[go: up one dir, main page]

CN108018245A - One plant of bacillus subtilis for producing chitosan enzyme and its application - Google Patents

One plant of bacillus subtilis for producing chitosan enzyme and its application Download PDF

Info

Publication number
CN108018245A
CN108018245A CN201810030676.3A CN201810030676A CN108018245A CN 108018245 A CN108018245 A CN 108018245A CN 201810030676 A CN201810030676 A CN 201810030676A CN 108018245 A CN108018245 A CN 108018245A
Authority
CN
China
Prior art keywords
chitosanase
application
bacillus subtilis
chitosan
chitosanases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810030676.3A
Other languages
Chinese (zh)
Inventor
王刚刚
苟艳
谢天
刘忠川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Institute of Biology of CAS
Original Assignee
Chengdu Institute of Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Institute of Biology of CAS filed Critical Chengdu Institute of Biology of CAS
Priority to CN201810030676.3A priority Critical patent/CN108018245A/en
Publication of CN108018245A publication Critical patent/CN108018245A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01132Chitosanase (3.2.1.132)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于生物技术领域,具体涉及一株产壳聚糖酶枯草芽孢杆菌及其应用。本发明提供的枯草芽孢杆菌,其所产的壳聚糖酶产量高、酶活力强,具有与普通壳聚糖酶不同的蛋白结构,为壳聚糖酶分子机构的深入研究提供了新思路。普通的壳聚糖酶只在弱碱性至弱酸性时具有较好的活性,而本发明发现的壳聚糖酶在弱碱性、中性、弱酸性和较强酸性条件下均具有较好活性。同时,本发明发现的壳聚糖酶,不仅可作用于能够溶解的壳聚糖,还可作用于不可溶的高聚壳聚糖,省略了壳聚糖降解前的处理;反应终产物为二聚氨基葡萄糖和三聚氨基葡萄糖,成分简单,便于后续进一步加工应用,极大地节省了生产成本。The invention belongs to the field of biotechnology, and in particular relates to a chitosanase-producing bacillus subtilis and an application thereof. The bacillus subtilis provided by the invention has a high yield of chitosanase, strong enzyme activity, and a different protein structure from common chitosanases, which provides a new idea for in-depth research on the molecular mechanism of chitosanases. Ordinary chitosanases only have good activity when they are weakly alkaline to weakly acidic, but the chitosanases found in the present invention have good activity under weakly alkaline, neutral, weakly acidic and strongly acidic conditions. active. Simultaneously, the chitosan enzyme that the present invention discovers can not only act on dissolving chitosan, but also can act on insoluble high polychitosan, omits the treatment before chitosan degradation; The final reaction product is two Polyglucosamine and tripolyglucosamine have simple ingredients, which are convenient for subsequent further processing and application, and greatly save production costs.

Description

一株产壳聚糖酶的枯草芽孢杆菌及其应用A strain of Bacillus subtilis producing chitosanase and its application

技术领域technical field

本发明属于生物技术领域,具体涉及一株产壳聚糖酶的枯草芽孢杆菌及其应用。The invention belongs to the field of biotechnology, and in particular relates to a chitosanase-producing bacillus subtilis and an application thereof.

背景技术Background technique

氨基葡萄糖是重要的医药前体和化工原料,具有广泛的用途。虾蟹壳来源的壳聚糖(Chitosan)是由D-氨基葡萄糖(或少量N-乙酰-D-氨基葡萄糖)通过β-1,4-糖苷键连接形成的聚合物,全球每年产生的壳聚糖超过1000亿吨,通过水解壳聚糖可以生产大量的氨基葡萄糖。Glucosamine is an important pharmaceutical precursor and chemical raw material, which has a wide range of uses. Chitosan derived from shrimp and crab shells is a polymer formed by connecting D-glucosamine (or a small amount of N-acetyl-D-glucosamine) through β-1,4-glycosidic bonds. Sugar exceeds 100 billion tons, and a large amount of glucosamine can be produced by hydrolyzing chitosan.

目前,常用的壳聚糖水解方法分别有:酸法水解、氧化降解、物理降解法和酶法水解。其中酶法降解壳聚糖具有环境污染低、反应条件温和、无副产物等优点,是目前应用前景最广的壳聚糖降解方法,近年来已经逐渐用于工业化生产,而酶法水解壳聚糖的关键在于壳聚糖酶。At present, the commonly used chitosan hydrolysis methods are: acid hydrolysis, oxidative degradation, physical degradation and enzymatic hydrolysis. Among them, enzymatic degradation of chitosan has the advantages of low environmental pollution, mild reaction conditions, and no by-products. It is currently the most widely used chitosan degradation method and has been gradually used in industrial production in recent years. Enzymatic hydrolysis of chitosan The key to sugar lies in chitosanase.

尽管酶法制备壳寡糖存在许多优势,但现有的壳聚糖酶普遍存在:适用的pH范围狭窄、只能作用于可溶解壳聚糖、降解产物多为五糖(G5)至以上的寡糖等问题。如一篇名为“微生物壳聚糖酶的研究概况”的报道中提出:现有的各类壳聚糖酶,多数为碱性蛋白,最适pH普遍集中在5~8之间,偶有几个酶的最适pH为4,但其对应的最适温度偏高,造成在实际生产应用中能耗较高、适用范围不广的情况。Although there are many advantages in the enzymatic preparation of chitosan oligosaccharides, the existing chitosanases are ubiquitous: the applicable pH range is narrow, they can only act on soluble chitosan, and the degradation products are mostly pentasaccharides (G5) to above oligosaccharides etc. For example, a report titled "Research Overview of Microbial Chitosanases" pointed out that most of the existing chitosanases are basic proteins, and the optimum pH is generally concentrated between 5 and 8, and occasionally a few The optimal pH of each enzyme is 4, but the corresponding optimal temperature is too high, resulting in high energy consumption and limited scope of application in actual production and application.

因此,开发一种适宜pH范围广、最适温度相对偏低、可将不可溶壳聚糖降解为二糖(G2)、三糖(G3)等低聚糖的壳聚糖酶,可有效推动海洋虾蟹来源壳聚糖的深度利用,具有重要的现实意义。Therefore, the development of a chitosanase with a wide range of suitable pH and a relatively low optimum temperature, which can degrade insoluble chitosan into oligosaccharides such as disaccharides (G2) and trisaccharides (G3), can effectively promote The deep utilization of chitosan from marine shrimp and crab has important practical significance.

发明内容Contents of the invention

本发明的目的是提供一株产壳聚糖酶的枯草芽孢杆菌及其应用。The purpose of the present invention is to provide a chitosanase-producing bacillus subtilis and application thereof.

为实现上述发明目的,本发明所采用的技术方案是:一株枯草芽孢杆菌,2017年10月30日保藏于中国微生物菌种保藏管理委员会普通微生物中心,菌种名称:枯草芽孢杆菌,Bacillus subtilis,MY002,保藏编号为CGMCC No.14841。In order to achieve the above-mentioned invention, the technical solution adopted in the present invention is: a strain of Bacillus subtilis, preserved in the General Microbiology Center of China Microbiological Culture Collection Management Committee on October 30, 2017, strain name: Bacillus subtilis, Bacillus subtilis , MY002, the deposit number is CGMCC No.14841.

相应的,一株枯草芽孢杆菌,其16SrDNA测序结果如SEQ ID NO 1所示;其gyrA测序结果如测序结果如SEQ ID NO 2所示;其gyrB测序结果如SEQ ID NO 3所示。Correspondingly, for a strain of Bacillus subtilis, its 16SrDNA sequencing result is shown in SEQ ID NO 1; its gyrA sequencing result is shown in SEQ ID NO 2; its gyrB sequencing result is shown in SEQ ID NO 3.

相应的,所述枯草芽孢杆菌在水解壳聚糖中的应用。Correspondingly, the application of the bacillus subtilis in hydrolyzing chitosan.

优选的,所述应用的pH范围为2.5~7.5。Preferably, the pH range of the application is 2.5-7.5.

优选的,所述应用的pH为:3或6。Preferably, the pH of the application is: 3 or 6.

优选的,所述应用的温度范围为35~65℃。Preferably, the temperature range of the application is 35-65°C.

相应的,一种壳聚糖酶CsnMY002,其特征在于:其核苷酸序列如SEQ ID NO 4所示,其氨基酸序列如SEQ ID NO 5所示。Correspondingly, a chitosanase CsnMY002 is characterized in that: its nucleotide sequence is shown in SEQ ID NO 4, and its amino acid sequence is shown in SEQ ID NO 5.

相应的,所述壳聚糖酶CsnMY002在水解壳聚糖中的应用。Correspondingly, the application of the chitosanase CsnMY002 in hydrolyzing chitosan.

优选的,所述应用的pH范围为:2.5~7.5。Preferably, the pH range of the application is: 2.5-7.5.

优选的,所述应用的温度为35~65℃。Preferably, the application temperature is 35-65°C.

本发明具有以下有益效果:The present invention has the following beneficial effects:

1、本发明提供了一株产壳聚糖酶的枯草芽孢杆菌,其所产的壳聚糖酶具有产量高、酶活力强等优点。1. The present invention provides a strain of Bacillus subtilis producing chitosanase. The chitosanase produced by it has the advantages of high yield and strong enzyme activity.

2、本发明发现的壳聚糖酶,具有与普通壳聚糖酶不同的蛋白结构,其蛋白质的氨基酸序列TRDEWR片段,呈螺旋结构;而在其它壳聚糖酶中并无此段序列,相应位置为无规则的Loop结构。这为壳聚糖酶分子机构的深入研究提供了新思路。2. The chitosanase found in the present invention has a protein structure different from common chitosanases, and the amino acid sequence TRDEWR fragment of its protein is in a helical structure; while there is no such sequence in other chitosanases, the corresponding The location is an irregular Loop structure. This provides a new idea for the in-depth study of chitosanase molecular mechanism.

3、普通的壳聚糖酶只在弱酸至弱碱时具有较好的活性,而本发明发现的壳聚糖酶不仅在常规条件下活力较好,在较强的酸性条件下也具有很好的酶活力。这使得该酶的应用范围和前景远大于普通的壳聚糖酶。3. Ordinary chitosanases only have good activity when they are weakly acidic to weakly alkaline, but the chitosanases found in the present invention are not only active under conventional conditions, but also have good activity under stronger acidic conditions. enzyme activity. This makes the application range and prospect of the enzyme much larger than that of common chitosan enzymes.

4、本发明发现的壳聚糖酶,不仅可作用于能够溶解的壳聚糖,还可作用于不可溶的高聚壳聚糖甚至未经处理的壳聚糖粗原料,省略了壳聚糖降解前的处理,极大地节省了生产成本。4. The chitosanase found in the present invention can not only act on soluble chitosan, but also act on insoluble high polychitosan or even untreated crude chitosan raw material, omitting chitosan The treatment before degradation greatly saves the production cost.

