020960A/zh
Application granted granted Critical
Publication of CN108020960B publication Critical patent/CN108020960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提供一种制造液晶电光组件的方法,以非接触方式来进行液晶配向,提供密封在液晶电光组件中的液晶分子达到稳定配向,致使液晶分子在稳态时具有定义的预倾角,从而能预防液晶在外加场趋动态时因反向倾斜所导致的缺陷。该方法包含:提供一光学单元,该光学单元包括一中空空间;注入液晶混合物至该中空空间;以及施加一梯度场至该液晶混合物,其中该梯度场的强度呈现一梯度分布。

Description

制造液晶电光组件的方法
技术领域
本发明涉及一种制造液晶电光组件的方法,尤其是涉及一种以非接触方式来进行液晶配向,提供密封在液晶电光组件中的液晶分子达到稳定配向的效果,致使液晶分子在稳态时具有定义的预倾角,从而能预防液晶分子在外加电场趋动态时因反向倾斜所导致的缺陷发生。
背景技术
要将液晶(liquid crystal,LC)材料与中空光纤、光子晶体或封闭结构做结合来开发新颖的电光组件时,会面临无法在中空孔柱内有效控制液晶分子成稳定排列的难题,使得液晶分子在有外加电场的情况下会有配向缺陷的向错线(disclination line,亦可称作不连续线)发生,此缺陷会严重造成光散射损失。而发生缺陷的原因乃中空圆柱体的封闭表面是无法进行摩擦处理(rubbing process)的,所以局限在一未经摩擦处理的封闭圆柱体(或结构体)中的弹性体液晶分子是无法得到一稳定且一致的排列方向,且液晶分子在封闭孔隙内的取向(orientation)机制相当复杂,并非如传统液晶胞(liquid-crystal cell)的方形结构体中的单纯;因此,配向缺陷问题严重地限制了液晶光纤或电光组件的开发。
在中空光纤或光子晶体的圆柱孔壁上,由于无法在圆柱腔壁上进行摩擦配向处理来提供液晶分子一首选的方向(preferred direction),以致热扰动会造成液晶分子的光轴方向不在一稳定方向上,故当一电场外加于液晶(光纤)组件时,将可能造成液晶分子会往两个不同的方向转动并倾斜,以致在反向倾斜的两个区域间的边界发生取向缺陷,如图1所示。在图1中,在光学单元11中,电源19驱动上电极18a及下电极18b在其间产生电场施加于液晶混合物13,使得液晶分子13a转向倾斜而造成反向倾斜区域,导致向错线的发生。此缺陷导致与周围的液晶分子间有折射率差异而形成界面,故将导致液晶或光纤组件的光信号损失、以及光学特性的劣化。因此,将限制液晶光纤或电光组件的应用范围。
液晶分子的排列状态对光纤组件的光传播特性有着显著的影响。为改善液晶光纤组件的光学特性,必先解决液晶分子的反向倾斜的取向缺陷问题。然而,因灌注在中空光纤内的液晶分子排列方式受到许多因素所影响,例如液晶弹性常数、液晶介电各向异性、液晶分子的偶极矩和刚性、液晶和玻璃的表面张力、玻璃空气柱管壁的平整度、以及缺陷的存在与否等参数。因此,液晶分子在圆柱孔中的排列相当复杂。
液晶分子在圆柱孔中常见的排列有平行于光纤轴向的平行排列(planar-aligned)、与扩张排列(splayed-aligned)。由于扩张排列的液晶分子没有临界电压(Fredericks transition threshold),不会有如平行排列的液晶分子因反向倾斜所生的区块缺陷(reverse tilt domain defects)。因此,现有文献中提出要避免区块缺陷的产生,则必须选用光配向技术或使用可在中空光纤中呈现扩张排列的液晶材料(如双频液晶或负型液晶),如此将限制液晶材料的选择性。此外,负型液晶材料的介电异向性(Δε)较正型液晶为小,故其阈值电压(threshold voltage)较高。
虽然高分子稳定配向(polymer stabilized alignment,PSA)技术早在1998年时就已被提出,但主要应用于液晶显示器的特性改善,近几年来也因为其良好的特性与相关技术方面的改良,渐渐地又受到各方的关注。高分子稳定液晶分子配向的技术主要是借由光聚合(phtopolymerization)致使相分离(phase separation)来得到高分子网络结构。利用反应型液晶或光感单体(photo-sensitive monomers)在外加电场(或驱动电场)作用下发生紫外(UV)光聚合,进而产生用来控制液晶分子预倾方向的高分子网络。由于固化(curing)电场会导引液晶分子排列于特定方向,因此致使在中空光纤内的液晶指向矢(director,液晶轴所指方向)具有一特定方向的特性。而且,高分子网络致使的预倾角(pretilt angle,液晶轴与接口之间的夹角)可控制液晶分子旋转的倾向,故高分子稳定配向技术可提供一个配向稳定、制程简易、低成本、以及具有低临界电压、快速响应、高调谐与高稳定的液晶光纤或电光组件。
高分子稳定配向技术亦被应用在液晶面板产业。于此,高分子稳定配向技术可应用于垂直配向模式(vertical alignment mode)。也就是,在垂直配向模式中所使用的液晶为负型液晶,原始预倾角为90°但无特定方向,以及用于驱动的电场为垂直电场(垂直于基板)。为了使液晶面板中的液晶分子具有一定方向初始预轻角以及广视角显示特性,须要利用斜向电场使得液晶分子在外加电场驱动下先朝向所需要的方向倾倒,而上述的斜向电场则需要特殊的电极图案设计来达成。当液晶分子因斜向电场而朝向所需要的方向倾倒时,执行照光聚合程序使得液晶混合物中的光感单体聚合成表面高分子网络。所述高分子网络能提供液晶分子与执行光照聚合程序时液晶分子倾倒的方向一致的预倾角的方向,而预倾角的角度则部分取决于执行照光聚合程序时致始液晶分子倾倒的斜向电场的强弱。虽然采用高分子稳定配向技术以提供液晶分子具有一定方向的初始预倾角,但在借由照光聚合程序形成表面高分子之前基板仍需要垂直配向层的存在。
一般而言,为使液晶分子能在基材(玻璃)表面有一定的排列方向,通常会在基材表面上进行配向处理,但对于中空光纤而言,困难之处在于对其圆柱孔壁上进行摩擦配向处理。虽然液晶分子会因为注入的毛细流力关系而倾向于光纤轴向排列,但其在外加电场的作用下并未有一首选的排列方向,故易造成液晶分子的反倾斜排列的局部配向缺陷发生,而此缺陷的产生会造成液晶光纤组件的光功率损失、响应速度变慢、及光学特性的劣化。
当液晶填入中空光纤后,若孔隙壁面未作任何处理时,因液晶分子呈现棒状结构,毛细现象的流力作用将导致液晶的整体排列方向大致为平行于光纤轴,如图2(a)分所示。以微观的角度来看,液晶分子23a是以不同方向的倾角排列于光纤21内部的中空空间22中,因此在正交偏光显微镜下无法观察到全黑状态,如图2(b)所观察到些微漏光,其中光纤管21a包覆着液晶混合物23,符号A及P分别表示偏光片及检光片的轴向。由于液晶分子易受外加电场驱动而改变排列方向,当外加电场于液晶光纤时,由于在中空光纤管的孔隙玻璃壁面是无法进行摩擦配向处理,液晶分子在无配向的圆柱孔内存在不同方向的倾角排列,以致于外加电场的作用会使液晶分子作出反向倾斜的排列响应,进而液晶导轴排列的不连续性使得向错线随机产生,如图3(a)和图3(b)所示。在图3(a)和图3(b)中,光纤31的光纤管31a包覆液晶混合物33,上电极38a及下电极38b对液晶混合物33施加电场E使得液晶分子33a转动倾斜。此外,由液晶连续弹性体理论得知,液晶分子的排列状况会受到向错线所影响,因此在电场驱动下将形成以向错线为界面的多重区块液晶排列,此向错线缺陷将造成液晶光纤组件的光信号损失、电光响应的磁滞现象、以及响应速度变慢。
发明内容
为能使液晶材料与中空光纤能成功地结合并且应用于高调谐的光纤或电光组件的开发,则必须解决在狭小封闭空间(微米尺度)中难以对液晶分子进行配向处理的问题,进而改善液晶分子的反向倾斜所生的向错线发生。因此,本发明以梯度场(gradientfield)(电场、磁场、温度场或应力场等,但不限于此)与表面高分子稳定配向(surfacepolymer stabilized alignment,SPSA)技术来提供液晶分子在中空纤核内能达一稳定的排列方向与具有一预倾角分布。
更详细地,本发明主要先利用梯度场来驱使液晶分子往一致的方向排列,以消弭向错缺陷的产生,接着再以表面高分子稳定配向技术来使液晶分子固定在所要的方向与倾角上。而此梯度场部分可以运用电场、温度场、磁场或者是应力场来实现梯度场致使液晶分子流动。
亦即,为让各种正负型液晶材料皆能广泛使用于电控液晶光纤或电光组件的开发,本发明提出利用梯度场与表面高分子稳定配向技术的结合来提供空气柱中的液晶分子能获得一预倾角并且被锚定(anchor)在一定的方向上,使得在电场作用时,液晶分子即有首选的稳定方向来重新排列,进而改善外加电场驱动下所生的向错线现象。