5、本发明发现的壳聚糖酶水解壳聚糖的产物主要为二聚氨基葡萄糖和三聚氨基葡萄糖,产物成分简单,便于进一步加工应用。5. The products of chitosan hydrolyzed by chitosanase found in the present invention are mainly diglucosamine and trimeric glucosamine, and the product components are simple, which is convenient for further processing and application.

附图说明Description of drawings

图1为未接种菌株的水解圈空白对照;Fig. 1 is the hydrolysis circle blank control of the strain not inoculated;

图2为筛选菌株在选择培养基上形成的透明水解圈;Fig. 2 is the transparent hydrolysis circle that screening bacterial strain forms on selection medium;

图3为D-葡萄糖盐酸盐标准曲线图;Fig. 3 is D-glucose hydrochloride standard curve figure;

图4为菌株MY002的16SrDNA系统进化树;Fig. 4 is the 16SrDNA phylogenetic tree of strain MY002;

图5为菌株MY002的gyrA系统进化树;Figure 5 is the phylogenetic tree of gyrA of strain MY002;

图6为菌株MY002的gyrB系统进化树;Figure 6 is the phylogenetic tree of gyrB of strain MY002;

图7为去信号肽的壳聚糖酶凝胶过滤层析结果;Fig. 7 is the chitosanase gel filtration chromatography result that removes signal peptide;

图8为壳聚糖酶CsnMY002在不同温度下作用效果对比图;Fig. 8 is the effect comparison figure of chitosanase CsnMY002 at different temperatures;

图9为壳聚糖酶CsnMY002在不同pH下作用效果对比图;Fig. 9 is a comparison chart of the effect of chitosanase CsnMY002 at different pHs;

图10为壳聚糖酶CsnMY002水解胶体壳聚糖产物分析;Figure 10 is the analysis of chitosanase CsnMY002 hydrolyzed colloidal chitosan product;

图11为壳聚糖酶CsnMY002水解不可溶高聚壳聚糖产物分析。Fig. 11 is the analysis of insoluble high-polychitosan products hydrolyzed by chitosanase CsnMY002.

具体实施方式Detailed ways

实施例1:产壳聚糖酶菌株的筛选Embodiment 1: the screening of producing chitosanase bacterial strain

1、材料准备:1. Material preparation:

(1)土壤样品:从绵阳芦笋种植区采集土样。(1) Soil samples: Soil samples were collected from the asparagus growing area in Mianyang.

(2)培养基:(2) Medium:

1)壳聚糖酶筛选培养基(g/L):胶体壳聚糖2.0,K2HPO4 0.7,KH2PO4 0.3,(NH4)2SO45,MgSO4﹒7H2O 0.5,FeSO4﹒7H20 0.01,琼脂12.0,pH=7.0;1) Chitosanase screening medium (g/L): colloidal chitosan 2.0, K 2 HPO 4 0.7, KH 2 PO 4 0.3, (NH 4 ) 2 SO 4 5, MgSO 4 . 7H 2 O 0.5, FeSO 4 . 7H 2 0 0.01, agar 12.0, pH=7.0;

2)肉汤培养基(g/L):蛋白胨10.0,牛肉膏3.0,NaCl 5.0,pH=7.0。2) Broth medium (g/L): peptone 10.0, beef extract 3.0, NaCl 5.0, pH=7.0.

3)壳聚糖酶诱导培养基(g/L):胶体壳聚糖5.0,K2HPO4 0.7,KH2PO4 0.3,(NH4)2SO41.0,MgSO4﹒7H2O 0.5,FeSO4﹒7H20 0.01,pH=7.0;3) Chitosanase induction medium (g/L): colloidal chitosan 5.0, K 2 HPO 4 0.7, KH 2 PO 4 0.3, (NH 4 ) 2 SO 4 1.0, MgSO 4 . 7H 2 O 0.5, FeSO 4 . 7H 2 0 0.01, pH=7.0;

4)LB培养基(g/L):蛋白胨10.0,酵母抽提物5.0,NaCl 10.0。4) LB medium (g/L): peptone 10.0, yeast extract 5.0, NaCl 10.0.

(3)试剂:(3) Reagents:

1)胶体壳聚糖:称取高聚细粉壳聚糖10g,加入适量浓盐酸,并在磁力搅拌器上搅拌4~6h使其充分溶解,再用去离子水反复清洗离心(4000r/min),最后形成胶状物后一边搅拌一般缓慢地加入NaOH调节pH至中性,即得到胶体壳聚糖,于4℃保存备用。1) Colloidal chitosan: Weigh 10 g of high-polymer fine powder chitosan, add appropriate amount of concentrated hydrochloric acid, and stir on a magnetic stirrer for 4-6 hours to fully dissolve, then repeatedly wash and centrifuge with deionized water (4000r/min ), and finally form a jelly, while stirring, usually slowly add NaOH to adjust the pH to neutral to obtain colloidal chitosan, which is stored at 4°C for later use.

2)3,5-二硝基水杨酸(DNS):取50ml的蒸馏水在80℃的水浴锅中加热,待加热之后加入26.2ml的2mol/L NaOH和0.63g的3,5-二硝基水杨酸,待搅拌溶解后加入18.2g的酒石酸钾钠,搅拌溶解后再加入0.5g结晶苯酚和0.5g Na2SO3,搅拌溶解,待冷却之后用蒸馏水定容至100ml,贮存于棕色瓶中,4℃保存备用。2) 3,5-dinitrosalicylic acid (DNS): Take 50ml of distilled water and heat it in a water bath at 80°C, add 26.2ml of 2mol/L NaOH and 0.63g of 3,5-dinitrosalicylic acid after heating base salicylic acid, after stirring and dissolving, add 18.2g potassium sodium tartrate, stir and dissolve, then add 0.5g crystalline phenol and 0.5g Na 2 SO 3 , stir and dissolve, after cooling, dilute to 100ml with distilled water, store in brown Store in a bottle at 4°C for later use.

(4)试剂盒、酶及细胞(4) Kits, enzymes and cells

1)BamHI、SalI购买于New England Biolabs,Inc.;1) BamHI and SalI were purchased from New England Biolabs, Inc.;

2)质粒抽提试剂盒购买于北京全式金生物技术有限公司;2) The plasmid extraction kit was purchased from Beijing Quanshijin Biotechnology Co., Ltd.;

3)T4连接酶购买于Takara Bio.Inc.;3) T4 ligase was purchased from Takara Bio.Inc.;

4)感受态细胞DH5α和大肠杆菌BL21为本实验室保存。4) Competent cells DH5α and Escherichia coli BL21 are preserved in our laboratory.

2、菌株初筛2. Primary screening of strains

(1)称取5g土样放入盛有45ml蒸馏水的锥形瓶(250m)中,搅拌溶解,煮沸30min,然后取上清液进行梯度稀释(10-1,10-2,10-3,10-4,10-5共5个浓度),各取100ul分别涂布于壳聚糖酶筛选培养基中(每个梯度设置2个平行),置于37℃恒温培养箱中培养2~4d。(1) Weigh 5g of soil sample into a conical flask (250m) filled with 45ml of distilled water, stir to dissolve, boil for 30min, then take the supernatant for gradient dilution (10 -1 ,10 -2 ,10 -3 , 10 -4 , 10 -5 in total 5 concentrations), 100ul each was spread in the chitosanase screening medium (two parallels were set for each gradient), and cultured in a constant temperature incubator at 37°C for 2-4d .

(2)挑取在选择培养平板上生长且周围有明显透明水解圈的菌落,划线接种于新的选择培养平板上,置于37℃恒温培养箱中培养2d,再挑菌落划线接种,如此进行3代筛选,以保证得到纯种菌株。(2) Pick the colonies that grow on the selective culture plate and have obvious transparent hydrolysis circles around them, streak and inoculate them on a new selective culture plate, place them in a constant temperature incubator at 37°C for 2 days, and then pick the colonies to streak and inoculate. In this way, three generations of screening are carried out to ensure that pure strains are obtained.

(3)经连续3代分纯后挑取单菌落于牛肉膏蛋白胨培养基中液体培养,然后取5ul加在直径为6mm滤纸片上,滤纸片置于选择培养基上,37℃恒温培养2d,水解圈如图1、2所示。测量透明圈的大小,如表1所示。(3) After 3 consecutive generations of purification, pick a single colony and culture it in beef extract peptone medium, then take 5ul and add it on a filter paper sheet with a diameter of 6mm. The hydrolysis circle is shown in Figures 1 and 2. Measure the size of the transparent circle, as shown in Table 1.

表1筛选菌株产生水解圈的大小Table 1 The size of the hydrolysis circle produced by screening strains

(4)将分纯,且能产生透明水解圈的菌株进行保种,并于-80℃下贮存。(4) The strains that are pure and capable of producing transparent hydrolysis circles are preserved and stored at -80°C.

3、菌株复筛及壳聚糖酶酶活测定3. Re-screening of bacterial strains and determination of chitosanase activity

(1)绘制5umol/L D-葡萄糖盐酸盐标准曲线(1) draw 5umol/L D-glucose hydrochloride standard curve

取30支200ul的离心管,均匀分为等量的3组,如表2所示,分别加入5μmol/ml的D-葡萄糖盐酸盐标准液、蒸馏水和3,5-二硝基水杨酸(DNS)试剂,配制成不同含量的D-葡萄糖盐酸盐标准反应液。将各个离心管摇匀,置于沸水浴中准确加热5min显色,然后在冰浴中迅速冷却,充分冷却后,再使用酶标仪在540nm波长下测定吸光值。将三组数据取平均值,填入表2中。采用Excel绘出标准曲线,即为D-葡萄糖盐酸盐标准曲线图,如图3所示。Take 30 200ul centrifuge tubes and evenly divide them into 3 groups of equal amounts, as shown in Table 2, add 5 μmol/ml D-glucose hydrochloride standard solution, distilled water and 3,5-dinitrosalicylic acid respectively (DNS) reagent, prepared into D-glucose hydrochloride standard reaction solutions with different contents. Shake each centrifuge tube evenly, place it in a boiling water bath and heat it accurately for 5 minutes to develop color, and then cool it rapidly in an ice bath. After cooling fully, use a microplate reader to measure the absorbance at a wavelength of 540nm. Take the average value of the three sets of data and fill in Table 2. Use Excel to draw a standard curve, which is the D-glucose hydrochloride standard curve, as shown in Figure 3.