据此,本发明在此提供一种制造液晶电光组件的方法,包含:提供一光学单元,该光学单元包括一中空空间;注入液晶混合物至该中空空间;以及施加一梯度场至该液晶混合物,该梯度场的强度呈现一梯度分布。如此,可消弭本发明液晶电光组件的向错缺陷的产生。
依据本发明一实施例,该梯度场可为一梯度电场、一梯度温度场、一梯度磁场或一梯度应力场。
依据本发明一实施例,该光学单元可为一光纤;该中空空间可平行该光纤的轴的方向延伸;以及该梯度场的强度可沿该光纤的轴的方向增强或减弱。
依据本发明另一实施例,该光纤可为一光子晶体光纤。
依据本发明另一实施例,该光学单元可为一光波导(optical waveguide),该光波导可由定义该中空空间的一基板组成;以及该梯度场的强度可沿平行该基板的方向增强或减弱。
依据本发明另一实施例,该光学单元可为一液晶胞,该液晶胞可由定义该中空空间的二基板组成;以及该梯度场的强度可沿平行该二基板的其中之一的方向增强或减弱。
依据本发明一实施例,该中空空间具有小于100μm的一空间维度。
为了更进一步稳固液晶分子预倾角的方向及角度,依据本发明一实施例,本发明方法可进一步包含:照射一固化光至该液晶混合物,其中该液晶混合物可包括液晶分子及光感单体。
依据本发明一实施例,在执行该照射一固化光时这些光感单体可在该中空空间的接口上聚合成表面高分子网络。
为了调制液晶分子预倾角的方向及角度,依据在本发明一实施例,本发明方法可进一步包含:施加一固化电场于该液晶混合物,其中该施加一固化电场的程序可在该照射一固化光的程序之前,以及该固化电场可为一空间均匀电场。
最后,依据上述本发明方式所制造的液晶电光组件中的液晶分子可具有一稳态的具有被定义的方向及角度的预倾角。
附图说明
图1为现有液晶电光组件中的液晶反向倾斜区域的示意图。
图2(a)为现有液晶于光纤中的分子排列的示意图。
图2(b)为在光纤中的现有液晶在偏光显微镜下的观察结果。
图3(a)为液晶于光纤中的向错线缺陷的产生示意图;
图3(b)为液晶于光纤中的向错线缺陷在偏光显微镜下的观察结果。
图4为依据本发明第一实施例说明制作液晶电光组件的方法的示意图。
图5为依据本发明第一实施例说明液晶光纤型马赫-詹德干涉仪的组件的示意图。
图6为显示依据本发明第一实施例的液晶光纤在偏光显微镜下的观察结果。
图7(a)为显示依据本发明第一实施例的液晶光纤型马赫-詹德干涉仪在不同外加电压驱动下的穿透频谱的曲线图一。
图7(b)为显示依据本发明第一实施例的液晶光纤型马赫-詹德干涉仪在不同外加电压驱动下的穿透频谱的曲线图二。
图8为显示依据本发明第一实施例的液晶光纤型马赫-詹德干涉仪在不同外加电压下驱动的共振波长位移量的曲线图。
图9为依据本发明第二实施例说明制作液晶电光组件的方法的示意图。
[附图标记说明]
11-光学单元,13-液晶混合物,13a-液晶分子,18a-上电极,18b-下电极,19-电源,21-光纤,21a-光纤管,22-中空空间,23-液晶混合物,23a-液晶分子,31-光纤,31a-光纤管,33-液晶混合物,33a-液晶分子,38a-上电极,38b-下电极,41-光纤,42-中空空间,41a-光纤管,43-液晶混合物,43a-液晶分子,45-光感单体,48a-上电极,48b-下电极,49-电源,51-光纤,51A-光纤,51B-光纤,52-加热台,57-垫片。
具体实施方式
在此揭示本发明的实施方式,以提供对本发明原理及精神的进一步认识,但其实施或体现方式并不限于此。
本发明提供一种制造液晶电光组件的方法,包含:提供光学单元,光学单元包括一中空空间;注入液晶混合物至该中空空间;以及施加梯度场至液晶混合物,梯度场的强度呈现一梯度分布。如此,可消弭本发明液晶电光组件的向错缺陷的产生。亦即,以此方法制作的液晶光电组件的液晶分子具有定义的预倾角。
依据本发明一实施例,梯度场可为一梯度电场、一梯度温度场、一梯度磁场或一梯度应力场。
依据本发明一实施例,该光学单元可为一光纤;该中空空间可平行该光纤的轴的方向延伸;以及该梯度场的强度可沿该光纤的轴的方向增强或减弱,但不限于此。例如,该梯度场的梯度向量可平行于该光纤的轴的方向、垂直于该光纤的轴的方向、或指向空间中的任一方位。
依据本发明另一实施例,该光纤可为一光子晶体光纤。
依据本发明另一实施例,该光学单元可为一光波导,该光波导可由定义该中空空间的一基板组成;以及该梯度场的强度可沿平行该基板的方向增强或减弱,但不限于此。例如,该梯度场的梯度向量可平行于该基板、垂直于该基板、或指向空间中的任一方位。
依据本发明另一实施例,该光学单元可为一液晶胞,该液晶胞可由定义该中空空间的二基板组成;以及该梯度场的强度可沿平行该二基板的其中之一的方向增强或减弱,但不限于此。例如,该梯度场的梯度向量可平行于该二基板的其中之一、垂直于该二基板的其中之一、或指向空间中的任一方位。
在完成上述施加梯度场程序之后,本发明的光学单元在外加电场的驱动下不会出现因反向倾斜所导致的向错线缺陷。亦即,梯度场的施加能使本发明的光学单元中的液晶混合物具有被定义的预倾角,使得液晶混合物的液晶分子在外加电场驱动下能有一致的转向,从而能预防因反向倾斜所导致的向错线缺陷。
为了因应各种应用需求及型态,依据本发明一实施例,液晶混合物可包括液晶分子及光感单体,其中液晶分子可包含复数种液晶,例如正型液晶、负型液晶及双频液晶。
此外,为了更进一步调制稳固液晶分子预倾角的方向及角度,在本发明一实施例中,本发明方法可进一步包含:照射一固化光至该液晶混合物,其中该液晶混合物可包括液晶分子及光感单体。
在执行该照射一固化光时这些光感单体可在该中空空间的接口上聚合成表面高分子网络,以提供液晶分子定义的预倾角,但不限于此。例如,这些光感单体可在该中空空间中(包括其接口及其接口之间的空间)聚合成空间型高分子网络。
为了调制液晶分子预倾角的方向及角度,在本发明一实施例中,本发明方法可进一步包含:施加一固化电场于该液晶混合物,其中该施加一固化电场的程序可在该照射一固化光的程序之前,以及该固化电场可为一空间均匀电场。
依据本发明另一实施例,施加梯度场程序与照射固化光程序可同时执行。在此情况下,可在照射固化光程序结束时同时结束施加梯度场程序。
更详细地,依据本发明另一实施例,可在执行施加梯度场程序第一时间间隔后再执行照射固化光程序并且可同时维持施加梯度场程序的执行,其中第一时间间隔可在1~90分钟的范围内。具体地,第一时间间隔可为1分钟、5分钟、10分钟、15分钟、30分钟、60分钟或90分钟;较佳地,第一时间间隔可为5~15分钟;更佳地,第一时间间隔可为8~12分钟。在执行照射固化光程序第一时间间隔后,液晶混合物在外加电场作用下可被检测为不具有因反向倾斜所导致的向错线缺陷。在此情况下,当照射固化光程序开始执行时施加梯度场程序可持续执行,并且在此情况下,可在照射固化光程序结束时同时结束施加梯度场程序。
上述施加固化电场程序能更进一步调制并且稳固液晶混合物借由施加梯度场程序而具有的预倾角特性。亦即,上述施加固化电场程序能调制预倾角的大小及方向,并且借由光感单体的聚合稳固被调制的预卿角的大小及方向。
依据本发明一实施例,本发明的中空空间可具有在1–100μm的范围之间的一空间维度。具体地,本发明的中空空间可具有小于100μm、50μm、或10μm的一空间维度。例如,以中空轴芯光纤作为本发明的光学单元时,其光纤管内径可小于100μm、50μm、或10μm;以多中空轴芯光纤作为本发明的光学单元时,其各中空轴心内径可小于100μm、50μm、或10μm;或者以液晶胞作为本发明的光学单元时,其胞间隙可小于100μm、50μm、或10μm。
以下,将进一步揭露更具体的实施方式。
[第一实施例:梯度电场实验]
步骤1:为能于实验中产生梯度电场,直接利用ITO(indium tin oxide,铟锡氧化物)玻璃基板的ITO膜来当供应外加电压的电极板。
步骤2:先将填充有液晶/光感单体混合物的光纤或光子晶体光纤附加在ITO玻璃基板上(下电极48b),之后于上端盖上另一片ITO玻璃基板(上电极48a),如图4的(a)部分所示。
步骤3:为了在电极板之间产生梯度电场,将上电极48a微微倾斜使得其与下电极48b夹一小角度,如图4的(b)部分所示。
步骤4:施加电压后,梯度电场可行形成在上电极48a与下电极48b之间。随后,利用偏光显微镜(POM)观察梯度电场使液晶分子43a转动情况;若有向错线发生(如图3(a)和图3的(b)所示),可再适度调整上电极48a,并且施加电压,直到没向错线缺陷的发生。或者,本实验可利用可产生精密梯度电场的系统、或在组件上直接利用镀膜技术来制作在光纤上的上下导电膜,使其上下二电极间距成渐变的结构,借以施加梯度电场来达到无缺陷的液晶配向。