表2 D-葡萄糖盐酸盐标准曲线Table 2 D-glucose hydrochloride standard curve

(2)DNS法测酶活(2) Enzyme activity measured by DNS method

1)获取菌株发酵液:将所选菌株用肉汤培养基培养过夜,作为种子液,再将种子液以5%的接种量接种于壳聚糖酶诱导培养基中,于37℃,220r/min条件下培养2d,然后12000g,30min离心,取上清液。1) Obtain bacterial strain fermentation liquid: culture the selected bacterial strain overnight with broth medium, as seed liquid, then inoculate the seed liquid with 5% inoculum in the chitosanase induction medium, at 37 ° C, 220 r / Cultivate for 2 days under the condition of 1 min, then centrifuge at 12000 g for 30 min, and take the supernatant.

2)取200ul步骤1)所述上清液,与200ul含1.0%胶体壳聚糖的磷酸缓冲液(6.1ml20mM Na2HPO4溶液与3.9ml 20mM NaH2PO4溶液混合,pH=7.0)混合。37℃保温1h,然后沸水浴10min以终止反应,再待冰浴冷却,加入DNS试剂400ul。沸水浴5min后迅速冰浴冷却,12000r/min离心5min,取上清液在波长540nm处测吸光度(OD值)。以D-葡萄糖盐酸盐标准曲线为对照,计算出还原糖的释放量U:U=(3.6842*平均吸光值+0.3692)*2。2) Take 200ul of the supernatant in step 1) and mix it with 200ul of phosphate buffer containing 1.0% colloidal chitosan (6.1ml of 20mM Na 2 HPO 4 solution mixed with 3.9ml of 20mM NaH 2 PO 4 solution, pH=7.0) . Incubate at 37°C for 1 hour, then boil in a water bath for 10 minutes to terminate the reaction, then cool in an ice bath, and then add 400ul of DNS reagent. After boiling in water for 5 minutes, quickly cool in an ice bath, centrifuge at 12000 r/min for 5 minutes, take the supernatant and measure the absorbance (OD value) at a wavelength of 540 nm. Using the standard curve of D-glucose hydrochloride as a control, the release amount U of the reducing sugar was calculated: U=(3.6842*average absorbance value+0.3692)*2.

酶活力单位定义:在上述条件下,每小时产生1umol还原糖所需酶量定义为1个酶活力单位。Definition of enzyme activity unit: Under the above conditions, the amount of enzyme required to produce 1umol reducing sugar per hour is defined as 1 enzyme activity unit.

筛选菌株的酶活测定结果如表3所示。The enzyme activity assay results of the screened strains are shown in Table 3.

表3筛选菌株的酶活力大小Table 3 screens the enzyme activity size of strain

实施例2:菌株鉴定Embodiment 2: bacterial strain identification

1、16SrDNA测序鉴定1. 16SrDNA sequencing identification

提取待测菌株的基因组DNA,然后以细菌16SrDNA的通用引物从基因组DNA中克隆16SrDNA。Extract the genomic DNA of the strain to be tested, and then clone the 16SrDNA from the genomic DNA with the universal primers of bacterial 16SrDNA.

通用引物为:The general primers are:

27F:AGA GTT TGA TCC TGG CTC AG;27F: AGA GTT TGA TCC TGG CTC AG;

1492R:TAC GGT TAC CTT GTT ACG ACT T。1492R:TAC GGT TAC CTT GTT ACG ACT T.

PCR结果送生工生物公司测序,将测序结果在Gene Bank网站(http://www.nicbi.nlm.nih.gov/)进行BLAST对比,找到并下载标准菌株的基因序列,测序结果如SEQ ID NO 1所示。利用MEGA7.0计算不同菌株之间的遗传距离,绘制细菌的系统发育树,如图4所示。The PCR results were sent to Sangon Biotechnology Co., Ltd. for sequencing, and the sequencing results were compared with BLAST on the Gene Bank website (http://www.nicbi.nlm.nih.gov/), and the gene sequences of the standard strains were found and downloaded. The sequencing results are shown as SEQ ID Shown in NO 1. The genetic distance between different strains was calculated using MEGA7.0, and the phylogenetic tree of bacteria was drawn, as shown in Figure 4.

将待测菌株与芽孢杆菌模式菌株的16SrDNA进行比对,与枯草芽孢杆菌(Bacillussubtilis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)和地衣芽孢杆菌(Bacillusamyloliquefaciens)的遗传距离最近,分别为:0.002、0.005和0.015。Comparing the 16SrDNA of the tested strain with the Bacillus type strain, the genetic distances with Bacillus subtilis (Bacillus subtilis), Bacillus amyloliquefaciens (Bacillus amyloliquefaciens) and Bacillus amyloliquefaciens (Bacillus amyloliquefaciens) are the closest, respectively: 0.002, 0.005 and 0.015.

2、gyrA和gyrB测序鉴定2. Sequencing identification of gyrA and gyrB

促旋酶的A亚基和B亚基,作为看家蛋白,在进化上保守,大约每100万年基因进化0.7~0.8%,它相比于16SrDNA每5000万年进化1%的速度要快,所以它经常被用于鉴定亲缘关系更近,无法用16SrDNA区分开的菌株。同样以待测菌株的基因组DNA为模板,扩增细菌的促旋酶A和B基因。The A subunit and B subunit of gyrase, as housekeeping proteins, are evolutionarily conserved, with about 0.7-0.8% gene evolution every 1 million years, which is faster than the 1% evolution rate of 16SrDNA every 50 million years , so it is often used to identify strains that are more closely related and cannot be distinguished by 16SrDNA. Also using the genomic DNA of the strain to be tested as a template to amplify the gyrase A and B genes of the bacteria.

(1)gyrA使用通用引物扩增,引物为:(1) gyrA is amplified using universal primers, the primers are:

gyrA-F:5’-CAG TCA GGA AAT GCG TAC GTC CTT-3’;gyrA-F: 5'-CAG TCA GGA AAT GCG TAC GTC CTT-3';

gyrA-R:5’-CAA GGT AAT GCT CCA GGC ATT GCT-3’。gyrA-R: 5'-CAA GGT AAT GCT CCA GGC ATT GCT-3'.

gyrA的测序结果如测序结果如SEQ ID NO 2所示。将PCR测序结果与该种不同属的标准菌株的促旋酶A基因进行比对,并利用MEGA 7.0构建系统进化树,并计算遗传距离,结果如图5所示。其中待测菌株与枯草芽孢杆菌(Bacillus subtilis)的遗传距离最近,为0.010(与其他菌株的遗传距离均在0.2以上)。The sequencing result of gyrA is shown in SEQ ID NO 2. The PCR sequencing results were compared with the gyrase A genes of the standard strains of different genera, and a phylogenetic tree was constructed using MEGA 7.0, and the genetic distance was calculated. The results are shown in Figure 5. Among them, the genetic distance between the strain to be tested and Bacillus subtilis was the closest, which was 0.010 (the genetic distances with other strains were all above 0.2).

(2)gyrB是根据16SrDNA鉴定结果,根据几种近缘种的gyrB序列的保守区设计的引物,引物为:(2) gyrB is a primer designed according to the conserved region of the gyrB sequence of several closely related species based on the identification results of 16SrDNA. The primers are:

gyrB-F:5’-AAC AGC AAA GGC CTT CAC CA-3’;gyrB-F: 5'-AAC AGC AAA GGC CTT CAC CA-3';

gyrB-R:5’-GCA GAG TCA CCC TCT ACG ATA TA-3’。gyrB-R: 5'-GCA GAG TCA CCC TCT ACG ATA TA-3'.

gyrB的测序结果如测序结果如SEQ ID NO 3所示。将PCR测序结果与该种不同属的标准菌株的促旋酶B基因进行比对,并利用MEGA 7.0构建系统进化树,并计算遗传距离,结果如图6所示。待测菌株与枯草芽孢杆菌(Bacillus subtilis)的遗传距离最近,为0.016,与Bacillus subtilis subsp.spizizenii的遗传距离为0.087(与其他菌株的遗传距离在0.2以上)。The sequencing result of gyrB is shown in SEQ ID NO 3. The PCR sequencing results were compared with the gyrase B genes of the standard strains of different genera, and a phylogenetic tree was constructed using MEGA 7.0, and the genetic distance was calculated. The results are shown in Figure 6. The genetic distance between the tested strain and Bacillus subtilis (Bacillus subtilis) was the closest at 0.016, and the genetic distance with Bacillus subtilis subsp.spizizenii was 0.087 (the genetic distance with other strains was above 0.2).

3、综合以上结果,确定待测菌株MY002为枯草芽孢杆菌(Bacillus subtilis)。该菌株已于2017年10月30日,在中国微生物菌种保藏管理委员会普通微生物中心(ChinaGeneral Microbiological Culture Collection Center)保藏,菌种名称:枯草芽孢杆菌(Bacillus subtilis)MY002,保藏编号为CGMCC No.14841。3. Based on the above results, it was determined that the tested strain MY002 was Bacillus subtilis. The strain was deposited at the China General Microbiological Culture Collection Center on October 30, 2017. The strain name: Bacillus subtilis MY002, and the preservation number is CGMCC No. 14841.

实施例3:构建重组壳聚糖酶CsnMY002Embodiment 3: construct recombinant chitosanase CsnMY002

1、壳聚糖酶的重组表达与纯化1. Recombinant expression and purification of chitosanase

(1)壳聚糖酶基因克隆与测序(1) Cloning and sequencing of chitosanase gene

通过对Genebank(https://www.ncbi.nlm.nih.gov/genbank/)中已知的枯草芽孢杆菌壳聚糖酶基因进行多序列比对,设计引物如下:Through the multiple sequence alignment of the known Bacillus subtilis chitosanase gene in Genebank (https://www.ncbi.nlm.nih.gov/genbank/), the primers were designed as follows:

F:5’-CGC GGA TCC ATG AAA ATC AGT ATG CAA AAA GC-3’;F:5'-CGC GGA TCC ATG AAA ATC AGT ATG CAA AAA GC-3';

R:5’-A CGC GTC GAC TTA TTT GAT TAC AAA ATT ACC G-3’。R: 5'-A CGC GTC GAC TTA TTT GAT TAC AAA ATT ACC G-3'.

利用细菌全基因组DNA提取试剂盒提取该菌株的全基因组,并以此为模板进行聚合酶链式反应(PCR),成功的克隆出该菌株的壳聚糖酶基因(CsnMY002),其基因核苷酸序列如SEQ ID NO 4所示,蛋白氨基酸序列如SEQ ID NO 5所示。The entire genome of the strain was extracted using a bacterial whole genome DNA extraction kit, and polymerase chain reaction (PCR) was carried out using this as a template, and the chitosanase gene (CsnMY002) of the strain was successfully cloned, and its gene nucleoside The acid sequence is shown in SEQ ID NO 4, and the protein amino acid sequence is shown in SEQ ID NO 5.