步骤5:将有外加电压而无向错线缺陷的光纤41进行UV曝光,如图4的(c)部分所示,曝光功率为1mW,曝光时间为3min。利用UV曝光使光纤41中的光感单体45产生光聚合而形成高分子46网络,进而稳定液晶分子43a的排列,如图4的(d)部分所示。
具体而言,如图4所示,在没有外加电场的情况下,注入至中空空间42的液晶混合物44中的光感单体45和液晶分子43a(具有正的Δε)大致都平行于光纤41的轴向(图4的(a)部分)。当借由电源49驱动上电极48a及下电极48b在光纤41上外加一梯度电场时,由于电场的梯度变化致使作用力会驱使液晶分子43a往一定方向排列:若为正型液晶材料,则其分子轴方向倾向于与电场方向平行;反之,若为负型液晶材料,则其分子轴方向倾向于与电场方向垂直,如图4的(b)部分所示,其中虚线箭头的长度表示电场强度的大小。
为稳定此液晶分子43a的配向及给予一预倾角,保持此外加电场,然后以UV光对液晶光纤41样品进行照射(图4的(c)部分)。经由此固化电场的作用与UV光的固化,光感单体45以相对于基材表面的预倾角度被聚合在光纤管41a内侧壁面上。而且,当电场解除后,液晶会被高分子46网络的排列所锚定,导致液晶分子43a在初始状态时具有一个倾斜角及一定的排列方向,此预倾角角度将永久维持着,如图4的(d)部分所示。
所以,利用此简单的制程可以在没有被摩擦处理的光纤41壁表面上以高分子46网络控制液晶的预倾角及排列方向。高分子网络可视为提供液晶分子43a恢复或锚定边界的一作用力,故可消除缺陷发生与导致液晶分子43a更快速度的松弛(恢复)。然而光感单体45聚合所得到的预倾角与其表面形貌是与单体45的浓度、曝光条件、及固化电场有关。
借由特定接合参数,将经过上述步骤处理的液晶光纤与单模光纤接合,并且使接合端面形成光纤锥。将两端接合后就完成液晶光纤型马赫-詹德干涉仪(Mach-ZehnderInterferometer)的组件(如图5所示)。
参考图5,当入射光从单模光纤传导到第一个光纤锥时,在光纤芯的一部分的光会被耦合至光纤壳中,而另一部分的光会留在光纤心中,当光传导到达第二个光纤锥时,在光纤壳中的光会耦合回到光纤芯,使得两道光形成干涉,其中组件干涉公式为:λp=2L(nco–ncl)/(2N+1),其中nco为液晶光纤的光纤芯有效折射率、ncl为光纤壳的有效折射率、L为液晶的填注长度、N为常数项(N=1,2,3…)、及λp为满足最低光强度的共振波长。当施加电场于液晶光纤上时,空芯光纤中的液晶分子的排列方向会发生改变,进而影响的值nco,λp使得值发生位移。
如图6所示,由偏光显微镜(POM)可以观察到本发明的表面高分子稳定配向技术可以有效地消弭液晶的向错线发生。由于液晶分子排列的改变会导致纤芯有效折射率发生变化,因此引发了干涉仪的共振波长改变。在此本发明利用光频谱分析仪来分析电压与共振波长变化关系。如图7(a)和图7的(b)所示,电压的增加会使共振波长发生红位移现象,其原因是由于施加电场时正型液晶的排列方向倾向与电场的方向平行,导致纤芯整体的有效折射率上升,所以共振波长会往长波长移动,其中液晶填注长度为1400μm。
再进一步整理与分析,可以得到波长的位移量与电压间的相关性。如图8所示,该电压引致波长变化的趋势是符合液晶的物理特性。由实验结果发现驱动液晶分子的阈值电压约为30V。当工作电压小于30V时,电压所导致的共振波长的位移量是非常微少的。主要原因是液晶受限于高分子网络的锚定影响,导致液晶受电场驱动的转动程度非常小,因此驱动电压所造成的折射率增加量仅呈现极微幅的变化。当外加电压超过临界电压后(在30–70V时),液晶分子在此高压电场作用下而具有较大的转动量,因此其折射率变化范围也会较大,因此可以得到较多的共振波长位移量。当外加电压大于70V时,电压所导致的共振波长位移量的变化不大的原因是:在大电压的驱动下,在空芯光纤内的中间层液晶分子几乎已平行电场方向并且达到稳定状态,故此相对较大电压主要是用来驱动表面边界附近的液晶分子转动,因此造成折射率仅呈现微幅增加,进而导致共振波长位移量的变化变小。
[第二实施例:梯度温场实验]
步骤1:将液晶光纤51固定在两片电极板(图中未显示)之间,并置放于加热台52上,如图9所示。
步骤2:为了产生梯度温度场,采用方法如下:
(1)将光纤51A右侧借由绝热的垫片57垫高(~2mm),使得基板倾斜并且愈往右侧距离加热台52的加热表面愈远,则光纤51A就会因为不均匀地受热而具有一温度梯度的温度分布特性,如图9所示。或者,(2)将光纤51B右侧腾空且仅左侧接触加热台52(~70℃),使得光纤51B的左侧受热部分呈现最高温度,而温度随着与左侧受热部分的距离的增加而逐渐降低,直到右侧呈现最低温度,如图9所示。
步骤3:持续加热一段时间之后,对液晶光纤51施加垂直固化电场,垂直固化电场是垂直于液晶光纤51的轴的方向,再利用偏光显微镜POM观察均匀外加电场使液晶(具有正的Δε)转动的情况,并且观察是否有向错线出现的现象。
步骤4:若有向错线缺陷产生,则重复步骤2-3,一直到完全没有观测到向错线出现为止。
步骤5:当向错线缺陷不会出现之后,借由使用实验需要的参数将光纤51曝光。本实施例中,曝光功率为1mW,曝光时间为3min。利用UV曝光使组件中的光感单体产生光聚合而形成高分子网络,进而稳定液晶分子的排列。
具体而言,将液晶样品置放在加热装置,借由适当安排使得液晶样品上的温度呈现梯度变化,如图9的左侧与右侧部分的液晶样品的温度由左侧往右侧呈现递减的现象,所以此温度场致使液晶分子往一定方向扰动。
为了稳定液晶分子的排列方向,随即利用表面高分子稳定配向技术来形成高分子网络以稳定液晶分子于一特定方向上,并且无向错线缺陷的出现。亦即,以外加固化电场与UV曝光的方式来使液晶指向矢形成以一特定预倾角稳定排列的效果。然而,表面高分子稳定配向制程类似上述第一实施例所揭示的方法,不同之处仅在于施加在液晶样品上的电场是均匀的电场,而此电场可以根据所希望赋予液晶分子的预倾角大小而给定,当外加电场愈高,其所造成的预倾角愈大,而此液晶组件可电控调变的范围也将愈小。
在SPSA光纤组件中的高分子网络可以影响液晶的排列,并且给予液晶一锚定力,使液晶分子在加电场时可以更快的转动、提升其响应速度。因此,在本发明的实施例中,此SPSA的关键技术能有效改善中空光纤在制程上无法摩擦配向的缺点及组件的磁滞现象。此外,本发明利用SPSA技术的高分子网络对液晶分子提供稳定及调制配向作用,而高分子网络型态与结构取决于光聚合条件,如UV光强度、曝光温度、单体浓度、电场分布、以及曝光时间等因素,故本发明可依据制程条件的设计来达到液晶光纤或液晶光电组件多元化的组件特性。
最后,依据上述本发明方式所制造的液晶电光组件中的液晶分子可具有一稳态的具有被定义的方向及角度的预倾角,进而可消弭本发明液晶电光组件的向错缺陷的产生。
本发明已以实施方式揭露如上,然其并非用以限定本发明;在不脱离本发明的精神和范围内,任何本发明所属领域中具有通常知识者,可作各种均等改变与修饰。因此,本发明的保护范围,应以上述权利要求书的界定为准。

Claims (10)

1.一种制造液晶电光组件的方法,包含:
提供一光学单元,所述光学单元包括一中空空间;
注入液晶混合物至所述中空空间;以及
施加一梯度场至所述液晶混合物,其中所述梯度场的强度呈现一梯度分布;
其中,所述中空空间具有一轴线;所述梯度场的强度沿所述轴线递增或沿所述轴线递减;以及,所述梯度场的方向在注入所述液晶混合物的所述中空空间中具一致性。
2.根据权利要求1所述的方法,其中所述梯度场是一梯度电场、一梯度温度场、一梯度磁场、或一梯度应力场。
3.根据权利要求1所述的方法,其中所述光学单元是一光纤;所述中空空间平行所述光纤的轴的方向延伸;以及所述梯度场的强度沿所述光纤的轴的方向增强或减弱。
4.根据权利要求3所述的方法,其中所述光纤是一光子晶体光纤。
5.根据权利要求1所述的方法,其中所述光学单元是一光波导,所述光波导是由定义所述中空空间的一基板组成;以及所述梯度场的强度沿平行所述基板的方向增强或减弱。
6.根据权利要求1所述的方法,其中所述光学单元是一液晶胞,所述液晶胞是由定义所述中空空间的二基板组成;以及所述梯度场的强度沿平行所述二基板的其中之一的方向增强或减弱。
7.根据权利要求1所述的方法,其中所述中空空间具有小于100μm的一空间维度。
8.根据权利要求1至7中任意一项所述的方法,进一步包含:照射一固化光至所述液晶混合物,其中所述液晶混合物包括液晶分子及光感单体。
9.根据权利要求8所述的方法,其中在执行所述照射一固化光时这些光感单体在所述中空空间的接口上聚合成表面高分子网络。
10.根据权利要求8所述的方法,进一步在所述照射一固化光的程序之前包含:施加一固化电场于所述液晶混合物。