测序结果显示:枯草芽孢杆菌MY002的壳聚糖酶基因全长为834bp,共编码277个氨基酸。将上述氨基酸序列通过SignalP 4.1 Server(http://www.cbs.dtu.dk/services/SignalP/)进行预测,发现前35个氨基酸为信号肽序列。Sequencing results showed that the full-length chitosanase gene of Bacillus subtilis MY002 was 834bp, encoding a total of 277 amino acids. The above amino acid sequence was predicted by SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/), and the first 35 amino acids were found to be the signal peptide sequence.

发明人发现:在CsnMY002的氨基酸序列中有一段特殊的序列:TRDEWR(对应序列SEQ ID NO 5中的:Thr Arg Asp Glu Trp Arg),形成螺旋结构;而在其它壳聚糖酶中并无此段序列,其相应位置为无规则的Loop结构。The inventors have found that there is a special sequence in the amino acid sequence of CsnMY002: TRDEWR (corresponding to the sequence in SEQ ID NO 5: Thr Arg Asp Glu Trp Arg), which forms a helical structure; but there is no such sequence in other chitosan enzymes Segment sequence, its corresponding position is an irregular Loop structure.

(2)构建重组质粒(2) Construction of recombinant plasmids

以PET-28a为载体,构建了去信号肽壳聚糖酶的重组质粒(在蛋白N端具有6个组氨酸标签)。设计引物如下:Using PET-28a as a vector, a recombinant plasmid (with 6 histidine tags at the N-terminal of the protein) was constructed without the signal peptide chitosanase. Primers were designed as follows:

F:5’-CGC GGA TCC GCG GGA CTG AAT AAA GAT CAA AAG-3’;F: 5'-CGC GGA TCC GCG GGA CTG AAT AAA GAT CAA AAG-3';

R:5’-A CGC GTC GAC TTA TTT GAT TAC AAA ATT ACC G-3’。R: 5'-A CGC GTC GAC TTA TTT GAT TAC AAA ATT ACC G-3'.

其中,上述引物中的划线碱基分别引入BamHI(GGA TCC)和SalI(GTC GAC)酶切位点。并以枯草芽孢杆菌MY002全基因组DNA为模板,进行PCR反应。利用PCR产物回收试剂盒回收PCR产物。Wherein, the underlined bases in the above primers were respectively introduced into the restriction sites of BamHI (GGA TCC) and SalI (GTC GAC). And the whole genome DNA of Bacillus subtilis MY002 was used as a template for PCR reaction. PCR products were recovered using a PCR product recovery kit.

同时,利用质粒抽提试剂盒提取PET-28a质粒,将其与PCR回收产物分别在37℃温度下过夜,进行BamHI、SalI双酶切反应,然后将酶切回收产物按基因:质粒=10:1(摩尔比)构建连接体系,采用T4连接酶在4℃条件下连接16h。再将连接体系转入感受态细胞DH5α中,筛选出阳性克隆之后再将其中的质粒转入表达宿主大肠杆菌BL21中。At the same time, use the plasmid extraction kit to extract the PET-28a plasmid, put it and the PCR recovered product at 37°C overnight, carry out the BamHI and SalI double enzyme digestion reaction, and then digest the recovered product according to gene:plasmid=10: 1 (molar ratio) to construct a ligation system, and use T4 ligase to ligate at 4°C for 16 hours. Then the ligation system was transferred into the competent cell DH5α, and after the positive clones were selected, the plasmid was transferred into the expression host Escherichia coli BL21.

(3)重组壳聚糖酶(CsnMY002)的表达与纯化(3) Expression and purification of recombinant chitosanase (CsnMY002)

将上述含有质粒的大肠杆菌BL21菌株接种于含有60ug/ml卡那霉素的LB培养基中,于37℃,220rpm条件下培养至OD600为0.4~0.6,然后降温至16℃,加入终浓度为0.2mM的IPTG进行低温过夜,诱导表达重组壳聚糖酶。然后5600r/min,离心30min收集菌体。Inoculate the above-mentioned Escherichia coli BL21 strain containing the plasmid in LB medium containing 60ug/ml kanamycin, cultivate it at 37°C and 220rpm until the OD600 is 0.4-0.6, then cool down to 16°C, and add a final concentration of 0.2mM IPTG was carried out at low temperature overnight to induce the expression of recombinant chitosanase. Then 5600r/min, centrifuge for 30min to collect the bacteria.

配制裂解缓冲液(50mM MES,500Mm NaCl,20mM咪唑,pH=6.0),用其将沉淀悬浮,再利用超声进行细胞破碎,破碎后溶液在12000rpm,4℃条件下离心30min,收集上清进行Ni柱亲和层析,然后以洗脱缓冲液(50mM MES,500Mm NaCl,100mM咪唑,pH=6.0)进行洗脱。亲和层析得到的洗脱液再利用Resource S阳离子柱进行离子交换层析,利用Superdex 75凝胶过滤柱进行凝胶过滤层析。最终得到了稳定且具有活性的高纯度壳聚糖酶。Prepare a lysis buffer (50mM MES, 500Mm NaCl, 20mM imidazole, pH=6.0), suspend the precipitate with it, and then use ultrasound to disrupt the cells. After the disruption, the solution is centrifuged at 12000rpm at 4°C for 30min, and the supernatant is collected for Ni Column affinity chromatography, followed by elution with elution buffer (50 mM MES, 500 Mm NaCl, 100 mM imidazole, pH=6.0). The eluate obtained by affinity chromatography was then subjected to ion exchange chromatography using a Resource S cation column, and gel filtration chromatography using a Superdex 75 gel filtration column. Finally, a stable and active high-purity chitosanase was obtained.

去信号肽的壳聚糖酶凝胶过滤层析结果如图7所示,该酶的相对分子量大小为27.42kDa。The chitosanase gel filtration chromatography results without the signal peptide are shown in Figure 7, the relative molecular weight of the enzyme is 27.42kDa.

在摇瓶中培养过夜,再经过镍柱亲和层析纯化。该酶的产量达100mg/L。在37℃,pH=6.0条件下,酶活力为547±23U/mg(如表4所示)。Cultured overnight in shake flasks, then purified by nickel column affinity chromatography. The yield of the enzyme is up to 100mg/L. At 37° C. and pH=6.0, the enzyme activity was 547±23 U/mg (as shown in Table 4).

表4重组壳聚糖酶的酶活力测定结果The enzyme activity determination result of table 4 recombinant chitosanase

从上述结果可以看出:重组壳聚糖酶CsnMY002产量高、活性高。It can be seen from the above results that the recombinant chitosanase CsnMY002 has high yield and high activity.

实施例4:枯草芽孢杆菌MY002壳聚糖酶的最适反应条件分析Embodiment 4: the optimum reaction condition analysis of Bacillus subtilis MY002 chitosanase

1、最适反应温度分析1. Optimal reaction temperature analysis

(1)准备缓冲液:50mM的MES缓冲液(pH=6)(1) Preparation buffer: 50mM MES buffer (pH=6)

(2)配制酶制剂:利用Bradford法,测定实施例3所述纯化后重组壳聚糖酶CsnMY002的浓度。取31.25μg酶液,用缓冲液(50mM MES,pH=6)补齐至500μl,最终酶制剂浓度为0.0625μg/μl。(2) Enzyme preparation: the concentration of the purified recombinant chitosanase CsnMY002 described in Example 3 was determined by Bradford method. 31.25 μg of enzyme solution was taken and made up to 500 μl with buffer solution (50 mM MES, pH=6), and the final concentration of enzyme preparation was 0.0625 μg/μl.

(3)配制底物溶液:取10ml胶体壳聚糖(1%,w/v),离心(12000g,5min)后去上清液,加入9.5ml的缓冲液(50mM MES,pH=6)。(3) Preparation of substrate solution: take 10ml of colloidal chitosan (1%, w/v), centrifuge (12000g, 5min) and remove supernatant, add 9.5ml of buffer solution (50mM MES, pH=6).

(4)测定:取24支离心管,每管的反应体系为400μl,分别向每管中加入380μl底物溶液和20μl酶制剂。设置10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃,共计8个温度处理,每个处理设3个平行。将各处理分别在各个温度梯度下孵育5min,而后用沸水煮10min以终止反应。待冷却后,再分别加入400μl DNS,再在沸水中煮5min显色,并迅速冷却。待冷却后,在12000g转速下离心5min,去除壳聚糖沉淀。(4) Determination: Take 24 centrifuge tubes, each tube has a reaction system of 400 μl, and add 380 μl of substrate solution and 20 μl of enzyme preparation to each tube respectively. Set 10°C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, a total of 8 temperature treatments, and set 3 parallels for each treatment. Each treatment was incubated at each temperature gradient for 5 min, and then boiled in boiling water for 10 min to terminate the reaction. After cooling down, add 400 μl DNS respectively, cook in boiling water for 5 minutes to develop color, and cool down rapidly. After cooling, centrifuge at 12000 g for 5 min to remove the chitosan precipitate.

(5)结果:各反应体系各取200μl上清液测定吸光值,再根据D-葡萄糖盐酸盐标准曲线,计算出还原糖的释放量,从而体现重组壳聚糖酶CsnMY002在各温度下的水解活性。结果如图8所示。(5) Result: each reaction system gets 200 μ l supernatant to measure absorbance value, then calculates the release amount of reducing sugar according to the D-glucose hydrochloride standard curve, thus reflects the recombinant chitosanase CsnMY002 at each temperature Hydrolytic activity. The result is shown in Figure 8.

结果显示:重组壳聚糖酶CsnMY002在35℃~65℃下,均具有较好的酶活,最适反应温度为50℃。为操作方便,下述试验中温度全部采用37℃;实际生产中,可根据情况选择所需温度。The results showed that the recombinant chitosanase CsnMY002 had good enzyme activity at 35℃~65℃, and the optimum reaction temperature was 50℃. For the convenience of operation, the temperature in the following tests is all 37°C; in actual production, the required temperature can be selected according to the situation.

2、最适pH的分析2. Analysis of optimum pH

(1)准备缓冲液:50mM的甘氨酸-盐酸缓冲液(pH=2~4)、50mM的MES缓冲液(pH=5~6)、50mM的Tris-HCl缓冲液(pH=7~9)。(1) Prepare buffer: 50mM glycine-hydrochloric acid buffer (pH=2-4), 50mM MES buffer (pH=5-6), 50mM Tris-HCl buffer (pH=7-9).

(2)按照步骤1中的方法,将MES缓冲液分别换为上述三组缓冲液,配制三组不同pH值的酶制剂和底物溶液,对应三个pH处理,每个处理设三个平行。并按步骤1的测定方法,在37℃条件下反应,计算还原糖的释放量,得出重组壳聚糖酶CsnMY002在不同pH下的水解活性。结果如图9所示。从图中可以看出:重组壳聚糖酶CsnMY002在pH=2.5~7.5时,均有不错的活性,且在pH=3时,活性最佳;在pH=6时,活性优良。这与目前已报道的壳聚糖酶高活性区间主要集中在pH=5~7明显不同。本发明的重组壳聚糖酶CsnMY002不仅可以在弱碱性、中性和弱酸性条件下水解壳聚糖底物,还可以在酸性较强的条件下发生作用。(2) According to the method in step 1, the MES buffer solution was replaced by the above three groups of buffer solutions, and three groups of enzyme preparations and substrate solutions with different pH values were prepared, corresponding to three pH treatments, and each treatment was set up in three parallel . And according to the determination method of step 1, react at 37°C, calculate the release amount of reducing sugar, and obtain the hydrolysis activity of recombinant chitosanase CsnMY002 at different pH. The result is shown in Figure 9. It can be seen from the figure that the recombinant chitosanase CsnMY002 has good activity at pH=2.5-7.5, and the activity is the best at pH=3; the activity is excellent at pH=6. This is obviously different from the reported high activity range of chitosanase mainly concentrated at pH=5-7. The recombinant chitosanase CsnMY002 of the invention can not only hydrolyze chitosan substrates under weakly alkaline, neutral and weakly acidic conditions, but also act under stronger acidic conditions.

实施例5:重组壳聚糖酶CsnMY002水解性能分析Embodiment 5: Analysis of hydrolysis performance of recombinant chitosanase CsnMY002

1、以可溶的壳聚糖为底物。1. With soluble chitosan as substrate.

(1)向7支离心管中分别加入90μl的胶体壳聚糖溶液(1%,w/v),12000g转速下离心5min,除上清,用50mM,pH=6的MES缓冲液重悬。再向其中6支离心管内加入浓度为0.5mg/ml的壳聚糖酶CsnMY002溶液(50mM,pH=6的MES缓冲液配制),作为实验组;1支离心管内加入等量50mM,pH=6的MES缓冲液,作为空白组。(1) Add 90 μl of colloidal chitosan solution (1%, w/v) to 7 centrifuge tubes, centrifuge at 12000 g for 5 min, remove supernatant, and resuspend with 50 mM, pH=6 MES buffer. Then add the chitosanase CsnMY002 solution (50mM, pH=6 MES damping fluid preparation) that concentration is 0.5mg/ml in 6 centrifuge tubes wherein, as experimental group; Add equivalent 50mM, pH=6 in 1 centrifuge tube MES buffer as a blank group.

(2)将上述实验组分别在37℃下,进行30s、1min、3min、5min、10min、1h的水解反应;空白组置于相同条件下1h。然后在沸水中煮10min以终止反应。(2) The above-mentioned experimental groups were subjected to hydrolysis reactions at 37° C. for 30 s, 1 min, 3 min, 5 min, 10 min, and 1 h; the blank group was placed under the same conditions for 1 h. Then boil in boiling water for 10min to terminate the reaction.

(3)将G1~G6混装标准品点样于硅胶板(Silica gel 60 F254,1.05554.0001,购买于德国默克公司)作为标准参照(图10中的std);待反应结束之后,再从各处理中分别取1μl离心上清液,点样于上述硅胶板,进行TLC分析。TLC采用的展开体系为:乙酸乙酯/乙醇/水/28%氨水=5/5/4/0.5(v/v),经过大约2h后完全展开,将硅胶板风干后浸入0.1%的茚三酮(溶剂为乙醇)中,再在90℃下烘烤5min显色。水解结果如图10所示。(3) Spot the G1-G6 mixed standard product on a silica gel plate (Silica gel 60 F 254 , 1.05554.0001, purchased from Merck, Germany) as a standard reference (std in Figure 10); after the reaction is completed, Then, 1 μl of the centrifuged supernatant was taken from each treatment, and spotted on the above-mentioned silica gel plate for TLC analysis. The development system used by TLC is: ethyl acetate/ethanol/water/28% ammonia water=5/5/4/0.5 (v/v), after about 2 hours, it is completely developed, and the silica gel plate is air-dried and then immersed in 0.1% nendin Ketone (the solvent is ethanol), and then baked at 90° C. for 5 minutes to develop color. The hydrolysis results are shown in Figure 10.

(4)结果显示:反应30s左右即能够检测到G3、G4、G5、G6,随着反应的进行,较长的壳寡糖逐渐水解成较短的寡糖,最终的水解产物为G2和G3。(4) The results show that G3, G4, G5, and G6 can be detected after about 30 seconds of reaction. As the reaction progresses, longer chitosan oligosaccharides are gradually hydrolyzed into shorter oligosaccharides, and the final hydrolyzed products are G2 and G3. .

其中,全文所述的G1、G2、G3等均表示低聚糖(寡糖),G后面的数字表示氨基葡萄糖的聚合度。如:G1为氨基葡萄糖,G2为二聚氨基葡萄糖,G3为三聚氨基葡萄糖。Wherein, G1, G2, G3, etc. mentioned in the whole text all represent oligosaccharides (oligosaccharides), and the numbers after G represent the degree of polymerization of glucosamine. Such as: G1 is glucosamine, G2 is dipolyglucosamine, G3 is tripolyglucosamine.

2、以不可溶的高聚壳聚糖为底物。2. Use insoluble high polychitosan as substrate.

操作步骤与步骤1相同。其中,将胶体壳聚糖溶液等量替换为不可溶壳聚糖悬浮液,其制备方法为:称取粉末壳聚糖0.2g,加入10ml缓冲液(50mM MES,pH=6.0);充分震荡,使粉末悬浮。未设置空白组,水解时间分别为4h、8h、12h。水解结果如图11所示。The operation steps are the same as step 1. Wherein, the equivalent amount of colloidal chitosan solution is replaced by insoluble chitosan suspension, and its preparation method is: take powdered chitosan 0.2g, add 10ml buffer (50mM MES, pH=6.0); fully shake, Suspend the powder. No blank group was set up, and the hydrolysis time was 4h, 8h, and 12h, respectively. The hydrolysis results are shown in Figure 11.

结果显示:重组壳聚糖酶对不可溶高聚壳聚糖的水解作用相对较慢,过夜孵育后检测到水解产物的形成,其产物仍然为G2和G3。The results showed that the hydrolysis of insoluble high polychitosan by recombinant chitosanase was relatively slow, and the formation of hydrolysis products was detected after overnight incubation, and the products were still G2 and G3.

上述结果显示:本发明发现的壳聚糖酶CsnMY002不仅可水解可溶的壳聚糖,还可水解不可溶的高聚壳聚糖。同时,与常规壳聚糖酶的终产物一般为G5、G6甚至更长链的寡糖混合物所不同的是:壳聚糖酶CsnMY002的水解终产物全部为G3和G2的短链糖,成份更简单,便于后续应用,这可能是酶本身特殊的蛋白结构所决定的结果。The above results show that the chitosanase CsnMY002 discovered in the present invention can not only hydrolyze soluble chitosan, but also hydrolyze insoluble high polychitosan. At the same time, unlike the final products of conventional chitosanases, which are generally G5, G6 or even longer-chain oligosaccharide mixtures, the final products of hydrolysis of chitosanase CsnMY002 are all short-chain sugars of G3 and G2, and the composition is more It is simple and convenient for subsequent applications, which may be the result of the special protein structure of the enzyme itself.

本发明发现的壳聚糖酶,具有新型的蛋白结构,对工作环境要求更低,且有着区别于其它壳聚糖酶的作用效果,具有更广阔的应用前景,也为壳聚糖酶分子机制更深入的研究提供了理论基础。The chitosanase discovered in the present invention has a novel protein structure, has lower requirements on the working environment, and has an action effect different from other chitosanases, has a broader application prospect, and is also the molecular mechanism of chitosanase. A more in-depth study provides the theoretical basis.

序列表 sequence listing

<110> 中国科学院成都生物研究所<110> Chengdu Institute of Biology, Chinese Academy of Sciences

<120> 一株产壳聚糖酶的枯草芽孢杆菌及其应用<120> A strain of Bacillus subtilis producing chitosanase and its application

<160> 5<160> 5

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1455<211> 1455

<212> DNA<212>DNA

<213> 枯草芽孢杆菌(Bacillus subtilis MY002)<213> Bacillus subtilis MY002

<400> 1<400> 1

gccattgcgg cgtgctatac atgcagtcga gcggacagat gggagcttgc tccctgatgt 60gccattgcgg cgtgctatac atgcagtcga gcggacagat gggagcttgc tccctgatgt 60

tagcggcgga cgggtgagta acacgtgggt aacctgcctg taagactggg ataactccgg 120tagcggcgga cgggtgagta acacgtgggt aacctgcctg taagactggg ataactccgg 120

gaaaccgggg ctaataccgg atggttgttt gaaccgcatg gttcaaacat aaaaggtggc 180gaaaccgggg ctaataccgg atggttgttt gaaccgcatg gttcaaacat aaaaggtggc 180

ttcggctacc acttacagat ggacccgcgg cgcattagct agttggtgag gtaacggctc 240ttcggctacc acttacagat ggacccgcgg cgcattagct agttggtgag gtaacggctc 240

accaaggcaa cgatgcgtag ccgacctgag agggtgatcg gccacactgg gactgagaca 300accaaggcaa cgatgcgtag ccgacctgag agggtgatcg gccaacactgg gactgagaca 300

cggcccagac tcctacggga ggcagcagta gggaatcttc cgcaatggac gaaagtctga 360cggcccagac tcctacggga ggcagcagta gggaatcttc cgcaatggac gaaagtctga 360

cggagcaacg ccgcgtgagt gatgaaggtt ttcggatcgt aaagctctgt tgttagggaa 420cggagcaacg ccgcgtgagt gatgaaggtt ttcggatcgt aaagctctgt tgttagggaa 420

gaacaagtac cgttcgaata gggcggtacc ttgacggtac ctaaccagaa agccacggct 480gaacaagtac cgttcgaata gggcggtacc ttgacggtac ctaaccagaa agccacggct 480

aactacgtgc cagcagccgc ggtaatacgt aggtggcaag cgttgtccgg aattattggg 540aactacgtgc cagcagccgc ggtaatacgt aggtggcaag cgttgtccgg aattattggg 540

cgtaaagggc tcgcaggcgg tttcttaagt ctgatgtgaa agcccccggc tcaaccgggg 600cgtaaagggc tcgcaggcgg tttcttaagt ctgatgtgaa agcccccggc tcaaccgggg 600

agggtcattg gaaactgggg aacttgagtg cagaagagga gagtggaatt ccacgtgtag 660agggtcattg gaaactgggg aacttgagtg cagaagagga gagtggaatt ccacgtgtag 660

cggtgaaatg cgtagagatg tggaggaaca ccagtggcga aggcgactct ctggtctgta 720cggtgaaatg cgtagagatg tggaggaaca ccagtggcga aggcgactct ctggtctgta 720

actgacgctg aggagcgaaa gcgtggggag cgaacaggat tagataccct ggtagtccac 780actgacgctg aggagcgaaa gcgtggggag cgaacaggat tagataccct ggtagtccac 780

gccgtaaacg atgagtgcta agtgttaggg ggtttccgcc ccttagtgct gcagctaacg 840gccgtaaacg atgagtgcta agtgttaggg ggtttccgcc ccttagtgct gcagctaacg 840

cattaagcac tccgcctggg gagtacggtc gcaagactga aactcaaagg aattgacggg 900cattaagcac tccgcctggg gagtacggtc gcaagactga aactcaaagg aattgacggg 900

ggcccgcaca agcggtggag catgtggttt aattcgaagc aacgcgaaga accttaccag 960ggcccgcaca agcggtggag catgtggttt aattcgaagc aacgcgaaga accttaccag 960

gtcttgacat cctctgacaa tcctagagat aggacgtccc cttcgggggc agagtgacag 1020gtcttgacat cctctgacaa tcctagagat aggacgtccc cttcgggggc agagtgacag 1020

gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc cgcaacgagc 1080gtggtgcatg gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc cgcaacgagc 1080

gcaacccttg atcttagttg ccagcattca gttgggcact ctaaggtgac tgccggtgac 1140gcaacccttg atcttagttg ccagcattca gttgggcact ctaaggtgac tgccggtgac 1140

aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc tgggctacac 1200aaaccggagg aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc tgggctacac 1200

acgtgctaca atggacagaa caaagggcag cgaaaccgcg aggttaagcc aatcccacaa 1260acgtgctaca atggacagaa caaagggcag cgaaaccgcg aggttaagcc aatcccacaa 1260

atctgttctc agttcggatc gcagtctgca actcgactgc gtgaagctgg aatcgctagt 1320atctgttctc agttcggatc gcagtctgca actcgactgc gtgaagctgg aatcgctagt 1320

aatcgcggat cagcatgccg cggtgaatac gttcccgggc cttgtacaca ccgcccgtca 1380aatcgcggat cagcatgccg cggtgaatac gttcccgggc cttgtacaca ccgcccgtca 1380

caccacgaga gtttgtaaca cccgaagtcg gtgaggtaac cttttaggag ccagccgccg 1440caccacgaga gtttgtaaca cccgaagtcg gtgaggtaac cttttaggag ccagccgccg 1440

aaggtgaaca agaga 1455aaggtgaaca agaga 1455

<210> 2<210> 2

<211> 959<211> 959

<212> DNA<212>DNA

<213> 枯草芽孢杆菌(Bacillus subtilis MY002)<213> Bacillus subtilis MY002

<400> 2<400> 2

tcccgtcagc atgagcgtta tcgtgtccgt gctcttccag atgttcgaga cggtttaaaa 60tcccgtcagc atgagcgtta tcgtgtccgt gctcttccag atgttcgaga cggtttaaaa 60

ccggttcata gacggatttt gtatgcaatg aatgatttag gcatgacaag tgacaagcct 120ccggttcata gacggatttt gtatgcaatg aatgatttag gcatgacaag tgacaagcct 120

tataaaaaat ccgcgcgtat cgttggagaa gttatcggga aataccaccc gcacggtgat 180tataaaaaat ccgcgcgtat cgttggagaa gttatcggga aataccaccc gcacggtgat 180

tcagcggtat atgaatccat ggtcagaatg gctcaggatt tcaactaccg ttatatgctc 240tcagcggtat atgaatccat ggtcagaatg gctcaggatt tcaactaccg ttatatgctc 240

gttgacggtc acggaaactt cggttctgtt gacggagact cagcggcggc catgcgttat 300gttgacggtc acggaaactt cggttctgtt gacggagact cagcggcggc catgcgttat 300

acagaagcaa gaatgtctaa aatctcaatg gagattcttc gtgacatcac aaaagacaca 360acagaagcaa gaatgtctaa aatctcaatg gagattcttc gtgacatcac aaaagacaca 360

atcgattacc aggataacta tgacgggtca gaaagagaac ctgtcgttat gccttcaagg 420atcgattacc aggataacta tgacgggtca gaaagagaac ctgtcgttat gccttcaagg 420

ttcccgaatc tgctcgtgaa cggtgctgcc ggcattgcgg taggtatggc aacaaacatt 480ttcccgaatc tgctcgtgaa cggtgctgcc ggcattgcgg taggtatggc aacaaacatt 480

cctccgcacc agctgggaga aatcattgac ggtgtacttg ctgtcagtga gaatccggac 540cctccgcacc agctggggaga aatcattgac ggtgtacttg ctgtcagtga gaatccggac 540

attacaattc cagagcttat ggaagtcatt ccagggcctg atttcccgac cgcgggtcaa 600attacaattc cagagcttat ggaagtcatt ccagggcctg atttcccgac cgcgggtcaa 600

atcttgggac gcagcggtat ccggaaagca tacgaatcag gccgaggctc tatcacgatc 660atcttgggac gcagcggtat ccggaaagca tacgaatcag gccgaggctc tatcacgatc 660

cgggcaaaag ctgagatcga acaaacatct tcgggtaaag aaagaattat cgttacagag 720cgggcaaaag ctgagatcga acaaacatct tcgggtaaag aaagaattat cgttacagag 720

ttaccttacc aagtgaataa ggcgaaatta attgagaaaa ttgctgatct cgtaagggac 780ttaccttacc aagtgaataa ggcgaaatta attgagaaaa ttgctgatct cgtaagggac 780

aaaaagatag agggtatcac agatctgcgt gatgagtcag atcgtacagg tatgagaatt 840aaaaagatag agggtatcac agatctgcgt gatgagtcag atcgtacagg tatgagaatt 840

gtcattgaaa tcagacgcga cgccaatgca aatgtcatct taaacaatct gtacaaacaa 900gtcattgaaa tcagacgcga cgccaatgca aatgtcatct taaacaatct gtacaaacaa 900

actgctctac aaacatcttt tggcatcaac ctgcttgcac ttgtgatggc cagccgaaa 959actgctctac aaacatcttt tggcatcaac ctgcttgcac ttgtgatggc cagccgaaa 959

<210> 3<210> 3

<211> 1142<211> 1142

<212> DNA<212>DNA

<213> 枯草芽孢杆菌(Bacillus subtilis MY002)<213> Bacillus subtilis MY002

<400> 3<400> 3

ccggagcatg tcgaatagta ttgacgaagc ccttgccggt tattgtacgg atatcaatat 60ccggagcatg tcgaatagta ttgacgaagc ccttgccggt tattgtacgg atatcaatat 60

ccaaatcgaa aaagacaaca gtatcacggt tgtagataat ggccgcggta ttccagtcgg 120ccaaatcgaa aaagacaaca gtatcacggt tgtagataat ggccgcggta ttccagtcgg 120

tattcatgaa aaaatgggcc gtcctgcggt agaagtcatt atgacggtgc ttcatgccgg 180tattcatgaa aaaatgggcc gtcctgcggt agaagtcatt atgacggtgc ttcatgccgg 180

aggaaaattt gacggaagcg gctataaagt atccggagga ttacacggtg taggtgcttc 240aggaaaattt gacggaagcg gctataaagt atccggagga ttacacggtg taggtgcttc 240

ggtcgtaaac gcactatcca cagagcttga tgtgacggtt caccgtgacg gtaaaattca 300ggtcgtaaac gcactatcca cagagcttga tgtgacggtt caccgtgacg gtaaaattca 300

ccgccaaacc tataaacgcg gagttccggt tacagacctt gaaatcattg gcgaaacgga 360ccgccaaacc tataaacgcg gagttccggt tacagacctt gaaatcattg gcgaaacgga 360

tcatacagga acgacgacac attttgtccc ggaccctgaa attttctcag aaacaaccga 420tcatacagga acgacgacac attttgtccc ggaccctgaa attttctcag aaacaaccga 420

gtatgattac gatctgcttg ccaaccgcgt gcgtgaatta gcctttttaa caaagggcgt 480gtatgattac gatctgcttg ccaaccgcgt gcgtgaatta gcctttttaa caaagggcgt 480

aaacatcacg attgaagata aacgtgaagg acaagagcgc aaaaatgaat accattacga 540aaacatcacg attgaagata aacgtgaagg acaagagcgc aaaaatgaat accattacga 540

aggcggaatt aaaagttatg tagagtattt aaaccgctct aaagaggttg tccatgaaga 600aggcggaatt aaaagttatg tagagtattt aaaccgctct aaagaggttg tccatgaaga 600

gccgatttac attgaaggcg aaaaggacgg cattacggtt gaagtggctt tgcaatacaa 660gccgattac attgaaggcg aaaaggacgg cattacggtt gaagtggctt tgcaatacaa 660

tgacagctat acaagcaaca tttactcgtt tacaaacaac attaacacgt acgaaggcgg 720tgacagctat acaagcaaca tttactcgtt tacaaacaac attaacacgt acgaaggcgg 720

tacccatgaa gctggcttca aaacgggcct gactcgtgtt atcaacgatt acgccagaaa 780tacccatgaa gctggcttca aaacgggcct gactcgtgtt atcaacgatt acgccagaaa 780

aaaagggctt attaaagaaa atgatccaaa cctaagcgga gatgacgtaa gggaagggct 840aaaagggctt attaaagaaa atgatccaaa cctaagcgga gatgacgtaa gggaagggct 840

gacagcgatt atttcaatca aacaccctga tccgcagttt gagggccaaa caaaaacaaa 900gacagcgatt atttcaatca aacaccctga tccgcagttt gagggccaaa caaaaacaaa 900

gctgggcaac tcagaagcac ggacgatcac cgatacgtta ttttctacag cgatggaaac 960gctgggcaac tcagaagcac ggacgatcac cgatacgtta ttttctacag cgatggaaac 960

atttatgctg gaaaatccag atgcagccaa aaaaattgtc gataaaggct taatggcggc 1020atttatgctg gaaaatccag atgcagccaa aaaaattgtc gataaaggct taatggcggc 1020

aagagcaaga atggctgcga aaaaagcccg tgaactaaca cgccgtaaga gtgctttgga 1080aagagcaaga atggctgcga aaaaagcccg tgaactaaca cgccgtaaga gtgctttgga 1080

aatttccaac ttgcccggta agttagcgga ctgctctcaa aagatccgag catccccgag 1140aatttccaac ttgcccggta agttagcgga ctgctctcaa aagatccgag catccccgag 1140

tg 1142tg 1142

<210> 4<210> 4

<211> 834<211> 834

<212> DNA<212>DNA

<213> 枯草芽孢杆菌壳聚糖酶(CsnMY002)<213> Bacillus subtilis chitosanase (CsnMY002)

<400> 4<400> 4

atgaaaatca gtatgcaaaa agcagatttt tggaaaaagg cagcgatctc attacttgtt 60atgaaaatca gtatgcaaaa agcagatttt tggaaaagg cagcgatctc attacktgtt 60

ttcaccatgt tttttaccct gataatgagc gaaacggttt ttgcggcggg actgaataaa 120ttcaccatgt tttttaccct gataatgagc gaaacggttt ttgcggcggg actgaataaa 120

gatcaaaagc gccgggcgga acagctgaca agtatctttg aaaacggcac aacggagatc 180gatcaaaagc gccgggcgga acagctgaca agtatctttg aaaacggcac aacggagatc 180

caatatggat atgtagagcg attggatgat gggcgaggct atacatgcgg acgggcaggc 240caatatggat atgtagagcg attggatgat gggcgaggct atacatgcgg acgggcaggc 240

tttacaacgg ctaccgggga tgcattggaa gtagtggaag tatacacaaa ggcagttccg 300tttacaacgg ctaccgggga tgcattggaa gtagtggaag tatacacaaa ggcagttccg 300

aataacaaac tgaaaaagta tctgcctgaa ttgcgccgtc tggccaagga agaaagcgat 360aataacaaac tgaaaaagta tctgcctgaa ttgcgccgtc tggccaagga agaaagcgat 360

gatacaagca atctcaaggg attcgcttct gcctggaagt cgcttgcaaa tgataaggaa 420gatacaagca atctcaaggg attcgcttct gcctggaagt cgcttgcaaa tgataaggaa 420

tttcgcgccg ctcaagacaa agtaaatgac catttgtatt atcagcctgc catgaaacga 480tttcgcgccg ctcaagacaa agtaaatgac catttgtatt atcagcctgc catgaaacga 480

tcggataatg ccggactaaa aacagcattg gctagagctg tgatgtacga tacggttatt 540tcggataatg ccggactaaa aacagcattg gctagagctg tgatgtacga tacggttatt 540

cagcatggcg atggtgatga ccctgactct ttttatgcct tgattaaacg tacgaacaaa 600cagcatggcg atggtgatga ccctgactct ttttatgcct tgattaaacg tacgaacaaa 600

aaagcgggcg gatcacctaa agacggaata gacgagaaga agtggttgaa taaattcttg 660aaagcgggcg gatcacctaa agacggaata gacgagaaga agtggttgaa taaattcttg 660

gacgtacgct atgacgatct gatgaatccg gccaatcatg acacccgtga cgaatggaga 720gacgtacgct atgacgatct gatgaatccg gccaatcatg acacccgtga cgaatggaga 720

gaatcagttg cccgtgtgga cgtgcttcgc tctatcgcca aggagaacaa ctataatcta 780gaatcagttg cccgtgtgga cgtgcttcgc tctatcgcca aggagaacaa ctataatcta 780

aacggaccga ttcatgttcg ttcaaacgag tacggtaatt ttgtaatcaa ataa 834aacggaccga ttcatgttcg ttcaaacgag tacggtaatt ttgtaatcaa ataa 834

<210> 5<210> 5

<211> 277<211> 277

<212> PRT<212> PRT

<213> 枯草芽孢杆菌壳聚糖酶(CsnMY002)<213> Bacillus subtilis chitosanase (CsnMY002)

<400> 5<400> 5

Met Lys Ile Ser Met Gln Lys Ala Asp Phe Trp Lys Lys Ala Ala IleMet Lys Ile Ser Met Gln Lys Ala Asp Phe Trp Lys Lys Ala Ala Ile

1 5 10 151 5 10 15

Ser Leu Leu Val Phe Thr Met Phe Phe Thr Leu Ile Met Ser Glu ThrSer Leu Leu Val Phe Thr Met Phe Phe Thr Leu Ile Met Ser Glu Thr

20 25 30 20 25 30

Val Phe Ala Ala Gly Leu Asn Lys Asp Gln Lys Arg Arg Ala Glu GlnVal Phe Ala Ala Gly Leu Asn Lys Asp Gln Lys Arg Arg Ala Glu Gln

35 40 45 35 40 45

Leu Thr Ser Ile Phe Glu Asn Gly Thr Thr Glu Ile Gln Tyr Gly TyrLeu Thr Ser Ile Phe Glu Asn Gly Thr Thr Glu Ile Gln Tyr Gly Tyr

50 55 60 50 55 60

Val Glu Arg Leu Asp Asp Gly Arg Gly Tyr Thr Cys Gly Arg Ala GlyVal Glu Arg Leu Asp Asp Gly Arg Gly Tyr Thr Cys Gly Arg Ala Gly

65 70 75 8065 70 75 80

Phe Thr Thr Ala Thr Gly Asp Ala Leu Glu Val Val Glu Val Tyr ThrPhe Thr Thr Ala Thr Gly Asp Ala Leu Glu Val Val Glu Val Tyr Thr

85 90 95 85 90 95

Lys Ala Val Pro Asn Asn Lys Leu Lys Lys Tyr Leu Pro Glu Leu ArgLys Ala Val Pro Asn Asn Lys Leu Lys Lys Tyr Leu Pro Glu Leu Arg

100 105 110 100 105 110

Arg Leu Ala Lys Glu Glu Ser Asp Asp Thr Ser Asn Leu Lys Gly PheArg Leu Ala Lys Glu Glu Ser Asp Asp Thr Ser Asn Leu Lys Gly Phe

115 120 125 115 120 125

Ala Ser Ala Trp Lys Ser Leu Ala Asn Asp Lys Glu Phe Arg Ala AlaAla Ser Ala Trp Lys Ser Leu Ala Asn Asp Lys Glu Phe Arg Ala Ala

130 135 140 130 135 140

Gln Asp Lys Val Asn Asp His Leu Tyr Tyr Gln Pro Ala Met Lys ArgGln Asp Lys Val Asn Asp His Leu Tyr Tyr Gln Pro Ala Met Lys Arg

145 150 155 160145 150 155 160

Ser Asp Asn Ala Gly Leu Lys Thr Ala Leu Ala Arg Ala Val Met TyrSer Asp Asn Ala Gly Leu Lys Thr Ala Leu Ala Arg Ala Val Met Tyr

165 170 175 165 170 175

Asp Thr Val Ile Gln His Gly Asp Gly Asp Asp Pro Asp Ser Phe TyrAsp Thr Val Ile Gln His Gly Asp Gly Asp Asp Pro Asp Ser Phe Tyr

180 185 190 180 185 190

Ala Leu Ile Lys Arg Thr Asn Lys Lys Ala Gly Gly Ser Pro Lys AspAla Leu Ile Lys Arg Thr Asn Lys Lys Ala Gly Gly Ser Pro Lys Asp

195 200 205 195 200 205

Gly Ile Asp Glu Lys Lys Trp Leu Asn Lys Phe Leu Asp Val Arg TyrGly Ile Asp Glu Lys Lys Trp Leu Asn Lys Phe Leu Asp Val Arg Tyr

210 215 220 210 215 220

Asp Asp Leu Met Asn Pro Ala Asn His Asp Thr Arg Asp Glu Trp ArgAsp Asp Leu Met Asn Pro Ala Asn His Asp Thr Arg Asp Glu Trp Arg

225 230 235 240225 230 235 240

Glu Ser Val Ala Arg Val Asp Val Leu Arg Ser Ile Ala Lys Glu AsnGlu Ser Val Ala Arg Val Asp Val Leu Arg Ser Ile Ala Lys Glu Asn

245 250 255 245 250 255

Asn Tyr Asn Leu Asn Gly Pro Ile His Val Arg Ser Asn Glu Tyr GlyAsn Tyr Asn Leu Asn Gly Pro Ile His Val Arg Ser Asn Glu Tyr Gly

260 265 270 260 265 270

Asn Phe Val Ile LysAsn Phe Val Ile Lys

275 275

Claims (10)

1.一株枯草芽孢杆菌,其特征在于:2017年10月30日保藏于中国微生物菌种保藏管理委员会普通微生物中心,菌种名称:枯草芽孢杆菌,Bacillus subtilis,MY002,保藏编号为CGMCC No.14841。1. A strain of Bacillus subtilis, characterized in that it was preserved on October 30, 2017 in the General Microbiology Center of China Committee for the Collection of Microorganisms, strain name: Bacillus subtilis, Bacillus subtilis, MY002, and the preservation number is CGMCC No. 14841. 2.一株枯草芽孢杆菌,其特征在于:其16SrDNA测序结果如SEQ ID NO 1所示;其gyrA测序结果如测序结果如SEQ ID NO 2所示;其gyrB测序结果如SEQ ID NO 3所示。2. A strain of Bacillus subtilis, characterized in that: its 16SrDNA sequencing result is as shown in SEQ ID NO 1; its gyrA sequencing result is as shown in SEQ ID NO 2; its gyrB sequencing result is as shown in SEQ ID NO 3 . 3.权利要求1或2所述的枯草芽孢杆菌在水解壳聚糖中的应用。3. the application of the bacillus subtilis described in claim 1 or 2 in hydrolyzing chitosan. 4.如权利要求3所述的枯草芽孢杆菌在水解壳聚糖中的应用,其特征在于:所述应用的pH范围为:2.5~7.5。4. The application of Bacillus subtilis in hydrolyzing chitosan as claimed in claim 3, characterized in that: the pH range of the application is: 2.5-7.5. 5.如权利要求3所述的枯草芽孢杆菌在水解壳聚糖中的应用,其特征在于:所述应用的pH=3或6。5. the application of Bacillus subtilis in hydrolyzing chitosan as claimed in claim 3, is characterized in that: the pH=3 or 6 of described application. 6.如权利要求3所述的枯草芽孢杆菌在水解壳聚糖中的应用,其特征在于:所述应用的温度范围为:35~65℃。6. The application of Bacillus subtilis in hydrolyzing chitosan as claimed in claim 3, characterized in that: the temperature range of the application is: 35-65°C. 7.一种壳聚糖酶CsnMY002,其特征在于:其核苷酸序列如SEQ ID NO 4所示,其氨基酸序列如SEQ ID NO 5所示。7. A chitosanase CsnMY002, characterized in that its nucleotide sequence is shown in SEQ ID NO 4, and its amino acid sequence is shown in SEQ ID NO 5. 8.权利要求7所述的壳聚糖酶CsnMY002在水解壳聚糖中的应用。8. the application of chitosanase CsnMY002 described in claim 7 in hydrolyzing chitosan. 9.如权利要求8所述的壳聚糖酶CsnMY002在水解壳聚糖中的应用,其特征在于:所述应用的pH范围为:2.5~7.5。9. The application of chitosanase CsnMY002 in hydrolyzing chitosan as claimed in claim 8, characterized in that: the pH range of the application is: 2.5-7.5. 10.如权利要求8所述的壳聚糖酶CsnMY002在水解壳聚糖中的应用,其特征在于:所述应用的温度范围为:35~65℃。10. The application of chitosanase CsnMY002 in hydrolyzing chitosan according to claim 8, characterized in that: the temperature range of the application is: 35-65°C.
CN201810030676.3A 2018-01-12 2018-01-12 One plant of bacillus subtilis for producing chitosan enzyme and its application Pending CN108018245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810030676.3A CN108018245A (en) 2018-01-12 2018-01-12 One plant of bacillus subtilis for producing chitosan enzyme and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810030676.3A CN108018245A (en) 2018-01-12 2018-01-12 One plant of bacillus subtilis for producing chitosan enzyme and its application

Publications (1)

Publication Number Publication Date
CN108018245A true CN108018245A (en) 2018-05-11

Family

ID=62071377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810030676.3A Pending CN108018245A (en) 2018-01-12 2018-01-12 One plant of bacillus subtilis for producing chitosan enzyme and its application

Country Status (1)

Country Link
CN (1) CN108018245A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175921A (en) * 2020-10-23 2021-01-05 中国科学院成都生物研究所 Chitosanase mutant G21R and application thereof
CN113278546A (en) * 2021-05-13 2021-08-20 青岛海洋生物医药研究院股份有限公司 Bacillus subtilis LC1-1 capable of efficiently producing enzyme and enzyme production method and application thereof
CN113913450A (en) * 2021-10-29 2022-01-11 湖南省植物保护研究所 Method for expressing chitosanase by using Rhodopseudomonas marsh, chitosanase, recombinant plasmid, recombinant bacteria, fermentation agent and application
CN114480537A (en) * 2021-12-21 2022-05-13 中国海洋大学 Method for preparing chitosan oligosaccharide with high polymerization degree

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069975A (en) * 1999-09-03 2001-03-21 Hankyu Bio Ind Kk Chitosanase
KR100803095B1 (en) * 2006-11-10 2008-02-18 제주대학교 산학협력단 A gene encoding a chitosanase derived from Bacillus subtilis CH2, an expression vector containing the gene, a transformant transformed with the expression vector and a protein produced therefrom
CN101148646A (en) * 2007-09-06 2008-03-26 武汉东方天琪生物工程有限公司 Method for producing high-activity chitosanase preparation
DE102007039490A1 (en) * 2006-09-11 2008-03-27 Zakrytoe Aktsionernoe Obschestvo "Bio Tekhnologii" Producing powdered chitosan oligomers comprises enzymatically hydrolyzing chitosan in an aqueous solution of an organic acid, removing the acid by ion exchange and filtering, concentrating and drying the hydrolysis product
CN101200711A (en) * 2006-12-12 2008-06-18 华东理工大学 Chitosan degrading compound enzyme preparation and preparation method thereof
CN103361374A (en) * 2013-07-23 2013-10-23 扬州日兴生物科技股份有限公司 Chitosanase gene derived from soil metagenome library and obtaining method and application of chitosanase gene
CN104357361A (en) * 2014-11-14 2015-02-18 青岛农业大学 Bacillus subtilis capable of producing chitinase and application thereof
CN104911125A (en) * 2015-05-28 2015-09-16 威海斯瑞海洋生物科技有限公司 Chitosanase production strain and application thereof
CN106998695A (en) * 2014-09-17 2017-08-01 拜耳作物科学有限合伙公司 Include recombinated bacillus cell and insecticide composition
CN107105673A (en) * 2014-09-17 2017-08-29 拜耳作物科学有限合伙公司 Belong to the composition of (Bacillus) cell and fungicide comprising recombinated bacillus
WO2017161181A1 (en) * 2016-03-16 2017-09-21 Spogen Biotech Inc. Fusion proteins, recombinant bacteria, and exosporium fragments for animal health and aquaculture
CN107208042A (en) * 2014-09-17 2017-09-26 斯波根生物技术公司 Fusion protein, recombinant bacteria and the method using recombinant bacteria
CN107236721A (en) * 2017-07-28 2017-10-10 中科荣信(苏州)生物科技有限公司 A kind of bacillus subtilis chitosan enzyme and its preparation method and application
CN109640649A (en) * 2016-03-16 2019-04-16 斯波根生物技术公司 Promote the method for plant health using resolvase and the microorganism for being overexpressed enzyme

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069975A (en) * 1999-09-03 2001-03-21 Hankyu Bio Ind Kk Chitosanase
DE102007039490A1 (en) * 2006-09-11 2008-03-27 Zakrytoe Aktsionernoe Obschestvo "Bio Tekhnologii" Producing powdered chitosan oligomers comprises enzymatically hydrolyzing chitosan in an aqueous solution of an organic acid, removing the acid by ion exchange and filtering, concentrating and drying the hydrolysis product
KR100803095B1 (en) * 2006-11-10 2008-02-18 제주대학교 산학협력단 A gene encoding a chitosanase derived from Bacillus subtilis CH2, an expression vector containing the gene, a transformant transformed with the expression vector and a protein produced therefrom
CN101200711A (en) * 2006-12-12 2008-06-18 华东理工大学 Chitosan degrading compound enzyme preparation and preparation method thereof
CN101148646A (en) * 2007-09-06 2008-03-26 武汉东方天琪生物工程有限公司 Method for producing high-activity chitosanase preparation
CN103361374A (en) * 2013-07-23 2013-10-23 扬州日兴生物科技股份有限公司 Chitosanase gene derived from soil metagenome library and obtaining method and application of chitosanase gene
CN107105673A (en) * 2014-09-17 2017-08-29 拜耳作物科学有限合伙公司 Belong to the composition of (Bacillus) cell and fungicide comprising recombinated bacillus
CN106998695A (en) * 2014-09-17 2017-08-01 拜耳作物科学有限合伙公司 Include recombinated bacillus cell and insecticide composition
CN107208042A (en) * 2014-09-17 2017-09-26 斯波根生物技术公司 Fusion protein, recombinant bacteria and the method using recombinant bacteria
CN104357361A (en) * 2014-11-14 2015-02-18 青岛农业大学 Bacillus subtilis capable of producing chitinase and application thereof
CN104911125A (en) * 2015-05-28 2015-09-16 威海斯瑞海洋生物科技有限公司 Chitosanase production strain and application thereof
WO2017161181A1 (en) * 2016-03-16 2017-09-21 Spogen Biotech Inc. Fusion proteins, recombinant bacteria, and exosporium fragments for animal health and aquaculture
CN109640649A (en) * 2016-03-16 2019-04-16 斯波根生物技术公司 Promote the method for plant health using resolvase and the microorganism for being overexpressed enzyme
CN107236721A (en) * 2017-07-28 2017-10-10 中科荣信(苏州)生物科技有限公司 A kind of bacillus subtilis chitosan enzyme and its preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENEBANK: "chitosanase [Bacillus subtilis] NCBI Reference Sequence: WP_129137795.1", 《GENEBANK》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175921A (en) * 2020-10-23 2021-01-05 中国科学院成都生物研究所 Chitosanase mutant G21R and application thereof
CN112175921B (en) * 2020-10-23 2022-06-07 中国科学院成都生物研究所 A kind of chitosanase mutant G21R and its application
CN113278546A (en) * 2021-05-13 2021-08-20 青岛海洋生物医药研究院股份有限公司 Bacillus subtilis LC1-1 capable of efficiently producing enzyme and enzyme production method and application thereof
CN113913450A (en) * 2021-10-29 2022-01-11 湖南省植物保护研究所 Method for expressing chitosanase by using Rhodopseudomonas marsh, chitosanase, recombinant plasmid, recombinant bacteria, fermentation agent and application
CN113913450B (en) * 2021-10-29 2024-02-02 湖南省植物保护研究所 Method for expressing chitosanase by rhodopseudomonas palustris, chitosanase, recombinant plasmid, recombinant bacteria, fermentation bacteria and application
CN114480537A (en) * 2021-12-21 2022-05-13 中国海洋大学 Method for preparing chitosan oligosaccharide with high polymerization degree
CN114480537B (en) * 2021-12-21 2023-06-20 中国海洋大学 A kind of method for preparing high polymerization degree chitosan oligosaccharide

Similar Documents

Publication Publication Date Title
CN112646792B (en) Low-temperature inulase exonuclease mutant MutA122 delta 5 with reduced thermal stability and application
CN108929878A (en) The encoding gene of algin catenase and its application
CN112980813B (en) Low-temperature modified exoinulase mutant MutS117G
CN112725307B (en) Low-temperature inulase exonuclease mutant MutG169 delta 4 with reduced heat resistance and application thereof
CN112813054A (en) Inulase mutant MutS117N with changed low-temperature salt tolerance and application thereof
CN112725309B (en) Low-temperature inulase exo-mutant MutP126R stable at medium temperature
CN108018245A (en) One plant of bacillus subtilis for producing chitosan enzyme and its application
CN112708607A (en) Inulase mutant MutS120R with changed thermal adaptability and application thereof
CN111500566B (en) Trehalose synthetase mutant and preparation method and application thereof
CN104130988B (en) 1,3-1,4-Beta-glucanase mutant
CN112852782A (en) Low-temperature-adaptively-improved low-temperature inulinase mutant MutDL121EK5 and application thereof
CN110106159B (en) High-temperature-resistant cellulase, coding gene and preparation method thereof
CN107828806A (en) A kind of β alpha-glucosidase genes of new resistance to glucose and its application
CN112980814A (en) Exo-inulinase mutant MutV268 delta 13 with improved low-temperature adaptability
CN110904088B (en) High-temperature-resistant D-psicose3-epimerase, mutant and application thereof
CN105602917A (en) Production method of hesperidinase and application
CN101701214B (en) A wide pH applicability xylanase XYNA4 and its gene and application
CN101503678B (en) A kind of maltooligosaccharide base trehalose synthetase and its coding gene and application
CN101519652B (en) Trehalose synthase and its coding gene and their application
CN111172089A (en) A kind of method utilizing recombinant trehalose synthase to synthesize trehalose
CN112626051B (en) A kind of 1,3/1,4-xylanase MLX1034 and its encoding gene and application
CN105969751B (en) A kind of β-glucosidase gene and its application
CN107083375B (en) Medium-temperature alpha-amylase and gene and application thereof
CN113481186A (en) GH18 chitinase ChiA and application thereof
CN110358755A (en) Acid high temperature resistant recombinant fiber element enzyme and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180511

RJ01 Rejection of invention patent application after publication