CN201610970339.3A 2016-10-28 2016-10-28 制造液晶电光组件的方法 Active CN108020960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610970339.3A CN108020960B (zh) 2016-10-28 2016-10-28 制造液晶电光组件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610970339.3A CN108020960B (zh) 2016-10-28 2016-10-28 制造液晶电光组件的方法

Publications (2)

Publication Number Publication Date
CN108020960A CN108020960A (zh) 2018-05-11
CN108020960B true CN108020960B (zh) 2020-07-07

Family

ID=62083621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610970339.3A Active CN108020960B (zh) 2016-10-28 2016-10-28 制造液晶电光组件的方法

Country Status (1)

Country Link
CN (1) CN108020960B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673299B (zh) * 2018-09-14 2023-06-02 奇跃公司 用于外部光管理的系统和方法
CN110456445A (zh) * 2019-08-15 2019-11-15 京东方科技集团股份有限公司 光纤、光纤激光器、光纤的制备方法及光纤制造设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425930A (zh) * 2003-01-17 2003-06-25 清华大学 双芯光子晶体光纤
CN1641425B (zh) * 2004-01-15 2010-08-25 夏普株式会社 显示元件和显示装置以及显示元件的制造方法
CN102220141A (zh) * 2010-04-16 2011-10-19 统炀企业有限公司 高分子液晶配向添加物及液晶显示装置的制造方法
TW201307901A (zh) * 2011-08-02 2013-02-16 Univ Nat Taiwan 光學相位調整裝置及光學裝置
CN104252055A (zh) * 2008-06-21 2014-12-31 凌威光电公司 使用有效电极结构的动态重构的电光学装置
CN104884985A (zh) * 2012-12-28 2015-09-02 西铁城控股株式会社 光学元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1425930A (zh) * 2003-01-17 2003-06-25 清华大学 双芯光子晶体光纤
CN1641425B (zh) * 2004-01-15 2010-08-25 夏普株式会社 显示元件和显示装置以及显示元件的制造方法
CN104252055A (zh) * 2008-06-21 2014-12-31 凌威光电公司 使用有效电极结构的动态重构的电光学装置
CN102220141A (zh) * 2010-04-16 2011-10-19 统炀企业有限公司 高分子液晶配向添加物及液晶显示装置的制造方法
TW201307901A (zh) * 2011-08-02 2013-02-16 Univ Nat Taiwan 光學相位調整裝置及光學裝置
CN104884985A (zh) * 2012-12-28 2015-09-02 西铁城控股株式会社 光学元件

Also Published As

Publication number Publication date
CN108020960A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
KR100326965B1 (ko) 액정 표시 장치와 이의 제조 방법, 및 기판과 이의 제조 방법
KR0173803B1 (ko) 액정표시소자 및 그의 제조방법
US5464669A (en) Method for forming an orientation film of photopolymer in a liquid crystal display
US5882238A (en) Method for manufacturing bend-aligned liquid crystal cell using light
US8570460B2 (en) Electronically-controllable polarization independent liquid crystal optical medium and devices using same
JP5256714B2 (ja) 液晶表示素子及びその製造方法
US8797499B2 (en) Liquid crystal lens or beam steering device comprising an alignment layer with a rubbed foundation layer and an ordered surface layer that aligns liquid crystal molecules in a zero field ground state
JP2005266744A (ja) 高分子ネットワーク液晶配列方法
Woliński et al. Polarization effects in photonic liquid crystal fibers
KR20010078377A (ko) 액정 표시 장치
CN107077023B (zh) 含有聚合物的散射型垂直取向的液晶器件
Kikuchi et al. Bend-mode liquid crystal cells stabilized by aligned polymer walls
CN108020960B (zh) 制造液晶电光组件的方法
US20050094073A1 (en) Bistable nematic liquid crystal device
Sergan et al. Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices
KR20110032216A (ko) 듀얼모드 액정표시장치 및 그의 제조 방법
US8542333B2 (en) Liquid crystal cell alignment surface programming method and liquid cell light modulator devices made thereof
Rutkowska et al. Light propagation in periodic photonic structures formed by photo-orientation and photo-polymerization of nematic liquid crystals
KR19980023082A (ko) 고분자박막 배향방법 및 이를 이용한 액정배향방법과 액정 셀 및 그의 제조방법
TWI623799B (zh) 製造液晶電光元件的方法
KR100641631B1 (ko) 쌍안정 액정 셀 및 그 제조방법
Ertman et al. Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers
Wang et al. Advanced and unique alignment control technique for liquid crystal-infiltrated hollow core fiber devices with high electrical-tunability
Bian et al. Low scattering and fast response polymer brush-stabilized liquid crystal microlens array with tunable focal length
Kusanagi et al. Graded index type liquid crystal microlens using small amount of polymer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant